
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DAG-NAS: EXPLAINABLE NEURAL ARCHITEC-
TURE SEARCH FOR REINFORCEMENT LEARNING VIA
SCALAR-LEVEL DAG MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

We present an explainable and effective Neural Architecture Search (NAS) frame-
work for Reinforcement Learning (RL). We model a feed-forward neural network
as a Directed Acyclic Graph (DAG) that consists of scalar-level operations and
their interconnections. We train the model for RL tasks using a differentiable
search method, followed by pruning the search outcomes. This process results
in a compact neural architecture that achieves high performance and enhances
explainability by emphasizing crucial information for solving the RL problem.
We apply our NAS framework to the Actor-Critic PPO algorithm, targeting both
actor and critic networks. We evaluate its performance across various RL tasks.
Extensive experiments demonstrate that our architectures achieve comparable per-
formance with significantly fewer parameters while also enhancing explainability
by highlighting key features.

1 INTRODUCTION

Machine learning, a subset of artificial intelligence, has undergone a huge evolution driven by the
advent of deep learning. A large number of deep learning methods hinge on effective neural network
architectures, which are typically crafted by human experts through a time-consuming and often
intuition-based process. Neural Architecture Search (NAS) has made a significant paradigm shift by
automating the design of neural network architectures. Since the seminal work of Zoph & Le (2017),
extensive research in NAS has systematically explored vast architecture spaces, discovering novel
and high-performing network designs across various domains like Natural Language Processing
(NLP), Computer Vision (CV) and Reinforcement Learning (RL) Klyuchnikov et al. (2020); Kang
et al. (2023); Parker-Holder et al. (2022a). Among these, NAS for RL has been relatively less
explored due to its unique challenges, such as fragile RL algorithms, high computational costs, and
sensitivity to hyperparameters. There is still much potential to be explored in the context of NAS
for RL, pushing the boundaries of what machine learning can achieve White et al. (2023).

Despite its considerable potential, NAS encounters various challenges and limitations. One of the
major challenges arises from the need for expertise in designing the search space for NAS, which
results in a trade-off between the investment in the search space design and the search complexity.
In addition, an overly customized search space aimed at optimizing architecture may hinder the
exploration of potentially better architectures and introduce bias into the search process Liu et al.
(2018). It has been reported that in such overly constrained search spaces, even random search
performs equally well Li & Talwalkar (2020).

Another important challenge is the insufficient explainability of the searched architectures. It is hard
to understand how they make their decisions and which information is crucial for the decisions. This
issue mirrors a broader challenge in deep learning, where the intricate network structure often results
in a black-box model with limited insight into their decision-making process. In deep learning, there
have been several studies to improve the model explainability Montavon et al. (2017); Lundberg &
Lee (2017), which, however, often necessitate several assumptions or are constrained to specific
models. Also in NAS, there have been continuing efforts to enhance the explainability of NAS-
generated models Kadra et al. (2023), yet there is still much room for improvement. Moreover,
in practical RL problems, the agent has to solve sequential decision-making problems given the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

input of the system state. This state information often includes a number of measurements from
various sensors that may be arbitrarily correlated or uncorrelated. In this case, model explainability
is crucial for identifying key features needed to solve the problem, which also contributes to reducing
the model size.

In this work, we introduce a novel NAS approach that enhances search flexibility and offers high
explanability through high-precision DAG modeling. We decompose a typical feed-forward neural
network into scalar-level operations using single-output vertices. By relaxing discrete requirements
on the operations and interconnections, we employ a fully-differentiable architecture search. The
resulting architectures are then discretized and pruned to achieve a lightweight and high-performing
design. We demonstrate the effectiveness of our approach across various RL tasks.

Our contributions can be summarized as follows.

• To the best of our knowledge, we are the first to introduce scalar-level DAGs for mod-
eling neural networks in architecture search. Our method reduces the effort required for
designing the search space, enhances search flexibility, and offers high explanability.

• We have developed an effective framework of our DAG-NAS for searching and select-
ing neural architectures. (i) We extend constraint relaxation to both vertices and edges
in DAGs, making a fully-differentiable search process applicable. (ii) We introduce a
correlation-based pruning to achieve a compact architecture with high explainability.

• We evaluate our framework across a broad spectrum of RL tasks and demonstrate that
the architectures discovered by our framework have significantly fewer parameters while
achieving comparable performance.

2 RELATED WORKS

Neural Architecture Search (NAS) is a prominent branch in automating the machine learning
pipeline, and revolves around three core components: search space, search strategy, and performance
estimation strategy Elsken et al. (2019). The search space encompasses the set of architectures that
can be explored, the search strategy defines how to explore the search space, and the performance es-
timation strategy determines how to evaluate interim and candidate results. For example, the seminal
work of Zoph & Le (2017) searched a CNN architecture with high classification accuracy, adopting
a cell-based search space, RL-based search strategy which is rewarded by validation accuracy.

An important and common challenge of NAS is the search space design. It should be sufficiently
large to enclose high-performing architectures, and at the same time, carefully constrained for ef-
ficient search with feasible computational complexity. This has led to the development of several
structured search spaces with chain, cell, or hierarchy structure White et al. (2023), whose effective-
ness heavily depends on tasks. Notable works for the improved search space design include dynamic
search space Xia et al. (2022); Ci et al. (2021), unlimited search space Geada & McGough (2022), or
space evolution Zhou et al. (2021). However, all these approaches still require a substantial amount
of manual design for cell structure or feature size.

Another significant challenge in NAS is the difficulty of explaining the searched architecture. Ex-
planability is particularly crucial for NAS-for-RL, since it can be used to identify important features
and lighten the model in practice. There have been several efforts to improve the explainability,
such as using Bayesian optimization to identify effective motifs Ru et al. (2021) and employing an
evolutionary algorithm to examine input-output relationships Carmichael et al. (2023). Also, there
were attempts to model cells using DAG, aiming to enhance the interpretability of architectures Lee
et al. (2021); White et al. (2020). All these efforts, however, suffer from insufficient explainabil-
ity, performance degradation, or additional complexity in the cell design, leaving much room for
improvement.

Besides the difficulties of designing the search space and explaining the outcomes, NAS-for-RL has
unique challenges related to RL, including task design, learning algorithm selection, hyperparameter
configuration, and neural architecture design Parker-Holder et al. (2022b). In this work, we focus
on the neural architecture design, which has been less explored with only a few studies Franke
et al. (2021); Mysore et al. (2021). A noteworthy related work is Weight Agnostic Neural Network
(WANN) Gaier & Ha (2019), which examined the potential of architectures in RL tasks without

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

training their weights. WANN uses an evolutionary search strategy to develop the architectures,
growing initial small architectures to large ones. Despite its flexibility in searching architectures,
WANN suffers from high computational complexity and often results in complex architectures with
a substantial number of parameters.

To address the aforementioned challenges, we develop a novel NAS-for-RL solution that signifi-
cantly reduces human involvement in the architecture design for RL tasks, and yields explainable,
compact neural architectures with comparable performance.

3 PRELIMINARIES

RL is deeply rooted in the mathematical framework of Markov Decision Processes (MDPs), which
provide a structured way of modeling an environment. An MDP is formally defined as a tuple
(S,A, T,R, γ), where S is the set of states, A is the set of actions, T : S × A × S → [0, 1] is the
transition probability function, R : S ×A → R is the reward function, and γ ∈ [0, 1] is the discount
factor. Given state St = s at time t, an agent takes action At = a and the state transits to state
St+1 = s′ at time t+1 with probability T (s, a, s′) = Pr(St+1 = s′|St = s,At = a), and the agent
obtains reward Rt+1.

The agent learns to make decisions through trial-and-error interactions with the environment. The
goal of the RL agent is to find an optimal policy π : S → A that maximizes the expected reward sum
E[Gt] where Gt =

∑∞
k=t γ

k−tRk+1. With the advance of deep learning, neural networks have been
employed as an approximate decision-making function, replacing the agent. This technique, known
as Deep RL (DRL), can be divided into two categories, value-based and policy-based methods. In
the value-based method, neural models estimate the value of states and actions, and in the policy-
based method, often referred to as the policy gradient method, they directly yield an action for a
given state.

PPO is one of the most popular policy gradient methods in DRL. It utilizes two neural networks: one
for the policy (actor) and the other for value estimation (critic). Their weights are adjusted based on
the gradients of the following loss function:

L(w) = Et[min(rt(w) · Ât, clip(rt(w), ϵ) · Ât], (1)

where w denotes the network weight, rt(w) =
πw(at|st)

πwold
(at|st) is the probability ratio for the sampling

with current state st and action at, clip(a, b) = max{1 − b,min{a, 1 + b}}, Ât is an estimator
of the advantage function defined as E[Gt|st, at] − E[Gt|st]. PPO maintains a relatively small
deviation from the previous policy (wold), ensuring training stability and reducing sensitivity to
hyperparameters. PPO has shown remarkable performance in various domains, ranging from video
games to robotic control, making it a popular baseline RL algorithm.

4 METHODS

In this section, we explain our method. We model a neural network as a scalar-level DAG and
construct the DAG supernetwork by relaxing the discrete constraints. Then we conduct architecture
searches using the differentiable method, and discretize the results, obtaining a DDAG.

4.1 SEARCH SPACE OF SCALAR-LEVEL DAG

We consider a multi-layer feed-forward network f : Ra → Rb with input x = (x1, ..., xa) and
output y = (y1, ..., yb). It is represented as a graph G(V,E) with the set V of vertices and the set E
of directed edges or connections. A vertex collects outputs from incoming vertices and conducts an
operation. The network can be divided into l layers, and a vertex belongs to one and only one layer.
Let Li denote the set of vertices in the i-th layer. We assume that an edge can be connected from
a vertex in Li to a vertex in Lj , satisfying i < j. Thus, the graph is acyclic with one-directional
data flow and has no edge between vertices in the same layer. Let | · | denote the set cardinality.
For ease of exposition, we number the vertices following the data flow1 in the forward path, i.e.,

1There is a tie if two vertices are parallel in the data flow, in which case we break the tie arbitrarily.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Vertices and connections of DAG for a 4-layer neural network.The possible input connec-
tions to vertex v6 are marked by dark arrows.

V = {vi}ni=1, where vi is the i-th vertex and n = |V |. A directed connection vi → vj is represented
by (vi, vj), which must satisfy i < j to align with the direction of data flow.

Note that DAG is not sufficient to identify a neural network model, and the same DAG can represent
multiple models. To this end, we decompose a neural network model into its architecture, which is
represented by a DAG, and weight parameters. Let cij denote the connectivity between vertices i
and j, i.e., cij = 1 if (vi, vj) ∈ E, and cij = 0 otherwise. Given input x, the output of vj can be
written as

vj(x) = oj

(∑j−1
i=1 cijvi(x);wj

)
, (2)

where oj(·;wj) : R → R denotes the operation of vertex vj , e.g., LeakyReLU . We will provide
a more detailed description of the operations later. By model architecture or architecture, we refer
to α = (o, c) with o = {oi} and c = {cij}, and by weight parameters or weights, we refer to
w = {wi}. Certainly, this modeling can represent any feed-forward neural network, and given
the architecture o, c and weights w, we can construct a neural network model. We emphasize that
each vertex output is a scalar value, and connectivity is defined on a per-vertex basis rather than a
per-layer basis. We refer to this structured DAG as a scalar-level DAG.

Fig. 1 illustrates a 4-layer neural network with 2 vertices in each layer. Vertex v6 ∈ L3 can accept
any outputs of vertices in L1 and L2, which are marked by dark arrows. This structure admits the
representation of a general feed-forward network model with all possible skip connections. Let hout

i
denote the outputs of the vertices in Li, i.e., hout

i = {vi(x)}i∈Li
, and let hj as their concatenations

up to j − 1, satisfying hj = concat(hj−1,h
out
j−1) and2 h1 = x. The input of vertex operation oj at

layer Lk can be represented as ∑j−1
i=1 cijvi(x) = ⟨cj , hk−1⟩, (3)

where cj = {cij}j−1
i=1 and ⟨·, ·⟩ denote the inner product. Algorithm 1 describes the forward compu-

tation of an l-layer neural network, represented by architecture α and weights w.

In this work, we assume that the number l of layers and the number of vertices at each layer are
given, and focus on the search for the operation o and connectivity c. Extension to the search for l
and the number of vertices remains an interesting and important open problem.

4.2 ARCHITECTURE SEARCH OF SCALAR-LEVEL DAG

For the architecture search, we employ the well-known differential architecture search of DARTS
Liu et al. (2019). It admits gradient-based optimizations by relaxing the discrete architectural con-

2The input layer L1 is an exception, where the vertices are predetermined. Specifically, a vertex in L1

accepts an element of input data x and passes itself as the output with no operation, yielding h1 = x.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Forward computation of neural network.
Input: x = (x1, ..., xa) ∈ Ra

Parameter: α = (o, c),w
Output: y = (y1, ..., yb) ∈ Rb

h1 ← x
for each i = 2, . . . , l do
hout
i ← {}

for each vertex vj ∈ Li do
hout
i ← concat(hout

i , oj(⟨cj ,hi−1⟩)
hout
i ← concat(hout

i , oj(⟨cj ,hi−1⟩;wj))
end for
hi+1 ← concat(hi,h

out
i)

end for
return y← hout

l =0

straints and enables efficient exploration over a larger search space, becoming one of the most pop-
ular search strategies.

For the differentiable search, we replace binary connectivity c ∈ {0, 1} with mixed connectivity
c̄ ∈ [0, 1], and denote vertex j’s incoming mixed connectivity as c̄j = {c̄ij}vi∈L<j

, where L<j =
∪i<jLi. Similarly, we relax the discrete constraint of vertex operation as follows. Suppose that we
have the operation search space O that consists of |O| operations, i.e., O = {o1, . . . , o|O|}. For
each vertex vj , we introduce operation weights aj = {a1j , . . . , a

|O|
j } that satisfy

∑|O|
k=1 a

k
j = 1 and

akj ≥ 0 for all k, and define its mixed operation ōj as

ōj(x) =
∑|O|

k=1 a
k
j o

k(x). (4)

In this work, we consider three candidate operations of O = {Tanh, LeakyReLU,Linear} for
each vertex, where Tanh(x) = tanh(x), LeakyReLU(x) = max(0.2x, x), and Linear(x) =
w1x+ w2. Note that Linear has two trainable weights w1 and w2, while Tanh and LeakyReLU
have no weight. The set O can be readily expanded to include additional options.

Through the above relaxation, we obtain a DAG supernetwork with mixed operations and connectiv-
ities. This allows us to apply the fully differential architecture search for scalar-level DAG. During
the learning procedure, we take the gradients of the loss function, and obtain optimal mixed variables
ᾱ = (ō, c̄). The details are as follows.

• We adopt the PPO algorithm for the learning, in which case the PPO objective equation 1
is used as the loss function.

• We take the single-level optimization approach to learn the architecture (α) and weights
(w) together:

(α∗, w∗) = argmin
α,w
L(α,w). (5)

The single-level optimization is computationally efficient due to fewer optimizations, thus
used in NAS works with diverse optimization complexities Xie et al. (2019); An & Joo
(2024). Due to the high complexity and instability of learning in RL tasks, reducing the
number of optimization steps while matching the direction of optimization is important,
and single-level optimization is advantageous in both perspectives.

• After the learning process completes, we store the final architecture ᾱ∗ and weights w∗.
Note that, unlike many previous NAS schemes, we do not store intermittent architectures
and make use of only the last architecture. This implies that we remove the high-cost after-
search evaluation process that most NAS schemes require to determine the final outcome
among a number of candidate architectures.

The outcome ᾱ∗ is a supernetwork architecture with mixed variables, which need to be further dis-
cretized to obtain a feasible architecture. Fig. 2-(a) shows an example of a DAG supernetwork after
the differentiable architecture search, where the relative importance of operations and connectivities
in mixed variables is represented by the darkness of the fonts and arrows, respectively.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: After the differentiable architecture search, we obtain (a) a DAG supernetwork with mixed
operations and connectivities. We represent the relative importance of operations and connections
by the darkness of fonts and arrows, respectively. From the DAG supernetwork, we obtain the final
architecture called (b) Discrete DAG (DDAG) through the discretization process that prunes less
important operations and connections.

Remark: The PPO algorithm may fail to achieve high rewards Chan et al. (2020); Agarwal et al.
(2021), in which case, a single search results in a low-performing architecture. In our work, we
repeat the search 5 times and select the best outcome.

4.3 ARCHITECTURE DISCRETIZATION

After the search, we have a fully trained DAG supernetwork with learned connectivities and opera-
tion importances. We obtain a discrete architecture by choosing one operation out of the candidate
operations in each vertex, and by discretizing the connectivities. This is the process of finalizing
architecture α∗ = (o∗, c∗) from the search outcome ᾱ∗ = (ō∗, c̄∗).

For vertex vj , we select its operation with the largest importance, i.e.,

o∗j = oκ, where κ = argmax
k

akj . (6)

If the chosen operation includes learnable weights (e.g., Linear), we also use the weights from w∗

without retraining.

For connectivity, we discretize the mixed connectivities based on the correlation between the vertex
outputs as follows.

1. We generate a number of synthetic inputs x by sampling uniformly from [−1, 1]a, where a
is the input dimension.

2. We forward the synthetic inputs and compute the mutual correlations between the vertex
outputs within the same layer. We partition3 the vertices such that all the vertices in the
same group have a mutual correlation higher than 0.9. In each group, we maintain one
vertex that is selected arbitrarily and remove all the other vertices from the supernetwork.

3. Then, we compute the correlation between vertices i, j across layers and discretize the
connectivity using a threshold of 0.5, i.e., c∗ij = 1 if the correlation is greater than 0.5 and
c∗ij = 0 otherwise.

After the discretization process, we obtain a Discrete DAG architecture, or simply DDAG, as shown
in Fig. 2-(b). Once DDAG is determined, we keep the trained weights w from the supernetwork and
omit the typical weight-retraining process of NAS. DDAG has significantly fewer parameters while
still achieving good performance.

3For the same setting, it is possible to group the vertices differently. We arbitrarily select one.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

We apply our DAG-NAS framework to the well-known RL environments in the Gymnasium with
actor-critic PPO agents. The learning of the PPO agent and the architecture search of DAG-NAS
occur simultaneously. We consider a three-layer DAG supernetwork architecture for similar repre-
sentation power as typical MLPs. The results show that the search outcomes of DAG-NAS achieve
comparable performance in most RL tasks, witnessing its effectiveness. Further, the outcome ar-
chitectures clarify which input elements are of importance to solve the RL problems, demonstrating
better explainability.

Our implementation of actor-critic style PPO follows CleanRL Huang et al. (2022). We slightly
modify it by separating the actor and critic networks, both of which are a simple 2-layer4 architecture
with nn.Linear in PyTorch library. They have a×b+b and a×1+1 learnable weights, respectively,
where a and b are the input and output dimensions, respectively. This will serve as the baseline
architecture throughout our experiments. Accordingly, we design the DAG supernetwork such that
the number of parameters of DDAG does not exceed that of the baseline. We train the weights of
the baseline for 10 million steps. Also, we train DAG supernetworks for the same number of steps.
Note that the training of DAG supernetworks involves both architecture and weight training under
the single-level optimization equation 5. On completion of the training, we fix the weights of the
architecture outcome and test it across 100 episodes, yielding 100 final rewards. The final score will
be their average. During the training, we do not set a seed to control the randomness. Instead, we
repeat the training 5 times (trials) and select the one with the highest final score. Throughout the
entire procedure involving multiple searches and evaluations, we consistently observed a stable final
architecture and evaluation results, demonstrating its robust behavior.

Our experiments were conducted across a total of 17 RL environments, which include Classic Con-
trol (Acrobot, CartPole, MountainCar, MountainCarContinuous, Pendulum), Box2D (LunarLan-
der, LunarLanderContinuous, BipedalWalker, BipedalWalkerHardcore), and MUJOCO (Pusher,
Reacher, Hopper, Ant, HalfCheetah, InvertedDoublePendulum, InvertedPendulum, Walker2d).

In the following, we compare the performance of baseline, DAG supernetwork, and DDAG (i.e., the
outcome of DAG-NAS). We then discuss the explainability of the search outcomes and the impact
of architecture on sample efficiency. Details regarding environmental versions, hyperparameters, re-
ward values, and diagrams of the searched architectures are available in the supplementary material.

5.1 PERFORMANCE EVALUATION

We evaluate our method by comparing the performance of the baseline architecture, DAG supernet
obtained after the differentiable search, and DDAG obtained after discretization. For each pair of
PPO actor-critic networks, we evaluate their performance over 100 episodes and collect the corre-
sponding rewards.

Fig. 3 presents the evaluation results in terms of the achieved rewards and the number of parameters
of the searched architectures. Specifically, across 17 RL environments (x-axis), it illustrates the
interquartile range (IQR) of the rewards using min-max normalized boxplots (top figure), and the
number of the parameters using log-scaled bars (bottom figure).

In classic control and Box2D environments, all three achieve comparable performance, with the
DAG supernet substantially outperforming the others in certain environments, such as CartPole,
BipedalWalker, and BipedalWalkerHardcore. In MUJOCO environments with continuous robotic
control, the DAG supernet and DDAG show comparable performance in most cases, except for
Hopper and HalfCheetah. First, we note that DDAG outperforms the baseline in most instances,
while having ten times fewer parameters. Second, the DAG supernet may suffer from high com-
putational complexity due to its significantly larger number of parameters. Third, despite the large
number of parameters, the DAG supernet may not always outperform the others. For example,
DDAG surpasses the DAG supernet in the Pendulum environment.

In summary, our DAG-NAS discovers DDAGs that achieve performance comparable to their base-
line counterparts in most environments, while being up to ten times smaller in size.

4Including the input layer.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Performance comparison of baseline architectures and the architectures found by DAG-
NAS (DAG supernets and DDAGs) in 17 RL environments. We attempt 100 trials in each envi-
ronment and show the interquartile range (IQR) of achieved (normalized) rewards by boxplots (top
figure). Also, the number of the architecture parameters is presented in a log scale (bottom figure).
Overall DDAGs perform well with a much smaller number of parameters, and in some cases, even
outperform DAG supernets.

Figure 4: DDAG actor architectures. The left vertices (shaded in gray) and right vertices (shaded in
yellow) represent the input and output layers, respectively.

5.2 ARCHITECTURE ANALYSIS

In this section, we closely examine the searched architectures, as shown in Fig. 4, which displays
the actor networks of DDAG outcomes in the CarPole (Classic Control), BipedalWalker (Box2D),
Ant, and InvertedPendulum (MUJOCO) environments. In each figure, the data flow from the left
input x ∈ Ra to the right output y ∈ Rb, with the input and output5 dimensions vary for each
environment. There are three columns of dots, each dot representing a vertex in the three layers, and
the arrows between dots denote the connections. The sizes of the search space differ according to
the environment, ranging from 2.38× 107 (MountainCarContinuous) to 5.619× 102457 (Ant).

In the Cartpole environment, the state consists of [Cart Position, Cart Velocity, Pole Angle, Pole
Angular Velocity]. However, the DDAG actor network utilizes only the last two inputs to produce
an action, as shown in Fig. 4. Similarly, only a portion of the state inputs are used in the DDAG
actor networks in other classic control environments. This implies that feature selection is integrated
into the training of the DAG supernet and becomes evident during the discretization process.

5For the environments with continuous action space, the output represents means y1, ..., yb/2 and standard
deviations yb/2+1, ..., yb of possible actions. The action of dimension Rb/2 will be obtained by sampling from
a normal distribution.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Reward traces for 1 million steps for DDAG (green), DDAG-RW (red), and the baseline
(gray).

For the Box2D environments, LunarLander and LunarLanderContinuous are identical except for
their output formats: LunarLander has 4-dimensional discrete actions that execute one of thrusting
left/right/ground-oriented engines or doing nothing, and LunarLanderContinuous has 2-dimensional
continuous actions for the left/right-oriented engines and the ground-oriented engine. Interestingly,
the searched DDAG actors for both environments are very similar, indicating that DAG-NAS can
successfully identify the essential features to solve RL problems. Similar results are observed in the
DDAG actors for BipedalWalker and BipedalWalkerHardcore, which have the same state and action
spaces but different terrains.

Fig. 4 also presents the DDAG actors for Ant and HalfCheetah environments in MUJOCO. Notably,
the Ant actor does not utilize any state information to produce an action. Similar architectures that
do not utilize input are found in BipedalWalker, Pusher, Reacher, and Walker2d. These environ-
ments have continuous action spaces, and the agent samples an action from the means and standard
deviation outputs. All these DDAG actors output a constant value for the means and standard devi-
ations, implying that the challenges presented in these environments are relatively straightforward,
allowing high-reward actions through the learning of constant values. In contrast, the DDAG actors
searched in Hopper, HalfCheetah, InvertedPendulum, and InvertedDoublePendulum make use of
some state information.

The connectivities in DDAG highlight valuable information, enhancing the model’s explainability.
While the vertex operations have a relatively small impact on performance, this impact might vary
with the complexity of RL problems. In situations where deep, intricate features are necessary,
vertex operations could become crucial. Additionally, our framework demonstrates consistency,
yielding nearly identical architectures across multiple trials.

5.3 ARCHITECTURE IMPACT ON SAMPLE EFFICIENCY

In the previous sections, we set the weights w of DDAG to be the same as those of the DAG supernet,
allowing us to bypass the typical weight-retraining process of NAS and directly evaluate the neural
network model (α∗,w∗). In this section, we further focus on architectural superiority. To this end,
we initialize the weights of DDAG at random and then retrain them, which is denoted by DDAG-
RW. By doing this, we aim to demonstrate that DDAG excels not only in achieving high rewards but
also in rapidly acquiring knowledge, highlighting its significant contribution to sample efficiency.

We compare the training performance of the baseline, DDAG, and DDAG-RW over 1 million steps.
We conduct 5 trials for each experiment and report the mean and standard error of rewards with a
rolling window of 20. Fig. 5 shows their learning curves in 17 environments. Typically, DDAG starts
strong and maintains its performance throughout training, but sometimes its performance declines

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

as training continues. In contrast, DDAG-RW initially exhibits lower performance yet eventually
matches or even surpasses DDAG. Compared to the baseline, DDAG-RW attains higher rewards in
fewer steps, likely due to effective feature selection and fewer parameters. However, there are a
few cases, such as Hopper, where baseline outperforms both DDAG and DDAG-RW. We observe
that their corresponding DAG supernet also underperforms the baseline, indicating an unsuccessful
architecture search.

6 CONCLUSION

We develop a fully differentiable NAS framework for RL through scalar-DAG modeling of neu-
ral networks. We simplify cell designs and structure their connections, and successfully relax the
discrete constraints, creating a DAG Supernetwork. We then develop a correlation-based pruning
method that produces a Discrete DAG (DDAG) architecture with significantly fewer parameters.
Additionally, we eliminate the conventional weight-retraining step in NAS, making the architecture
search process more practical.

Testing across various RL environments, we demonstrate the effectiveness and flexibility of DAG-
NAS. The derived DDAGs achieve high rewards despite their lightweight nature and are self-
explainable through the connections on important features. We also highlight the architectural su-
periority of DDAGs in terms of sample efficiency. Notably, retrained DDAGs exhibit accelerated
learning compared to the baselines.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Process-
ing Systems, 2021.

Taegun An and Changhee Joo. Cycleganas: Differentiable neural architecture search for cyclegan. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, pp. 1655–1664, June 2024.

Zachariah J Carmichael, Tim Moon, and Sam Ade Jacobs. Learning debuggable models through
multi-objective NAS. In AutoML Conference 2023, 2023.

Stephanie C.Y. Chan, Samuel Fishman, Anoop Korattikara, John Canny, and Sergio Guadarrama.
Measuring the reliability of reinforcement learning algorithms. In International Conference on
Learning Representations, 2020.

Yuanzheng Ci, Chen Lin, Ming Sun, Boyu Chen, Hongwen Zhang, and Wanli Ouyang. Evolving
search space for neural architecture search, 2021.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1–21, 2019.

Jörg K.H. Franke, Gregor Koehler, André Biedenkapp, and Frank Hutter. Sample-efficient auto-
mated deep reinforcement learning. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=hSjxQ3B7GWq.

Adam Gaier and David Ha. Weight agnostic neural networks, 2019.

Rob Geada and Andrew Stephen McGough. Spidernet: Hybrid differentiable-evolutionary archi-
tecture search via train-free metrics. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, pp. 1962–1970, June 2022.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.

Arlind Kadra, Sebastian Pineda Arango, and Josif Grabocka. Breaking the paradox of explainable
deep learning, 2023.

10

https://openreview.net/forum?id=hSjxQ3B7GWq

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jeon-Seong Kang, JinKyu Kang, Jung-Jun Kim, Kwang-Woo Jeon, Hyun-Joon Chung, and Byung-
Hoon Park. Neural architecture search survey: A computer vision perspective. Sensors, 23(3),
2023. ISSN 1424-8220.

Nikita Klyuchnikov, Ilya Trofimov, Ekaterina Artemova, Mikhail Salnikov, Maxim Fedorov, and
Evgeny Burnaev. Nas-bench-nlp: Neural architecture search benchmark for natural language
processing, 2020.

Hayeon Lee, Eunyoung Hyung, and Sung Ju Hwang. Rapid neural architecture search by learning to
generate graphs from datasets. In International Conference on Learning Representations, 2021.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search.
In Ryan P. Adams and Vibhav Gogate (eds.), Proceedings of The 35th Uncertainty in Artificial
Intelligence Conference, volume 115 of Proceedings of Machine Learning Research, pp. 367–
377. PMLR, 22–25 Jul 2020.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceed-
ings of the European Conference on Computer Vision (ECCV), September 2018.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek, and Klaus-Robert
Müller. Explaining nonlinear classification decisions with deep taylor decomposition. Pattern
Recognition, 65:211–222, 2017. ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.2016.11.
008.

Siddharth Mysore, Bassel El Mabsout, Renato Mancuso, and Kate Saenko. Honey. i shrunk the
actor: A case study on preserving performance with smaller actors in actor-critic rl. In 2021 IEEE
Conference on Games (CoG). IEEE Press, 2021.

Jack Parker-Holder, Raghu Rajan, Xingyou Song, André Biedenkapp, Yingjie Miao, Theresa Eimer,
Baohe Zhang, Vu Nguyen, Roberto Calandra, Aleksandra Faust, Frank Hutter, and Marius Lin-
dauer. Automated reinforcement learning (autorl): A survey and open problems. Journal of Artifi-
cial Intelligence Research, 74:517–568, June 2022a. ISSN 1076-9757. doi: 10.1613/jair.1.13596.
URL http://dx.doi.org/10.1613/jair.1.13596.

Jack Parker-Holder, Raghu Rajan, Xingyou Song, André Biedenkapp, Yingjie Miao, Theresa Eimer,
Baohe Zhang, Vu Nguyen, Roberto Calandra, Aleksandra Faust, Frank Hutter, and Marius Lin-
dauer. Automated reinforcement learning (autorl): A survey and open problems. Journal of Artifi-
cial Intelligence Research, 74:517–568, June 2022b. ISSN 1076-9757. doi: 10.1613/jair.1.13596.
URL http://dx.doi.org/10.1613/jair.1.13596.

Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne. Interpretable neural architecture
search via bayesian optimisation with weisfeiler-lehman kernels. In International Conference on
Learning Representations, 2021.

Colin White, Willie Neiswanger, Sam Nolen, and Yash Savani. A study on encodings for neural
architecture search. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 20309–20319. Curran As-
sociates, Inc., 2020.

Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela, De-
badeepta Dey, and Frank Hutter. Neural architecture search: Insights from 1000 papers, 2023.

Xin Xia, Xuefeng Xiao, Xing Wang, and Min Zheng. Progressive automatic design of search space
for one-shot neural architecture search. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), pp. 2455–2464, January 2022.

11

http://dx.doi.org/10.1613/jair.1.13596
http://dx.doi.org/10.1613/jair.1.13596

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural architecture search.
In International Conference on Learning Representations, 2019.

Daquan Zhou, Xiaojie Jin, Xiaochen Lian, Linjie Yang, Yujing Xue, Qibin Hou, and Jiashi Feng.
Autospace: Neural architecture search with less human interference. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 337–346, October 2021.

Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations, 2017.

A APPENDIX

A.1 HYPERPARAMETERS

We slightly modified the reliable PPO implementation of CleanRL Huang et al. (2022). We use
the PPO parameters shown in Table 1. The same hyperparameters are used for the baseline, DAG
supernet, and DDAG, across all the 17 environments.

Table 1: Hyperparameters of PPO algorithm.

Name notation value
gamma γ 0.99
GAE Lambda λ 0.95
Value function coefficient cvf 0.5
Entropy coefficient cent 0
Clipping coefficient cvf 0.2
Normalized advantage advnorm True
Clip value loss cvl True
Target KL divergence KLtarget None
max grad norm cvf 0.5
updateepochs K 4
rolloutsteps T 512
num minibatches mB 8
num envs - 4
num steps - 1000000
Learning rate - 0.0002
Learning rate annealing - False
beta 1 β1 0.9
beta 2 β2 0.999

A.2 REWARDS

The rewards of Fig.3 in the main paper are min-max normalized. Table 2 shows the mean and
standard deviation of unnormalized rewards.

A.3 DDAG ARCHITECTURES SEARCHED BY DAG-NAS

In this section, we report the architectures of actor and critic networks, found in 17 environments.
The left subfigure shows the architecture of the actor network and the right subfigure shows the
architecture of the critic network. In each figure, we enlist the input features on the left side using the
notation x1, ..., xa and output features on the right side as y1, ..., yb. Note that in continuous control
tasks, y1, ..., yb/2 is for the mean value of actions, and yb/2+1, ..., yb is for the standard deviation
of the actions. We present the vertex with the discrete operation of Tanh as pink, LeakyReLU as
olive green, and Linear as mint.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 2: Mean and standard deviation of rewards, obtained from 100 trials in each environment.

Environment DAG DDAG Baseline

Acrobot-v1 -89.52 ± 34.50 -86.96 ± 26.64 -87.17 ± 27.02
CartPole-v1 261.98 ± 166.36 193.68 ± 132.65 125.44 ± 82.17
MountainCar-v0 -111.49 ± 2.79 -111.34 ± 8.51 -167.33 ± 34.33
MountainCarContinuous-v0 91.45 ± 1.47 90.85 ± 2.13 49.46 ± 51.89
Pendulum-v1 -1241.07 ± 277.03 -1231.57 ± 300.03 -1284.92 ± 273.85
LunarLander-v2 -179.92 ± 129.61 -188.18 ± 208.19 -185.98 ± 188.34
LunarLanderContinuous-v2 -207.2 ± 188.34 -210.22 ± 211.84 -205.78 ± 204.88
BipedalWalker-v3 -101.77 ± 31.65 -105.0 ± 26.61 -123.24 ± 22.28
BipedalWalkerHardcore-v3 -96.06 ± 43.17 -99.82 ± 23.01 -126.86 ± 25.73
Pusher-v4 -55.25 ± 7.73 -104.29 ± 32.91 -135.57 ± 73.18
Reacher-v4 -11.48 ± 2.23 -31.25 ± 18.50 -31.15 ± 12.90
Hopper-v4 73.85 ± 38.8 131.05 ±171.37 353.88 ± 334.47
Ant-v4 955.53 ± 42.11 148.08 ±391.87 -127.15 ± 334.73
HalfCheetah-v4 146.91 ± 330.88 -25.17 ± 215.17 323.22 ± 521.49
InvertedDoublePendulum-v4 576.25 ± 354.48 279.68 ± 295.53 39.06 ± 50.6
InvertedPendulum-v4 110.0 ± 39.82 67.72 ± 33.22 93.36 ± 34.27
Walker2d-v4 113.01 ± 136.32 134.53 ±124.1 55.3 ± 88.82

Figure 6: Architectures of actor and critic networks for the Acrobot-v1 environment.

Figure 7: Architectures of actor and critic networks for the CartPole-v1 environment.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 8: Architectures of actor and critic networks for the MountainCar-v1 environment.

Figure 9: Architectures of actor and critic networks for the MountainCarContinuous-v1 environ-
ment.

Figure 10: Architectures of actor and critic networks for the Pendulum-v1 environment.

Figure 11: Architectures of actor and critic networks for the LunarLander-v2 environment.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 12: Architectures of actor and critic networks for the LunarLanderContinuous-v2 environ-
ment.

Figure 13: Architectures of actor and critic networks for the BipedalWalker-v3 environment.

Figure 14: Architectures of actor and critic networks for the BipedalWalkerHardcore-v4 environ-
ment.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 15: Architectures of actor and critic networks for the Pusher-v4 environment.

Figure 16: Architectures of actor and critic networks for the Reacher-v4 environment.

Figure 17: Architectures of actor and critic networks for the Hopper-v4 environment.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 18: Architectures of actor and critic networks for the Ant-v4 environment.

Figure 19: Architectures of actor and critic networks for the HalfCheetah-v4 environment.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 20: Architectures of actor and critic networks for the InvertedPendulum-v4 environment.

Figure 21: Architectures of actor and critic networks for the InvertedDoublePendulum-v4 environ-
ment.

Figure 22: Architectures of actor and critic networks for the Walker2d-v4 environment.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.4 DAG-NAS WITH DEEPER NETWORKS

In addition, we present the result of DAG-NAS with deeper networks on Hopper-v4. We con-
struct DDAG with 5 layers including an input layer where each layer has a configuration of
[11, 88, 176, 352, 6], and name it as DAG-L. We trained DAG-L for 1M steps, produced DDAG-L,
and presented its architecture in Fig. 23. Also, we compare the number of parameters and perfor-
mances in Fig. 24. The result shows that our DAG framework can be extended to deeper and larger
networks.

Figure 23: Architectures of DDAG-L actor and critic networks for the Hopper-v4 environment.

Figure 24: Rewards from 100 episodes in the Hopper-v4 environment.

19

	Introduction
	Related Works
	Preliminaries
	Methods
	Search Space of Scalar-Level DAG
	Architecture Search of Scalar-Level DAG
	Architecture Discretization

	Experiments
	Performance Evaluation
	Architecture Analysis
	Architecture Impact on Sample Efficiency

	Conclusion
	Appendix
	Hyperparameters
	Rewards
	DDAG Architectures Searched by DAG-NAS
	DAG-NAS with Deeper Networks

