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ABSTRACT

Instruction tuning constitutes a prevalent technique for tailoring Large Vision Lan-
guage Models (LVLMs) to meet individual task requirements. To date, most of
the existing approaches are confined to single-task adaptation, whereas the re-
quirements in real-world scenarios are inherently varied and continually evolv-
ing. Thus an ideal LVLM should sustain continual instruction tuning in the
face of stream-task distributions (i.e., different domains, emerging capabilities,
and new datasets) while minimizing the forgetting of previously acquired knowl-
edge. To achieve this, we propose a new benchmark for COntinuAl inStruction
Tuning on LVLMs (COAST), which encompasses the aforementioned domain-
incremental, capability-incremental, and dataset-incremental configurations. In
terms of methodology, we propose Continual LLaVA, a rehearsal-free method
tailored for continual instruction tuning in LVLMs. To circumvent the additional
overhead associated with experience replay, we freeze LVLMs and construct the
dual increment embeddings for each input instruction to facilitate parameter-
efficient tuning. Specifically, the increment embeddings can be decomposed into
two principal components: 1) intrinsic increment embeddings to encode task-
specific characteristics. To achieve this, we set up a low-rank pool containing
candidate embeddings, from which we select the relevant ones based on their sim-
ilarity with the user instructions; 2) contextual increment embeddings to investi-
gate the inter-dependencies across tasks. In this regard, the low-rank embeddings
chosen in the previous tasks are aggregated via learnable weighted sum to provide
complementary hints. Extensive experiments indicate that the proposed Contin-
ual LLaVA outperforms previous methods by significantly reducing the forgetting
during the continual instruction tuning process.

1 INTRODUCTION

Large Language Models (LLMs) such as GPT (Achiam et al., 2023; Brown et al., 2020) and LLaMA
(Touvron et al., 2023a;b) have demonstrated impressive abilities in comprehending user instructions
and generating reliable responses. Building upon these achievements, recent advancements in Large
Vision-Language Models (LVLMs) (Li et al., 2023b; Alayrac et al., 2022; Zhu et al., 2023a; Liu
et al., 2024b; Wu et al., 2023; Li et al., 2024a; Zhan et al., 2024) integrates visual perception capa-
bilities into LLMs, which has sparked considerable research interest.

Beyond the language understanding and generation ability, one prominent characteristic of LLMs
and LVLMs is the emergent capability of instruction following (Ouyang et al., 2022; Zhang et al.,
2023b), i.e., faithfully responding to specific instructions and adhering to human preference. In-
struction tuning enables LVLMs to generalize to unseen tasks by following task-specific instruc-
tions. Currently, most existing LVLMs are finetuned on the single instruction-tuning dataset. How-
ever, users’ requirements are constantly evolving in practical applications. The robust and flexible
LVLMs are expected to be continuously fine-tuned with stream instruction tuning datasets without
the “catastrophic forgetting” (McCloskey & Cohen, 1989) of previously learned knowledge.

Compared to the well-defined per-category continual learning in image classification or object de-
tection (Wang et al., 2024), the continual instruction tuning setting in LVLMs has not been clearly
established. To this end, we collect and re-purpose existing benchmarks to construct a novel bench-
mark for COntinuAl inStruction Tuning (COAST) on LVLMs. Specifically, we set up three contin-
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(b) Capability-incremental Learning

…

Complex Reasoning

Q: How can you tell the computer 
is likely not being used?

A: The computer monitor …

Q: What kind of vehicles are 
there on the street?

A: There are various vehicles …

Conversation

Q: Please provide an intricate 
breakdown of the image.
A: The image presents …

Detail Description

Q: Which horse seems to be tiring, 
based on its head position? 

A: [0.321, 0.471, 0.417, 0.682].

Referring QA

Q: Are there fewer 
squirrels  than acorns?

A: No.

Q: What does the lightest 
shade on this graph represent?

A: Hardly ever / Never.

Q: What is the name of the 
person in this document?
A: Mrs. Melvin Albright.

(a) Domain-incremental Learning

…

ChartQA DocumentQA IconQA

Q: What does this image show? 
A: Touch impression from 

cerebrospinal fluid – toxoplasma.

MedicalQA

(c) Dataset-incremental Learning

…

GQA

Q: What type of food is to left of 
the baby sitting atop the woman?

A: Marshmallow.

Q: What is Barnes home of?
A: London wetland centre.

TextVQA

Q:  Which of these organisms …?
A. black rockfish B. sea otter

A: A.

ScienceQA

Q: What is the object in 
the image? 
A: Poncho.

ImageNet

Figure 1: COAST benchmark for continual instruction tuning including (a) domain-incremental,
(b) capability-incremental, and (c) dataset-incremental learning settings.

ual learning settings: 1) Domain-incremental: As shown in Figure 1 (a), it aims to emulate the sce-
nario where LVLMs are consistently adapted to different domains, e.g., chartqa, documentqa
and iconqa; 2) Capability-incremental: This setting evaluates LVLMs’ capacity to progressively
acquire and integrate new functional capabilities, e.g., conversation, complex reasoning
and detail description in Figure 1 (b); 3) Dataset-incremental: In this setting, LVLMs
are exposed to cumulatively diverse datasets, assessing their ability to adapt and generalize across
a range of dataset distributions (c.f . Figure 1 (c)). Based on the proposed COAST benchmark, we
experiment and find that the intuitive sequential training of LVLMs, i.e., training on new tasks1 with
initial weights from prior training, experiences significant performance degradation (c.f . Sec 4.2),
which necessitates the development of a continuous instruction tuning method for LVLMs.

In this paper, we propose Continual LLaVA, a lifelong LVLM that continually adapts to new do-
mains, learns new capabilities, or incorporates new datasets like humans. Inspired by the success of
LoRA (Hu et al., 2021) in parameter-efficient tuning (Ding et al., 2023), we take one step further
to construct a low-rank pool, which consists of a set of learnable increment embeddings gener-
ated by the low-rank decomposition. Different from the category-wise continual learning in image
classification (Wang et al., 2022b), we construct the increment embeddings from two aspects: 1)
Intrinsic Increments: Each task has its distinct characteristic and necessitates unique increments
for task-specific instruction tuning. For example in Figure 1 (a), LVLMs for chartqa typically
require statistical and graphical literacy while LVLMs for medicalqa need domain knowledge of
anatomy, physiology, and pathology. To achieve this, the corresponding increment embeddings are
selected according to the similarity with user instruction and adapted into LVLMs while keeping the

1In this paper, we use the term “task” to collectively refer to domain, capability, or dataset.
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pre-trained LVLM frozen; 2) Contextual Increments: Each task exhibits correlations with other
ones, indicating inter-dependencies that can be leveraged to enhance knowledge transfer and gen-
eralization across tasks. For example in referring QA of Figure 1 (b), when asked to find the
coordinates of “the tired horse”, LVLMs must reason about spatial relationships of the existing two
horses to correctly identify the referred one. Thus we aggregate the selected increments in previous
tasks via learnable weights to explicitly exploit the shared knowledge among different tasks1.

In summary, our contributions are in three-folds:

• We collect and re-purpose existing benchmarks to curate COAST as a continual instruction tuning
benchmark with the domain-wise, capability-wise and dataset-wise incremental learning settings.

• We propose a novel Continual LLaVA model, a lifelong LVLM to facilitate the continual instruc-
tion tuning across different domains, functional capabilities, or diverse datasets through learning
parameterized intrinsic and contextual knowledge.

• Experimental results have manifested the state-of-the-art performance of our Continual LLaVA.
For example on COAST-domain, Continua LLaVA surpasses the sequential training by achieving
13.06% absolute improvement in average accuracy and 13.25% reduction in average forgetting.

2 RELATED WORK

Large Vision-Language Models. LVLMs (Alayrac et al., 2022; Li et al., 2023b; Liu et al., 2024b;
Sun et al., 2024; Jin et al., 2023) have garnered substantial research attention by advancing and
integrating visual understanding and generation capabilities into LLMs (Achiam et al., 2023; Anil
et al., 2023). A typical LVLM can be abstracted into three components, i.e., a pre-trained vision
encoder (Radford et al., 2021; Kirillov et al., 2023), a pre-trained LLM (Chiang et al., 2023a),
and an interface connector in between. The primary attempt Flamingo (Alayrac et al., 2022) fuses
the visual embedding into textual tokens of LLMs via cross-modal attention. The following works
convert visual embeddings into LLM-understandable tokens using multi-layer perceptron (Liu et al.,
2024b; Sun et al., 2024), Q-former (Bai et al., 2023; Li et al., 2023b), or discretization tokenizer
(Jin et al., 2023). Our Continual LLaVA follows the LLaVA-styled (Liu et al., 2024b) multi-layer
perceptron architecture due to its efficient setup, outstanding performance, and extensive usage.

Instruction Tuning in LVLMs. LVLMs typically undergo the following stages of training, i.e., pre-
training (Lin et al., 2024), instruction tuning (Ouyang et al., 2022), and optional alignment tuning
(Sun et al., 2023; Ziegler et al., 2019). Among them, instruction tuning boosts the zero-shot or few-
shot performance by generalizing LVLMs into unseen tasks by following task-specific instructions
(Wei et al., 2022; Park et al., 2024). To achieve this, open-source LVLMs generate high-quality
instruction-tuning datasets through self-instruction (Wang et al., 2023c), which prompts closed-
source LLMs (Achiam et al., 2023) to generate instruction-following data using a few in-context
examples. Cambrian (Tong et al., 2024) has compiled all the available datasets and restructured
them into instruction tuning format. Most existing approaches limit their focus to instruction tuning
for a specific task, overlooking the essential area of continuous instruction tuning for stream tasks.

We offer a detailed review of the limited research on continual learning for LVLMs, including recent
pre-print works (Chen et al., 2024; Zhu et al., 2024; Zheng et al., 2024; He et al., 2023; Zhai et al.,
2023). EMT (Zhai et al., 2023) focuses on the influence of fine-tuning LVLMs on image classifi-
cation performance of the vision encoder, rather than on the instruction-following ability that our
study prioritizes. While (Zhu et al., 2024) examines the performance trade-off between pre-trained
and fine-tuned models, it does not involve the continual tuning in the more challenging streaming
data. The pre-print works (Chen et al., 2024; Zheng et al., 2024; He et al., 2023) focus on continual
instruction tuning but are limited to the dataset-incremental scenario. In contrast, we advance them
by categorizing continual instruction tuning along three dimensions, (i.e., domain, capability, and
dataset), thoroughly addressing practical and real-world demands.

Continual Learning. Inspired by the incremental learning pattern (Chen & Liu, 2022; Wang et al.,
2024) observed in human brains, continual learning focuses on the sequential training paradigm on
a series of tasks with the expectation of maintaining performance across all tasks (Wang et al., 2024;
Lee et al., 2017; McCloskey & Cohen, 1989). Early attempts adopt the regularization methodology
(Kirkpatrick et al., 2017; Li & Hoiem, 2017; Feng et al., 2022; Yang et al., 2024) to penalize the
updates to parameters that are important for previous tasks. Subsequent architecture-based works
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Top-M proxy-increment pairs of current task
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Contextual Increment ∆'!"

selection

Figure 2: (a) An overview of Continual LLaVA. The i-th input image of t-th task vi
t is processed

via the pre-trained visual encoder followed by a linear projection layer. The corresponding textual
instruction sit is embedded as qi

t by a frozen surrogate function. The low-rank pool contains N
learnable proxy-increment embedding pairs {kn,Pn}Nn=1, where the dual increment embeddings
are selected according to the cosine similarity with qi

t. (b) The schematic illustration of the dual
increment embeddings. We construct intrinsic embeddings ∆θit by aggregating the top-M items
from the low-rank pool based on their similarity to qi

t. Contextual increments ∆δit are generated by
integrating the selected embeddings from all the previous tasks via learnable weights.

differentiate tasks via parameter isolation (Mallya & Lazebnik, 2018; Serra et al., 2018), dynamic ar-
chitectures (Yoon et al., 2018; Hung et al., 2019), or modular networks (Shen et al., 2019). Another
kind of rehearsal-based methods (Bonicelli et al., 2022; Chen & Chang, 2023; Lin et al., 2023) con-
structs the memory buffer to store and replay past data to prevent forgetting. To reduce buffer over-
head, prompt-based methods (Wang et al., 2022b; Smith et al., 2023; Wang et al., 2022a; Li et al.,
2024b) exploit learnable prompts to serve as the succinct episodic memory system for rehearsal-free
continual learning. Different from the category-wise continual learning in image classification or ob-
ject detection (Wang et al., 2024), this work demonstrates the potential of LVLMs to be continually
adapted to novel tasks under the instruction tuning paradigm.

3 METHOD

The schematic illustration of Continual LLaVA is demonstrated in Figure 2. In Sec. 3.1, we present
the overview of Continual LLaVA including visual & textual embeddings, dual increment embed-
dings, and LLM. Then we detail the proposed intrinsic and contextual increment embedding mining
in Sec. 3.2. Finally, the adaption procedure and optimization objectives are presented in Sec. 3.3.

3.1 OVERVIEW

The proposed Continual LLaVA is trained with a chain of instruction-tuning tasks1 at the domain,
capability, or dataset levels. Suppose that we have the stream instruction-tuning tasks {Dt}Tt=1,
where each task Dt = {vi

t, s
i
t, r

i
t}

|Dt|
i=1 comprises the triplet of the input image vi

t, instruction sit,
and output response rit, i = {1, 2, · · · , |Dt|}.
Structurally, Continual LLaVA comprises the following four major components.

• Visual Embedding: Given the i-th input image of t-th task vi
t, we follow (Liu et al., 2024b;a) to

extract the visual embeddings. Specifically, we use the pre-trained CLIP visual encoder ViT-L/14
(Radford et al., 2021) followed by a linear projector to convert the visual embeddings into LLM
understandable space. In experiments, the CLIP encoder is kept frozen and the linear projector
is initialized using the pre-trained weights from (Liu et al., 2024a).

• Textual Embedding: For the input instruction sti, we adopt the widely used BPE tokenizer (Sen-
nrich et al., 2016) to obtain the textual embeddings.
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• Dual Increment Embedding: We establish a dual increment embedding framework consisting of
intrinsic and contextual increment embeddings to capture and encode both the inherent charac-
teristics and the contextual information for each input instruction.

• Large Language Model: Finally, LLM takes the visual embeddings, textual embeddings, and
dual increment embeddings as input and generates the desired responses. The vanilla weights
of LLM are kept frozen and only the mined dual increment embeddings are updated. We select
Vicuna (Chiang et al., 2023b) as LLM for our experimental studies.

3.2 DUAL INCREMENT EMBEDDING MINING

Intrinsic Increment Embedding: We set up a low-rank pool to serve as a flexible and dynamic
memory enabling Continual LLaVA to retrieve relevant information. Specifically, the low-rank pool
consists of N learnable proxy-increment embedding pairs, i.e., {kn,Pn}Nn=1. The proxy embed-
dings {kn}Nn=1 are used for the embedding selection, while increment embeddings {Pn}Nn=1 are
adapted into LVLMs for efficient tuning. Pn ∈ RD×D is generated as the product of learnable
matrices An ∈ RD×R and Bn ∈ RR×D, R≪ D, to enforce low rank.

Pn = An ·Bn. (1)

The input instructions take on the responsibility of selecting the intrinsic increment embeddings
from the low-rank pool. To achieve this, we firstly employ Sentence-BERT (Reimers & Gurevych,
2019) to encode sit as the surrogate embedding qi

t ∈ RD×1, where sit denotes the i-th instruction
of t-th task. Then we compute the cosine similarity between the surrogate embedding qi

t and all
the proxy embeddings kn within the pool, n ∈ [1, N ]. The proxy embedding and corresponding
increment embeddings with the top-M similarity scores are selected as follows.

I = {i1, i2, · · · , iM} = arg topn∈[1,N ] cos (kn, q
i
t), (2)

where I is the selected index set and cos(·, ·) represents the cosine similarity computation. Thus the
selected proxy and increment embeddings are denoted as {kim}Mm=1 and {Pim}Mm=1, respectively.
Finally, the intrinsic increment embedding is generated as follows by aggregating the selected incre-
ment embeddings in a softmax manner.

∆θit =

∑M
m=1 cos

(
qi
t,kim

)
· Pim∑M

m=1 cos
(
qi
t,kim

) , (3)

where ∆θit is the intrinsic increment embedding for the i-th data instance of t-th task.

Contextual Increment Embedding: We construct the contextual increment embeddings by inte-
grating the learned embeddings from the previous tasks to provide complementary task-wise correla-
tions. To achieve this, we maintain a task-wise set Zt, t ∈ [1, T ], to record all the selected increment
embeddings in each task via Eq. 2. For the t-th task, the contextual increments are generated in a
weighted sum of Zl covering all the previous tasks, l ∈ [1, t].

∆δit =

t∑
l=1

wl sg(Z l), (4)

where ∆δit represents the contextual increment embedding for the t-th task. wl ∈ [0, 1] is the
learnable weight. Z l denotes the instance-wise average pooling results of the set Zl. Note that we
freeze the previously learned Z l via the stop-gradient function sg(·), which behaves like the identity
function during the forward pass, but has zero gradients when computing the backward pass.

3.3 ADAPTATION TO LVLMS

Adaptation to LVLMs: Following (Hu et al., 2021), we freeze all the pre-trained weights of LVLMs
and only selectively add and update the mined intrinsic and contextual increment embeddings. Here
naturally arises the question of where to insert the selected increment embeddings. Recall that there
exist four linear projection layers within the multi-head attention computation (Devlin, 2018), i.e.,
the query, key, value, and output projection (c.f . Figure 4 in Appendix). Our experiments in
Sec.4.3 show that re-parameterizing all four linear projection layers is unnecessary and we choose
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Algorithm 1 The training pipeline of Continual LLaVA

Input: Stream data {D1, . . . ,DT }, Dt = {(vi
t, s

i
t, r

i
t)}

|Dt|
i=1 , where vi

t, s
i
t and rit denote i-th input

image, instruction and response in t-th task, respectively.
Learnable Parameters: Proxy embeddings {kn}Nn=1; Increment embeddings {Pn}Nn=1.
Hyper-parameters: Pool size N ; Selected number M ; Task number T ; Learning rate η.

1: for t = 1, . . . , T do
2: Zt ← ∅ ▷ Initialize selected increment embedding set for t-th task
3: if t > 1 then
4: {w1,w2, · · · ,wt} ← Parameter(t) ▷ Initialize learnable vector with length t
5: end if
6: for (vi

t, s
i
t, r

i
t) ∈ Dt do ▷ Input image, instruction and response

7: Extract surrogate embedding qi
t = Sentence-BERT(sit)

8: Compute cosine similarities between qi
t and proxy embeddings kn as cos(qi

t,kn)
9: Obtain index set I = {i1, i2, · · · , iM} with top-M highest similarities via Eq. 2

10: Zt ← Zt ∪ {Pim}Mm=1 ▷ Update selected embeddings

11: Compute intrinsic increment embedding ∆θit ←
∑M

m=1 cos(qi
t,kim)·Pim∑M

m=1 cos(qi
t,kim)

12: if t > 1 then
13: Compute contextual increment embedding ∆δit ←

∑t
l=1 wl sg(Z l)

14: end if
15: Re-parameterize LLMs via Eq. 5
16: Gradient back-propagation to update kim ← kim − η∇kim

cos(qi
t,kim) ▷ c.f . Eq. 6

17: Gradient back-propagation to update ∆θit ← ∆θit + η∇∆θi
t
Lar(r

t
i ; ∆θit,∆δit)

18: Gradient back-propagation to update ∆δit ← ∆δit + η∇∆δit
Lar(r

t
i ; ∆θit,∆δit)

19: end for
20: end for

only to adapt the output linear projection for cost savings. Considering a specific output linear
layer with pre-trained weight matrix W0 ∈ Rd×d, it is updated as follows.

y = W ′x = (W0 +∆θit +∆δit)x, (5)

where x denotes the input feature and y is the corresponding output. W ′ represents the adapted
weights. ∆θit and ∆δit are respectively generated by Eq. 3 and Eq. 4. The pre-trained weights W0

are kept frozen and only the increment embeddings ∆θit and ∆δit are optimized.

Optimization: As shown in Algorithm 1, the overall optimization undergoes a two-stage training,
i.e., the first stage for the alignment between surrogate embeddings and proxy embeddings while the
second stage for LLM auto-regressive training. For the first stage, we optimize the selected proxy
embeddings {kim}Mm=1 by pushing them close to the frozen surrogate embedding qi

t.

Lalign = −
M∑

m=1

cos(qi
t,kim). (6)

For the second stage training of Continual LLaVA, we adopt the conventional auto-regressive loss
Lar(r

t
i ; ∆θit,∆δit) with the parameterized increment embeddings ∆θit and ∆δit, where rti denotes

the response of the i-th data instance of the t-th task.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

COAST Benchmark Construction. We set up the COAST benchmark for continual instruction
tuning on LVLMs. COAST contains the domain-incremental, capability-incremental, and dataset-
incremental settings. 1) COAST-domain: We select four different domain tasks including ChartQA
(Masry et al., 2022), DocVQA (Mathew et al., 2021), IconQA (Lu et al., 2021), and MedicalQA
(He et al., 2020). We use the instruction-following format of these datasets curated by (Tong et al.,

6
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Table 1: Evaluation results (%) of continual instruction tuning on COAST-domain. “Avg.” and
“Fgt.” represent average accuracy and average forgetting, respectively. “Reh.”, “Seq.” and “Joint”
denote rehearsal, sequential and joint training.

Methods #Params↓ Avg.↑ Fgt.↓ ChartQA DocVQA IconQA MedicalQA
Joint 6.76B 42.79 — 21.99 20.08 64.37 64.73
CODA 0.75M 36.06 2.72 15.03 16.93 58.96 53.33
Dual 0.75M 35.80 2.79 14.92 16.77 58.60 52.92
L2P 0.75M 35.06 2.91 14.77 16.73 57.55 51.20
LWF 6.76B 27.06 15.05 14.07 13.19 37.93 43.05
EWC 6.76B 25.82 15.23 13.73 11.89 35.12 42.53
Reh. 6.76B 24.92 15.61 13.10 11.20 34.83 40.53
Seq. 6.76B 24.02 15.83 11.77 11.29 33.73 39.27
Ours 0.75M 37.08 2.58 15.30 17.82 60.71 54.50

2024). To ensure balance between tasks, we sample the same 20,000 instances from each domain
data for training and 5,000 instances for evaluation. 2) COAST-capability: We specifically focus on
the four crucial capabilities for instruction tuning including complex reasoning, conversion, detail
description, and referring question answering (Zhao et al., 2023). For each capability tuning, 20,000
samples are used for training while 5,000 samples are allocated for evaluation. 3) COAST-dataset:
Following (Chen et al., 2024), we integrate visual question-answering datasets including VQAv2
(Goyal et al., 2017), VizWiz (Gurari et al., 2018), ScienceQA (Lu et al., 2022), TextVQA (Singh
et al., 2019), GQA (Hudson & Manning, 2019), OCR-VQA (Mishra et al., 2019), image classifica-
tion dataset ImageNet (Deng et al., 2009), and referring expression comprehension dataset including
RefCOCO (Kazemzadeh et al., 2014), RefCOCO+ (Mao et al., 2016) and RefCOCOg (Mao et al.,
2016). Refer to (Chen et al., 2024) for the specific training and evaluation splits.

Evaluation Metrics. We customize the standard continual learning metrics (Wang et al., 2024;
Chaudhry et al., 2018) for our continual instruction tuning scenario. We have set up two metrics for
evaluation: 1) average accuracy represents the overall assessment of all the task performance. It is
typically defined as the mean of the accuracy values obtained throughout all the tasks; 2) average
forgetting aims to quantify the extent to which a model forgets previously learned tasks as it learns
new ones. It is defined as the mean reduction between the maximum accuracy throughout the past
learning process and the final accuracy. We follow (Liu et al., 2023b; Yin et al., 2024; Tong et al.,
2024) to employ GPT-assisted assessment (we use GPT-4o (OpenAI, 2024) for grading) to evaluate
the quality, relevance, and usefulness of model’s predictions. Refer to Appendix A.1 for detailed
explanations of the metrics and the grader prompt for GPT-4o.

Compared Methods. We consider the following methods for comparisons with Continual LLaVA:
1) Sequential training refers to the process of incrementally training a model on new tasks, where
the model’s parameters are initialized using weights pre-trained on previous tasks; 2) Rehearsal
training involves the practice of replaying previously encountered data, often stored in a buffer, and
integrating it with new tasks during the training process. Following (He et al., 2021; Huang et al.,
2021), the buffer size is defined as 1% of the entire training task size; 3) Popular continual learning
methods including regularization-based approaches (i.e., EWC (Kirkpatrick et al., 2017) and LWF
(Li & Hoiem, 2017)) and prompt-based methods (i.e., L2P (Wang et al., 2022b), Dual (Wang et al.,
2022a) and CODA (Smith et al., 2023)); 4) Joint training involves supplying the model with the full
stream dataset simultaneously and training on all tasks collectively. This is typically regarded as the
upper-bound performance of continual learning.

Implementation Details. We randomly sample three task orders from all the possible permutations
of task compositions and report the mean results of average accuracy and average forgetting from
the selected task orders. The specific task orders are available in Table 4 and Appendix A.1. The
visual projector is implemented as two linear projection layers with a GELU activation function in
between. The low-rank pool size N , the selected number M , and the rank number R are respectively
specified as 32, 4, and 8. We set the batch size to 32 and the learning rate η to 4×10−5 with a cosine
decay schedule. The training process lasts for 2 epochs and the warm-up ratio is configured as 0.03.
Following (Hu et al., 2021), the low-rank components An and Bn in Eq 1 are initialized with the
zero and normal distribution, respectively.
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Table 2: Evaluation results (%) of continual instruction tuning on COAST-capability. “Conv.”,
“Desc.”, “Reason” and “Ref.” represent conversation, detail description, complex reasoning, and
referring qa, respectively. “Reh.”, “Seq.” and “Joint” denote rehearsal, sequential, and joint training.

Methods #Params Avg.↑ Fgt.↓ Conv. Desc. Reason Ref.
Joint 6.76B 57.95 — 62.48 43.45 74.02 51.84
CODA 0.75M 54.21 4.99 58.91 40.12 70.71 47.08
Dual 0.75M 53.62 5.01 58.09 39.85 70.03 46.52
L2P 0.75M 53.31 5.04 57.90 39.33 69.70 46.32
LWF 6.76B 44.15 9.77 46.11 24.16 61.43 44.90
EWC 6.76B 43.69 9.72 46.23 24.20 60.11 44.20
Reh. 6.76B 43.34 9.79 45.11 23.93 60.54 43.76
Seq. 6.76B 41.51 10.56 44.29 23.25 58.39 40.13
Ours 0.75M 55.79 4.18 60.42 41.25 72.25 49.23

Table 3: Evaluation results (%) of continual instruction tuning on COAST-dataset. “Reh.”,
“Seq.” and “Joint” denote rehearsal, sequential, and joint training.

Methods Avg.↑ Fgt.↓ SciQA Text ImgNet GQA Viz REC VQA OCR
Joint 57.03 — 61.74 52.14 60.93 65.56 47.46 21.86 67.54 79.04
CODA 50.27 9.70 54.80 44.55 53.64 58.43 39.07 14.97 62.63 74.08
Dual 49.40 12.03 53.82 41.88 52.21 59.24 39.13 14.05 62.80 72.14
L2P 49.01 12.12 53.13 41.64 51.69 58.96 38.90 13.78 62.22 71.78
LWF 26.41 36.94 52.40 30.02 23.99 27.30 14.65 3.43 35.13 24.32
EWC 27.24 32.52 52.93 31.84 25.13 28.61 15.25 5.03 35.21 23.91
Reh. 26.49 33.17 52.02 31.29 24.44 28.03 14.80 4.14 34.14 23.03
Seq. 25.35 35.82 51.57 30.19 23.27 26.08 14.19 1.32 33.49 22.67
Ours 53.33 6.86 58.67 49.99 57.66 62.53 42.32 16.25 64.33 74.91

4.2 PERFORMANCE ANALYSIS

The experimental results for COAST-domain, COAST-capability and COAST-dataset are demon-
strated in Table 1, Table 2 and Table 3, respectively. The comparisons highlight that Continual
LLaVA consistently outperforms sequential training, rehearsal training, and leading continual learn-
ing methods in both average accuracy and average forgetting. For example, on COAST-domain,
Continual LLaVA achieves an average accuracy of 37.08%, exceeding sequential training by a mar-
gin of 13.06%. Additionally, Continual LLaVA demonstrates a notably lower average forgetting
than other approaches, further validating its ability to mitigate forgetting across different domains.
Taking the sequential training and rehearsal training as examples, our approach reduced the forget-
ting rate by 13.25% (2.58% v.s. 15.83%) and 13.03% (2.58% v.s. 15.61%), respectively. Notably,
our improvements come with the benefit of fewer tunable parameters. Our parameter-efficient tun-
ing leverages only 0.75M tunable parameters, in stark contrast to the 7.67B parameters demanded by
the sequential tuning. In summary, Continual LLaVA offers superior performance, less forgetting,
and reduced computational overhead.

Through the comparisons under the domain, capability, and dataset incremental settings of COAST,
we observe that the forgetting phenomenon of continual instruction learning is more pronounced
on COAST-dataset. Specifically, the average forgetting of sequential training on COAST-dataset
reaches 35.82%, respectively representing an absolute increase of 19.99% and 25.26% compared
to the performance on COAST-domain and COAST-capability. The reason may lie in the steam
datasets’ highly diverse distributions and the ambiguity of task boundaries, which complicates
LVLMs’ ability to choose between retaining or revising previously acquired knowledge.

4.3 ABLATION STUDIES

Ablations on the stream task order. In Section 4.2, we present the average performance across
three different task orders of COAST. Here, we aim to explore the impact of different task orders
on continual instruction tuning. The results across different task orders are presented in Table 4 and
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Table 4: Ablation studies (%) on the task order. We adopt the following abbreviation scheme to
streamline the representation of task order notation. (a) On COAST-domain, cdim represents the
order of chart→ document→ icon→ medical; (b) On COAST-capability, crfd denotes
the order of conv→ reason→ refqa→ desc; (c) On COAST-dataset, stigzrvo denotes the
order of SciQA→ Text→ ImgNet→ GQA→ Viz→ REC→ VQA→ OCR. Refer to Appendix
A.1 for the explicit order referring to each abbreviation.

Order Avg.↑ Fgt.↓

cdim 37.43 2.81
imcd 36.65 2.62
dmci 37.17 2.30

(a) COAST-domain

Order Avg.↑ Fgt.↓

crfd 61.16 1.85
dcrf 51.47 8.96
fdrc 54.75 1.73

(b) COAST-capability

Order Avg.↑ Fgt.↓

stigzrvo 52.67 8.22
vzgitosr 53.62 4.95
itgzvors 53.70 7.40

(c) COAST-dataset

Which part of the <st>elephant<ed>
[0.12, 0.429, 0.616, 0.937] is closer
to the <st>trees<ed> [0.556, 0.024,
0.994, 0.682]?

User

Seq. Train <st>Tail<ed>[0.12,0.429,0.616,0.9
37] of elephant is closer to trees.

<st>Ears<ed> [0.363, 0.413, 0.531, 
0.64] of the elephant are closer to 
the trees.

Continual 
LLaVA

Disclose every detail you see in the image.User

This is a photo of a soccer game. There are several players in the photo,
but only two are actively playing the game. The player in the white
jersey and black shorts has the ball and is dribbling it toward the other
player who is wearing a navy blue jersey and black shorts. The player
in the white jersey is looking towards his opponent while dribbling the
ball and the other player seems to be in a defensive position. The other
players in the photo are standing by watching the game. The game is
being played on a grassy field, and the players are all wearing soccer
cleats. This photo captures the excitement and intensity of the game.

Continual 
LLaVA

Image depicts soccer game with multiple players on field there are
several men including <st>man<ed> [0.27, 0.292, 0.47, 0.852] in blue
shirt and another <st>man<ed> [0.47, 0.292, 0.67, 0.852] in white shirt
they are running towards <st>soccer ball<ed> [0.53, 0.71, 0.62, 0.84].

Seq. Train

conv reason refdesc

(a) Task Order (c) Final model results on Detail Description

(b) Final model results on Reference QA 

final 
model

Figure 3: Visualizations on reference QA and detail description tasks under the training chain of
dcrf, i.e., desc→ conv→ reason→ referring qa. The incorrect or undesired responses
are marked in red, while the remarkable contents are highlighted in green.

the principal findings are as follows. 1) In the context of COAST-domain, the task order does not
significantly influence the final performance. This is likely attributable to the fact that each domain
typically presents distinct patterns, resulting in minimal interference between tasks; 2) For COAST-
capability, the dcrf order yields a notably lower average accuracy of 51.47%, accompanied by
a substantially high average forgetting of 8.96%. We conjecture that this phenomenon may stem
from the fact that referring QA is designated as the final task to be learned in the dcrf order.
This task focuses on a more specific localization capability and requires distinctive outputs with
coordinates, potentially contributing to the forgetting of prior tasks. To further demonstrate this, we
provide a visualization case in Figure 3. It shows that under the dcrf order, the final model of
sequential training fails to retain the capability for detail description and invariably outputs
unnecessary coordinate information. In contrast, our Continual LLaVA successfully differentiates
between these two tasks and delivers accurate responses that align with the specified instructions.

Ablations on dual increment embeddings. We conduct ablation studies on the intrinsic and con-
textual increment embeddings to validate their contributions. The results in Table 5 (a) show that
both intrinsic increment ∆θ and contextual increment ∆δ are crucial to the overall performance, e.g.,
∆θ brings about 3.71% improvement in average accuracy and 0.25% decrease in average forgetting.

Ablations on proxy-increment embedding alignment loss. In Eq. 6, we align the selected proxy
embeddings to the corresponding surrogate embeddings. We ablate on this alignment loss to see
the difference and the comparison results are listed in Table 5 (b). We notice a significant 6.80%
absolute decrease in average accuracy without applying the alignment loss, which demonstrates the
necessity of aligning the proxy embeddings and surrogate embeddings.
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Table 5: Ablation studies (%) on (a) dual increment embeddings including intrinsic increments
∆θ and contextual increments ∆δ; (b) the proxy-increment embedding alignment loss Lalign; (c)
adaption positions including the weight matrix of the query, key, value linear layers. “all-
combination” denotes re-parameterizing all the query, key, value, and output linear layers;
(d) similarity computation mechanisms. “vis-based sim” denotes mining intrinsic increments
based on the similarity between visual embeddings and candidate embeddings.

Exp. Mode Avg.↑ Fgt.↓ Chart Doc. Icon Med.
vanilla 37.08 2.58 15.30 17.82 60.71 54.50

(a) w/o ∆θ 33.37−3.71 2.83+0.25 11.92 14.11 56.87 50.59
w/o ∆δ 36.43−0.65 2.89+0.31 15.04 17.10 59.94 53.62

(b) w/o Lalign 30.28−6.80 2.91+0.33 13.13 15.97 51.56 40.50

(c)

query-adaption 36.41−0.67 2.65+0.07 14.96 17.04 59.90 53.74
key-adaption 36.42−0.66 2.65+0.07 14.98 16.99 59.93 53.76

value-adaption 36.43−0.65 2.65+0.07 15.02 17.02 59.91 53.78
all-adaption 36.99−0.09 2.62+0.04 15.31 17.65 60.62 54.38

(d) vis-based sim 35.67−1.41 2.77+0.19 13.75 16.15 58.82 53.94

Table 6: Hyper-parameter ablations of (a) low-rank pool size N and (b) selected number M .

N 8 16 32 64

Avg.↑ 34.04 35.13 37.08 37.06
Fgt.↓ 2.89 2.62 2.58 2.59

(a) The low-rank pool size N .

M 1 4 8 16

Avg.↑ 35.12 37.08 36.97 36.82
Fgt.↓ 2.92 2.58 2.62 2.65

(b) The selected number M .

Ablations on adaption positions. In Sec. 3.3, we adapt the constructed dual increment embeddings
into the output linear layer. We conduct ablation experiments on the adaption positions, including
the linear layer of query, key, value, output, and their combination. Refer to Figure 4 in
Appendix for schematic illustrations. The comparison results are listed in Table 5 (c). We have the
following findings: 1) The performance of query-adaptation, key-adaptation, and value-adaptation
are comparable, but all fall short in comparison to output-adaptation in vanilla Continual LLaVA; 2)
Re-parameterizing all four linear layers is unnecessary since the “all-adaption” results are inferior
to that of output-adaption. Therefore, we opted for “output-adaption” for re-parameterization.

Ablations of similarity computation mechanisms. In Sec. 3.2, the intrinsic increment embeddings
are mined based on the cosine similarity between the textual instruction and proxy embeddings,
i.e., text-based similarity. Here we ablate on the selection manner according to the vision-based
similarity, i.e., the cosine similarity between visual embeddings and candidate proxy embeddings.
Specifically, the visual embeddings are extracted by a pre-trained CLIP visual encoder ViT-L/14
(Radford et al., 2021). The results in Table 5 (d) demonstrate that vision-based selection leads to
inferior performance, which may be due to the fact that textual instructions more easily differentiate
between tasks and provide explicit task objectives.

Ablations of hyper-parameters. We conduct hyper-parameter ablation studies including low-rank
pool size N and selected number M on COAST-domain. According to the results in Table 6, we set
N = 32 and M = 4 for the optimum performance.

5 CONCLUSIONS

This paper targets continual instruction tuning, which refers to the process of incrementally adapt-
ing LVLM to new tasks by fine-tuning it with task-specific instructions. To establish an assessment
standard, we propose COAST as the benchmark for continual instruction tuning on LVLMs from
the domain-incremental, capability-incremental, and dataset-incremental perspectives. In addition,
we propose a parameter-efficient tuning method Continual LLaVA, which devises the intrinsic in-
crement embeddings to capture task-specific properties and contextual increment embeddings to
explore inter-task relational dependencies. Experimental results manifest that Continual LLaVA
significantly improves the overall performance and reduces catastrophic forgetting during the con-
tinual instruction tuning process.
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A APPENDIX

This appendix contains the additional details including the following aspects:

• More Details of Experimental Settings (Sec. A.1)
– Evaluation prompt for COAST
– Task order reference
– Illustrations of evaluation metrics
– Illustrations of adaption positions
– Illustrations of grade prompt for GPT
– Algorithm for inference

• More Experimental Results (Sec. A.2)
– Specific results of Continual LLaVA on each task order
– Plug-and-play analysis
– Comparisons of on-the-fly results and final model results
– Ablations on the low-rank decomposition

• More Related Work Discussion (Sec. A.3)
– Continual learning for LLMs
– LVLM benchmarks

• More Visualization Results (Sec. A.4)
– Visualizations of low-rank pool selection
– Visualizations of training losses
– Qualitative comparisons between sequential training and Continual LLaVA

• Source Codes and Reproducibility (Sec. A.5)

A.1 MORE DETAILS OF EXPERIMENTAL SETTINGS

Evaluation Prompt for COAST. Following (Tong et al., 2024), the prompts used for COAST
benchmark evaluation are released in Table 7. For datasets that are not explicitly designated, no
additional evaluation prompts are applied.

Task Order Reference: In Table 4, we conduct ablations on three different task orders. Here we
provide the specific task order sequence of the task abbreviation for more convenient reference.

The task order reference on COAST-domain is as follows:

• cdim: chart→ document→ icon→ medical

• imcd: icon→ medical→ chart→ document

• dmci: document→ medical→ chart→ icon

The task order reference on COAST-capability is as follows:

• crfd: conversation → complex reason → referring qa → detail
description

• dcrf: detail description → conversation → complex reason →
referring qa

• fdrc: referring qa → detail description → complex reason →
conversation

The task order reference on COAST-dataset is as follows:

• stigzrvo: SciQA→ Text→ ImgNet→ GQA→ Viz→ REC→ VQA→ OCR.
• vzgitosr: VQA→ Viz→ GQA→ ImgNet→ Text→ OCR→ SciQA→ REC

• itgzvors: ImgNet→ Text→ GQA→ Viz→ VQA→ OCR→ REC→ SciQA
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Table 7: Prompts used in the evaluation for the related datasets.

Dataset Prompt Example
ChartQA \nAnswer the ques-

tion using a single
number or phrase.

<image>\nWhat was the sales volume of computers and
telecoms in the second quarter of 2020?\nAnswer the
question using a single number or phrase.

DocVQA \nGive the short an-
swer directly.

<image>\nWhat is the time of the Seminar?\nGive the
short answer directly.

IconQA \nAnswer with the
option letter from
the given choices
directly.

<image>\nHow many shapes are blue?\nAnswer with
the option letter from the given choices directly.

MedicalQA \nAnswer the ques-
tion using a single
word or phrase.

<image>\nIs tuberculous peritonitis present?\nAnswer
the question using a single word or phrase.

ScienceQA \nAnswer with the
option’s letter from
the given choices di-
rectly.

<image>\nWhen World War I first started, what did
many people believe?\nA. It would be one of the longest
wars in history.\nB. The war would be the first of
two world wars.\nC. The war would lead to the death
of millions of Germans.\nD. The war would be over
quickly.\nAnswer with the option’s letter from the given
choices directly.

Text-VQA \nAnswer the ques-
tion using a single
word or phrase.

<image>\nHow man price tags are on the bottom
shelf?\nReference OCR tokens: 2.39, 2.45, 2.39, 2.39,
39\nAnswer the question using a single word or phrase.

ImageNet \nAnswer the ques-
tion using a single
word or phrase.

<image>\nWhat is the object in the image? \nAnswer
the question using a single word or phrase.

GQA \nAnswer the ques-
tion using a single
word or phrase.

<image>\nIs the sky dark?\nAnswer the question using
a single word or phrase.

VizWiz \nAnswer the ques-
tion using a single
word or phrase.

<image>\nWhat’s the name of this product?\nAnswer
the question using a single word or phrase.

VQAv2 \nAnswer the ques-
tion using a single
word or phrase.

<image>\nWhat is this photo taken looking through?
\nAnswer the question using a single word or phrase.

Evaluation Metrics of Continual Instruction Tuning. We devise the metrics of average accuracy
and average forgetting used to evaluate the continual instruction tuning performance. The former
represents the overall performance of the final model on all the learned tasks while the latter mea-
sures how much the model’s performance on older tasks has degraded as it learns new ones.

Let αk,j ∈ [0, 1] denote the GPT-evaluated accuracy on j-th task after incrementally training on
the k sequential tasks (j ≤ k). The metric of average accuracy is defined as the mean values of
GPT-evaluated accuracy of the final model across all the learned tasks.

AAk =
1

k

k∑
j=1

ak,j . (7)

Since average accuracy does not convey any insight into the forgetting dynamics during the continual
instruction tuning process, average forgetting has been introduced to fill this gap. For a particular
task, the forgetting measure is defined as the difference between the maximum accuracy throughout
the past learning process and the current one. In particular, the forgetting for the j-th task after
incrementally training up to k tasks is as follows.

fk
j = max

l∈{1,··· ,k−1}
al,j − ak,j , ∀j < k. (8)
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The average forgetting of k-th task is computed as follows.

AFk =
1

k − 1

k−1∑
j=1

fk
j . (9)

We report the average accuracy and average forgetting after learning across all the T tasks, i.e., AAT

and AFT .

Illustrations on Adaption Positions. Recall that after obtaining the intrinsic and contextual embed-
dings, we adapt them into the linear projection layers of LLM. There exist four choices including
the query, key, value, and output projections. The schematic illustration of the adaption po-
sitions is demonstrated in Figure 4. According to the comparison experiments in Table 5(c), we opt
to adapt the constructed increment embeddings into the output linear layer.

Scaled Dot-Product

Query 
Linear

Key 
Linear

Value 
Linear

concatenate

Output 
Linear

!

"

! = #!$ = #" + Δ' + Δ( $

! = #"$
Before adaption:

After adaption:

1 2 3

4

Figure 4: Illustrations of adaption positions including the query, key, value, and output
linear projections. ∆θ and ∆δ denote intrinsic and contextual increment embeddings, respectively.

Grade Prompt. We follow (Liu et al., 2023b; Yin et al., 2024; Tong et al., 2024) to employ GPT-
assisted assessment to evaluate the quality of model predictions. We choose GPT-4o and the grader
prompts are as follows.

System prompt for LLM Grader

You are an intelligent chatbot designed for evaluating the
correctness of generative outputs for question-answer pairs.
Your task is to compare the predicted answer with the correct
answer and determine if they match meaningfully. Here’s how
you can accomplish the task:
------
##INSTRUCTIONS:
- Focus on the meaningful match between the predicted answer
and the correct answer.
- Consider synonyms or paraphrases as valid matches.
- Evaluate the correctness of the prediction compared to
the answer.

Algorithm for Inference. We provide the algorithm for inference in Algorithm 2. Notably, the
inference process does not depend on experience replay or task-specific identification.

A.2 MORE EXPERIMENTAL RESULTS

Specific Results for Each Task Order. In Table 4, we report the average accuracy and average
forgetting under different task orders on the COAST benchmark. Here we augment Table 4 by
providing the specific performance on each task. The performance of Continual LLaVA on COAST-
domain, COAST-capability, and COAST-dataset under different task orders are listed in Table 8.

Plug-and-play Analysis. Our proposed dual increment embedding mining can serve as the plug-
and-play strategy that can be easily applied to other LVLMs. Besides the LLaVA (Liu et al., 2023a)
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Algorithm 2 The inference pipeline of Continual LLaVA
Input: Image vi

t, textual instructions sit.
Output: Responses rit.

1: function INFER(vi
t, s

i
t)

2: Extract surrogate feature qi
t = Sentence-BERT(sit)

3: Compute cosine similarities between qi
t and proxy feature kn as cos(qi

t,kn)
4: Obtain index set I = {i1, i2, · · · , iM} with top-M highest similarities via Eq. 2

5: Compute intrinsic increment embedding ∆θit ←
∑M

m=1 cos(qi
t,kim)·Pim∑M

m=1 cos(qi
t,kim)

6: Compute contextual increment embedding ∆δit ←
∑T

l=1 wl · Zt

7: Re-parameterize LLM via Eq. 5 and generate responses rit
8: return rit
9: end function

Table 8: Performance (%) of Continual LLaVA on COAST benchmark under different task
orders. The information related to the abbreviation of task order can be accessed in Sec.A.1.

Order Avg.↑ Fgt.↓ Chart Doc. Icon Med.
cdim 37.43 2.81 14.05 17.78 61.63 56.27
imcd 36.65 2.62 16.27 18.76 56.98 54.57
cdim 37.17 2.30 15.58 16.91 63.53 52.66

(a) COAST-domain

Order Avg.↑ Fgt.↓ Conv Desc Reason Ref
crfd 61.16 1.85 66.20 51.86 82.14 44.42
dcrf 51.47 8.96 56.82 31.18 66.84 51.02
fdrc 54.75 1.73 58.24 40.72 67.78 52.24

(b) COAST-capability

Methods Avg.↑ Fgt.↓ SciQA Text ImgNet GQA Viz REC VQA OCR
stigzrvo 52.67 8.22 54.78 48.16 81.30 60.56 36.48 2.086 63.26 74.74
vzgitosr 53.62 4.95 61.43 50.10 44.86 63.54 46.86 24.12 62.90 75.18
itgzvors 53.70 7.40 59.79 51.70 46.82 63.50 43.62 22.54 66.84 74.82

(c) COAST-dataset

architecture employed in the main paper, we also experiment based on MiniGPT-4 (Zhu et al.,
2023a). The results on COAST-domain benchmark are demonstrated in Table 9. The compari-
son results indicate that our proposed intrinsic and contextual increments are also effective based
on the MiniGPT-4 architecture, demonstrating the generalizability of the proposed dual increment
embeddings.

Visualization of Forgetting. We seek to clearly demonstrate how forgetting arises during the con-
tinual instruction tuning process, thereby further emphasizing the necessity and significance of ex-
ploring continual learning in the context of instruction tuning. To this end, we visualize both the
on-the-fly accuracy and the final model accuracy. The former represents the snapshot performance
of the model trained on a new task and then evaluated immediately on that task before moving to the
next. The latter denotes the performance of continually training the model on the task stream and is
evaluated after finishing the training of the last task.

We compare the naive sequential training and the proposed Continual LLaVA on both the metrics
of on-the-fly accuracy and the final model accuracy. We report the results on COAST-capability
under three different training orders. The comparisons are depicted in Figure 5 and we can draw
the following conclusions: 1) The phenomenon of forgetting frequently occurs during continual
instruction tuning. For example in Figure 5b, there exists a 32.80% performance gap (50.02% v.s.
17.22%) between the on-the-fly accuracy and the final model accuracy on the conversation task. This
stresses the importance of advancing research on continual learning for instruction tuning; 2) Our
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Table 9: Plug-and-play analysis (%) of the proposed dual increment embeddings on COAST-
domain. We adapt the constructed intrinsic and contextual increment embeddings into LLaVA (Liu
et al., 2023a) and MiniGPT-4 (Zhu et al., 2023b), respectively.

Method Avg.↑ Fgt.↓ Chart Doc. Icon Med.
LLaVA Sequential 24.02 15.83 11.77 11.29 33.73 39.27

+ dual increments 37.08+13.06 2.58−13.25 15.30 17.82 60.71 54.50
MiniGPT-4 Sequential 28.65 9.30 11.60 11.77 44.91 46.32

+ dual increments 31.02+2.37 3.43−5.87 12.45 14.04 49.66 47.93

Table 10: Ablations (%) on the low rank decomposition for increment embedding generation.

Method Avg.↑ Fgt.↓ Chart Doc. Icon Med.
w/ low-rank 37.08 2.58 15.30 17.82 60.71 54.50
w/o low-rank 36.21−0.87 2.80+0.22 14.11 16.73 60.02 53.99

proposed Continual LLaVA can substantially mitigate the forgetting phenomenon. For example in
the conversation task of Figure 5b, Continual LLaVA reduces the performance gap between the one-
the-fly accuracy and the final model accuracy to 3.14%; 3) Notably, the final accuracy of Continual
LLaVA in certain cases exceeds that of on-the-fly accuracy, e.g., the complex reasoning task in
Figure 5a. This highlights that our approach can better capitalize on the interdependencies among
tasks to enhance the performance of previously acquired tasks.

Ablations on the Low-rank Decomposition In Eq 5, the increment embeddings Pn are generated
following the low-rank spirit. Instead, we conduct ablation experiments by directly initializing Pn ∈
Rd×d without using the low-rank decomposition. The comparison experiments are summarized
in Table 10, which demonstrates the advantages of utilizing low-rank decomposition (37.08% v.s.
36.21% in average accuracy) in parameter efficient tuning.
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Figure 5: Visualization of forgetting (%) on each task for sequential training (left) and our Con-
tinual LLaVA (right) under different task orders.
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(a) The loss curve for docvqa. (b) The loss curve for medicalqa.

(c) The loss curve for chartqa. (d) The loss curve for iconqa.

Figure 6: Visualizations of the training loss curves of Continual LLaVA on COAST-domain
benchmark. The training order is set to document→ medical→ chart→ icon.

A.3 MORE RELATED WORK DISCUSSION

Continual Learning for LLMs. Due to the massive parameter scale and complexity, continual
learning for LLMs encounters multi-faceted challenges (Shi et al., 2024; Wu et al., 2024b). Based
on the training process of LLMs, continual learning for LLMs (Bohao et al., 2024; Jin et al., 2022;
Razdaibiedina et al., 2023) can be classified into three fields including continual pre-training, con-
tinual instruction tuning, and continual preference alignment.

Continual pre-training (Jin et al., 2022; Jang et al., 2022a; Ke et al., 2023) aims to incorporate up-
dated world knowledge into LLMs by training them on extensive and diverse datasets. A prevalent
application of continual pretraining involves dynamically gathering data from multiple sources in-
cluding news feeds (Sun et al., 2020) and scholarly articles (Cossu et al., 2024), enabling LLMs to
stay aligned with up-to-date information (Jang et al., 2022b;a). Other methods tailor LLMs to spe-
cific fields via continual pre-training. (Xie et al., 2023) adapts LLMs into the financial understanding
and EcomGPT-CT (Ma et al., 2023) investigates continual pre-training in the E-commerce domain.
(Gogoulou et al., 2023) enhances LLMs’ ability to understand regional dialects and contemporary
slangs across diverse social and cultural groups.

Continual instruction tuning (Zhang et al., 2023c; Wang et al., 2023b;a; Zhao et al., 2024) contin-
uously finetunes LLMs on a sequence of task-specific instructions and develops the competence to
address emerging tasks. ProgPrompt (Razdaibiedina et al., 2023) keeps most parameters of LLMs
frozen and only trains a fixed set of prompt tokens for each new task. To alleviate the reliance on
inference task-ID, SLM (Bohao et al., 2024) proposes a task-related knowledge retrieval technique
to enable adaptive adjustment for downstream tasks. LLaMA Pro (Wu et al., 2024a) expands the
block within LLMs to facilitate the knowledge injection into LLMs and obtain the trade-off between
general knowledge and domain-specific capabilities.

Continual preference alignment (Zhang et al., 2023a; Yao et al., 2023) adapts LLMs to evolving so-
cietal values and ethical guidelines. The typical methodology is reinforcement learning with human
feedback (RLHF) (Kaufmann et al., 2023), which combines principles of reinforcement learning
with feedback from human evaluators to improve the alignment with human preferences and val-
ues. The follow-up work CPPO (Zhang et al., 2024) enhances Proximal Policy Optimization (PPO)
(Schulman et al., 2017) algorithm with instance-wise weights to balance policy exploration and
knowledge retention. (Zhang et al., 2023a) extends the Direct Preference Optimization (DPO) al-
gorithm (Rafailov et al., 2024) by employing Monte Carlo estimation (Harrison, 2010) to derive
optimal policy sequences for stream tasks.
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Figure 7: Visualizations of the increment embedding selection frequency on COAST-capability.
The task order is set to conv→ reason→ refqa→ desc.

LVLM Benchmarks. With the advent of comprehensive LVLMs (Liu et al., 2023a; OpenAI, 2024),
a wide range of evaluation benchmarks (Liu et al., 2023b; Yu et al., 2023; Huang & Zhang, 2024)
have been introduced to assess their performance across various dimensions. Based on the model
competencies being examined, LVLM benchmarks can be classified into two categories including
general capabilities for multi-modal understanding and specific capabilities for downstream applica-
tions. Typical general-purpose LVLM Benchmarks include MMBench (Liu et al., 2023b), MM-Vet
(Yu et al., 2023), Seed-Bench (Li et al., 2023a), etc., with the focus on multi-modal perception (e.g.,
recognition or localization) and reasoning (commonsense or logic reasoning). The specific capabili-
ties involve natural science (e.g., ScienceQA (Lu et al., 2022), MathVista (Lu et al., 2023)), medical
usage (e.g., MMMU (Yue et al., 2024), M3D (Bai et al., 2024)), agent planning (e.g., OpenEQA
(Majumdar et al., 2024)), remote sensing (e.g., RSGPT (Hu et al., 2023)), etc. Most of the cur-
rent benchmarks focus on the single-task adaption of LVLMs and neglect the consistent adaption
among different tasks. To facilitate continual instruction tuning, we propose COAST by chaining
and re-purposing current benchmarks in a stream format.

A.4 MORE VISUALIZATIONS

Visualization of Training Loss. We plot the training loss of Continual LLaVA on the COAST-
domain benchmark in Figure 6. Specifically, we visualize the training loss under the training order
of document→ medical→ chart→ icon.

Visualizations of Increment Embedding Selection. We employ cosine similarity as the measure-
ment between the input instruction and proxy-increment pairs within the low-rank pool, from which
we select the top-M increment embeddings. Figure 7 illustrates the selection frequency of each
proxy-increment pair within the pool during the training phase of COAST-capability.

More Visualization Results. We provide more qualitative comparisons between the sequential
training and Continual LLaVA. The visualization results in Table 11–20 demonstrate the perfor-
mance of the proposed Continual LLaVA.

A.5 SOURCE CODES AND REPRODUCIBILITY

We include the source codes of Continual LLaVA in the supplementary material. Refer to the
contained “README.md” file for reproducibility.
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Table 11: Comparison results between sequential training and our Continual LLaVA on the task of
detail description.

Training order: detail description→ conversation→ complex reason→ referring qa
Evaluation results on the task of detail description:

User Could you give a blow-by-blow description of the image?
Sequential Train Image shows scene with <st>banana<ed> [0.396 0.588 0.566 0.782] that has been cut

in half placed on <st>wooden bowl<ed> [0.004 0.588 0.998 0.998] which is on ground
there are <st>green leaves<ed>[0.004 0.002 0.998 0.821]

Continual LLaVA The image captures a moment of quiet contemplation in the heart of a lush tropical garden.
A small brown lizard, perhaps a gecko, perches precariously on the edge of a large, round,
dark grey object, likely a stone trough or basin. It’s looking to the left, its body angled
towards the viewer, its long tail trailing down towards the ground. The lizard’s focus is on
something outside the frame, a testament to its keen senses and alert nature. The trough
is partially filled with water, reflecting the dappled sunlight filtering through the foliage.
Two half-eaten banana peels rest on the object’s surface, offering a tempting suggestion
of recent activity in this quiet corner. The background is a symphony of vibrant green,
a blurred tapestry of leaves and stems, hinting at the rich biodiversity of the surrounding
jungle. The soft focus and subtle lighting create a sense of tranquility, making the lizard’s
presence all the more striking.

[Start a new conversation, and clear the history]

User Can you portray the image in words?
Sequential Train Image portrays snowy scene with <st>parking meter<ed> [0.396, 0.283, 0.566, 0.997]

covered in snow there are <st>buildings<ed> [0.004, 0.003, 0.998, 0.667] in back-
ground and sky is <st>gray and overcast<ed> [0.004, 0.003, 0.998, 0.732].

Continual LLaVA The image portrays a snow-covered cityscape engulfed in the midst of a fierce winter
storm. A thick layer of snow blankets the streets, rising nearly halfway up parking meters
and leaving deep impressions where footprints dot the otherwise undisturbed expanse.
The city’s main road is largely covered in snow, with only a small section cleared, hinting
at recent traffic or attempts to maintain passage. By the roadside, a partially obscured
stop sign and a snow-laden bus stop point to the city’s public transport system. The scene
is dominated by a large, brick-red building, where scaffolding atop suggests ongoing
construction or renovation. A bare tree, dusted with snow, stands next to the road, adding
to the wintry charm. Above, power lines stretch across the street, connecting parts of
the city through the snowstorm. Small details, like a snowball left behind and a white
overhang near the building’s entrance, add life to the scene. A grey, overcast sky looms
above, casting a peaceful yet melancholic mood over the transformed urban landscape.
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Table 12: Comparison results between sequential training and our Continual LLaVA on the task of
detail description.

Training order: detail description→ conversation→ complex reason→ referring qa
Evaluation results on the task of detail description:

User Disclose every detail you see in the image.
Sequential Train I see <st>tree<ed> [0.003, 0.003, 0.21, 0.667] with <st>leaves<ed> [0.003, 0.003,

0.21, 0.667], <st>sidewalk<ed> [0.003, 0.667, 0.998, 0.997] and <st>car<ed> [0.003,
0.423, 0.215, 0.50].

Continual LLaVA The image features two parking meters mounted on a metal pole, surrounded by a small
patch of greenery bordered by a short iron fence. Various plants and shrubs grow around
the base, creating a contrast between urban infrastructure and nature. Behind the meters,
parked cars are partially visible, indicating a city or suburban street setting. In the back-
ground, trees and buildings suggest a peaceful neighborhood scene, with a few distant
people and cars adding subtle activity to the image. A large tree on the right side of the
image blends with the surrounding greenery. The warm sunlight illuminates the scene,
casting a golden glow across the area, while a soft lens flare appears near the right edge,
adding a dreamy, nostalgic feel to the composition. The image captures a harmonious
balance between urban elements and natural beauty.

[Start a new conversation, and clear the history]

User Go into detail about the different elements of the image.
Sequential Train Image features <st>plane<ed> [0.356, 0.452, 0.724, 0.652] on <st>runway<ed>

[0.004, 0.612, 0.998, 0.997] with <st>tarmac<ed> [0.004, 0.612, 0.998, 0.997] beneath
it there are <st>trees<ed>

Continual LLaVA The image is a panoramic shot of an airplane on a runway, taken on a hazy day. The plane
is a regional jet, painted in a white and red livery. It is positioned on the runway, facing the
camera. The plane is positioned on the runway, facing the camera, with the front landing
gear down. The plane’s engines are visible, and the tail is slightly angled up. The runway
is surrounded by a grassy field, and a line of trees in the background. The sky is a muted,
pale color, suggesting the time of day is either early morning or late evening. The image
is well-composed and well-lit, capturing the plane in a moment of quiet anticipation. It
evokes a sense of stillness and peace, suggesting a moment before the plane takes off.
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Table 13: Comparison results between sequential training and our Continual LLaVA on the task of
detail description.

Training order: detail description→ conversation→ complex reason→ referring qa
Evaluation results on the task of detail description:

User Offer an exhaustive description of the image.
Sequential Train Image depicts large ornate <st>building<ed> [0.002, 0.454, 0.932, 0.433] with

<st>clock tower<ed> [0.23, 0.433, 0.762, 0.783] situated against backdrop of <st>blue
sky<ed> [0.322, 0.235, 0.855, 0.892].

Continual LLaVA The image captures a majestic brick building, its architecture hinting at a historical sig-
nificance. The building features a central tower, crowned with a spire and topped with a
clock. This tower dominates the composition, rising against a clear, vibrant blue sky. The
building is adorned with arched windows, showcasing a meticulous attention to detail. It
is bathed in warm sunlight, highlighting the red tones of the brick and casting a gentle
glow on the stonework. A small, white moon hangs in the sky, adding a touch of celes-
tial beauty to the scene. The overall mood is serene and dignified, suggesting a place of
history and perhaps even civic importance. The building’s prominence against the vast
expanse of sky creates a sense of grandeur and timeless elegance.

[Start a new conversation, and clear the history]

User Kindly provide a meticulous commentary on the image.
Sequential Train Image depicts scene during night with <st>red brick building<ed> [0.003 0.003 0.998

0.997] with <st>red brick wall<ed> [0.003 0.003 0.998 0.997] there are several
<st>bicycles<ed> [0.003 0.643 0.998 0.997].

Continual LLaVA The image captures a lively, bustling scene outside a bar, likely in a city setting. The focus
is on the storefront of a bar called “Mucky Finn’s,” located on a street corner. The bar’s
exterior is a warm, terracotta color, illuminated by the golden glow of streetlights and
warm interior lighting. The building has a classic, old-world charm, with large windows
that showcase the activity within. A pair of bikes, locked together, stand outside the bar, a
testament to the establishment’s popularity as a social hub. The bikes add a touch of urban
cool to the scene, hinting at the energy and vibrancy of the surrounding neighborhood. In
the background, another storefront is visible, further suggesting that this is a lively street
with a vibrant nightlife. The warm lighting, the vibrant colors, and the bustling activity
all contribute to a feeling of warmth and excitement, inviting viewers to imagine stepping
into this lively setting.
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Table 14: Comparison results between sequential training and our Continual LLaVA on the task of
ScienceQA.

Training order: SciQA→ Text→ ImgNet→ GQA→ Viz→ REC→ VQA→ OCR
Evaluation results on the task of ScienceQA:

User What is the name of the colony shown?
A. Maryland
B. New Hampshire
C. Rhode Island
D. Vermont
Answer with the option’s letter from the given choices directly.

Sequential Train New Hampshire.
Continual LLaVA B
Ground Truth B

[Start a new conversation, and clear the history]

User Context: Below is a food web from a tundra ecosystem in Nunavut, a territory in North-
ern Canada. A food web models how the matter eaten by organisms moves through an
ecosystem. The arrows in a food web represent how matter moves between organisms in
an ecosystem. Which of these organisms contains matter that was once part of the lichen?
A. bilberry
B. mushroom
Answer with the option’s letter from the given choices directly.

Sequential Train mushroom
Continual LLaVA B
Ground Truth B

[Start a new conversation, and clear the history]

User Context: Below is a food web from Little Rock Lake, a freshwater lake ecosystem in
Wisconsin. A food web models how the matter eaten by organisms moves through an
ecosystem. The arrows in a food web represent how matter moves between organisms in
an ecosystem. Which of the following organisms is the primary consumer in this food
web?
A. copepod
B. black crappie
C. bacteria
Answer with the option’s letter from the given choices directly.

Sequential Train copepod
Continual LLaVA A
Ground Truth A
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Table 15: Comparison results between sequential training and our Continual LLaVA on the task of
ScienceQA.

Training order: SciQA→ Text→ ImgNet→ GQA→ Viz→ REC→ VQA→ OCR
Evaluation results on the task of ScienceQA:

User What is the capital of Delaware?
A. Montpelier
B. Trenton
C. Dover
D. Georgetown
Answer with the option’s letter from the given choices directly.

Sequential Train delaware.
Continual LLaVA C
Ground Truth C

[Start a new conversation, and clear the history]

User Context: Trade happens when people agree to exchange goods and services. People give
up something to get something else. Sometimes people barter, or directly exchange one
good or service for another. Greta and Allie open their lunch boxes in the school cafeteria.
Both of them could be happier with their lunches. Greta wanted broccoli in her lunch and
Allie was hoping for tomatoes. Look at the images of their lunches. Then answer the
question below. What can Greta and Allie trade to each get what they want?
A. Greta can trade her tomatoes for Allie’s sandwich.
B. Allie can trade her broccoli for Greta’s oranges.
C. Allie can trade her almonds for Greta’s tomatoes.
D. Greta can trade her tomatoes for Allie’s broccoli.
Answer with the option’s letter from the given choices directly.

Sequential Train Greta can trade to get Allie’s broccoli.
Continual LLaVA D
Ground Truth D
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Table 16: Comparison results between sequential training and our Continual LLaVA on the task of
ScienceQA.

Training order: SciQA→ Text→ ImgNet→ GQA→ Viz→ REC→ VQA→ OCR
Evaluation results on the task of ScienceQA:

User Context: Select the better answer. Which property do these two objects have in common?
A. blue.
B. sticky.
Answer with the option’s letter from the given choices directly.

Sequential Train color.
Continual LLaVA A
Ground Truth A

[Start a new conversation, and clear the history]

User Context: Select the best answer. Which property do these four objects have in common?
A. translucent.
B. flexible.
C. sweet
Answer with the option’s letter from the given choices directly.

Sequential Train all are foods.
Continual LLaVA A
Ground Truth A

[Start a new conversation, and clear the history]

User Context: The diagram below is a model of two solutions. Each green ball represents one
particle of solute. Which solution has a higher concentration of green particles?
A. Solution B
B. neither; their concentrations are the same
C. Solution A
Answer with the option’s letter from the given choices directly.

Sequential Train Solution B
Continual LLaVA A
Ground Truth A
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Table 17: Comparison results between sequential training and our Continual LLaVA on the task of
ChartQA.

Training order: chart→ document→ icon→ medical
Evaluation results on the task of ChartQA:

User What was Russia’s score in the trading across borders category?
Answer the question using a single number or phrase.

Sequential Train 90
Continual LLaVA 99
Ground Truth 99

[Start a new conversation, and clear the history]

User Who is the career rushing leader of the Washington Football Team?
Answer the question using a single number or phrase.

Sequential Train ej hankins
Continual LLaVA john riggins
Ground Truth John Riggins
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Table 18: Comparison results between sequential training and our Continual LLaVA on the task of
DocVQA.

Training order: chart→ document→ icon→ medical
Evaluation results on the task of DocVQA:

User Who is the person assigned monitoring responsibilities?
Give the short answer directly.

Sequential Train vp administrative
Continual LLaVA prof. cyril o. enwonwu
Ground Truth Prof. Cyril O. Enwonwu

[Start a new conversation, and clear the history]

User How much milk is desirable a day?
Give the short answer directly.

Sequential Train 3 of 4 cups
Continual LLaVA At least 3 cups
Ground Truth At least 3 cups
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Table 19: Comparison results between sequential training and our Continual LLaVA on the task of
IconQA.

Training order: chart→ document→ icon→ medical
Evaluation results on the task of IconQA:

User Fill in the blank. Move the ruler to measure the length of the nail to the nearest inch. The
nail is about ( ) inches long.
Give the short answer directly.

Sequential Train 0.5
Continual LLaVA 3.0
Ground Truth 3

[Start a new conversation, and clear the history]

User How many cars are there?
Give the short answer directly.

Sequential Train 13
Continual LLaVA 15
Ground Truth 15

[Start a new conversation, and clear the history]

User There are 5 teddy bears in the top ten frame. How many teddy bears are in the bottom ten
frame?
Answer with the option letter from the given choices directly.

Sequential Train 5
Continual LLaVA 6
Ground Truth 6
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Table 20: Comparison results between sequential training and our Continual LLaVA on the task of
MedicalQA.

Training order: chart→ document→ icon→ medical
Evaluation results on the task of MedicalQA:

User How are the tumor cells?
Answer the question using a single word or phrase.

Sequential Train Small
Continual LLaVA Similar to normal squamous epithelial cells
Ground Truth Strikingly similar to normal squamous epithelial cells

[Start a new conversation, and clear the history]

User Where is this?
Answer the question using a single word or phrase.

Sequential Train Skin
Continual LLaVA Urinary
Ground Truth Urinary

[Start a new conversation, and clear the history]

User What does this image show?
Answer the question using a single word or phrase.

Sequential Train Gastrointestinal
Continual LLaVA Squamous metaplasia
Ground Truth Squamous metaplasia
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