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ABSTRACT

This paper explores methods for verifying the properties of Binary Neural Net-
works (BNNs), focusing on robustness against adversarial attacks. Despite their
lower computational and memory needs, BNNs, like their full-precision coun-
terparts, are also sensitive to input perturbations. Established methods for solv-
ing this problem are predominantly based on Satisfiability Modulo Theories and
Mixed-Integer Linear Programming techniques, which often face scalability is-
sues. We introduce an alternative approach using Semidefinite Programming re-
laxations derived from sparse Polynomial Optimization. Our approach, compat-
ible with continuous input space, not only mitigates numerical issues associated
with floating-point calculations but also enhances verification scalability through
the strategic use of tighter first-order semidefinite relaxations. We demonstrate
the effectiveness of our method in verifying robustness against both ∥.∥∞ and
∥.∥2-based adversarial attacks.

1 INTRODUCTION

In the evolving landscape of machine learning, Binary Neural Networks (BNNs) have emerged as
an intriguing class of neural networks since their introduction in 2015 (Courbariaux et al., 2015;
Hubara et al., 2016). The architectural simplicity and inherent advantages of BNNs, such as reduced
memory requirements and lower computational time, have garnered significant attention. As these
networks have matured, they have been integrated into a wide range of machine learning applications
(Rastegari et al., 2016; Sun et al., 2018; Xiang et al., 2017; Vorabbi et al., 2024). For instance, BNNs
are widely used in edge devices for tasks such as object detection, image recognition, and decision-
making in resource-constrained environments, like autonomous delivery drones.

Despite their great approximation capacities, general deep neural networks are sensitive to input
perturbations (Szegedy et al., 2014; Antun et al., 2021). BNNs are not any different in this re-
gard. Indeed, quantized or binarized networks do not necessarily preserve the properties satisfied
by their real-precision counterparts (Galloway et al., 2018; Giacobbe et al., 2020). BNN-controlled
autonomous delivery drones, for example, might encounter adversarial environmental conditions,
such as lighting variations, or weather disturbances. Failing to robustly classify objects under these
altered environmental conditions could lead to a collision, endangering people or property. That is
why verifying their robustness is one of the crucial aspects of their design and deployment. A classi-
fying network is said to be robust to adversarial attacks if small input perturbations do not cause any
misclassifications. Formally speaking, the network verification consists of finding a point x satisfy-
ing P (x) ∧ Q(BNN(x)), where P is a pre-condition on x, e.g., stating a valid input perturbation,
and Q is a post-condition on y = BNN(x), e.g., stating an (undesirable) alteration of the highest
output score. If both properties hold for some x, the network is not robust.

Compared to much research on the robustness verification of full-precision networks, verification
of BNNs is a question yet to be addressed with more attention. Moreover, many formal verifica-
tion frameworks do not exploit the bit-precise semantics of BNNs (Giacobbe et al., 2020), and in
parallel, those BNN-specific approaches for robustness verification often suffer from limited scala-
bility (Lazarus & Kochenderfer, 2022; Narodytska et al., 2020). Two related methodological axes
can be identified. Firstly, methods based on Satisfiability Modulo Theories (SAT/SMT), as in Amir
et al. (2021); Jia & Rinard (2020a); Narodytska et al. (2018; 2020), encode the BNN verification
problem into Boolean formula satisfiability, and leverage modern off-the-shelf solvers to prove ro-
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bustness or find counterexamples. Secondly, Khalil et al. (2019); Lazarus & Kochenderfer (2022)
cast robustness verification as a Mixed Integer Linear Programming (MILP) optimization problem.
Both approaches belong to the group of exact verification methods, i.e., they are sound and com-
plete. In this paper, instead of solving the BNN verification problem exactly, we rather examine
it through the lens of (Sparse) Polynomial Optimization Problems (POP) (Lasserre, 2015; Magron
& Wang, 2023), that can be approximated with hierarchies of relaxations based on Semidefinite
Programming (SDP). Recent frameworks (Chen et al., 2020; 2021; Latorre et al., 2020; Newton &
Papachristodoulou, 2023) have demonstrated that sparse variants of SDP hierarchies could certify
the robustness of full-precision ReLU neural networks, by efficiently providing accurate bounds for
the associated optimization problems.

1.1 CONTRIBUTION

• We exploit the semi-algebraic nature of the sign activation function to encode the BNN verifi-
cation problem as a POP. We then solve the resulting first-order SDP relaxation of this POP to
obtain lower bounds that can certify robustness. In addition, our method overcomes floating-
point-related numerical issues that typically compromise the branch and bound process of MILP
solvers. To the best of our knowledge, this is the first SDP-based method for BNN verification.

• From the theoretical point of view, we prove that adding tautologies (redundant constraints) to the
initial POP encoding leads to first-order SDP relaxations with highly improved accuracy. Know-
ing that higher-order SDP relaxations quickly become intractable for high-dimensional problems,
designing tighter first-order SDP relaxations that exploit the structure of the network is crucial for
enhancing the scalability of the method. We show that our bounds can be up to 55% more accurate
than those derived from the linear relaxations typically used in traditional MILP algorithms.

• We demonstrate the effectiveness of our method, compatible with continuous input space, in
verifying robustness against both ∥.∥∞ and ∥.∥2-based adversarial attacks, the latter being much
less studied in the BNN verification literature. Our experimental results indicate that, for ∥.∥∞
and ∥.∥2 robustness verification problems, our algorithm can provide an average speedup of 4.5
and 11.4 times, respectively. For some severe attacks, the speedup exceeds a factor of 50.

1.2 RELATED WORKS

SDP-based verification methods: Certifying adversarial robustness using SDP relaxations has
been first proposed in Raghunathan et al. (2018). Tightening of the SDP bounds via linear
reformulations and quadratic constraints has been proposed in Fazlyab et al. (2020); Batten et al.
(2021); Lan et al. (2022). Verification can also be tackled by computing upper bounds of Lipschitz
constants (Fazlyab et al., 2019; Latorre et al., 2020; Chen et al., 2020). Chordal and correlative
sparsity can be exploited (Anton et al., 2024; Newton & Papachristodoulou, 2023; Chen et al.,
2021) to design more efficient SDP relaxations. The first-order dual SDP approach developed in
Dathathri et al. (2020) enables efficient verification of high-dimensional models. Note that these
approaches have been mainly designed to verify standard full-precision ReLU networks.

BNN verification: Binarized weights and activation functions allow for the BNN verifica-
tion problem to be exactly encoded into a Boolean expression. However, solving the resulting
encoding via SAT solvers is usually quite computationally expensive as the number of involved
variables grows very fast with the network size (Narodytska et al., 2018; Narodytska, 2018).
Consequently, only small and medium-sized networks can be handled within this framework. In
order to improve the scalability, different architectural and training choices have been proposed:
inducing sparse weight matrices, achieving neuron stabilization via input bound propagation, direct
search instead of unguided jumps for clause-conflict resolution (Narodytska et al., 2020), enforcing
sparse patterns to increase the number of shared computations, neuron-factoring (Narodytska et al.,
2020; Cheng et al., 2018). The SAT solver proposed in Jia & Rinard (2020a;b) is tailored for BNN
verification. By efficiently handling reified cardinality constraints and exploiting balanced weight
sparsification, this solver could achieve significantly faster verification on large networks. The
SMT-based framework from Amir et al. (2021) extends the well-known Reluplex (Katz et al., 2017)
framework to support binary activation functions. Notice that these works are either incompatible
with continuous input data or are restricted to ∥.∥∞ perturbations. In contrast, our approach does
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not require an extra input quantization step and is compatible with more general perturbation
regions, including the one defined by the ∥.∥2 norm.

The sole nature of BNNs makes them convenient for being directly represented via linear inequal-
ities and binary variables, enabling the verification problem to be cast as a MILP. These properties
are exploited in Khalil et al. (2019), where big-M constraints model the neuron activations, and a
heuristic named IProp decomposes the original problem into smaller MILP problems. However, the
big-M approach is also well-known to be sensitive to theM parameter (Gurobi Optimization, LLC).
Improved bounds for each neuron have been proposed by Han & Goméz (2021) that lead to tighter
relaxations, but only on medium-sized networks. This suggests that BNNs might also suffer from a
convex relaxation barrier for tight verification (Salman et al., 2019). Another MILP-based approach
has been discussed in Lazarus & Kochenderfer (2022); Lazarus et al. (May, 2022), where both in-
put and output domain of a property to be verified are restricted to polytopes. The set-reachability
method from Ivashchenko et al. (2023) extends the star set and Image star approaches from Bak &
Duggirala (2017); Tran et al. (2019; 2020). Unlike most other methods, it allows the input space to
be continuous. However, our experiments highlight the intrinsic weaknesses of LP relaxations for
BNN verification, negatively influencing the bounding step of MILP solving. We argue that SDP
bounds would be able to provide significant speedups to these exact solvers, especially for larger
networks and more severe attacks. Somewhat related works concern quantitative BNN verification,
where one tries to estimate how often a given network satisfies or violates some property. In Baluta
et al. (2019); Narodytska et al. (2019), quantitative robustness verification is reduced into a model
counting problem over a Conjunctive Normal Form (CNF) expression. SAT-based approaches are
derived from either (Ordered) Binary or Sentential Decision Diagrams in Shi et al. (2020); Shih et al.
(2019); Zhang et al. (2021).

1.3 NOTATIONS AND PRELIMINARIES

We use Roman letters to denote scalars, and boldfaced letters to represent vectors and matrices. If
A is a matrix, then A(k,:) denotes its k-th row vector, and ∥A∥F denotes its Frobenius norm. The
entry j of a vector x (or xi) is denoted by xj (or xi,j). The Hadamard product is denoted by ⊙,
i.e., (A⊙B)(i,j) = A(i,j)B(i,j). For any p× q matrix A, nv(A) is a p-dimensional column vector
whose k-th coordinate is given by ||A(k,:)||1.
The ring of n-variate real polynomials (resp. of at most degree d) is denoted by R[x] (resp. R[x]d).
Let Σ[x] be the cone of multivariate Sum Of Squares (SOS) polynomials and Σ[x]d := Σ[x] ∩
R[x]2d. By ⟨x,y⟩ =

∑n
i=1 xiyi we denote the standard inner product of vectors x,y ∈ Rn. If

k1, k2 ∈ N with k1 ≤ k2, then Jk1 , k2K := {k1, . . . , k2}. Let B||.||(x̄, ε) be the ||.||-ball of radius ε
centered at x̄. We denote by Sn+ the set of symmetric positive semidefinite matrices of size n. We
recall that f ∈ R[x]2d is SOS if and only if a positive semidefinite matrix G satisfies f = v⊺

dGvd,
where vd := (1, x1, . . . , xn, . . . , x

d
n)

⊺ is the vector of monomials of degree at most d with size
s(d) :=

(
n+d
d

)
.

Definition 1.1. Let g := (gj)j∈J1,mK and h := (hk)k∈J1,lK denote families of polynomial functions.
For all j ∈ J1, mK, k ∈ J1, lK, define dj := ⌈deg(gj)/2⌉ and d̄k := deg(hk). Then, the d-truncated
quadratic module Qd(g) generated by g, and the d-truncated ideal Id(h) generated by h are

Qd(g) :=

σ0 +
m∑
j=1

σjgj | σ0 ∈ Σ[x]d, σj ∈ Σ[x]d−dj
, j ∈ J1 , mK

 , (1)

Id(h) :=

{
l∑

k=1

ψkhk, ψk ∈ R[x]2d−d̄k
, k ∈ J1, lK

}
. (2)

2 MAIN INGREDIENTS

2.1 BINARY NEURAL NETWORKS

Let L ≥ 1 be the number of hidden layers of a classifying BNN, with layer widths being given
by n = (n0, n1, . . . , nL, nL+1)

⊺ ∈ NL+2 , where n0 and nL+1 are input and output dimensions.
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A feed-forward BNN is a mapping from the input region Rn0
⊂ Rn0 to the output set J1, nL+1K

realized via successive compositions of several internal blocks (Bi)i=1,...,L and an output block Bo:

BNN : Rn0
→ J1, nL+1K

x0 7→ BNN(x0) := argmax (Bo(BL(. . . (B1(x0))))) .
(3)

For any i ∈ J1 , LK, the internal block Bi implements successively three different operations: affine
transformation, batch normalization1 and point-wise binarization, so that its output vector, denoted
by xi, belongs to {−1, 1}ni . These operations are described by a set of trainable parameters:(

W [i+1], b[i+1]
)
i∈J0,LK

∈ {−1, 0, 1}ni+1×ni × Rni+1 , (4)(
γ[i],β[i],µ[i],σ2,[i]

)
i∈J1,LK

∈ (Rni)
4
. (5)

Consequently, the output of a neuron j ∈ J1, niK from the hidden layer i ∈ J1, LK is given by

xi,j = sign

(
γi
j

(〈
W

[i]

(j,:)
,xi−1

〉
+b

[i]
j −µ

[i]
j

)
√

σ
2,[i]
j +ε

− βi
j

)
, with small enough ε > 0. The output block Bo

applies a softmax transformation to the affinely-transformed outputs of the last hidden layer, i.e., for
each j ∈ J1 , nL+1K, xL+1,j =

exp(zj)∑nL+1
k=1 exp(zk)

, where zj = W
[L+1]
(j,:) xL + b

[L+1]
j .

In BNNs, replacing vector-matrix multiplications with simpler 1-bit XNOR-count operations comes
at a cost: the sign function prevents effective (adversarial) training due to the lack of proper gradient
information. For a comprehensive analysis and the latest advancements in training (robust) BNNs,
see Qin et al. (2020); Yuan & Agaian (2021); Aspman et al. (2024).

2.2 PROBLEM FORMULATION

Casting BNN verification as an optimization problem requires using an appropriate representation
of the non-linear sign(·) activation function. For any (a, b) ∈ R2, we have:

a = sign(b) =⇒ a2 − 1 = 0, and ab ≥ 0. (6)

This motivates the introduction of a sequence of vector-valued functions (hi, gi)i∈J1,LK such that

xi := sign
(
W [i]xi−1 + b[i]

)
=⇒

{
hi(xi) := xi ⊙ xi − 1 = 0, (7a)

gi(xi,xi−1) := xi ⊙ (W [i]xi−1 + b[i]) ≥ 0, (7b)

where b[i] ∈ Rni satisfies
∣∣∣b[i]k ∣∣∣ < nv

(
W [i]

)
k

for each k ∈ J1 , niK. This assumption eliminates the
case in which some neurons are either always or never activated, since such neurons have no impact
on the verification process. Furthermore, we suppose that the input perturbation region B ⊆ Rn0

can be encoded via positivity conditions on (at most quadratic) polynomials x0 7→ gB(x0). For
example, gB(x0) = (ε + x̄ − x0) ⊙ (ε − x̄ + x0) corresponds to B = B||·||∞(x̄, ε), where
x̄ ∈ Rn0

. Finally, the standard form BNN verification problems studied here are:

τ :=


min

x0,x1,...,xL

f(x0,x1, . . . ,xL) (8a)

s.t. hi(xi) = 0, i ∈ J1, LK, (8b)
gi(xi,xi−1) ≥ 0, i ∈ J1, LK, (8c)
gB(x0) ≥ 0, (8d)

where f is either a linear or a quadratic function.
Remark 2.1 (Adversarial attacks). Given some point x̄ ∈ Rn0 whose true label is ȳ ∈ J1 , nL+1K,
we define a k-targeted attack to be any allowed perturbation x0 satisfying (8b)-(8d) for which the
output of the network is k ̸= ȳ. If the network is robust, then

fadvk (x0,x1, . . . ,xL) :=
〈
W

[L+1]
(ȳ,:) −W

[L+1]
(k,:) ,xL

〉
+ b

[L+1]
ȳ − b

[L+1]
k (9)

1Since batch normalization can be understood as another affine transformation, it can be omitted throughout
the technical modelling part, without loss of generality.
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is always positive. Notice that fadvk is an affine mapping of the neurons from the last hidden layer.
Our framework is suitable for verifying properties of BNNS other than adversarial robustness (e.g.
certain properties describing the ACAS-Xu controller from Katz et al. (2017), or energy conservation
in dynamical systems (Qin et al., 2019)). Verification against non-targeted attacks could be achieved
via a simple objective function modification.

2.3 SPARSE POLYNOMIAL OPTIMIZATION

Notice that (8) is an instance of Quadratically Constrained Quadratic Programming (QCQP), in-
volving n :=

∑L
i=0 ni decision variables and m := 2

∑L
i=1 ni + nB constraints, where nB

is the number of polynomials (at most quadratic) needed to represent the input region B. As
such, problem (8) is a special case of Polynomial Optimization since one minimizes a polyno-
mial f over a feasible set S defined with finitely many polynomial (in)equality constraints. Here
S := {x | gi(x) ≥ 0,hi(x) = 0, ∀i ∈ J1 , LK, gB(x0) ≥ 0}. Note that an equivalent characteriza-
tion of the global infimum of f on S is τ = min{f(x) | x ∈ S} = max{λ ∈ R | f−λ ≥ 0 on S}.
This requires one to efficiently handle the set of polynomials that are nonnegative on S, which is
known to be intractable. However, in practice, we can rely on its tractable inner approximations
based on weighted combinations of elements in g := {(gi)i∈J1,LK, gB}, the weights being SOS
polynomials.

By (Lasserre, 2001, Theorem 4.2), τd := sup{λ ∈ R | f − λ− σ ∈ Id(h), σ ∈ Qd(g)} defines a
hierarchy of dense SDP relaxations whose size increases with the relaxation order d, and such that
τd ↑ τ as d → +∞. Moreover, the convergence towards τ is generically finite, which means that
τd = τ for some d ∈ N (Nie, 2014, Theorem 1.1).
Example 2.1. Consider a BNN with L = 2, (n0, n1, n2, n3) = (3, 2, 2, 2), with trainable param-

eters given by
(
W [1],W [2],W [3]

)
=

((
−1 1 1
−1 −1 1

)
,

(
−1 −1
−1 1

)
,

(
−1 1
−1 −1

))
, and(

b[1], b[2], b[3]
)
=

((
1.5
2

)
,

(
1

−0.5

)
,

(
−2
−1

))
. Suppose gB(x0) = 0.22−(x0−x̄)⊺(x0−

x̄), with x̄ = (0, 0.5, 0)⊺. The network assigns the label ȳ = 2 since x3,2 = 1 > x3,1 = −2. By
Remark 2.1, the affine objective function to minimize becomes x 7→ fadv1 (x) = −(−x2,1 − x2,2 +
x2,1−x2,2−1+2) = 2x2,2−1. The corresponding dense SDP relaxation of order d ≥ 1 becomes

τd =



sup
λ,{Gi,j}2

i,j=1,G0,GB

λ

s. t. fadv1 − λ− σ ∈ Id({h1,h2}), (10a)

σ = v⊺
dG0vd +

2∑
i,j=1

v⊺
d−1Gi,jvd−1gi(·)j + v⊺

d−1GBvd−1gB, (10b)

GB,Gi,j ∈ Ss(d−1)
+ , i, j ∈ J1 , 2K,G0 ∈ Ss(d)+ . (10c)

In addition to SDP conditions from (10c), checking for membership in Id({h1,h2}) in the line (10a)
boils down to imposing linear conditions on the coefficients of the involved polynomials. Those can
be obtained after applying the substitution rules hi(xi) = 0 ⇐⇒ x2

i,j = 1 for i, j ∈ J1 , 2K.

For a fixed relaxation order d, dense SDP relaxations involve O(n2d) equality constraints, which
prevents them from being applied to large-scale problems. However, many POP problems, including
BNN robustness verification, exhibit important structural sparsity properties, which enables one to
build significantly more computationally efficient SDP relaxations (Waki et al., 2006; Wang et al.,
2021). For instance, let us suppose that J1 , nK =: I0 = ∪p

k=1Ik with Ik not necessarily disjoint. To
every subset Ik we can associate a subset of decision variables xIk := {xi, i ∈ Ik}. An instance of
the BNN robustness verification problem of the form (8) exhibits correlative sparsity since

• There exist (fk)k∈J1,pK such that f =
∑p

k=1 fk, with fk ∈ R[xIk ],

• The polynomials g can be split into disjoints sets Jk, such that gi(·)j ∈ Jk if and only if gi(·)j ∈
R[xIk ]. Moreover, gB ∈ Jk for k ∈ J1, pK. Since hi(·)j only depends on xi,j , the overall sparsity
structure is induced by inequality constraints that mimic the cascading BNN structure.
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As in the dense case, a hierarchy of correlatively sparse SDP relaxations is given by τdcs := sup{λ ∈
R | f − λ −

∑p
k=1 σk ∈ Id(h), σk ∈ Qd({gi(·)j ∈ Jk})}. Under additional ball constraints

(Magron & Wang, 2023, Assumption 3.1), one still has τdcs ↑ τ as d→ +∞. If ρ := maxk |Ik|, then
these sparse relaxations involve O(pρ2d) equality constraints, yielding a significant improvement
when ρ ≪ n. Apart from this computational gain, we will benefit from the fact that the first-
order sparse relaxation is not conservative with respect to the dense one, meaning that τ1cs = τ1

(Vandenberghe et al., 2015, Theorem 9.2).

3 COMPARISON OF LINEAR PROGRAMMING (LP) AND SDP BOUNDS

Here, we assume that f is linear, e.g., the function fadvk defined in (9). The goal of this section
is to compare LP and SDP relaxations of the QCQP encoding (8), when the perturbation region is
described by B = B||.||∞(x̄, ε) = {x | x̄ − ε ≤ x ≤ ε + x̄}. Let n ≥ 2, w ∈ {−1, 1}n, and
b ∈ R satisfying |b| < n. As pointed out by Amir et al. (2021), an equivalent linear approximation
of the set {(x, y) ∈ [−1, 1]n × {−1, 1}, y = sign(⟨w,x⟩+ b)} is given by{

(x, y) ∈ [−1, 1]n × {−1, 1}, y ≥ 2 (⟨x,w⟩+ b)

n+ b
− 1, y ≤ 2 (⟨x,w⟩+ b)

n− b
+ 1

}
. (11)

Hence, for each layer i ∈ J1, LK, we can replace the quadratic function gi by two linear functions
g1
i,LIN(xi,xi−1) := (nv(W [i]) + b[i])⊙ (xi + 1)− 2

(
W [i]xi−1 + b[i]

)
, (12a)

g2
i,LIN(xi,xi−1) := (nv(W [i])− b[i])⊙ (1− xi) + 2

(
W [i]xi−1 + b[i]

)
, (12b)

Thus, by encoding the sign(·) function as described in (12a)-(12b), the standard BNN verification
problem can be equivalently formulated as an instance of MILP:

τMILP :=



min
x0,x1,...,xL

f(x0,x1, . . . ,xL)

s.t. g1
i,LIN(xi,xi−1) ≥ 0, i ∈ J1, LK, (13a)

g2
i,LIN(xi,xi−1) ≥ 0, i ∈ J1, LK, (13b)

gB(x0) ≥ 0, (13c)
xi ∈ {−1, 1}ni , i ∈ J1 , LK. (13d)

By further relaxing the binary constraints in (13d) via g0
i,LIN := (1− xi,xi + 1), we can derive the

corresponding LP relaxation of the MILP problem in (13)2:

τLP :=


min

x0,x1,...,xL

f(x0,x1, . . . ,xL)

s.t. g0
i,LIN(xi) ≥ 0, i ∈ J1 , LK, (14a)

(13a)− (13c). (14b)

Notice that we always have τLP ≤ τMILP = τ .
Remark 3.1 (Encoding of sign(·)). In Lazarus & Kochenderfer (2022); Khalil et al. (2019), the
authors have also considered a MILP encoding of the BNN verification problem, based on l, u ∈ R
such that l ≤ ⟨x,w⟩+ b ≤ u and

y = sign(⟨x,w⟩+ b) =⇒ 4

u
(⟨x,w⟩+ b)− 3 ≤ y and y ≥ −4

l
(⟨x,w⟩+ b) + 1. (15)

For w ∈ {−1, 1}n and u = n+b, we conclude that (11) provides a tighter bound than (15) because

y −
(

4

n+ b
(⟨x,w⟩+ b)− 3

)
= y −

(
2

n+ b
(⟨x,w⟩+ b)− 1

)
+

n∑
k=1

(1− wkxk)
2

n+ b
. (16)

Theorem 3.1. For an arbitrary BNN with depth L ≥ 2, there always exists an affine function
f : R[x0,x1, . . . ,xL] → R such that τLP > τ1 = τ1cs.

2Replacing the initial sign constraint by g1
1,LIN and g2

1,LIN provides a valid encoding only if x0 ∈ [−1, 1]n0 .
However, it is always possible to transform the input perturbation region so that it corresponds to B||.||∞(0, 1).
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Sketch of proof. Consider f(x0,x1, . . . ,xL) = g1
L,LIN(xL,xL−1)j for some j ∈ J1 , nLK. Then

Appendix A.1 explicitly constructs a feasible solution to the dual of the sparse first-order SDP re-
laxation of (8), yielding the value of the objective function equal to −1, implying τ1cs = τ1 ≤ −1.
Since f(x0,x1, . . . ,xL) ≥ 0 is one of the constraints in (14), we deduce that τLP ≥ 0.

Theorem 3.1 states that the lower bound τ1 is generally not competitive. On the other hand, the
inequality τ2 ≥ τLP is derived in Appendix A.2, but the second-order SDP relaxation remains
computationally inefficient for high-dimensional problems.

4 TIGHTENING OF THE FIRST-ORDER SDP RELAXATION

The goal of this section is to propose a more accurate first-order SDP relaxation. We still assume
that B = B||.||∞(x̄, ε). Firstly, notice that the semi-algebraic representation of the subgradient of
the ReLU function derived in (Chen et al., 2020, Section 1.3) provides an additional way of exactly
encoding the sign(·) function using quadratic polynomials. Consequently, for each i ∈ J1, LK, let
us replace the constraint defined in (7b) by the following two constraints:

g̃1
i (xi,xi−1) := (xi + 1)⊙

(
W [i]xi−1 + b[i]

)
≥ 0, (17a)

g̃2
i (xi,xi−1) := (xi − 1)⊙

(
W [i]xi−1 + b[i]

)
≥ 0. (17b)

Furthermore, we include the following two redundant quadratic constraints (tautologies):
g̃t1
i (xi,xi−1) := (xi + 1)⊙

(
nv
(
W [i]

)
−W [i]xi−1

)
≥ 0, (18a)

g̃t2
i (xi,xi−1) := (1− xi)⊙

(
nv
(
W [i]

)
+W [i]xi−1

)
≥ 0, (18b)

which hold true for xi−1 ∈ {−1, 1}ni−1 and
∣∣W [i]xi−1

∣∣ ≤ nv
(
W [i]

)
, where | · | should be

understood component-wise.

Hence, we get an alternative POP encoding of the BNN verification problem:

τtighter :=



min
x0,x1,...,xL

f(x0,x1, . . . ,xL)

s.t. hi(xi) = 0, i ∈ J1 , LK, (19a)

g̃1
i (xi,xi−1) ≥ 0, g̃t1

i (xi,xi−1) ≥ 0, i ∈ J1 , LK, (19b)

g̃2
i (xi,xi−1) ≥ 0, g̃t2

i (xi,xi−1) ≥ 0, i ∈ J1 , LK, (19c)
gB(x0) ≥ 0, (19d)

and corresponding dense and sparse hierarchies of SDP relaxations, i.e., (τdtighter)d and (τdtighter,cs)d.

Theorem 4.1. For any BNN verification problem, τ1tighter,cs = τ1tighter ≥ τ1. If L ≥ 2, there exists
an affine f such that the inequality is strict. We also have τ1tighter,cs ≥ τLP for any f affine.

Theorem 4.1 asserts that adding tautologies (18a) and (18b) is crucial, as they allow to generate
a larger first-order quadratic module and consequently enable more accurate SOS decompositions.
See Appendix A.3 for the proof and experimental illustration.

Illustration for the case L = 2 (refer to Appendix A.4 for the general case): Generally, the BNN
structure allows us to decompose the problem by considering n0 + n2 subsets of variables, each
of size n1 + 1. Those subsets are given by Ik = {x1,1, . . . ,x1,n1

,x0,k} for k ∈ J1 , n0K and
In0+k = {x1,1, . . . ,x1,n1

,x2,k} for k ∈ J1, n2K. 3

3Notice that, unlike in Newton & Papachristodoulou (2023), the presented structure of decision variables
subsets is not dependent on the input size n0, which enhances its computational efficiency.
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x0,1

x0,2

x0,3

x1,1

x1,2

x2,1

x2,2

x3,1

x3,2

Figure 1: A toy BNN with L = 2 and (n0, n1, n2, n3) = (3, 2, 2, 2). The subsets of interacting
variables I1 = {x0,1, x1,1, x1,2}, I2 = {x0,2, x1,1, x1,2}, I3 = {x0,3, x1,1, x1,2} (represented by
red polygons) and I4 = {x1,1, x1,2, x2,1}, I5 = {x1,1, x1,2, x2,2} (represented by blue polygons)
are used to compute τ1tighter,cs.

For the BNN from Example 2.1, depicted in Figure 1, most SOS multipliers are non-negative reals
when d = 1. With g̃i = {g̃1

i , g̃
2
i , g̃

t1
i , g̃

t2
i }, the tighter first-order sparse SDP relaxation writes:

τ1tighter,cs =



sup
λ,{σg}g∈g̃i,i∈J1,2K,σB ,{Gk}5

k=1

λ

s.t. fadv1 − λ− σ ∈ I1(h), (20a)

σ(x) =

2∑
i=1

∑
g∈g̃i

1⊺(σg ⊙ g(xi,xi−1)) +

5∑
k=1

σ0,k(xIk) + σBgB(x0), (20b)

σ0,k(xIk) = v1(xIk)
⊺Gkv1(xIk),Gk ∈ S|Ik|+1

+ , k ∈ J1 , 5K, (20c)
σg ≥ 0, g ∈ g̃i, i ∈ J1 , 2K, σB ≥ 0. (20d)

5 NUMERICAL EXPERIMENTS

In this section, we provide numerical results for BNN robustness verification problems with respect
to different perturbations. All experiments are run on a desktop with a 12-core i7-12700 2.10 GHz
CPU and 32GB of RAM. The tightened first-order sparse SDP relaxation is modeled with TSSOS
(Magron & Wang, 2021) and solved with Mosek (Andersen & Andersen, 2000). Gurobi (Gurobi Op-
timization, LLC, 2023) is used to solve MILP. BNNs were trained on standard benchmark datasets,
using Larq Geiger & Team (2020). The full experimental setup is detailed in Appendix B.

5.1 ROBUSTNESS AGAINST ∥.∥∞ ATTACKS

MNIST dataset was used to train two sparse networks - BNN1 and BNN2, where sparsity refers to

weights sparsity defined by ws =:
1−

∑L
i=0 ∥W [i+1]∥2

F∑L
i=0 nini+1

. We assess the performance of our method
(number of solved cases (cert.) and verification time t (s)) in verifying robustness of the first 100
images from the test set. Obtained results, see Table 1, are compared with both LP (14) and MILP
(13) methods, where the latter was converted into an easier, attack feasibility problem by adding
f(·) ≤ 0 to the constraint set.

Our method is on average 15.75% (for BNN1) and 25.67% (for BNN2) less conservative than the
LP-based method. Moreover, larger input regions do not significantly affect performance, com-
pared to MILP, where the impact on running time is much more severe. This is partially due to the
coarseness of LP bounds, see Figure 2, and is even more prominent for densely connected networks.
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Table 1: Performance comparison for different models and input regions, given by δ||.||∞ = 127.5ϵ

(data were scaled to [−1, 1]784). We use | to separate the number of MILP-solver-certified non-
robust and robust instances, within a time limitation of 600 s. The runtime in parentheses refers to
the average runtime over the instances that our method verified successfully.

Model δ||.||∞
τLP τ1tighter,cs τSoft-MILP

cert. t (s) cert. t (s) cert. t (s)

BNN1:
[784, 500, 500, 10]

ws = 34.34%

0.25 83 0.01 91 3.62 (3.58) 3 | 95 0.04 (0.04)
0.50 31 0.02 60 6.69 (6.50) 4 | 94 1.21 (0.06)
1.00 1 0.03 21 10.76 (8.22) 15 | 50 251.90 (1.37)
1.50 0 0.06 6 38.32 (26.99) 20 | 12 428.24 (191.95)

BNN2:
[784, 500, 500, 10]

ws = 19.07%

0.25 14 0.03 59 11.97 (10.64) 3 | 95 2.23 (0.69)
0.50 0 0.05 23 42.37 (24.21) 9 | 63 220.53 (13.24)
0.75 0 0.08 9 139.18 (52.01) 10 | 19 455.61 (186.54)

Figure 2: Comparing τLP and τ1tighter,cs bounds for BNN1 and different δ||.||∞ . Each subplot x-
axis represents indices of test set images sorted in the descending order of τ1tighter,cs values. The
upper bound ub is obtained by random sampling. The relative improvement over LP is estimated

through
τ1
tighter,cs−τLP

ub−τLP
. On average, τ1tighter,cs bounds are 21, 33, 46 and 53 percent more accurate,

respectively.
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Additional experimental results on ∥·∥∞ robustness verification on CIFAR-10 data set are presented
in Appendix B, Table 8.

SDP methods provide trusted bounds: The discontinuity of the sign(·) activation function can
exacerbate floating-point errors, leading to significant numerical inaccuracies in the MILP solving
process. For instance, if a node’s value after linear transformations is −1.95 · 10−14, assigning
the value of −1 to this node is unreliable, as floating-point errors could easily flip the sign. Such
incorrect sign values can critically affect the feasibility of the solution and the overall bound. To
address this, we introduce a margin of 10−7 for sign determination, which we call Soft-MILP. In
contrast, for the SDP-based method, we can easily enclose the errors with interval arithmetic as in
(Magron et al., 2015, Section 2.2), to obtain a rigorously valid lower bound.
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5.2 ROBUSTNESS AGAINST ||.||2 ATTACKS

We replace the constraint (13c) with gB such that B = B||.||2(x̄, ε) ∩ [−1, 1]784. The resulting
Mixed Integer Non-Linear Programming (MINP) problem, also solved using Gurobi, and its optimal
value are referred to as τSoft-MINP.

Table 2: Performance comparison for ||.||2-verification, where δ||.||2 = 255ε.

δ||.||2
τ1tighter,cs τSoft-MINP

cert. t (s) cert. t (s)

BNN1 : [784, 500, 500, 10], ws = 34.34%

10 70 5.23 (5.02) 3 | 93 33.35 (5.75)
20 36 19.54 (15.20) 4 | 30 447.11 (278.38)
30 13 34.24 (18.08) 4 | 6 556.07 (467.16)

BNN2 : [784, 500, 500, 10], ws = 19.07%

5 81 8.57 (8.50) 2 | 96 3.31 (1.18)
10 46 19.00 (15.44) 3 | 58 272.92 (106.25)
15 27 63.21 (36.73) 4 | 23 475.78 (293.96)

As displayed in Table 2, when the perturbation region is small, the exact MINP method can verify
more instances. However, for more severe attacks, our method certifies robustness for almost the
same number of instances, but 11.4 times faster on average (for more details, refer to Appendix B).

6 CONCLUSION AND FUTURE WORKS

In this work, we studied SDP relaxations associated with polynomial optimization problems to verify
the properties of BNNs with continuous input space. We demonstrated the ability of our method to
verify robustness against both ∥.∥∞ and ∥.∥2 attacks. The proposed method efficiently exploits the
inherent sparse structure of a given BNN and generally provides much less conservative bounds than
the LP-based method. Moreover, its running time does not scale exponentially with either the size
of the network or the perturbation region.

Our method relies on the interior-point SDP solvers, and thus inherits their limitations. One direction
for future improvements could be based on the embedding of automatic differentiation to either
improve existing interior-point SDP solvers or create new ones, like in Dathathri et al. (2020).

Moreover, our experimental results suggest that one could replace LP relaxations with SDP relax-
ations in branch-and-bound/branch-and-cut algorithms, such as the ones implemented in Gurobi.
Based on our experiments, an alternative SDP-based relaxation embedded within general-purpose
MILP/MINP solvers would significantly accelerate the exact verification process, especially for
larger input perturbation regions.

Better bounding at comparable time cost could significantly improve the overall performance of
such solvers, which is another exciting topic of future research.

REFERENCES

Guy Amir, Haoze Wu, Clark Barrett, and Guy Katz. An SMT-based approach for verifying binarized
neural networks. In Tools and Algorithms for the Construction and Analysis of Systems, pp. 203–
222. Springer International Publishing, 2021. ISBN 978-3-030-72013-1.

Erling D Andersen and Knud D Andersen. The MOSEK interior point optimizer for linear program-
ming: an implementation of the homogeneous algorithm. In High performance optimization, pp.
197–232. Springer, 2000.

Xue Anton, Lars Lindemann, and Rajeev Alur. Chordal sparsity for SDP-based neural net-
work verification. Automatica, 161:111487, 2024. ISSN 0005-1098. doi: https://doi.org/10.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

1016/j.automatica.2023.111487. URL https://www.sciencedirect.com/science/
article/pii/S0005109823006568.

V. Antun, N.M. Gottschling, A.C Hansen, and B. Adcok. Deep learning in scientific computing:
Understanding the instability mystery. SIAM News, 54(2), 2021. March 01.

Johannes Aspman, Georgios Korpas, and Jakub Marecek. Taming binarized neural networks and
mixed-integer programs. In Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024,
Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Four-
teenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2014, February 20-
27, 2024, Vancouver, Canada, pp. 10935–10943. AAAI Press, 2024. doi: 10.1609/AAAI.V38I10.
28968. URL https://doi.org/10.1609/aaai.v38i10.28968.

Stanley Bak and Parasara Sridhar Duggirala. Simulation-equivalent reachability of large linear sys-
tems with inputs. In Computer Aided Verification, pp. 401–420, Cham, 2017. Springer Interna-
tional Publishing. ISBN 978-3-319-63387-9.

Teodora Baluta, Shiqi Shen, Shweta Shinde, Kuldeep S. Meel, and Prateek Saxena. Quantitative
verification of neural networks and its security applications. In CCS ’19, pp. 1249–1264, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450367479. doi: 10.
1145/3319535.3354245. URL https://doi.org/10.1145/3319535.3354245.

Ben Batten, Panagiotis Kouvaros, Alessio Lomuscio, and Yang Zheng. Efficient neural network ver-
ification via layer-based semidefinite relaxations and linear cuts. In Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 2184–2190. International
Joint Conferences on Artificial Intelligence Organization, 2021. doi: 10.24963/ijcai.2021/301.
URL https://doi.org/10.24963/ijcai.2021/301.

Tong Chen, J.-B Lasserre, Victor Magron, and Edouard Pauwels. Semialgebraic Optimization for
Bounding Lipschitz Constants of ReLU Networks. Proceeding of Advances in Neural Information
Processing Systems 33 (NeurIPS), 2020.

Tong Chen, J.-B Lasserre, Victor Magron, and Edouard Pauwels. Semialgebraic Representation of
Monotone Deep Equilibrium Models and Applications to Certification. Proceeding of Advances
in Neural Information Processing Systems 34 (NeurIPS), 2021.

Chih-Hong Cheng, Georg Nührenberg, Chung-Hao Huang, and Harald Ruess. Verification of bi-
narized neural networks via inter-neuron factoring. In Verified Software. Theories, Tools, and
Experiments, pp. 279–290. Springer International Publishing, 2018. ISBN 978-3-030-03592-1.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. BinaryConnect: Training
deep neural networks with binary weights during propagations. In Advances in Neu-
ral Information Processing Systems, volume 28. Curran Associates, Inc., 2015. URL
https://proceedings.neurips.cc/paper_files/paper/2015/file/
3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf.

Sumanth Dathathri, Krishnamurthy Dvijotham, Alexey Kurakin, Aditi Raghunathan, Jonathan
Uesato, Rudy R Bunel, Shreya Shankar, Jacob Steinhardt, Ian Goodfellow, Percy S
Liang, and Pushmeet Kohli. Enabling certification of verification-agnostic networks
via memory-efficient semidefinite programming. In Advances in Neural Information
Processing Systems, volume 33, pp. 5318–5331. Curran Associates, Inc., 2020. URL
https://proceedings.neurips.cc/paper_files/paper/2020/file/
397d6b4c83c91021fe928a8c4220386b-Paper.pdf.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George J. Pappas. Ef-
ficient and accurate estimation of lipschitz constants for deep neural networks. In Proceedings
of the 33rd International Conference on Neural Information Processing Systems, Red Hook, NY,
USA, 2019. Curran Associates Inc.

Mahyar Fazlyab, Manfred Morari, and George Pappas. Safety verification and robustness analysis
of neural networks via quadratic constraints and semidefinite programming. IEEE Transactions
on Automatic Control, PP:1–1, 12 2020. doi: 10.1109/TAC.2020.3046193.

11

https://www.sciencedirect.com/science/article/pii/S0005109823006568
https://www.sciencedirect.com/science/article/pii/S0005109823006568
https://doi.org/10.1609/aaai.v38i10.28968
https://doi.org/10.1145/3319535.3354245
https://doi.org/10.24963/ijcai.2021/301
https://proceedings.neurips.cc/paper_files/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/397d6b4c83c91021fe928a8c4220386b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/397d6b4c83c91021fe928a8c4220386b-Paper.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Angus Galloway, Graham W. Taylor, and Medhat Moussa. Attacking binarized neural networks. In
International Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=HkTEFfZRb.

Lukas Geiger and Plumerai Team. Larq: An open-source library for training binarized neural net-
works. Journal of Open Source Software, 5(45):1746, 2020. doi: 10.21105/joss.01746. URL
https://doi.org/10.21105/joss.01746.

Mirco Giacobbe, Thomas A. Henzinger, and Mathias Lechner. How many bits does it take to
quantize your neural network? In Tools and Algorithms for the Construction and Analysis of
Systems, pp. 79–97, Cham, 2020. Springer International Publishing. ISBN 978-3-030-45237-7.

Gurobi Optimization, LLC. Dealing with big-M constraints. https://www.gurobi.com/
documentation/current/refman/dealing_with_big_m_constra.html. Ac-
cessed: 17 May 2024.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.
gurobi.com.

Shaoning Han and Andrés Goméz. Single-neuron convexification for binarized neural networks.
Optimization Online, 2021. URL https://optimization-online.org/2021/05/
8419/.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/
paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf.

Mykhailo Ivashchenko, Sung Woo Choi, Luan Viet Nguyen, and Hoang-Dung Tran. Verifying
binary neural networks on continuous input space using star reachability. In 2023 IEEE/ACM
11th International Conference on Formal Methods in Software Engineering (FormaliSE), pp. 7–
17, 2023. doi: 10.1109/FormaliSE58978.2023.00009.

Kai Jia and Martin Rinard. Efficient exact verification of binarized neural networks. In Proceedings
of the 34th International Conference on Neural Information Processing Systems, NIPS’20, Red
Hook, NY, USA, 2020a. Curran Associates Inc. ISBN 9781713829546.

Kai Jia and Martin C. Rinard. Exploiting verified neural networks via floating point numerical error.
CoRR, abs/2003.03021, 2020b. URL https://arxiv.org/abs/2003.03021.

Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
efficient SMT solver for verifying deep neural networks. In Computer Aided Verification, pp.
97–117, Cham, 2017. Springer International Publishing. ISBN 978-3-319-63387-9.

Elias B. Khalil, Amrita Gupta, and Bistra Dilkina. Combinatorial attacks on binarized neu-
ral networks. In International Conference on Learning Representations (ICLR), 2019. URL
https://arxiv.org/abs/1810.03538.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014. URL https://api.semanticscholar.org/CorpusID:
6628106.

Jianglin Lan, Yang Zheng, and Alessio Lomuscio. Tight neural network verification via semidefi-
nite relaxations and linear reformulations. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 7272–7280, 2022.

Jean-Bernard Lasserre. Global Optimization with Polynomials and the Problem of Moments.
SIAM Journal on Optimization, 11(3):796–817, 2001. doi: 10.1137/S1052623400366802. URL
https://doi.org/10.1137/S1052623400366802.

Jean-Bernard Lasserre. Convergent SDP-Relaxations in Polynomial Optimization with Sparsity.
Siam Journal on Optimization, 17:263–272, 01 2006. doi: 10.1137/05064504X.

12

https://openreview.net/forum?id=HkTEFfZRb
https://openreview.net/forum?id=HkTEFfZRb
https://doi.org/10.21105/joss.01746
https://www.gurobi.com/documentation/current/refman/dealing_with_big_m_constra.html
https://www.gurobi.com/documentation/current/refman/dealing_with_big_m_constra.html
https://www.gurobi.com
https://www.gurobi.com
https://optimization-online.org/2021/05/8419/
https://optimization-online.org/2021/05/8419/
https://proceedings.neurips.cc/paper_files/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://arxiv.org/abs/2003.03021
https://arxiv.org/abs/1810.03538
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://doi.org/10.1137/S1052623400366802


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jean-Bernard Lasserre. An Introduction to Polynomial and Semi-Algebraic Optimization. Cambridge
Texts in Applied Mathematics. Cambridge University Press, 2015. ISBN 9781316240397. URL
https://books.google.com.sg/books?id=pZXsDAAAQBAJ.

Fabian Latorre, Paul Rolland, and Volkan Cevher. Lipschitz constant estimation of Neural Networks
via sparse polynomial optimization. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=rJe4_xSFDB.

Christopher Lazarus and Mykel J. Kochenderfer. A mixed integer programming approach for
verifying properties of binarized neural networks. International Joint Conference on Artifi-
cial Intelligence (IJCAI), AI Safety Workshop, 2022. doi: 10.48550/arXiv.2203.07078. URL
https://doi.org/10.48550/arXiv.2203.07078.

Christopher Lazarus, Mykel J. Kochenderfer, Stephen Boyd, and Mert Pilanci. Trustworthy machine
learning by efficiently verifying compressed models. https://purl.stanford.edu/rs658gj7336.,
May, 2022.

Victor Magron and Jie Wang. TSSOS: a Julia library to exploit sparsity for large-scale polyno-
mial optimization. ArXiv, abs/2103.00915, 2021. URL https://api.semanticscholar.
org/CorpusID:232076082.

Victor Magron and Jie Wang. Sparse Polynomial Optimization: Theory and Practice. Series on
Optimization and Its Applications. World Scientific (Europe), 2023. doi: 10.1142/q0382. URL
https://www.worldscientific.com/doi/abs/10.1142/q0382.

Victor Magron, Xavier Allamigeon, Stéphane Gaubert, and Benjamin Werner. Formal proofs for
Nonlinear Optimization. Journal of Formalized Reasoning, 8(1):1–24, 2015.

Nina Narodytska. Formal analysis of deep binarized neural networks. In IJCAI, pp. 5692–5696,
2018.

Nina Narodytska, Shiva Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv, and Toby Walsh. Verifying
properties of binarized deep neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Nina Narodytska, Aditya Shrotri, Kuldeep S. Meel, Alexey Ignatiev, and Joao Marques-Silva. As-
sessing heuristic machine learning explanations with model counting. In Theory and Applications
of Satisfiability Testing – SAT 2019, pp. 267–278, Cham, 2019. Springer International Publishing.
ISBN 978-3-030-24258-9.

Nina Narodytska, Hongce Zhang, Aarti Gupta, and Toby Walsh. In search for a SAT-friendly bi-
narized neural network architecture. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=SJx-j64FDr.

Matthew Newton and Antonis Papachristodoulou. Sparse polynomial optimisation for neural net-
work verification. Automatica, 157:111233, 2023. ISSN 0005-1098. doi: https://doi.org/10.
1016/j.automatica.2023.111233. URL https://www.sciencedirect.com/science/
article/pii/S0005109823003941.

Jiawang Nie. Optimality conditions and finite convergence of Lasserre’s hierarchy. Mathematical
programming, 146:97–121, 2014.

Chongli Qin, Krishnamurthy (Dj) Dvijotham, Brendan O’Donoghue, Rudy Bunel, Robert Stanforth,
Sven Gowal, Jonathan Uesato, Grzegorz Swirszcz, and Pushmeet Kohli. Verification of non-linear
specifications for neural networks. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=HyeFAsRctQ.

Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe. Binary neural
networks: A survey. Pattern Recognition, 105:107281, 2020.

13

https://books.google.com.sg/books?id=pZXsDAAAQBAJ
https://openreview.net/forum?id=rJe4_xSFDB
https://doi.org/10.48550/arXiv.2203.07078
https://api.semanticscholar.org/CorpusID:232076082
https://api.semanticscholar.org/CorpusID:232076082
https://www.worldscientific.com/doi/abs/10.1142/q0382
https://openreview.net/forum?id=SJx-j64FDr
https://www.sciencedirect.com/science/article/pii/S0005109823003941
https://www.sciencedirect.com/science/article/pii/S0005109823003941
https://openreview.net/forum?id=HyeFAsRctQ


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Semidefinite relaxations for
certifying robustness to adversarial examples. In Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Sys-
tems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 10900–
10910, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
29c0605a3bab4229e46723f89cf59d83-Abstract.html.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: ImageNet
classification using binary convolutional neural networks. In Computer Vision – ECCV 2016, pp.
525–542, Cham, 2016. Springer International Publishing. ISBN 978-3-319-46493-0.

Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. A con-
vex relaxation barrier to tight robustness verification of neural networks. In Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/246a3c5544feb054f3ea718f61adfa16-Paper.pdf.

Weijia Shi, Andy Shih, Adnan Darwiche, and Arthur Choi. On tractable representations of bi-
nary neural networks. In International Conference on Principles of Knowledge Representa-
tion and Reasoning, 2020. URL https://api.semanticscholar.org/CorpusID:
214802814.

Andy Shih, Adnan Darwiche, and Arthur Choi. Verifying binarized neural networks by angluin-style
learning. In Theory and Applications of Satisfiability Testing – SAT 2019, pp. 354–370, Cham,
2019. Springer International Publishing. ISBN 978-3-030-24258-9.

Siyang Sun, Yingjie Yin, Xingang Wang, De Xu, Wenqi Wu, and Qingyi Gu. Fast ob-
ject detection based on binary deep convolution neural networks. CAAI Transactions
on Intelligence Technology, 3(4):191–197, 2018. doi: https://doi.org/10.1049/trit.2018.
1026. URL https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.
1049/trit.2018.1026.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. In 2nd International Conference
on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings, 2014. URL http://arxiv.org/abs/1312.6199.

Dung Tran, Diego Manzanas Lopez, Patrick Musau, Xiaodong Yang, Viet Luan, Luan Nguyen,
Weiming Xiang, and Taylor Johnson. Star-based reachability analysis of deep neural networks.
In 23rd International Symposium on Formal Methods, pp. 670–686, 2019.

Hoang-Dung Tran, Stanley Bak, Weiming Xiang, and Taylor T. Johnson. Verification of Deep
Convolutional Neural Networks Using ImageStars. In Computer Aided Verification, pp. 18–42,
Cham, 2020. Springer International Publishing. ISBN 978-3-030-53288-8.

Lieven Vandenberghe, Martin S Andersen, et al. Chordal graphs and semidefinite optimization.
Foundations and Trends® in Optimization, 1(4):241–433, 2015.

Lorenzo Vorabbi, Davide Maltoni, and Stefano Santi. On-device learning with binary neural net-
works. In Image Analysis and Processing - ICIAP 2023 Workshops, pp. 39–50, Cham, 2024.
Springer Nature Switzerland. ISBN 978-3-031-51023-6.

Hayato Waki, Sunyoung Kim, Masakazu Kojima, and Masakazu Muramatsu. Sums of Squares
and Semidefinite Program Relaxations for Polynomial Optimization Problems with Structured
Sparsity. SIAM Journal on Optimization, 17(1):218–242, 2006. doi: 10.1137/050623802. URL
https://doi.org/10.1137/050623802.

Jie Wang, Victor Magron, and Jean-Bernard Lasserre. TSSOS: A Moment-SOS Hierarchy That
Exploits Term Sparsity. SIAM Journal on Optimization, 31(1):30–58, 2021. doi: 10.1137/
19M1307871. URL https://doi.org/10.1137/19M1307871.

14

https://proceedings.neurips.cc/paper/2018/hash/29c0605a3bab4229e46723f89cf59d83-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/29c0605a3bab4229e46723f89cf59d83-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/246a3c5544feb054f3ea718f61adfa16-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/246a3c5544feb054f3ea718f61adfa16-Paper.pdf
https://api.semanticscholar.org/CorpusID:214802814
https://api.semanticscholar.org/CorpusID:214802814
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/trit.2018.1026
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/trit.2018.1026
http://arxiv.org/abs/1312.6199
https://doi.org/10.1137/050623802
https://doi.org/10.1137/19M1307871


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Xu Xiang, Yanmin Qian, and Kai Yu. Binary deep neural networks for speech recog-
nition. In Interspeech 2017, 18th Annual Conference of the International Speech Com-
munication Association, Stockholm, Sweden, August 20-24, 2017, pp. 533–537. ISCA,
2017. doi: 10.21437/INTERSPEECH.2017-1343. URL https://doi.org/10.21437/
Interspeech.2017-1343.

Chunyu Yuan and Sos S. Agaian. A comprehensive review of binary neural network. Artifi-
cial Intelligence Review, pp. 1–65, 2021. URL https://api.semanticscholar.org/
CorpusID:238743860.

Yedi Zhang, Zhe Zhao, Guangke Chen, Fu Song, and Taolue Chen. BDD4BNN: A BDD-based
quantitative analysis framework for binarized neural networks. In Computer Aided Verification,
pp. 175–200, Cham, 2021. Springer International Publishing. ISBN 978-3-030-81685-8.

A THEORETICAL DISCUSSION

A.1 DUAL SIDE OF POLYNOMIAL OPTIMIZATION RELAXATIONS - MOMENT HIERARCHIES

We have discussed computing a global minimum of a multivariate polynomial using SDP relaxations
obtained by interpreting the requirement for polynomials to be positive on sets defined with finitely
many (in)equalities.
It is also possible to derive the corresponding dual relaxations. Notice that a polynomial f in the
variable x = (x1, . . . , xn) can also be written as f =

∑
α∈A fαx

α with A ⊂ Nn and fα ∈ R,
where xα = xα1

1 . . . xαn
n . Then the moment hierarchy Lasserre (2001) for the POP introduced in

Section 2.3 corresponds to:

τdmom :=



inf
y
Ly(f)

s.t. Md(y) ⪰ 0, (21a)
Md−1(gi(·)jy) ⪰ 0, i ∈ J1, LK, j ∈ J1 , niK, (21b)
Md−1(hi(·)jy) = 0, i ∈ J1 , LK, j ∈ J1, niK, (21c)
Md−1(gB(·)ky) ⪰ 0, k ∈ J1, nBK, (21d)
y0 = 1, (21e)

where y = (yα)α is a sequence indexed by α ∈ Nn and Ly the linear functional defined by

f 7→ Ly(f) :=
∑
α

fαyα. (22)

For d ∈ N, Md(y) denotes the moment matrix of order d associated with y and defined as follows

Md(y)(β, γ) := Ly(x
βxγ) = yβ+γ , ∀β, γ ∈ Nn

d . (23)

Similarly, for g =
∑

α gαx
α ∈ R[x], Md(gy) denotes the localizing matrix of order d associated

with g and y, defined as follows

Md(gy)(β, γ) := Ly(gx
βxγ) =

∑
α

gαyα+β+γ , ∀β, γ ∈ Nn
d . (24)

When the correlative sparsity is present, analogous hierarchies of sparse moment relaxations can
be derived as well (Lasserre, 2006; Magron & Wang, 2023). Such reasoning was adopted in the
following proof of Theorem 3.1.

Proof of Theorem 3.1. Let j ∈ J1 , nLK and cLj = nv(W [L])j + b
[L]
j and define

f(x0,x1, . . . ,xL) := xL,j −
(

2
cLj

(〈
W

[L]
(j,:),xL−1

〉
+ b

[L]
j

)
− 1
)

. Then,

M =


1 xL−1 xL,j

1 1
(
W

[L]
(j,:)

)⊺
0

xL−1 W
[L]
(j,:) W

[L]
(j,:)

(
W

[L]
(j,:)

)⊺
0

xL,j 0 0 1

 (25)
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represents a feasible moment matrix for the sparse first-order moment relaxation of (8), yielding
the value of the objective function equal to −1 (because ||W [L]

(j,:)||
2
2 = nv(W [L])j), implying that

τ1 ≤ −1. However, since f(x0,x1, . . . ,xL) ≥ 0 is one of the constraints in (14), we deduce that
τLP ≥ 0.

As a direct consequence of Theorem 3.1, we have the following corollary:
Corollary A.1.1. Consider an arbitrary BNN with depth L ≥ 2, and let j ∈ J1, nLK. Then,

g1
L,LIN(·)j /∈ Q1({gL(·)j}), (26)

thus the set
{
g0
i,LIN, g

1
i,LIN, g

2
i,LIN, i ∈ J1, LK

}
is not included in Q1({g1, . . . , gL, gB}).

A.2 BOUNDS FROM THE SECOND-ORDER RELAXATION

Theorem A.2.1. If (x0,x1, . . . ,xL) 7→ f(x0,x1, . . . ,xL) is affine, we have τ ≥ τ2 ≥ τLP.
Consequently, any dual-feasible solution of (14) yields a valid SOS decomposition for the second-
order SDP relaxation of (8).

Proof of Theorem A.2.1. We proceed by analyzing the feasible sets of each problem. Firstly, both
problems share the same input perturbation region given by (13c). For the remaining constraints, let
us consider three different cases:
(i) Single node bounds: Let i ∈ J1 , LK and j ∈ J1 , niK. Then, the following equations on R[xi]
hold true:

g0
i,LIN(xi)j =

1

2
(1− xi,j)

2 +
1

2
hi(xi)j , and g0

i,LIN(xi)ni+j =
1

2
(xi,j + 1)2 +

1

2
hi(xi)j . (27)

Thus {g0
i,LIN, i ∈ J1 , LK} ⊂ Q2({g1, . . . , gL, gB}).

(ii) Interaction between two adjacent hidden layers: Fix i ∈ J2, LK and j ∈ J1, niK. Let us define
ci±,j := nv(W [i])j ± b

[i]
j > 0. If we apply the substitution rules xi−1 ⊙ xi−1 = 1 and x2

i,j = 1,
then the following equations always hold true on R[xi−1,xi,j ]:

g1
i,LIN(xi,xi−1)j =

(1− xi,j)
2

2ci+,j

gi(xi,xi−1)j +
(1 + xi,j)

2

4ci+,j

ni−1∑
k=1

(
1−W

[i]
(j,k)xi−1,k

)2
, (28)

g2
i,LIN(xi,xi−1)j =

(1 + xi,j)
2

2ci−,j

gi(xi,xi−1)j +
(1− xi,j)

2

4ci−,j

ni−1∑
k=1

(
1 +W

[i]
(j,k)xi−1,k

)2
. (29)

Equations (28) and (29) certify that {g1
i,LIN, g

2
i,LIN, i ∈ J1, LK} ⊂ Q2({g1, . . . , gL, gB}).

(iii) Interaction between the input layer and the first hidden layer: For any j ∈ J1 , n1K, let
us define c1±,j := nv(W [1])j ± b

[1]
j > 0. It follows that

g1
1,LIN(x1,x0)j =

(1− x1,j)
2

2c1+,j

g1(x0,x1)j +
(1 + x1,j)

2

2c1+,j

n0∑
k=1

(∣∣∣W [1]
(j,k)

∣∣∣−W
[1]
(j,k)x0,k

)
, (30)

g2
1,LIN(x1,x0)j =

(1 + x1,j)
2

2c1−,j

g1(x0,x1)j +
(1− x1,j)

2

2c1−,j

n0∑
k=1

(∣∣∣W [1]
(j,k)

∣∣∣+W
[1]
(j,k)x0,k

)
, (31)

provide the Q2 ({g1(·)j})-based representations for g1
1,LIN(·)j and g2

1,LIN(·)j , valid after substituting
x2
1,j = 1.

Example A.2.1 (Illustration of Theorem A.2.1). This theorem indicates that any dual-feasible solu-
tion of (14) provides a feasible solution for the second-order SOS relaxation (10) of QCQP (8). For
instance, let us consider the toy BNN from Example (2.1). Recall that we aim to minimize the linear
function fadv1 (x) = 2x2,2 − 1. Since the LP relaxation problem has following constraints:

−4x1,2

3
+

4x1,1

3
+ x2,2 ≥ −5

3
, − x1,1 ≥ −1, x1,2 ≥ −1, x2,2 ≥ −1, (32)
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the expression

(2x2,2 − 1) + 4 =
3

10

(
−4x1,2

3
+

4x1,1

3
+ x2,2 +

5

3

)
+

2

5
(−x1,1 + 1)

+
2

5
(−x1,2 + 1) +

17

10
(x2,2 + 1) ≥ 0

(33)

gives one feasible dual solution of the LP relaxation problem. From this dual solution, we can
recover the following SOS decomposition, certifying that fadv1 ≥ −3:

(2x2,2 − 1) + 4 =
3

10

(
2

3
(x2,2 − 1)

(
x1,2 − x1,1 −

1

2

)
+

2

3
(1 + x2,2)(2− x1,2 + x1,1)

)
+

2

5
· 1
2
(1− x1,1)

2
+

2

5
· 1
2
(1 + x1,2)

2
+

17

10
· 1
2
(1 + x2,2)

2
.

(34)

A.3 IMPORTANCE OF TAUTOLOGIES

Proof of Theorem 4.1. Since all the variables are bounded, we have τ1tighter,cs = τ1tighter. Moreover,
the inequality τ1tighter,cs ≥ τ1 is a consequence of the identity

gi(xi,xi−1) =
1

2
g̃1
i (xi,xi−1) +

1

2
g̃2
i (xi,xi−1), i ∈ J2, LK. (35)

In order to prove that τ1tighter,cs ≥ τLP holds, we show that all linear functions g1
i,LIN, g

2
i,LIN, i ∈

J1, LK, involved in the constraints (13a) and (13b) belong to Q1({g̃1
i , g̃

2
i , g̃

t1
i , g̃

t2
i , i ∈ J1, LK}). We

consider two different scenarios:

(i) Let i ∈ J2, LK, j ∈ J1 , niK and ci±,j := nv(W [i])j ± b
[i]
j > 0. When we apply the

substitution rules xi−1 ⊙ xi−1 = 1 and x2
i,j = 1, then the following equations always hold true on

R[xi−1,xi,j ]:

g1
i,LIN(xi,xi−1)j =

1

ci+,j

g̃2
i (xi,xi−1)j +

1

ci+,j

g̃t1
i (xi,xi−1)j , (36)

g2
i,LIN(xi,xi−1)j =

1

ci−,j

g̃1
i (xi,xi−1)j +

1

ci−,j

g̃t2
i (xi,xi−1)j . (37)

(ii) Secondly, for any j ∈ J1 , n1K, and c1±,j = nv(W [1])j ± b
[1]
j > 0, substituting x2

1,j = 1 yields
the following equalities on R[x0,x1,j ]:

g1
1,LIN(x1,x0)j =

1

c1+,j

g2(x1,x0)j +
1

c1+,j

g̃t2
1 (x1,x0)j , (38)

g2
1,LIN(x1,x0)j =

1

c1+,j

g1(x1,x0)j +
1

c1+,j

g̃t1
1 (x1,x0)j , (39)

certifying that g1
1,LIN(x0,x1)j and g2

1,LIN(x0,x1)j belong to Q1({g̃1
i , g̃

2
i , g̃

t1
i , g̃

t2
i , i ∈ J1 , LK}).

Finally, Theorem 3.1 implies that there exists an affine f such that τ1tighter,cs ≥ τLP > τ1.

Remark A.3.1. We insist that tautologies (18a) and (18b) are both important and necessary. If
we consider the optimization problem without tautologies, where only (17a) and (17b) are used to
replace (7b), then we have the following strict containment relationship:

Q1({gB, g̃1
i , g̃

2
i , i ∈ J1 , LK}) ⫋ Q1({gB, g̃1

i , g̃
2
i , g̃

t1
i , g̃

t2
i , i ∈ J1, LK}). (40)
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Indeed, following the same reasoning as in the proof of Theorem 3.1, we obtain that

M =


1 xL−1 xL,j

1 1 a
(
W

[L]
(j,:)

)⊺
0

xL−1 aW
[L]
(j,:) W

[L]
(j,:)

(
W

[L]
(j,:)

)⊺
tW

[L]
(j,:)

xL,j 0 t
(
W

[L]
(j,:)

)⊺
1

 (41)

with a = 1
2

√
2−

(
b
[L]
j

)2

(nv(W [L])j)
2 − b

[L]
j

2 nv(W [L])j
and t =

√
1− a2 is a feasible moment matrix for

which the value of the objective function is − nv(W [L])j

nv(W [L])j+b
[L]
j

√2−
(
b
[L]
j

)2

(nv(W [L])j)
2 − 1

 < 0. To

prove that M is positive semidefinite, we observe that M has a nL−1-dimensional null space cor-
responding to the direct sum of the sets A and B, where

A :=
{
(0,v, 0)

⊺ ∈ RnL−1+2
∣∣ 〈W [L]

(j,:),v
〉
= 0
}
,

B :=
{
α
(
−anv(W [L])j ,W

[L]
(j,:),−tnv(W

[L])j

)⊺ ∣∣ α ∈ R
}
.

(42)

Thus, M has nL−1 eigenvalues equal to zero, and one eigenvalue equal to 1 corresponding to
the eigenvector (−t,0, a)⊺. Since the trace of M is nv(W [L])j + 2, we know that the maximal
eigenvalue of M is nv(W [L])j + 1.

Details from the previous discussion can be summarized in the following corollary:
Corollary A.3.1. Let i ∈ J2 , LK and j ∈ J1, niK. If the substitution rule x2

i,j = 1 is applied on the
space R[xi−1,xi,j ],

g1
i,LIN(·)j /∈ Q1({gi(·)j , g0

i,LIN(·)j , g0
i,LIN(·)ni+j}). (43)

Moreover, at least one of the polynomials defining the constraints from (17a)-(18b) is not in
Q1({gi(·)j , g0

i,LIN(·)j , g0
i,LIN(·)ni+j}), and consequently

Q1({gi(·)j , g0
i,LIN(·)j , g0

i,LIN(·)ni+j}) ⫋ Q1({g̃1
i , g̃

2
i , g̃

t1
i , g̃

t2
i , i ∈ J1, LK}). (44)

Numerical experiments, simultaneously illustrating both scalability and bound superiority of
τ1tighter,cs, are reported in Table 3.
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Table 3: Behaviour of bounds from the first-order sparse relaxations on randomly generated ∥.∥∞-
verification instances. Parameter s represents row sparsity, i.e., the number of non-zero elements
in each of the weight matrices rows, while "dense" indicates fully populated weight matrices. The
relative τLP running time being significantly smaller, we omit it from the table.

Network size and sparsity bound t (s)

τ1tighter,cs τ1QCQP τLP τ1tighter,cs τ1QCQP

[300, 100, 100], dense -24.71 -78.64 -78.83 413.51 427.28
[500, 100, 100], dense -27.17 -78.58 -77.89 795.41 721.81
[300, 100, 100, 100], dense -19.49 -77.06 -76.81 739.21 992.66
[500, 100, 100, 100], dense -32.35 -82.35 -81.94 928.16 964.56
[1000, 100, 100, 100], dense -26.19 -81.70 -81.32 1764.67 1659.13
[300, 100, 100, 100, 100], dense -30.58 -80.59 -80.42 966.76 1523.92
[500, 100, 100, 100, 100], dense -16.19 -77.61 -77.25 1341.33 1498.51
[1000, 100, 100, 100, 100], dense -18.31 -76.32 -75.89 1959.30 2237.44
[300, 100, 100, 100, 100, 100], dense -28.62 -80.95 -80.99 1012.18 1803.31
[500, 100, 100, 100, 100, 100], dense -16.04 -78.10 -78.12 1255.16 1641.50
[1000, 100, 100, 100, 100, 100], dense -32.54 -83.93 -82.84 2225.89 2866.54
[500, 100, 100], s = 10 -80.84 -94.59 -98.16 12.53 14.90
[800, 200, 200], s = 10 -181.52 -194.96 -198.97 218.72 186.77
[1000, 100, 100], s = 10 -81.13 -94.72 -98.18 13.44 12.55
[1000, 200, 200], s = 10 -174.13 -192.79 -198.61 243.87 191.24
[1000, 300, 300], s = 10 -242.60 -283.95 -297.99 1203.41 1093.90
[1000, 100, 100, 100], s = 10 -72.79 -92.98 -97.78 69.70 77.63
[1000, 100, 100, 100, 100], s = 10 -81.81 -95.30 -98.30 327.83 319.04
[1000, 500, 500], s = 3 -476.01 -495.79 -499.78 520.61 502.97
[2000, 500, 500], s = 3 -466.91 -492.96 -499.69 238.35 225.89
[2000, 300, 300, 300], s = 3 -283.58 -296.90 -299.75 469.02 309.20
[2000, 1000, 1000], s = 2 -944.68 -989.77 -999.83 207.37 245.58
[3000, 1000, 1000], s = 2 -943.68 -989.65 -999.83 81.96 84.25
[3000, 2000, 1000], s = 2 -982.09 -996.68 -999.97 662.55 648.97
[2000, 500, 500, 500], s = 2 -484.19 -497.30 -499.90 144.28 146.75
[3000, 500, 500, 500], s = 2 -480.42 -496.66 -499.88 137.56 159.70

As it can be observed in Table 3, the bound τ1tighter,cs is consistently better, across all instances.
Moreover, the running time of τ1tighter,cs is relatively stable, even for networks with large number of
neurons, akin to small-to-medium-sized convolutional networks.

A.4 ON DETERMINING THE SUBSETS OF DECISION VARIABLES

Let us describe in details how decision variables are structured within the first-order sparse SDP
relaxation of the problem (19). We emphasize that this structure is valid only for the first-order
sparse SDP relaxations, and regardless of the norm describing the input perturbation region.
We recall that subsets (Ik)k∈J1,pK are said to satisfy the RIP property is

(Ik+1 ∩ ∪j≤kIj) ⊂ Ii, for some i ≤ k. (45)

The RIP property (45) is one of the essential requirements for the convergence of the sparse SOS-
based hierarchy of SDP relaxations (Magron & Wang, 2023, Assumption 3.1).
Theorem A.4.1. The structure of decision variables of the standard BNN robustness verification
problem is such that:

• If L = 1, there are n0 subsets of size n1 + 1, given by Ik = {x1,1, . . . ,x1,n1
,x0,k}, k ∈

J1 , n0K.

• If L = 2, there are n0 + n2 subsets of size n1 + 1, given by Ik = {x1,1, . . . ,x1,n1
,x0,k}

for k ∈ J1 , n0K and In0+k = {x1,1, . . . ,x1,n1
,x2,k} for k ∈ J1, n2K.
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• If L ≥ 3, there are L − 2 + n0 + nL subsets in total, and their maximum
size is given by max{n1 + 1, nL−1 + 1,maxj≤L−2{nj + nj+1}}. The subsets
are given by Ik = {xk,1, . . . ,xk,nk

,xk+1,1, . . . ,xk+1,nk+1
} for k ∈ J1, L −

2K, IL−2+k = {x0,k,x1,1, . . . ,x1,n1
} for k ∈ J1 , n0K and IL−2+n0+k =

{xL−1,1, . . . ,xL−1,nL−1
,xL,k} for k ∈ J1 , nLK.

In any of the three cases, the defined subsets satisfy the RIP property.

Proof of Theorem A.4.1. We consider different cases, depending on the depth of the BNN:

• L = 1:

All the nodes from the hidden layer form a separate subset with each individual input node, result-
ing in n0 subsets of size n1 + 1. Thus, we can set Ik = {x1,1, . . . ,x1,n1

,x0,k}, for k ∈ J1, n0K.
The RIP property is clearly satisfied, as the nodes from the hidden layer appear in each subset.

• L = 2:

All the nodes from the first hidden layer form a separate subset with each individual input
node, resulting in n0 subsets of size n1 + 1. Thus, we can set Ik = {x1,1, . . . ,x1,n1

,x0,k},
for k ∈ J1, n0K. Moreover, they also form a separate subset with each individual node from
the second hidden layer, resulting in n2 subsets of size n1 + 1. Thus, we can set In0+k =
{x1,1, . . . ,x1,n1

,x2,k}, for k ∈ J1, n2K. The RIP property is satisfied as the first hidden layer
nodes appear in each subset.

• L ≥ 3:

For every k ∈ J1 , L − 2K, a pair (k, k + 1) of adjacent hidden layers forms a subset
Ik = {xk,1, . . . ,xk,nk

,xk+1,1, . . . ,xk+1,nk+1
} of size nk + nk+1. Furthermore, all the nodes

from the first hidden layer form a separate subset with each individual input node, resulting in
n0 subsets of size n1 + 1. Thus, we can set IL−2+k = {x1,1, . . . ,x1,n1

,x0,k}, for k ∈ J1, n0K.
Finally, all the nodes from the penultimate hidden layer form a separate subset with each
individual node from the last hidden layer, resulting in nL subsets of size nL−1 + 1. Thus, we
can set IL−2+n0+k = {xL−1,1, . . . ,xL−1,nL−1

,xL,k}, for k ∈ J1 , nLK.

Therefore, there are L − 2 + n0 + nL subsets in total, and the maximum subset size is
given by max{n1 + 1, nL−1 + 1,maxj≤L−2{nj + nj+1}}. Moreover, given this particular
ordering (enumeration) of subsets, the RIP property is satisfied. Indeed,

– If k ∈ J2, L− 2K, then

Ik ∩ (∪j≤k−1Ij) = {xk−1,1, . . . ,xk−1,nk−1
} ⊂ Ik−1. (46)

– If k ∈ JL− 2 + 1 , L− 2 + n0K, then

Ik ∩ (∪j≤k−1Ij) = {x1,1, . . . ,x1,n1
} ⊂ I1. (47)

– If k ∈ JL− 2 + n0 + 1 , L− 2 + n0 + nLK, then

Ik ∩ (∪j≤k−1Ij) = {xL−1,1, . . . ,xL−1,nL−1
} ⊂ IL−2. (48)

Thus, the RIP property holds in all three cases, which concludes the proof.

An alternative structure of node subsets, independent of the depth of the BNN, is to consider
{xi−1,j ,xi,k}1≤i≤L

1≤j≤ni−1,1≤k≤ni
. This choice results in

∑L
i=1 ni−1 × ni subsets of size two, since

every node is coupled with all the other nodes form adjacent layers. The RIP property always holds
in this case if subsets are enumerated in an order that mirrors the feed-forward structure of the BNN.
Computations are generally faster for this structure of subsets, but the obtained bounds are much
coarser.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B EXPERIMENTAL SETUP

Training details: All neural networks have been trained on MNIST dataset (data were scaled to
belong to [−1, 1]784) using Larq (Geiger & Team, 2020), an open-source Python library for training
neural networks with quantized (binarized) weights and activation functions.

The training process, lasting 300 epochs, has consisted of minimizing the sparse categorical
cross-entropy, using the Adam optimizer (Kingma & Ba, 2014). The learning rate has been
handled by the exponential decay learning scheduler, whose initial value has been set to be 0.001.
SteTern quantizer with different threshold values has been used to induce different sparsities of the
weights matrices. Network parameters have been initialized from a uniform distribution. Batch
normalization layers have been added to all but the output layer.
All networks have achieved over 95% accuracy on the test set.

Optimization details: Semidefinite Programming (SDP) problems have been assembled using
TSSOS (Wang et al., 2021), a specialized Julia library for polynomial optimization. Correlative
sparsity has been exploited by using the CS="MF" option, which generates an approximately
smallest chordal extension of the identified subsets structure. The SDP values have been computed
via the interior-point solver Mosek (Andersen & Andersen, 2000), and the SDP solving time was
recorded.

Since computing the exact value of the objective function for MILP and MINP problems is
highly computationally demanding, we transform those problems into satisfiability problems by
setting the objective function to be a constant function equal to zero, and adding f(·) ≤ 0 to the
set of constraints. Infeasibility of the resulting problem provides a certificate of robustness. These
problems have then been solved using Gurobi, where the time limit was set to 600 seconds. The
upper bound presented in Figure 2 has been determined by randomly sampling 10, 000 points from
the uniform distribution over the perturbation region and documenting the lowest objective function
value observed at those points.

More detailed experimental results: We provide detailed verification results against ||.||∞ (see
Table 4 and Table 5) and ||.||2 (see Table 6 and Table 7) attacks. Those results illustrate that the
solving time of general branch and bound algorithms could be significantly improved if the LP
bounds would be replaced by tighter SDP bounds, such as τ1tighter,cs. The improvement would be
even more noticeable for ∥.∥2 verification.

Finally, due to their increased computational complexity, the experiments from Table 3 were run on
a server with a 26-core Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz and a RAM of 756GB.
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Table 4: Verification against ∥.∥∞-attacks: detailed numerical results for BNN1 :
[784, 500, 500, 10], ws = 34.34%. For example, image 72 illustrates that MILP methods can
not handle severe attacks. Likewise, image 28 confirms the potential benefits of accommodating
τ1tighter,cs within the branch and bound algorithms. Note that MILP implementation only solves the
attack feasibility problem, since computing exact bounds would result in much more timeouts.

Image Index τ1tighter,cs τSoft-MILP
bound t (s) bound t (s)

δ||.||∞ = 1.25

14 1.08 11.53 infeasible 552.99
24 5.82 15.43 timeout > 600
26 0.31 7.18 infeasible 4.07
28 29.86 14.90 infeasible 29.08
31 7.54 10.08 infeasible 11.67
52 12.17 7.53 infeasible 0.49
55 11.05 6.99 infeasible 3.33
57 3.23 8.69 infeasible 6.41
72 29.43 9.75 infeasible 1.36
83 17.29 14.07 infeasible 44.62

100 19.99 6.64 infeasible 0.30

δ||.||∞ = 1.50

28 11.18 70.62 timeout > 600
52 0.48 18.35 infeasible 7.18
55 2.25 16.33 infeasible 7.42
72 20.65 28.52 infeasible 15.68
83 8.37 17.68 infeasible 519.23

100 8.32 10.39 infeasible 2.21

δ||.||∞ = 1.75

28 0.20 42.46 timeout > 600
72 13.50 37.79 timeout > 600

Table 5: Verification against ∥.∥∞-attacks: detailed numerical results for BNN2 :
[784, 500, 500, 10], ws = 19.07%. Remarkable improvements can be observed for images 20, 28, 29
and 33.

Image Index τ1tighter,cs τSoft-MILP
bound t (s) bound t (s)

δ||.||∞ = 0.75

11 19.54 42.31 infeasible 13.39
20 8.72 107.36 timeout > 600
26 14.90 37.25 infeasible 10.61
28 14.26 75.15 infeasible 227.07
29 7.48 47.33 infeasible 200.02
33 7.31 49.35 timeout > 600
55 25.14 28.96 infeasible 4.67
72 35.33 35.80 infeasible 6.85
83 22.14 44.61 infeasible 16.26
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Table 6: Verification against ∥.∥2-attacks: detailed numerical results for BNN1 :
[784, 500, 500, 10], ws = 34.34%. Notice that the number of timeouts is significant. On the other
hand, the verification time associated to τ1tighter,cs remains relatively stable.

Image Index τ1tighter,cs τSoft-MINP
bound t (s) bound t (s)

δ∥.∥2
= 20

4 4.20 12.79 timeout > 600
10 0.71 16.41 infeasible 564.03
11 6.05 13.91 infeasible 376.86
12 14.34 8.00 infeasible 181.41
13 5.03 21.96 timeout > 600
14 34.12 15.05 infeasible 47.93
15 4.35 18.58 timeout > 600
23 9.91 9.13 infeasible 0.40
24 37.52 12.37 infeasible 354.42
26 32.32 11.12 infeasible 0.71
28 58.43 22.14 infeasible 203.53
31 27.73 8.31 infeasible 1.05
48 12.48 16.48 timeout > 600
49 14.85 15.72 timeout > 600
52 34.45 10.35 infeasible 0.07
55 42.34 5.32 infeasible 0.08
56 15.68 11.15 timeout > 600
57 30.32 6.16 infeasible 0.48
59 17.66 27.45 timeout > 600
61 8.08 15.45 infeasible 102.50
65 5.20 8.99 timeout > 600
69 12.73 19.38 infeasible 272.38
70 6.37 15.82 infeasible 292.86
72 46.78 15.88 infeasible 0.15
73 18.78 11.73 infeasible 14.15
77 22.70 30.85 infeasible 480.90
80 11.89 12.12 infeasible 72.41
83 43.12 20.10 infeasible 60.96
86 9.89 14.54 infeasible 531.24
89 18.74 17.25 infeasible 229.98
91 11.59 18.89 infeasible 505.02
92 13.55 34.95 timeout > 600
94 7.13 14.75 infeasible 62.56
98 2.64 13.02 infeasible 165.10
99 13.27 12.16 infeasible 100.43

100 42.32 8.95 infeasible 0.09

δ∥.∥2
= 30

14 11.81 17.54 timeout > 600
24 15.04 28.94 timeout > 600
26 15.48 7.28 infeasible 108.11
28 35.08 40.25 timeout > 600
31 6.89 16.39 timeout > 600
52 16.78 10.86 infeasible 191.03
55 21.80 10.49 infeasible 555.08
57 12.04 10.93 timeout > 600
72 35.81 12.45 infeasible 353.96
73 3.59 10.44 timeout > 600
77 3.45 37.65 timeout > 600
83 26.76 22.78 timeout > 600

100 25.51 9.14 infeasible 64.95
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Table 7: Verification against ∥.∥2-attacks: detailed numerical results for BNN2 :
[784, 500, 500, 10], ws = 19.07%. Images 57 and 89 demonstrate that τ1tighter,cs can typically cer-
tify robustness more than times faster.

Image Index τ1tighter,cs τSoft-MINP
bound t (s) bound t (s)

δ∥.∥2
= 15

2 2.74 31.34 infeasible 279.66
4 0.14 47.94 timeout > 600

11 50.95 17.32 infeasible 12.99
14 19.98 39.04 timeout > 600
20 33.38 88.27 timeout > 600
23 13.43 19.91 infeasible 253.64
26 40.90 16.40 infeasible 12.57
28 40.87 45.39 infeasible 73.84
29 39.00 23.42 infeasible 9.52
31 15.00 15.89 infeasible 59.66
33 30.05 51.76 infeasible 134.40
48 16.31 47.78 timeout > 600
55 53.65 12.11 infeasible 0.25
57 6.16 25.38 timeout > 600
61 2.29 19.44 infeasible 253.44
69 20.93 67.48 timeout > 600
71 18.96 17.43 infeasible 88.33
72 61.78 14.47 infeasible 1.40
73 25.72 14.60 infeasible 62.32
77 2.48 37.19 infeasible 510.44
83 47.72 23.62 infeasible 81.36
86 6.54 115.93 timeout > 600
87 22.33 69.43 infeasible 344.06
88 15.48 23.39 infeasible 250.97
89 27.29 29.73 timeout > 600
92 23.51 57.17 timeout > 600
100 15.40 20.03 infeasible 108.08
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Experimental results for more complex data sets and larger networks: To further
demonstrate the versatility of our method, we provide additional illustrative experiments for
BNN3 : [3072, 5000, 800, 10], ws = 55.97%, achieving the test accuracy of 47.66% on CIFAR-10
data set.

Table 8: Verifying robustness of BNN3 on CIFAR-10, for an input region determined by δ||.||∞ =

0.2/255. Data were scaled to [−1, 1]3072, and a time limitation of 3600 s was imposed. We present
the results of the robustness verification queries on the first 40 images from the test data set, among
which 22 were correctly classified.

Image Index τ1tighter,cs τSoft-MILP
bound t (s) bound t (s)

1 20.46 (robust) 1179.55 timeout > 3600
2 7.83 (robust) 571.08 timeout > 3600
7 -30.28 (unknown) 380.10 timeout > 3600
8 -68.50 (unknown) 1721.79 feasible (not robust) 1.71

10 -62.31 (unknown) 1330.03 feasible (not robust) 87.46
11 -142.50 (unknown) 650.79 feasible (not robust) 0.11
12 -94.92 (unknown) 1115.18 feasible (not robust) 0.071
14 -103.36 (unknown) 493.80 feasible (not robust) 0.067
15 -71.09 (unknown) 2090.44 feasible (not robust) 57.09
18 -97.96 (unknown) 1469.67 feasible (not robust) 0.08
19 31.06 (robust) 344.70 infeasible (robust) 9.02
20 -25.66 (unknown) 823.54 timeout > 3600
21 -90.54 (unknown) 670.94 feasible (not robust) 0.59
24 -29.08 (unknown) 629.50 timeout > 3600
27 -83.76 (unknown) 766.95 feasible (not robust) 0.54
29 -110.26 (unknown) 873.51 feasible (not robust) 0.07
30 -60.63 (unknown) 1407.68 feasible (not robust) 1.39
31 -29.51 (unknown) 1190.56 timeout > 3600
33 timeout > 3600 timeout > 3600
34 -73.15 (unknown) 569.46 feasible (not robust) 0.51
35 36.62 (robust) 657.73 timeout > 3600
40 -52.82 (unknown) 650.79 timeout > 3600

As illustrated in Table 8, our approach demonstrates comparable performance even on larger
datasets, such as CIFAR-10, and for larger networks involving nearly 9000 neurons.

Specifically, τ1tighter,cs proves the robustness of images 1, 2 and 35 at least 3x, 6x, and 5.5x faster
than τSoft-MILP, respectively. In contrast, the low quality of LP bounds prevents MILP from provid-
ing an answer within the imposed one-hour time limit. These additional experimental results further
validate that our method consistently provides high-quality lower bounds, even for large-scale prob-
lems, which is concordant with the results for BNN1 and BNN2.

However, for images indexed by 8 and 10, for example, our method is unable to provide an answer,
while MILP can efficiently certify their non-robustness. This difference arises due to the fact that
MILP based methods do not aim to solve the optimization problems to global optimality but instead
focus on determining the feasibility of an adversarial attack, which is inherently less computationally
demanding.

We believe that incorporating our tighter SDP bounds within the MILP framework could enhance the
ability of MILP methods to certify robustness in more complex cases. This represents a promising
direction for future research.
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