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ABSTRACT

Understanding human skill is essential for AI systems that collaborate with, coach,
or assist people. Unlike typical latent variable estimation problems—which rely
on single observations or explicit labels—skill is a persistent, compositional, and
behaviorally grounded construct that must be inferred from patterns over time.
We introduce Skill Abstraction with Interpretable Latents (SAIL), a method for
learning disentangled skill representations from naturalistic behavioral data. Our
approach produces a skill embedding that is robust to spurious performance fluctu-
ations and captures core, transferable representation of human subskills. Further-
more, SAIL supports skill-informed behavior prediction that generalizes across a
variety of contexts. We represent each individual with a persistent skill embed-
ding that controls a blend between expert and novice behavior bases and is trained
using counterfactual subskill swaps for disentanglement. This design yields a
representation that is both robust to performance variation and structured for in-
terpretability. We demonstrate that SAIL outperforms prior methods across two
domains—high-performance driving and baseball batting—producing skill repre-
sentations that are stable, predictive, and interpretable.

1 INTRODUCTION

AI systems that support, collaborate with, or coach humans must infer skill from behavior to per-
sonalize instruction, coordinate effectively, and adapt assistance to user ability. Yet skill is difficult
to model: it is latent, temporally extended, and behaviorally grounded, requiring inference from
patterns across multiple trials rather than individual outcomes. Moreover, skill has a compositional
structure, reflecting subskills that improve at different rates or shape distinct aspects of behavior.
These properties distinguish human skill from other variables in representation learning (e.g., ob-
ject identity in computer vision or task-level skills in robotics) and make its assessment critical for
personalization.

Unlike in robotics, where “skill” often refers to reusable action primitives or options (Botteghi et al.,
2025; Lesort et al., 2018), we focus on human skill, a persistent, individual-level construct composed
of distinct subskills that evolve at different rates and shape different aspects of behavior (Newell,
1991; Ericsson et al., 1993). Unlike performance, which can vary trial to trial, skill must be inferred
from patterns across time, making its stable representation particularly challenging. 1

Our desiderata for skill modeling as a representation learning problem are as follows: (1) Construct
Validity (Messick, 1995): The representation should capture human skill while remaining robust
to noise and style, varying across individuals but stable across sessions and contexts for the same
person. (2) Predictive Utility: The learned representations should have good predictive power and
support forecasting of behavior observations and outcomes. (3) Interpretability: The representa-
tions should yield disentangled subcomponents corresponding to distinct subskills that can be easily
identified by human experts.

To satisfy these desiderata, we introduce Skill Abstraction with Interpretable Latents or SAIL. SAIL
is explicitly designed to promote construct validity, generalization, and interpretability in the learned

1In psychology and motor-learning theory, performance is considered a transient expression of skill influ-
enced by situational factors (Iso-Ahola, 2024; Fitts & Posner, 1967) We adopt this usage throughout.
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skill representation. SAIL learns a persistent individual-level skill embedding. This design aggre-
gates information across multiple behavioral observations from an individual, allowing the model
to abstract away trial-level noise and capture consistent, long-term behavioral tendencies that reflect
true skill yielding a stable learned representation. While simple aggregation methods (e.g., averages
or Elo scores) can smooth variability, they conflate skillful risk-taking with poor performance. For
example, a spinout in racing may raise average lap time even though it reflects an expert pushing
the vehicle to its limits. Our approach learns a structured skill representation that contextualizes
such events—abstracting away trial-level noise while preserving the subskill structure necessary to
explain and predict behavior.

Rather than decoding behavior directly from the learned skill embedding, SAIL predicts behavior as
a blend of canonical novice and expert behaviors. The intuition behind the blending formalism is that
it removes low-level behavioral variability and forces the representation to encode structured, high-
level skill-relevant variation. Overall, the model learns not only to capture general ability via the skill
embedding but also how it maps onto behavior in different contexts. To encourage interpretability
and disentanglement, we supervise the skill space with behaviorally grounded subskill metrics and
introduce a counterfactual training strategy. This counterfactual procedure ensures that each latent
dimension governs a distinct and identifiable aspect of skill.

We evaluate SAIL in both a high-performance driving domain and a baseball batting domain. Sports
provide a natural testbed for skill modeling: success depends on mastering multiple subskills, and
expertise is expressed through consistent, structured patterns of behavior. These domains also offer
rich, multimodal data that capture both outcomes and the processes that generate them, and success
can be quantified in well-defined terms such as lap time, ranking, or batting performance.

In this work we contribute the following:

1. Formulate human skill modeling as a representation learning problem, with explicit desiderata of
construct validity, predictive utility, and subskill interpretability.

2. Propose SAIL, a method that combines person-level embeddings, expert–novice basis blending,
and counterfactual subskill swapping to induce a disentangled and predictive skill space.

3. Demonstrate effectiveness across two distinct domains—high-performance driving and base-
ball— and show that SAIL outperforms baselines in producing skill representations that are
stable, generalizable, and interpretable.

2 RELATED WORK

Modeling human skill is a long-standing challenge across education, sports science, robotics, and
human–AI interaction Anderson (2014); Ericsson et al. (1993). Skill is a latent construct that can
be inferred from behavior over time Newell (1991); Schmidt et al. (2018). Traditional metrics for
capturing ability such as completion time, accuracy, or error rates Fitts & Posner (1967) are noisy
and context-dependent and tend to capture performance rather than true skill. Psychometric methods
like Item Response Theory and Bayesian Knowledge Tracing Embretson & Reise (2013); Corbett &
Anderson (1994); Piech et al. (2015) provide principled ability estimates but remain tied to discrete
items.

More advanced approaches such as trajectory clustering and inverse reinforcement learning (IRL)
Ziebart et al. (2008); Abbeel & Ng (2004) aim to uncover latent behavioral structure, and extensions
using probabilistic embeddings introduce latent variables z that can be interpreted as skill. However,
these methods do not yield interpretable subskill structure or the granularity required for continuous
motor behavior Guadagnoli & Lee (2004); Wulf (2016). Similarly, work in robot teaching empha-
sizes the importance of explicitly decomposing tasks into skills and subskills (Argall et al., 2009;
Cakmak & Thomaz, 2012).

Representation Learning for Human Behavior: Building on general insights from representation
learning Bengio et al. (2013), researchers have sought to compress sequences of states and actions
into embeddings that summarize behavior Zhang et al. (2019); van den Oord et al. (2018). Au-
toencoders and sequence VAEs provide compressive frameworks Kingma & Welling (2013), while
contrastive and self-supervised methods (e.g., CPC, SimCLR) learn robust embeddings (van den
Oord et al., 2018; Chen et al., 2020b). However, these approaches operate on per-instance data,
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often reflecting context or style rather than stable skill (Varona-Moya et al., 2021; Wu et al., 2021;
Sun et al., 2024).

Recent work on representation learning tailored for humans and human interaction has focused
on capturing behavioral regularities relevant for collaboration, including adaptation to novel part-
ners Jacques et al. (2019), optimizing shared autonomy in assistive settings Gopinath et al. (2017),
predictive world models of human intent for shared control DeCastro et al. (2024), and low-
dimensional manifolds for intuitive shared autonomy Jeon et al. (2020). A common theme in this
literature is the need to aggregate across trajectories and to use predictive objectives that capture
semantic structure more effectively than reconstruction, as argued in JEPA (LeCun, 2022). Our ap-
proach builds on these insights by requiring that skill embeddings demonstrate predictive validity:
they should anticipate future behavior and downstream performance. To encourage this property,
we introduce expert–novice blending as a structured inductive bias on how skill trajectories evolve.

Disentangled and Interpretable Representations: Disentanglement seeks latent dimensions that
map onto distinct, interpretable factors. Methods like Beta-VAE, InfoGAN, and FactorVAE Higgins
et al. (2017); Chen et al. (2016); Kim & Mnih (2018) encourage structured representations but face
trade-offs in fidelity, independence, and identifiability Locatello et al. (2019). For skill modeling,
this limits alignment between latent variables and subskills (Zhang et al., 2021). Recent methods
such as DUSDi (Hu et al., 2024) aim to decompose skills into interpretable components affecting
distinct environment factors, but challenges remain.

Modeling Skill in Robotics: Several works in reinforcement learning and robotics have explored
learning latent skill spaces for control policies. Hausman et al. (2018) and Petangoda et al. (2019)
learn disentangled or transferable skill embeddings to enable policy reuse and compositional action
generation across tasks, while Gupta et al. (2018) develop meta-reinforcement learning strategies
that encourage structured exploration. More recently, Dave & Rueckert (2025) propose a kernel-
based approach for skill disentanglement within continuous control. However, these approaches
address robotic control skill - that is, the discovery of reusable action primitives or policies for task
execution - rather than human skill as a persistent, compositional, and interpretable construct. Our
work differs fundamentally in scope and objective: SAIL seeks to model how human skill manifests,
evolves, and generalizes across contexts, focusing on cognitive and behavioral interpretability rather
than motor control or policy transfer.

Our method unifies advances in representation learning, disentanglement, and counterfactual rea-
soning. By introducing participant-specific embeddings, novice–expert basis blending, and counter-
factual subskill swaps, we produce skill representations that are stable, predictive, and interpretable.

3 APPROACH

Problem Formulation: We aim to learn a latent representation of human skill from behavioral
data. Let D = {τ1, . . . , τN} be a set of trajectories, where each τi = {(sti, ati)}

Ti
t=1 is a sequence

of states and actions with T timesteps and D trajectory features performed in a task context c ∈ C
(e.g., a racetrack or batting condition). Trajectories may include multimodal features such as vehicle
telemetry, gaze, or body kinematics.

Our goal is to infer zs ∈ Rd that captures stable, individual-level skill across trajectories and con-
texts. We distinguish skill, a persistent construct, from performance (Iso-Ahola, 2024), which re-
flects trial outcomes (e.g., lap time) and is sensitive to environmental variability. Skill should be
invariant to context c while remaining compositional, with zs decomposing into interpretable sub-
components z

(k)
s corresponding to distinct subskills (e.g., vehicle handling, gaze) Newell (1991);

Anderson (1982). This structure enables targeted probing of specific deficiencies.

To connect latent subskills with behavior, we use skill metrics m ∈ M: measurable quantities de-
rived from trajectories, expert annotations, or auxiliary tasks that act as noisy proxies. For example,
peak lateral g-force in a skidpad drill serves as a proxy for vehicle handling Schrum et al. (2025).
Multiple metrics may map to the same subskill, providing supervision for learning structured repre-
sentations of zs. Our approach is detailed in Alg. 1
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Figure 1: SAIL overview: Each participant is associated with a persistent skill embedding zs that
aggregates behavior across trials. This embedding controls a blend between expert and novice basis
behaviors to predict trajectories, abstracting away trial-specific noise. The embedding is partitioned
into subskill slices, which are supervised with behaviorally grounded skill metrics and trained using
counterfactual swaps to encourage disentanglement and interpretability.

3.1 PARTICIPANT-SPECIFIC SKILL EMBEDDING

A naı̈ve approach to skill representation would be to encode each behavioral trajectory into a la-
tent space. However, single trajectories often reflect transient influences such as noise, fatigue, or
environmental variation, making representation learning from single trajectories more suitable for
capturing performance as opposed to stable skill characteristics. Moreover, isolated trajectories
contain no inherent link to the individual who produced them, which is essential if skill is to be
modeled as a persistent, person-specific construct. To address these issues, SAIL assigns each par-
ticipant a persistent skill vector zs ∈ Rd, learned jointly with the model parameters (Alg. 1 Line 1).
This design pools information across multiple trajectories from a participant, akin to how user and
speaker embeddings are learned for recommendation(Koren et al., 2009) and speech recognition
systems (Snyder et al., 2018), abstracting away trial-level variability and capturing the long-term
participant-specific behavioral tendencies that define skill.

zs is treated as a subject-specific learnable parameter that is refined throughout training based on
behavioral evidence. At test time, the model is frozen and the behavioral trajectories loss is used
to embed the test subjects. Conceptually, zs is an explanatory variable: skill generates behavior,
not the other way around. To prevent trivial collapse, we introduce an auxiliary network qϕ that
reconstructs zs from generated trajectories. This provides a variational lower bound on the mutual
information between zs and predicted behavior, encouraging the embedding to encode information
that is both behaviorally meaningful and recoverable from observed trajectories (Kingma & Welling,
2013; Chen et al., 2016): LMI = −Eτ∼p(τ |zs)[log qϕ(zs|τ)].

3.2 NOVICE-EXPERT BASIS BLENDING

Our goal is to represent skill in a way that abstracts away trial-specific noise and stylistic variation
while preserving stable, skill-relevant structure. We assume that observed behavior is generated
from the skill embedding and lies on a spectrum that ranges from novice to expert performance. To
operationalize this, we introduce a novice–expert basis that provides canonical reference behaviors
against which individual skill can be expressed. This design rests on the assumption that skill varies
in a continuous and interpolatable manner—i.e., that intermediate behaviors can be meaningfully
represented as blends between novice and expert bases. While this continuity is an abstraction, it
captures the intuition that progression in skill is gradual and structured, and allows our model to
interpolate skill levels and generalize across individuals.

For each task context c (e.g., a racetrack in driving or batting condition in baseball), we define a set
of expert and novice bases trajectories:

Bexp(c) = {B(1)
exp (c), . . . , B

(M)
exp (c)}, Bnov(c) = {B(1)

nov(c), . . . , B
(K)
nov (c)},
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Algorithm 1 SAIL: Skill Abstraction with Interpretable Latents
Require: Trajectories τi, contexts ci, subskill metrics mi

1: Initialize participant embeddings zs,i ∼ N (0, 0.1)
2: for each training iteration do
3: Sample batch of participants and trajectories
4: Predict behavior τ̂zs via expert–novice blending (Sec. 3.2)
5: Decode predicted subskill metrics m̂ = hψ(τ̂zs)
6: Compute total loss: L = λreconLtraj + λmetricLsubskill + λMILMI.
7: if counterfactual step (probability 1− p) then
8: Swap subskill slice z

(k)
orig←z

(k)
donor and metric m

(k)
orig←m

(k)
donor

9: Reconstruct counterfactual trajectory τ̃orig from z̃orig
10: Skip trajectory reconstruction loss; apply metric loss only for swapped subskill k
11: end if
12: Update model parameters and participant embeddings jointly via back-propagation
13: end for

where each basis trajectory B(i) ∈ RT×D represents a canonical behavior pattern drawn from the
extremes of the skill distribution, with T timesteps and D trajectory features. The expert set could in
principle capture multiple distinct high-skill strategies, while the novice set spans the heterogeneous
modes of novice performance (e.g., over-cautious, inconsistent, or poorly timed execution). In prac-
tice we find that a single expert basis is sufficient as expert demonstrations tend to cluster tightly
around a consistent solution. In contrast, we retain multiple novice bases to capture the diversity of
novice behavior.

These bases can be derived in multiple ways: directly from demonstration data, learned jointly with
the embedding, or generated by an optimal controller. In practice, we find that a simple yet effective
construction works well: (1) use trajectories from the most expert demonstrator to define Bexp, and
(2) apply principal component analysis (PCA) to a collection of novice trajectories to define Bnov,
capturing the dominant axes of novice variability. This design allows the model to interpret zs in
terms of blending toward or away from the expert solution along meaningful novice dimensions.
The skill embedding is then mapped into blending coefficients for each basis through a blending
module network gϕ:

α = gϕ(zs, c) ∈ [0, 1]M×K×T×D.

Finally, the predicted behavior is expressed as a weighted combination over the bases where the
weights are learned via gϕ (Fig 1):

B̄exp(zs, c) =

M∑
m=1

w(m)
exp (zs, c)B

(m)
exp (c),

M∑
m=1

w(m)
exp (zs, c) = 1, w(m)

exp ≥ 0

B̄nov(zs, c) =

K∑
k=1

w(k)
nov(zs, c)B

(k)
nov (c),

K∑
k=1

w(k)
nov(zs, c) = 1, w(k)

nov ≥ 0

τ̂zs = α⊙ B̄exp(zs, c) +
(
1− α

)
⊙ B̄nov(zs, c),

While our blending formulation references a continuum between novice and expert performance,
it does not assume that skill lies on a single linear axis. We use multiple novice bases to capture
diverse low-skill strategies (e.g., overcautious, inconsistent, or poorly timed behavior) and can em-
ploy multiple expert basis to represent distinct high-skill styles. Each subskill dimension modulates
its own blend between these bases, enabling multi-dimensional, non-linear skill representations that
remain interpretable and easily extensible to domains with multiple expert styles.

This blending formulation (shown in the dashed box in Fig 1) shifts the focus from reproducing
every trajectory detail to capturing high-level, skill-relevant structure. Behavior prediction serves as
the primary training signal, tying the embedding to stable, behaviorally meaningful variation across
contexts while abstracting away noise. Crucially, this predictive design also yields a structured gen-
erative model of behavior: by intervening in the embedding space, we can probe how skill changes
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would alter behavior, or hold skill fixed to forecast behavior in new contexts. These properties make
the learned space useful for analysis, coaching, and simulation of counterfactual skill trajectories.

3.3 COUNTERFACTUAL TRAINING FOR SUBSKILL DISENTANGLEMENT

Human coaches diagnose deficits in specific subskills and tailor practice to address them (Ericsson
et al., 1993; Newell, 1991; Wulf, 2016). More generally, effective assistance requires identifying
which subcomponents of skill need improvement and designing targeted interventions (Anderson,
1982). This motivates our approach: to enable meaningful feedback, we model skill as a composi-
tion of subskills that can be selectively manipulated to predict changes in behavior.

Our goal is to learn a disentangled skill representation in which each subskill is captured by a ded-
icated slice of the latent space, such that manipulating that slice selectively modulates the corre-
sponding behavior. Prior work on disentanglement, such as InfoGAN, β-VAE, and FactorVAE, has
explored encouraging statistical independence between latent dimensions. While partially success-
ful, these approaches face important drawbacks: they often limit the information capacity of the
latent space Higgins et al. (2017), can be unstable to train (Locatello et al., 2019), and, crucially, do
not naturally support counterfactual reasoning - that is, asking how a prediction should change if a
single component of the latent space were modified Locatello et al. (2019). Even when disentangle-
ment is encouraged, a second challenge arises: identifiability, or knowing which part of the latent
space corresponds to which subskill. Conditional VAEs (Sohn et al., 2015) and related methods
address this by supervising certain latent dimensions with labels (Kingma et al., 2014), anchoring
them to known factors. However, this anchoring does not guarantee true disentanglement. Latent
slices may still leak information about other factors, especially when labels are noisy or correlated,
leading to entangled and ambiguous representations despite explicit supervision.

We propose a counterfactual training scheme motivated by Kim & Mnih (2018) that encourages
both disentanglement and identifiability, while still optimizing for reconstruction accuracy. The
embedding space is explicitly partitioned into subskill-specific slices,

zs =
[
z(1)s , z(2)s , . . . , z(K)

s

]
,

where each slice z
(k)
s ∈ Rdk is intended to represent subskill k, and

∑
k dk = d.

Reconstructed trajectories τ̂zs are mapped through a predictor network hψ to obtain subskill metrics
m̂ (Fig. 1), which serve as behaviorally grounded supervision signals during training. Each skill
metric is defined in collaboration with domain experts and reflects a measurable behavioral quantity
that serves as a proxy for an underlying subskill (e.g., steering reversal rate for control coordination,
peak lateral acceleration for vehicle handling, or gaze dispersion for visual attention). These met-
rics provide weak yet semantically meaningful supervision that anchors each subskill dimension to
interpretable aspects of human behavior.

To enforce counterfactual consistency, we perform subskill swaps between a randomly chosen pair
of training examples: an original sample (the one being modified) and a donor sample (from which
a single subskill slice is borrowed). For a selected subskill k, we replace the k-th slice of the original
embedding with that of the donor:

z̃
(k)
orig = z

(k)
donor, z̃

(ℓ)
orig = z

(ℓ)
orig ∀ℓ ̸= k,

and apply the same operation to the associated skill metrics to ensure supervision remains consistent:

m̃
(k)
orig = m

(k)
donor, m̃

(ℓ)
orig = m

(ℓ)
orig ∀ℓ ̸= k.

In practice, we interleave counterfactual and standard training: with probability p, a batch is trained
using the regular reconstruction and metric objectives, and with probability (1−p), a batch is trained
with counterfactual swaps (Alg. 1, Lines 7–8). This procedure creates counterfactual examples
where the original participant retains their overall embedding but adopts one subskill dimension
from the donor, allowing the model to learn how isolated subskills influence predicted behavior and
corresponding metrics.

This balance ensures that the model maintains reconstruction fidelity while also learning to enforce
subskill disentanglement. Since no ground-truth trajectory exists for this counterfactual, we do
not apply a reconstruction loss to τ̂zs for the swapped batch items (Alg. 1 Line 10). Instead, the
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predictor network, hψ , is required to output the swapped metric for subskill k, forcing the model to
adjust behavior in a way that matches the intervention.

Unlike approaches that impose structural constraints directly on the embedding space (e.g., linear
independence penalties or orthogonality objectives), our method enforces disentanglement through
behavior. The reconstructed trajectories must reproduce the correct subskill metrics, which forces
each latent slice to encode and express its designated subskill in a behaviorally grounded way.

3.4 MODELING DETAILS AND LOSSES

The overall training objective combines several complementary losses that promote reconstruction
fidelity, semantic alignment, and disentanglement:

L = λtrajLtraj + λmetricLmetric + λMILMI, (1)

where Ltraj is a trajectory reconstruction loss between predicted and observed behaviors, Lmetric
supervises subskill-specific metrics predicted by hψ , and LMI is a mutual-information term encour-
aging consistency between the embedding zs and reconstructed behavior. During counterfactual
training steps, Ltraj is omitted since no ground-truth trajectory exists for the swapped embedding,
and only the metric loss for the swapped subskill is applied.

Our model integrates participant-level skill embeddings with trajectory and context encoders built
from established sequence architectures. Contextual map features are processed using a Point-
Net–Transformer encoder (Gao et al., 2020; Gopinath et al., 2025), which captures both local geom-
etry and global layout. The trajectories are predicted via two decoders, which produces elementwise
blending weights for expert–novice interpolation.The skill metrics predictor uses an LSTM to re-
process generated trajectories and provide supervision. Architectural choices, training settings, and
loss coefficients are detailed in Appendix A.2

4 DOMAINS AND DATASETS

4.1 HIGH-PERFORMANCE RACING

High-performance racing is an ideal domain for studying skill because it requires the integration of
multiple subskills under demanding conditions. We focus on six core subskills identified by expert
coaches and prior work (Schrum et al., 2025): (i) vehicle handling, (ii) gaze control, (iii) know-how
(strategic knowledge of racing lines and techniques), (iv) control inputs (coordination of steering,
throttle, and braking), (v) physical ability, and (vi) perceptual ability. These determine a driver’s
overall competence and provide a structured target for disentangled representation learning.

Each behavioral trajectory τi consists of vehicle pose, speed, and control signals downsampled to
100 points per track segment. The context c for this dataset refers to the racetrack that the behavioral
trajectory was executed on. We collected a dataset of racing behavior from 95 participants spanning
novices to experts, using a high-fidelity driving simulator. Data collection proceeded in two phases:
70 participants each completed at least four laps on a single track modeled after a nearby raceway,
and 25 participants each completed four laps across four distinct tracks at the same venue. This
design provided both breadth (a large participant pool) and depth (multiple laps and multiple con-
texts), resulting in 1545 laps. The simulator provided realistic vehicle dynamics under repeatable
conditions, enabling controlled yet ecologically valid measurement of driver behavior.

To connect observed behavior to underlying subskills, we leverage a set of behaviorally grounded
skill metrics m ∈ M, defined in collaboration with expert coaches (Schrum et al., 2025). Each
metric is linked to a targeted task designed to probe a specific subskill: for example, peak lateral
g-force in a skidpad drill reflects vehicle handling, steering reversal rate in a slalom drill reflects
control input coordination, gaze fixation during driving sessions reflects gaze policy, occlusion task
accuracy (where the visual scene was briefly hidden) reflects perceptual speed, dynamometer output
reflects physical strength, and written test scores reflect strategic know-how of racing lines and
techniques. These metrics (among others) provide partial, noisy evidence about latent subskills.
Collectively, they supply the supervision signals necessary for learning structured representations of
zs.
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Table 1: Results across desiderata in two domains, Racing (R) and Baseball (B). Higher is better for
↑, lower is better for ↓. Bold = best, underline = second-best.

SAIL (ours) SAIL w/o CF SAIL w/o basis SimCLR β-VAE VAE AE-LC

R B R B R B R B R B R B R B

Construct Validity
Silhouette (↑) 0.72 .77 0.67 0.40 0.74 0.75 0.67
Test–retest similarity (↑) .995 1.0 0.995 0.999 0.990 0.996 0.928 0.96 0.928 0.66 0.839 0.98 0.891 0.998
Composite (Construct) (↑) 1.86 1.0 2.0 0.997 1.69 0.99 0.57 0.88 1.49 0.00 0.95 0.94 1.06 0.99

Predictive Utility
Behavior prediction (RMSE ↓) 2.76 0.24 2.75 0.22 5.05 0.32 4.15 0.29 4.48 0.26 4.61 0.26 4.87 0.31
OOC generalization (RMSE ↓) 6.37 0.33 6.50 0.29 12.77 0.48 10.27 0.38 12.51 0.30 12.42 0.36 14.12 0.37
Composite (Predictive) (↑) 2.0 1.59 1.98 2.0 0.17 0.00 0.89 0.83 0.46 1.55 0.41 1.23 0.08 0.68

Disentanglement & Interpretability
Alignment Ratio (AR ↑) 3.25 2.17 1.24 1.58 1.11 1.43 1.73 0.94 1.12 0.59 1.05 1.04 2.40 1.79
Targeted Change Index (TCI ↑) .93 0.13 0.89 0.14 0.73 0.15 0.45 0.16 0.63 0.19 0.78 0.19 0.73 .19
Relative Influence Ratio (RIR ↑) 2.11 .25 1.76 0.08 1.67 0.07 1.85 0.12 1.86 0.11 1.61 0.07 1.56 0.12
Composite (Disentangle) (↑) 3.0 2.0 1.37 0.85 0.81 0.87 0.83 1.0 0.95 1.22 0.78 1.29 1.20 2.04

4.2 BASEBALL HITTING

We applied SAIL to a supplemental dataset of baseball hitting collected from 13 players on a com-
petitive adult team in a semi-professional league. While all participants were skilled and experienced
players, they were not yet at the level of an expert benchmark and thus exhibited substantial vari-
ation in the execution of key subskills. One highly skilled participant was identified as an expert
and used to define the canonical expert basis for blending, while the remaining players provided
a diverse set of novice-to-intermediate trajectories. In total, 74 batting trials were recorded, span-
ning both pitching machine sessions and tee batting conditions. Whole-body kinematics of swing
motions were captured using an optical motion capture system. In collaboration with a coach, we
identified three core subskills and associated metrics of effective hitting: (i) the kinematic chain,
or the sequential transfer of momentum across body segments; (ii) pelvis pausing, or the ability to
momentarily stabilize the pelvis to build rotational power; and (iii) thigh pausing, or the controlled
deceleration of the lead thigh to anchor lower-body mechanics. The contexts c for this dataset are
batting from a tee and batting against live pitches from a machine. Unlike the racing dataset, which
incorporates a broad set of tasks probing multiple subskills, this dataset is narrower in scope and
primarily intended as a secondary domain to test the generality of our approach.

To address the limited size of the dataset and capture broader variability, we generated synthetic
participants by applying trajectory augmentations (time warping, noise injection, and scaling) to
recorded swings. For players with both tee and regular trials, we estimated a global offset between
conditions and used it to synthesize additional regular swings. This procedure produced artificial
batting trials that preserved the underlying structure of advanced but non-expert motion while intro-
ducing diversity reflective of natural variations in skill.

To our knowledge, there are no existing datasets that capture multimodal behavioral signals, tar-
geted drills, and coach-aligned annotations for baseball that are comparable in richness to our rac-
ing dataset. We therefore treat this baseball dataset as supplemental—smaller in scale, narrower
in subskill coverage, and heavily augmented with synthetic trials—but nevertheless valuable for
demonstrating that SAIL can extend beyond driving to a distinct motor domain.

5 RESULTS

We compare our method against several baselines and ablations to evaluate the contribution of each
component:

SimCLR (contrastive baseline). A self-supervised representation learning method that uses con-
trastive losses to encourage invariance within a person. We adapt SimCLR to trajectory data to test
whether a generic contrastive objective is sufficient for extracting skill-relevant embeddings Chen
et al. (2020a).

β-VAE (disentanglement baseline). An extension of the VAE with a stronger KL regularization
term that encourages factorized latents. We include β-VAE as a canonical disentanglement method,
testing whether generic disentanglement pressure yields interpretable subskills Higgins et al. (2017).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

AE (autoencoder baseline). A standard trajectory auto-encoder (Kingma & Welling, 2013). This
provides a comparison to unsupervised compression methods that capture per-trial variability but
are not explicitly designed to model persistent skill or subskill structure Hinton & Salakhutdinov
(2006).

AE with linear constraints (structured baseline). A recent extension of the au-
toencoder framework that incorporates linear constraints into the latent space to en-
courage semantically meaningful and identifiable embeddings. We include this method
to test whether such constraints help discover interpretable subskills in driving data
and utilize the subskill metrics to create the linear constraints (Lin et al., 2020).

Figure 2: Composite scores across the three
desiderata: construct validity, predictive
utility, and disentanglement/interpretability.
Bars show performance of our method
(SAIL), ablations (w/o CF, w/o basis), and
baselines (SimCLR, β-VAE, VAE, AE-LC).
Higher is better for all desiderata.

Ablation: without counterfactual training. This
variant removes the counterfactual swap objective,
training only with behavioral prediction via the
expert-novice bases blending. This isolates the con-
tribution of counterfactual training to disentangle-
ment and interpretability.

Ablation: without expert–novice basis and with-
out counterfactual training. Instead of decoding
trajectories as a blend of expert and novice bases,
this variant decodes directly from the skill embed-
ding. We also ablate the counterfactual training in
this variant. This tests whether the basis decomposi-
tion is necessary for isolating skill-relevant variation
from noise and style.

For all baselines that operate at the trial level (Sim-
CLR, AE, β-VAE, AE-LC), we extract embeddings
per trajectory and then poll them across laps for each
participant, yielding a participant-level embedding
comparable to our method. We evaluate our approach and baselines along the three desiderata
introduced in Section 3: (1) construct validity, (2) predictive utility, and (3) disentanglement and
interpretability. Together, these evaluations assess whether the learned representation zs is well-
structured, useful for downstream tasks, and decomposable into meaningful subskills.

5.1 CONSTRUCT VALIDITY

We evaluate construct validity by measuring whether the learned embedding captures stable, skill-
relevant structure rather than transient fluctuations or task-specific noise. Two complementary met-
rics are reported in Table 1. Full metric definitions of the metrics are provided in Appendix A.4.

In this work, we interpret construct validity in the behavioral and representational sense—whether
the learned embedding behaves consistently with the theoretical construct of human skill (i.e., stable
within individuals and discriminative across skill levels)—rather than as formal psychometric vali-
dation. Our goal is to provide empirical evidence that the learned latent space captures skill rather
than transient performance fluctuations.

• Silhouette score (↑): clustering quality by skill group.
• Test–retest similarity (↑): stability of embeddings across repeated trials.

Discussion: As shown in Figures 2 and Table 1, SAIL achieves the strongest composite score
for construct validity in both racing and baseball. The participant-level embedding ensures high
test–retest stability (0.995 in racing, 1.0 in baseball), reflecting that zs captures persistent aspects
of skill rather than trial-specific noise. The ablation without counterfactual training (SAIL w/o
CF) performs comparably, which is expected since counterfactual swaps are designed to improve
disentanglement rather than stability. In contrast, removing the novice–expert basis (SAIL w/o
basis) reduces silhouette scores, likely because the embedding must capture trial-level variability
instead of abstracting away noise. Baselines such as SimCLR cluster trials from the same participant
but may emphasize stylistic consistency rather than stable skill, while autoencoder variants show
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some separation but less interpretability. Overall, these results confirm that anchoring skill at the
participant level and incorporating basis blending is key to achieving construct validity.

5.2 PREDICTIVE UTILITY

We next assess predictive utility by evaluating whether the learned skill embeddings support accurate
trajectory forecasting within and across contexts.

• In-context prediction (RMSE ↓): trajectory accuracy within the same context.
• Out-of-context prediction (RMSE ↓): generalization to novel contexts.

Discussion: As shown in Figures 2 and Table 1, SAIL achieves the lowest error for both in-context
and out-of-context prediction, confirming that the learned embeddings capture stable behavioral ten-
dencies that generalize across settings. The ablation without counterfactual training (SAIL w/o CF)
performs similarly on predictive metrics, consistent with the design of counterfactual swaps, which
target disentanglement rather than raw forecasting. By contrast, removing the novice–expert basis
(SAIL w/o basis) substantially degrades prediction, with errors nearly doubling in the racing do-
main. This highlights that basis blending is critical for abstracting away trial-level variability and
anchoring zs in structured behavioral dimensions. Baselines show weaker generalization: autoen-
coder variants (VAE, β-VAE, AE-LC) capture per-trial variability but fail to transfer to new contexts.
Together, these results demonstrate that predictive validity is best achieved by combining person-
level embeddings with structured novice–expert bases. Notably, predictive utility is not significantly
reduce by our counterfactual training scheme, suggesting that it may encourage disentanglement
without greatly hurting prediction accuracy. AE-LC on the other hand performs the worst in terms
of predictive utility.

5.3 DISENTANGLEMENT AND INTERPRETABILITY

Finally, we evaluate whether the representation decomposes into interpretable subcomponents that
correspond to distinct subskills. Three complementary metrics are reported in Table 1:

• Alignment Ratio (AR ↑): measures how well each subskill slice z
(k)
s predicts its intended

metrics compared to non-target ones, indicating subskill–metric correspondence.
• Targeted Change Index (TCI ↑): quantifies the effect of counterfactual swaps by checking

whether trajectory changes are concentrated in the targeted features, with higher values
reflecting more selective control.

• Relative Influence Ratio (RIR ↑): compares the relative impact of subskills on over-
lapping behavioral outputs (e.g., control inputs vs. gaze), capturing whether slices exert
influence in proportion to their intended role.

Discussion: Figures 2 and Table 1 show that SAIL consistently achieves the highest disentangle-
ment scores in racing, while differences are smaller in baseball. This gap can be explained by
the nature of the datasets. The baseball data is smaller in scale and includes substantial synthetic
augmentation, which produces clearer, more linearly separable relationships between metrics and
behavior. As a result, structured baselines such as AE-LC are able to capture some of these relation-
ships without the need for counterfactual supervision, narrowing the gap. By contrast, the racing
domain contains richer and more heterogeneous variability, making counterfactual swaps essential
for learning interpretable subskill slices. Overall, these results suggest that counterfactual super-
vision is particularly valuable in complex, high-variance settings, whereas in simpler or synthetic
domains, weaker baselines can exploit linear structure to partially mimic disentanglement.

6 LIMITATIONS

Our evaluation is limited by dataset scale and scope, particularly in the baseball domain where data
are small and augmented. The method also depends on noisy, predefined subskill metrics, and as-
sumes a smooth novice–expert continuum that may overlook abrupt shifts or alternative strategies.
Finally, while counterfactual training improves interpretability, it does not guarantee fully disentan-
gled subskills.
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REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All datasets used in our
experiments are described in detail in Section 4 and Section A.3. Model architectures, hyperparam-
eters, and training configurations are reported in Section 3 and further detailed in Appendix A.2.
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A APPENDIX

A.1 USE OF AI ASSISTANCE

Portions of the text in this paper were refined with the assistance of ChatGPT. The tool was used
only to improve clarity and readability of the manuscript and to aid in finding related works; all
ideas, experiments, and analyses are the authors’ own.

A.2 ARCHITECTURE AND TRAINING DETAILS

Skill embeddings. Each participant is associated with a persistent, learnable skill vector zs ∈ Rd,
stored in an embedding table initialized fromN (0, 0.1). For the racing domain, d = 12, partitioned
into six subskill slices: vehicle handling (3), gaze (3), inputs (3), know-how (1), physical (1), and
perception (1). For the baseball domain, d = 7, partitioned into kinematic chain (3), pause pelvis
(2), and pause thigh (2).

Map encoder. For racing, we use a PointNet–Transformer encoder that processes local lane geom-
etry and produces per-segment encodings of dimension 64. This corresponds to the map encoder in
our formulation (Section 3). For baseball, no map input is used.

Blending decoders gϕ. Behavior is represented as a blend of canonical expert and novice bases.
The alpha decoder maps (zs, c) into elementwise interpolation weights α and predicts coefficients
for novice PCA bases grouped by feature (e.g., position, steering, throttle, brake, speed).

Skill predictor qϕ. To regularize the latent space, we predict zs from blending coefficients α using
a 2-layer Transformer encoder (hidden size 128, 4 heads, dropout 0.1) with a [CLS] token.

Trajectory-to-subskill predictor hspi. In addition to decoding metrics directly from zs, we in-
clude a trajectory-to-subskill head hspi that maps reconstructed trajectories τ̂ into predicted subskill
metrics. This auxiliary supervision ties subskill metrics to observable behavior, complementing the
zs 7→ m decoders. In practice, hspi is implemented as a two-layer MLP applied to flattened trajectory
segments.

Training. We train using Adam with learning rate 2 × 10−4, weight decay 10−5, batch size 256
(racing) or 5 (baseball), and a maximum of 2000 and 7000 epochs respectively. Losses include:
(i) trajectory reconstruction (λ = 0.05–0.1), (ii) subskill metric decoding with hψ (λ = 4.0), (iii)
trajectory-to-subskill decoding with hspi (λ = 4.0), (iv) trial time prediction (λ = 0.1–2.0), and (v)
counterfactual supervision applied on 20% of batches. Auxiliary penalties include contrastive reg-
ularization (λ = 1), VICReg (λ = 0.005), orthogonality (λ = 0.001), and adversarial consistency
(λ = 0.01). Training was performed on NVIDIA RTX A6000 GPUs.

A.3 RACING DOMAIN AND SUBSKILL METRICS

Following prior work in HPDE (Schrum et al., 2025), we model racing expertise as a composition
of six subskills: know-how, physical ability, gaze policy, vehicle handling, control inputs, and per-
ception. Each subskill corresponds to a dedicated slice z

(k)
s of the overall skill vector zs, and is

supervised using behaviorally grounded metrics. Consistency is treated as a cross-cutting property
across subskills rather than a separate dimension.

Know-how. Procedural and declarative knowledge of racing lines and techniques, assessed via a
written test (mknow).

Physical. Motor ability and endurance, measured through grip strength and related assessments
(mphys).

Gaze. Visual attention strategies, measured via dispersion, dwell time, and fixation on apex cones
(mgaze).

Vehicle handling. Car control at the limit, measured through raceline deviation, lateral g-force, and
skidpad/slalom performance (mvh).

Control inputs. Coordination of steering, throttle, and braking, measured via steering reversal rate,
throttle smoothness, and braking stability (minputs).
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Perception. Prediction and interpretation of the environment, assessed via occlusion tasks with
hidden track segments (mperc).

Participants completed repeated lap blocks in a high-fidelity simulator, interleaved with drills (skid-
pad, slalom, occlusion) and questionnaires. This design enables both between-subject discrimina-
tion (novices vs. experts) and within-subject stability, allowing zs to capture persistent skill while
abstracting away transient performance fluctuations.

A.4 EVALUATION METRICS

We provide details for the evaluation metrics reported in Section 5.1.

Silhouette score (↑): Measures clustering quality of embeddings with respect to skill group. In
the racing dataset, a subset of participants was labeled as experts or novices based on prior driving
experience. Silhouette values compare within-group cohesion to between-group separation; higher
values indicate that embeddings of the same skill group are tightly grouped and well-separated from
others. Because analogous labels are not available for baseball, we omit this metric there.

A larger ratio reflects clearer separation between expert and novice embeddings in the latent space,
providing an additional measure of construct validity.

Test–retest similarity (↑): Assesses temporal stability of embeddings across repeated trials from the
same participant. We compute cosine similarity between embeddings estimated from independent
subsets of trajectories. High values indicate that the representation reflects persistent aspects of skill
rather than trial-specific noise.

In-context behavior prediction (RMSE ↓): Assesses how well zs can be used to predict trajecto-
ries in the same context from which it was derived (e.g., skill inferred from laps on one racetrack
and evaluated on the same track). Lower error indicates that the embedding captures fine-grained
behavioral tendencies that persist within a given setting.

Out-of-context (OOC) generalization error (RMSE ↓): Evaluates predictive performance when
applying zs to novel contexts (e.g., skill inferred from behavior on one racetrack and tested on a
different track). Lower error reflects better transfer, showing that the embedding encodes stable skill
structure that generalizes beyond training conditions.

Alignment Ratio (AR ↑): Computed by training shallow linear probes on each subskill slice z
(k)
s

to predict its corresponding behavioral metrics. AR measures how strongly the intended metric is
predicted relative to non-target metrics. High AR values indicate that each slice encodes the correct
factors with minimal cross-contamination.

Targeted Change Index (TCI ↑): Computed by performing counterfactual swaps of individual
subskill slices and measuring changes in trajectory features. TCI quantifies the proportion of change
concentrated in targeted features versus off-target leakage, with higher values indicating that slices
selectively govern their intended behavioral dimensions.

Relative Influence Ratio (RIR ↑): Assesses the relative dominance of subskills on overlapping
behavioral feature sets. For example, manipulating the control inputs subskill should strongly in-
fluence brake/throttle/steering traces, while gaze manipulations should more strongly affect vehicle
position. High RIR values indicate that the representation disentangles subskills while also capturing
their relative strengths in shaping shared outputs.

Composite Scores. For each desideratum, we min–max normalize each constituent metric across
methods (direction-corrected so higher is better) and sum the normalized values. The composite
therefore ranges from 0 to the number of metrics in that desideratum (e.g., 2 for Predictive; 3 for
Disentangle). In baseball, we omit Silhouette (no group labels), so Construct uses only test–retest
(range 0–1). See Table 1 for the underlying metric values.

A.5 BASEBALL DOMAIN RESULTS

While high-performance racing is our primary evaluation domain, we also tested SAIL on a supple-
mental dataset of baseball hitting. This domain probes a different set of motor subskills and provides
a test of cross-domain generalization. Because the dataset is smaller in scale and narrower in subskill
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coverage, performance differences are less pronounced than in racing. Nevertheless, SAIL achieves
the highest overall composite score, balancing predictive accuracy with disentanglement, whereas
ablations highlight the trade-off between predictive utility (w/o CF) and interpretability.

Figure 3: Composite scores across desiderata for the baseball domain. Bars show performance of
our method (SAIL), ablations (w/o CF, w/o basis), and baselines (SimCLR, β-VAE, VAE, AE-LC).
Although differences are smaller than in racing, SAIL maintains the best overall balance across
desiderata.

16


	Introduction
	Related Work
	Approach
	Participant-Specific Skill Embedding
	Novice-Expert Basis Blending
	Counterfactual Training for Subskill Disentanglement
	Modeling Details and Losses

	Domains and Datasets
	High-Performance Racing
	Baseball Hitting

	Results
	Construct Validity
	Predictive Utility
	Disentanglement and Interpretability

	Limitations
	Appendix
	Use of AI Assistance
	Architecture and Training Details
	Racing Domain and Subskill Metrics
	Evaluation Metrics
	Baseball Domain Results


