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Abstract

In many real-world applications of multi-armed
bandit problems, both rewards and contexts are
often influenced by confounding latent variables
which evolve stochastically over time. While the
observed contexts and rewards are nonlinearly
related, we show that prior knowledge of latent
causal structure can be used to reduce the problem
to the linear bandit setting. We develop two algo-
rithms, Latent Linear Thompson Sampling (L2TS)
and Latent Linear UCB (L2UCB), which use on-
line EM algorithms for hidden Markov models to
learn the latent transition model and maintain a
posterior belief over the latent state, and then use
the resulting posteriors as context features in a lin-
ear bandit problem. We upper bound the error in
reward estimation in the presence of a dynamical
latent state, and derive a novel problem-dependent
regret bound for linear Thompson sampling with
non-stationarity and unconstrained reward distri-
butions, which we apply to L2TS under certain
conditions. Finally, we demonstrate the superiority
of our algorithms over related bandit algorithms
through experiments.

1 INTRODUCTION

Multi-armed bandits have been successfully applied in do-
mains such as healthcare [Durand et al., 2018, Zhu et al.,
2018], finance [Shen et al., 2015], and recommender sys-
tems [Zhou et al., 2017]. In this work, we are interested
in contextual multi-armed bandit problems where the pres-
ence of a latent variable is crucial for predicting rewards.
Furthermore, it is typical in many real-world problems for
additional complexity to arise in the form of latent vari-
able non-stationarity (dynamics). Consider the following
illustrative real-world applications:

• An interactive AI agent for personalized education
chooses material to help a student’s evolving state of
knowledge, using observations such as the time taken
to answer questions.

• A rover on a mission explores blocks of land, taking
samples for information about the ore grade and choos-
ing real-time mining strategies for each block.

• A recommender system selects items for users with
evolving latent preferences or values, potentially using
observable signals such as behavior patterns.

Such problems can be represented with the graphical model
of Figure 1. Here a decision-making agent must use ad-
ditional side information or context data (denoted x) for
inference of an unseen, time-dependent latent state (denoted
z), in order to improve reward predictions.

Our approach to the non-stationary latent bandit problem
of Figure 1 focuses on leveraging prior knowledge of the
graphical structure to apply simpler methods to a difficult
problem, using a strategy of reduction to a known problem.
The linear multi-armed bandit setting [Auer, 2002, Abbasi-
Yadkori et al., 2011] has been studied extensively, leading to
many algorithms and related theoretical guarantees. While
complex real-world tasks generally involve nonlinear rela-
tionships between observed variables and target objectives
(such as the nonlinear relationship between xt and rt in
Figure 1), a key motivating observation for our work is
that expected values, and in particular expected rewards,
are linearly related to probabilities of unknown variables
or parameters. This linear relationship can be exploited us-
ing algorithms and theoretical analyses for the linear bandit
setting.

For the non-stationary bandit task of Figure 1, this requires
maintaining posterior probabilities over the current latent
state zt. Since Figure 1 may be viewed as an extension
of a hidden Markov model (HMM) [Rabiner, 1989] into a
multi-armed bandit task, we leverage existing methods for
online learning of HMMs. In particular, online expectation
maximization (EM) is an established method which learns

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<enelson@ibm.com>?Subject=Your UAI 2022 paper


to perform approximate Bayesian inference over the latent
state, when applied in our setting.

Contributions. We combine existing methods for hidden
Markov models and linear bandit problems in a novel way, to
make the following contributions: (i) We identify conditions
under which contextual multi-armed bandit problems with
an evolving hidden state (Figure 1) can be mapped to a linear
bandit problem. (ii) We introduce novel bandit algorithms
for the setting of Figure 1, Latent Linear Thompson Sam-
pling (L2TS) and Latent Linear Upper Confidence Bounds
(L2UCB), which combine approximate online Bayesian in-
ference over the latent state with linear bandit methods,
and demonstrate superior performance compared to base-
line algorithms. (iii) We derive a high-probability bound
(Theorem 1) on least-squares parameter estimation error
in the setting of Figure 1. (iv) We derive a novel problem-
dependent regret bound for linear Thompson sampling with
non-stationary and arbitrary reward distributions, and apply
it to L2TS (Theorem 2).

In the next section, we discuss the advantages of our ap-
proach and limitations of existing multi-armed bandit ap-
proaches in settings where a time-evolving latent state influ-
ences contexts and rewards.

2 RELATED WORK

Linear Bandits. Our work identifies a path for applying
methods and analysis for the linear bandit framework [Auer,
2002, Abbasi-Yadkori et al., 2011] to a larger class of
(nonlinear) contextual bandit problems. We introduce algo-
rithms which use the linear Thompson sampling algorithm
of Agrawal and Goyal [2013b] or the related LinUCB al-
gorithm [Li et al., 2010, Chu et al., 2011] as subroutines.
While linear bandit methods have been applied in various
settings, our approach of leveraging linearity with respect
to posterior probabilities is novel, as well as application of
the suite of linear bandit tools to latent bandit problems.

Non-Stationary Bandits. The decision-making problem of
Figure 1 lies at the intersection of the (more general) class
of contextual bandit problems, in which additional context
information is available along with reward data, and the
class of non-stationary bandit [Auer et al., 2003, Luo et al.,
2018, Hartland et al., 2007, Garivier and Moulines, 2008,
Yu and Mannor, 2009] problems, which introduce time-
dependence into the reward distribution. The bulk of existing
work in non-stationary bandits focuses on detecting change
in distributions or parameters [Luo et al., 2018]. In our
setting, these methods are limited, as they cannot model the
latent causal structure, which allows for improved modeling
and prediction of distributional change over time.

Latent Bandits. A growing body of research on latent ban-
dit [Maillard and Mannor, 2014, Zhou and Brunskill, 2016]

problems seeks to model reward distributions which are in-
fluenced by a latent state, as in Figure 1. Most work in this
area does not consider the case of dynamical state transitions.
The graphical structure of Figure 1 is considered in Hong
et al. [2021], which in contrast to the present work, focuses
on off-policy learning. Other recent work [Hong et al., 2020]
(see also Hong et al. [2020]) considers a closely related prob-
lem in which a dynamical hidden state influences rewards,
but assuming a different graphical structure in which con-
texts are unaffected by the latent state (and thus cannot be
leveraged for inference of z). Our approach is similar to
that of Hong et al. [2020], in that we use Thompson sam-
pling [Thompson, 1933, Chapelle and Li, 2011, Russo and
Roy, 2014] as an exploration heuristic. However, their ap-
proach involves Thompson sampling of latent states as well
as parameters. In settings where latent states changes oc-
cur frequently, such exploration of the latent space may not
yield significant information gain before the state changes
again,1 and can thus under-exploit. Furthermore, the practi-
cal algorithm proposed in Hong et al. [2020] uses particle
filtering [Doucet et al., 2001], which can struggle to scale
to higher dimensions with a fixed number of particles. In
comparison, we sidestep the difficulties of approximating a
high-dimensional posterior by selectively maintaining un-
certainty over the most task-relevant unknowns. Moreover,
in the asymptotic limit of long sequences, the cumulative
log-likelihood L(µ⋆) =

∑
t log p(rt|at;µ⋆) of reward data

becomes large, causing the posterior p(µ⋆) ∝ eL(µ⋆) over
reward parameters µ⋆ to satisfy the Laplace approxima-
tion and generally converge to a Gaussian form. We exploit
this asymptotic property with linear Thompson sampling
[Agrawal and Goyal, 2013a], which uses a multivariate nor-
mal posterior.

Recommender Systems. The graphical structure of our prob-
lem, with a latent variable acting as a confounder of context
observations and rewards, is shared in the literature on ban-
dit algorithms for recommender systems (e.g. [Sen et al.,
2017, Kawale et al., 2015]). In comparison to these works,
which generally assume i.i.d. latent variables, our work is
primarily an extension in the direction of non-stationarity.

Causal Bandits. Lastly, our work is also related to the bur-
geoning area of causal bandits [Lattimore et al., 2016]
where causal mechanisms are explicitly modeled. Confound-
ing from a latent variable was considered in Bareinboim et al.
[2015], Lee and Bareinboim [2018], Sen et al. [2017], but
under the assumption of i.i.d. data (no non-stationarity), and
in an offline rather than online learning setting.

Theoretical Analysis. Discussion of related work on the
subject of regret bounds is deferred to Section 5.2.

1In contrast, information gained via exploration about fixed
parameters will not become outdated.



Figure 1: An influence diagram representation of the non-
stationary version of our latent bandit setting. The latent
state z changes dynamically while context x is observed at
the time of choosing action a (rectangle), represented by
the informational arc from x to a. Reward r (diamond) is a
function of a and z. Shaded (white) nodes indicate observed
(unobserved) variables.

3 PROBLEM SETTING

In this section, we describe our contextual multi-armed
bandit problem setting with a dynamical latent state (Sec-
tion 3.1), describe a related linear bandit problem setting
(Section 3.2), and show that the latent bandit setting of Sec-
tion 3.1 can be reduced to the linear bandit setting of Section
3.2 under certain conditions (Section 3.3).

3.1 NON-STATIONARY LATENT BANDITS

We consider the non-stationary bandit environment of Figure
1 in which a dynamical latent state z acts as a confounder
of observations (or contexts) x and rewards r. The figure is
represented as an influence diagram, which is a graphical
model for decision making under uncertainty [Howard and
Matheson, 1984]. At any epoch, context x is observed before
selecting action a, and reward r depends on a and z.

While the context and reward may be either discrete or real-
valued2, the latent state z ∈ Z = {1, ..., Z} and action a ∈
A = {1, ...,K} are assumed to be discrete. The latent state
z evolves stochastically according to a transition matrix Φ⋆

(assumed to be ergodic) with elements, p(zt = z′|zt−1 =

z;ϕ⋆) = ϕ⋆z,z′ . The equilibrium distribution ρ(ϕ)eq (z) for a

given matrix Φ is the stationary distribution, Φρ(ϕ)eq = ρ
(ϕ)
eq .

(For any categorical distribution p(z), we will denote by
p ∈ RZ the vector whose elements are the probabilities
p(z).) Given z, an observed context x is generated from
a conditional distribution p(x|z; θ⋆) with parameters θ⋆.
Lastly, rewards are generated from conditional distributions
p(r|z, a); we denote their expected values as (µ

(a)
⋆ )z :=

E[r|z, a], with µ(a)
⋆ ∈ RZ being an action-wise vector of

means, and variance as Var[r|z, a]. We collectively denote
the action-wise parameter vectors as µ⋆ := {µ(a)

⋆ }Ka=1.

2We denote context as a scalar for simplicity but our work is
equally applicable to settings with high-dimensional observations.

Our algorithm relies on the estimation and use of a posterior
belief, pt(z|x1:t) := p(zt = z|x1:t) over the current latent
state, which is a categorical distribution represented as a
Z-dimensional vector. Given a transition model p(z′|z; ϕ̂)
and observation model p(x|z; θ̂), it can be updated every
timestep with Bayes’ rule:3

p̂t(z|x1:t) ∝
∑
z′

p̂t−1(z
′|x1:t−1)ϕ̂z,z′p(xt|z; θ̂) (1)

where the hat notation denotes model estimates. We will
distinguish the model posterior p̂ from the “true” posterior

p⋆t (z) := p(zt = z|x1:t;ϕ⋆, θ⋆, ρ0), (2)

which uses ground truth parameters and the true prior,
p⋆0(z) := ρ0(z).

A policy π is a mapping from partial histories
(x1:t, r1:t−1, a1:t−1) at any time t to probabilities of se-
lecting each action, at = a. The optimal policy π⋆ is de-
fined as the policy which selects, at every timestep, the
action with highest expected reward, given the true param-
eters (but without accessing the true latent state), that is,
a⋆t := argmaxa(p

⋆
t )

⊤µ
(a)
⋆ . We will quantify performance

with expected cumulative regret, defined – for any policy π –
as the loss in expected rewards after T timesteps relative to
the optimal policy:Rπ(T ) :=

∑
t≤T (Eπ⋆ [rt]− Eπ[rt]).

3.2 LINEAR BANDITS

We will apply methods from the linear bandit setting to the
contextual latent bandit setting of Section 3.1, in which ob-
servations xt and reward rt are nonlinearly related. We work
with a slightly modified linear bandit setting as compared
to the typical setting in the literature [Agrawal and Goyal,
2013b]: At each timestep, a context feature vector ct ∈ Rd

is observed, an action at = a is selected from K possible
actions, and a reward

rt = c⊤t µ
(a)
⋆ + ϵt (3)

with mean value c⊤t µ
(a)
⋆ is observed. The random noise vec-

tor ϵt ∈ Rd has mean zero by definition, E[ϵt] = 0, but need
not satisfy any other conditions such as sub-Gaussianity
or i.i.d. data across time. In order to maximize returns, the
agent must use the sequential context data c1:t to learn the
unknown mean reward parameters µ(a)

⋆ ∈ Rd for each ac-
tion a.4 Given the context ct, the corresponding optimal
action is a⋆t := a⋆(ct) := argmaxac

⊤
t µ

(a)
⋆ .

3We occasionally use ∝ to denote equality up to a normalizing
constant.

4In other variations of the linear bandit setting, the same param-
eters µ may be shared across actions, while a separate per-action
context c(a)t may be observed.



In Section 4, we introduce algorithms which use linear
Thompson sampling (LinTS) [Agrawal and Goyal, 2013b]
or LinUCB [Li et al., 2010, Chu et al., 2011] as subroutines.
LinUCB and LinTS use observed contexts and rewards to
maintain (for each action) a least-squares estimator:

µ̂(a) = (B(a))−1f (a), (4)

where f (a) :=
∑t

t′=1 1(at′ = a)ct′rt′ , with 1(A) being the
indicator function equal to 1 (0) when A is true (false), and
B(a) := λµ1d +

∑t
t′=1 1(at′ = a)ct′c

⊤
t′ is an empirical co-

variance matrix (we assume λµ > 0 to ensure invertibility).
LinUCB uses the estimator covariance to compute upper
confidence bounds, while LinTS uses each estimator µ̂(a) to
Thompson sample from a multivariate Gaussian posterior,
µ(a) ∼ N (µ̂(a), (B(a))−1), and selects at each timestep the
corresponding optimal action: at = argmaxac

⊤
t µ

(a).

3.3 REDUCTION TO THE LINEAR BANDIT
PROBLEM

We now exploit the linear relationship between rewards and
probabilities over the latent space to show that the latent
bandit problem of Section 3.1 can be reduced to the linear
bandit setting of Section 3.2.

Lemma 1. When the true model parameters (θ⋆, ϕ⋆) and
initial latent state probabilities ρ0(z) = p(z0 = z) in the
model from Figure 1 are known, the latent bandit setting
of Section 3.1 reduces to the linear bandit setting of Sec-
tion 3.2.

Proof. Conditional on a sequence of observations x1:t in
the latent bandit setting and action at = a, the reward rt is
generated from the mixture distribution

p(rt = r|at = a, x1:t; θ
⋆, ϕ⋆) =

∑
z

(ct)zp(r|z, a),

where we have defined ct ∈ RZ as the vector with elements
equal to the posterior probabilities

(ct)z := p(zt = z|x1:t; θ⋆, ϕ⋆) := p⋆t (z). (5)

The expected reward at time t is therefore

E[rt|at = a, x1:t; θ
⋆, ϕ⋆] =

∑
z

(ct)z(µ
(a)
⋆ )z = c⊤t µ

(a)
⋆ .

Thus, the reward takes the form of Eq. (3), with d = Z
being the number of latent states, ct defined in Eq. (5), and
µ
(a)
⋆ ∈ RZ being the vector of latent-conditioned mean

rewards (µ(a)
⋆ )z .

Lemma 1 shows that the posterior belief over the current
latent state zt can be viewed as a compression of the context
history x1:t into a (nonlinearly) transformed context variable

which is related linearly to rewards. Since Lemma 1 assumes
access to the true parameters (θ⋆, ϕ⋆), in general it will only
apply in the asymptotic limit (t → ∞) in which (θ⋆, ϕ⋆)
have been learned. Prior to this asymptotic regime, error in
model estimates of these parameters will corrupt the context
features ct in the corresponding linear bandit problem with
noise and/or systematic bias.

We end this section by noting that the space of context vec-
tors ct, or equivalently posterior beliefs p⋆t (see Eq. (5)), is
partitioned into subspaces – denoted Pa⋆ – for which action
a⋆ is optimal, i.e. a⋆ = argmaxac

⊤
t µ

(a)
⋆ . In the following

section, we will build on Lemma 1 to develop a latent bandit
algorithm which estimates rewards, Eq. (4), with contexts
ct → p⋆t as in Eq. (5).

4 LATENT LINEAR BANDIT
ALGORITHMS

Since the non-stationary latent bandit problem of Section 3.1
can be reduced to the linear bandit setting as long as an accu-
rate posterior belief over the latent state z can be maintained,
algorithms for the latent bandit problem can be built by com-
bining (i) methods for approximate inference over z with
(ii) linear bandit algorithms. In this paper, we introduce two
specific such algorithms, which use (i) Online Expectation
Maximization (EM) for learning the parameters (θ⋆, ϕ⋆) of
a hidden Markov model (and thus learning the “true” poste-
riors p⋆t (z) assumed in Lemma 1), and (ii) either LinTS or
LinUCB, into an end-to-end pipeline.

Latent State Inference. We use the online EM algorithm of
Mongillo and Deneve [2008] (for categorical context data),
and the related Algorithm 1 of Cappé [2011] (for contin-
uous context data). As indicated in Algorithms 1 and 2,
after observing xt these online EM algorithms recursively
update (i) the vector estimate p̂t of latent state probabili-
ties, (ii) sufficient statistics ψ̂t, and (iii) parameter estimates
(θ̂, ϕ̂) (determined by ψ̂t). Further details, including the
form of sufficient statistics ψ̂t for multinomial or Gaussian
distributions, are provided in Appendix A. Importantly, the
approximate Bayes’ update of the model posterior over the
latent state, Eq. (1), takes place as part of the online EM up-
date. After observing the reward rt, the model posterior p̂t is
again updated using a reward likelihood model p(r|z, a; µ̂)
which is either Bernoulli or Gaussian in our experiments
(see Appendix B).

Thompson Sampling and UCB. As described in Section 3.3,
we use the model posterior over the current latent state p̂t as
a context feature vector in the linear bandit setting, ct = p̂t,
and apply either linear Thompson Sampling [Agrawal and
Goyal, 2013b] (L2TS, Algorithm 1) or LinUCB [Li et al.,
2010, Chu et al., 2011] (L2UCB, Algorithm 2) as explo-
ration heuristics to select actions. Like L2TS, L2UCB treats
the posterior beliefs p̂t as context vectors in a linear bandit



Algorithm 1: Latent Linear Thompson Sampling
(L2TS)
Input:
Prior over latent state, p̂0 ∈ [0, 1]Z

Initial parameter estimates (θ̂, ϕ̂)
Initial sufficient statistics ψ̂0

f (a) = 0Z , B(a) = λµ1Z , for a ∈ A; λµ > 0
Likelihood variance σ̃r > 0

for t← 1, 2, ... do
Observe xt;
Update posterior p̂t and parameters (θ̂, ϕ̂):
(θ̂, ϕ̂, p̂t, ψ̂t) = OnlineEM(xt; θ̂, ϕ̂, p̂t−1, ψ̂t−1)

Sample µ(a) ∼ N (µ̂(a), σ̃2
r(B

(a))−1) for a ∈ A
Select action a = argmaxa′ p̂⊤t µ

(a′)

Observe rt
Update mean reward estimates:
B(a) ← B(a) + p̂tp̂

⊤
t , f (a) ← f (a) + p̂trt

µ̂(a) = (B(a))−1f (a)

Update posterior, p̂t(z) ∝
∑

z′ p̂t(z
′)p(r|z, a; µ̂)

problem, and uses the same reward estimators {µ̂(a)} and
covariance matrices B(a). The differences between L2TS
and L2UCB are highlighted in blue in Algorithms 1 and 2.
Note that L2UCB asymptotically selects the action with the
highest expected reward p̂⊤t µ̂

(a) =
∑

z p̂t(z)µ̂
(a)
z given the

current posterior vector p̂t, and assigns an exploration bonus
to actions whose reward estimates µ̂(a)

z it is less certain of
(in terms of the covariance (B(a))−1), for states z that have
high probability p̂t(z).

We emphasize that while online EM only maintains point es-
timates (θ̂, ϕ̂), L2TS and L2UCB use exploration heuristics
which leverage uncertainty in reward parameters {µ̂(a)} and
in the current latent state zt. In comparison, the algorithm
of Hong et al. [2020] also maintains Bayesian uncertainty
over the transition matrix, requiring a more computationally
intensive particle filtering implementation. Our more com-
putationally lightweight approach focuses on maintaining
task-relevant uncertainty over (zt;µ⋆) (see Section 2), and
performed best empirically (Section 6). The computational
complexity of L2TS and L2UCB is polynomial in the num-
ber of latent states Z (due to the online EM updates shown
in Appendix A; see Cappé [2011] for further discussion)
and independent of the time t, making these algorithms
scale well in problems with very long time horizons and
low-dimensional latent structure.

5 THEORETICAL ANALYSIS

In this section, we (i) demonstrate that linear bandit reward
estimation can be effectively applied to the non-stationary
latent bandit setting from Figure 1 by upper bounding the
error of the reward estimators used by L2TS and L2UCB

Algorithm 2: Latent Linear UCB (L2UCB)
Input:
Prior over latent state, p̂0 ∈ [0, 1]Z

Initial parameter estimates (θ̂, ϕ̂)
Initial sufficient statistics ψ̂0

f (a) = 0Z , B(a) = λµ1Z , for a ∈ A; λµ > 0
Exploration parameter αUCB > 0

for t← 1, 2, ... do
Observe xt;
Update posterior p̂t and parameters (θ̂, ϕ̂):
(θ̂, ϕ̂, p̂t, ψ̂t) = OnlineEM(xt; θ̂, ϕ̂, p̂t−1, ψ̂t−1)

Compute upper confidence bounds,
πa = p̂⊤t µ̂

(a) + αUCB

√
p̂⊤t (B

(a))−1p̂t
Select action a = argmaxa′πa′

Observe rt
Update reward estimator & covariance:
B(a) ← B(a) + p̂tp̂

⊤
t , f (a) ← f (a) + p̂trt

µ̂(a) = (B(a))−1f (a)

Update posterior, p̂t(z) ∝
∑

z′ p̂t(z
′)p(r|z, a; µ̂)

(Theorem 1), and (ii) derive a high-probability regret bound
for linear Thompson sampling, using Theorem 1 to apply it
to L2TS.

5.1 REWARD ESTIMATION ERROR

In the case of a dynamical latent state, the reduction to
the linear bandit setting described in Section 3.3 results in
contexts c1:t and rewards r1:t which are not i.i.d. across time.
Here, we state a result which shows that reward estimation
via reduction to the linear bandit setting will converge to
the true reward parameters {µ(a)

⋆ } given a sufficiently long
time horizon:

Theorem 1. Assuming that (i) the latent state Markov chain
is ergodic and in equilibrium, z1 ∼ ρ

(ϕ)
eq (·), and when (ii)

the true parameters (θ⋆, ϕ⋆) are known and are used to
compute µ̂(a) [Eq. (4) with ct → p⋆t , in Eq. (5)], the error
in µ̂(a) at time t = T for any algorithm which selects the
optimal action given x1:T with probability at least πmin, is
upper bounded,5

|µ̂(a)
z − (µ

(a)
⋆ )z| (6)

<
2Z2

π2
minλ

(a)
min

√
1

δ · T

(
σ2
eq + ||µ

(a)
⋆ ||21

4

γϕ⋆

(
1 + log ζϕ⋆

))
for any z with probability at least

1− δ − 8Z3

π2
minλ

(a)
min

1

Tγϕ⋆

(κ+ log log(1/ρmin)) (7)

for any δ ∈ (0, 1). Here, κ ≈ 6.8, ζϕ⋆ is a Φ⋆-dependent nu-
merical constant (see Appendix C.2), ρmin := minz ρ

(ϕ)
eq (z)

5Here, ||µ||ℓ denotes the ℓ-norm of a vector µ.



is the equilibrium probability of the least probable latent
state, σ2

eq := maxa
∑

z ρ
(ϕ)
eq (z)Var[r|z, a] is a measure

of reward noise when the latent state is in equilibrium,
λ
(a)
min = λ

(a)
min(T ) is the minimal eigenvalue of the action-

wise asymptotic expected inverse covariance matrix6

B̄(a)(T ) :=
1

T

T∑
t=1

E
x1:t∼ρ

(ϕ)
eq

[1(p⋆t ∈ Pa)p
⋆
t (p

⋆
t )

⊤], (8)

averaged over histories generated from the equilibrium dis-
tribution, and γϕ := minz1,z2

∑
z min(ϕz,z1 , ϕz,z2) is the

minimal mixing rate of a transition matrix Φ [Boyen and
Koller, 1998].

Proof (Outline). Appendix C has the complete proof. The
derivation relies primarily on a KL divergence contraction
theorem for stochastic Markov processes from Boyen and
Koller [1998] to show that posterior probabilities used to
compute the estimators µ̂(a) are approximately uncorre-
lated, E[p⋆(z)p⋆t′(z′)] ≈ E[p⋆t (z)]E[p⋆t′(z′)], over time sep-
arations |t− t′| greater than the minimal mixing time 1/γϕ⋆ .
Thus, the quantities f (a) and B(a) in Eq. (4) are sums of ap-
proximately independent random variables over blocks of at
least 1/γϕ⋆ timesteps. We quantify this with upper bounds
on the variances Var[f (a)] and Var[B(a)] across context
and reward histories, apply Chebyshev’s inequality to obtain
high-probability bounds on the deviation of f (a) and B(a)

from their expected values at large T , and derive an eigen-
value bound for the inverse matrix (B(a))−1 in order to up-
per bound the deviation of the product µ̂(a) = (B(a))−1f (a)

from µ
(a)
⋆ .

Theorem 1 describes the effect of the latent dynamics and
resulting posterior beliefs p⋆t on reward parameter estima-
tion. At times T sufficiently large compared to the mixing
time tϕ⋆ := 1/γϕ⋆ , correlations between posterior beliefs
(i.e. the dependent variables in linear regression estimation
of µ(a)

⋆ ) at different times are small, and reward data are
close to i.i.d., allowing for a 1/

√
T error reduction. The

dependence on λ(a)min in Eq. (6), which approaches a fixed
asymptotic value in the t → ∞ limit where posterior vec-
tors pt are generated from a fixed asymptotic distribution,
captures the benefit of more diverse posterior beliefs p⋆t .
When observations xt ∼ p(·|z⋆t ) contain little information
about the true state z⋆t , posterior beliefs will be more uncer-
tain, decreasing λ(a)min, which falls to zero in the limit where
posteriors p⋆t fail to span the space of possible beliefs (e.g.
if some latent states are indistinguishable), making B(a)

eq no
longer full rank, and hence singular.7 The Z-dependence
in Eq. (6) indicates that reward estimation is easier when

6Recall that 1(pt ∈ Pa) is the binary truth value of the state-
ment that a = argmaxa′p

⊤
t µ

(a′)
⋆ is the optimal action given the

posterior belief pt.
7Furthermore, if an action a is rarely or never optimal, B(a)

eq

the latent space is lower dimensional, in which case prior
knowledge of the latent structure is more valuable. Lastly,
note that the bound probability, Eq. (7), reduces to 1− δ as
T →∞, but falls to zero at early times.

5.2 REGRET BOUND

Since Algorithm 1 uses Thompson sampling with multivari-
ate normal posteriors centered around the estimators µ̂(a)

whose errors are bounded at large t in Theorem 1, we expect
that as t→∞ and these posteriors become sharply peaked,
sampled parameters µ(a) will approach the true values µ(a)

⋆ ,
resulting in low regret.

Theorem 2 below demonstrates this, and depends on two
important quantities: (1) We define the pairwise reward gap

∆a⋆,a = ||µ(a⋆)
⋆ − µ(a)

⋆ ||2 (9)

as the Euclidean norm of the difference of mean reward
parameters for actions a⋆ and a. (2) We define the limiting
pairwise probability density

ρ
(t)
a⋆,a := lim

ϵ→0+

1

ϵ
· P

x1:t∼ρ
(ϕ)
eq

(
p⋆t ∈ Pa⋆ ,

(p⋆t )
⊤(µ

(a⋆)
⋆ − µ(a)

⋆ ) < ϵ||µ(a⋆)
⋆ − µ(a)

⋆ ||2
)
, (10)

which is the probability density that (i) action a⋆ is opti-
mal at time t, i.e. a⋆t := a(p⋆t ) = a⋆, and (ii) the reward
gap between action a⋆ and a is infinitesimally small. This
quantifies the probability that the sequence of context data
x1:t (generated with parameters θ⋆, ϕ⋆, µ⋆) will determine
a posterior p⋆t for which the optimal action is very diffi-
cult to resolve. We denote the t → ∞ limit of Eq. (10) –
which is well-defined due to the ergodicity and asymptotic
equilibration of the latent state – as ρa⋆,a := limt→∞ ρ

(t)
a⋆,a.

With these definitions, we state our main result:

Theorem 2. Under the same conditions as Theorem 1 (i.e.
p̂t → p⋆t ), and when reward parameter vectors satisfy
||µ(a)

⋆ ||1 < uµ ∈ R+ for all a, the expected regret incurred
by Algorithm 1 (with σ̃r = 1) after T timesteps satisfies the
upper bound

R(T ) ≤ 8Z3

π2
min

√
∆likely∆worstT +O(T 2/5) (11)

where ∆worst := maxa⋆,a ∆a⋆,a is the worst-case reward
gap and

∆likely = 2Zλ−2
min

(
σ2
eq +

4u2µ
γϕ⋆

(
1 + log ζϕ⋆

))∑
a⋆,a

ρa⋆,a

∆a⋆,a
,

(12)
with ρa⋆,a defined above, and other quantities defined in
Theorem 1.

will approach the zero matrix, and again λ
(a)
min → 0 and the bound

becomes weak due to less data for action a.



Proof (Outline). Appendix D has the complete proof, and
follows several steps: (1) We derive a bound (Lemma D.1)
on the probability of a suboptimal action at ̸= a⋆t for lin-
ear Thompson sampling, under the assumption of an upper
bound on the estimation error |µ̂(a) − µ(a)

⋆ |. (2) We extend
(1) into a high-probability bound on the regret incurred at
timestep t (Lemma D.2), by taking an expectation over lin-
ear bandit context vectors. (3) We sum over timesteps to
bound the cumulative regret (Corollary D.3.1), by decom-
posing the regret at time t into the “likely” regret ∝ ∆likely

when the per-timestep regret bound holds and a worst-case
regret ∆worst when it fails with probability δ(t). We opti-
mize the time-dependent function δ(t), which reduces regret
by a factor of

√
∆likely/∆worst relative to the worst-case.

(4) We use the specific estimator bound from Theorem 1 to
apply the linear Thompson sampling regret bound, Corol-
lary D.3.1, to the latent bandit setting, where linear bandit
contexts are posterior beliefs, ct = p⋆t .

Structure of Theorem 2. The dependence on ρa⋆,a/∆a⋆,a

captures the fact that the “likely” regret increases when there
is more probability mass for posterior beliefs p⋆t for which
the optimal action is hard to resolve, and that decreasing
the reward gap ∆a⋆,a makes the optimal action still harder
to resolve when such posterior beliefs occur. We discuss
dependence on the number of actions K, as well as the
scaling of ∆likely with the squared estimation error, Eq. (6),
at the end of Appendix D.6.

Related bandit literature. Theorem 2 is a bound for linear
Thompson sampling, applied to the case where the context
vectors are posterior probability vectors in a latent bandit
problem, ct = p⋆t (see Lemma 1). While this limits its
applicability in the latent bandit setting to the case where
(θ⋆, ϕ⋆) are known, the bound is novel in relation to existing
regret bounds, in three ways:

• Problem-dependence. Eq. (12) describes the influence of
task parameters (θ⋆, ϕ⋆, µ⋆) on regret, via their influence
on posterior beliefs p⋆t (in ρa⋆,a), and resulting reward
uncertainty (λ−1

min).

• Heavy-tailed reward distributions. Theorem 2 makes no
assumptions (e.g. sub-Gaussianity) about the reward dis-
tribution. This is because the derivation of Theorem 1
relies mainly on Chebyshev’s inequality – which only
assumes a finite variance for reward distributions – to
bound the estimator error and covariance.8

• Non-stationarity. Our result applies in a non-stationary
linear bandit setting where contexts ct = p⋆t are corre-
lated across time (via latent state dynamics).9

8In the case of sub-Gaussian rewards, we expect the Theorem 1
to hold with higher probability than Eq. (7), as outlier rewards
are exponentially rare. This will improve the O(

√
T ) scaling of

Theorem 2.
9The limiting case where contexts ct are i.i.d. can effectively

Our results compare to notable existing works as follows:

• Linear Thompson sampling. The problem-dependent re-
gret bound for linear Thompson sampling [Agrawal and
Goyal, 2013a] is O(log T ), but this and most subsequent
works assume sub-Gaussian (and i.i.d.) rewards.

• Heavy-tailed reward distributions. Some works [Medina
and Yang, 2016, Xue et al., 2021] have obtained problem-
independent O(T 1/2+ϵ) regret bounds with heavy-tailed
rewards. In comparison, our bound captures problem-
dependent structure in a more general setting with non-
stationarity and latent variables.

• Non-stationary bandits. Existing bounds [Luo et al.,
2018, Hong et al., 2020] depend on the number of change-
points; when distribution changes occur at a constant rate
(e.g. due to latent state changes), these bounds are Ω(

√
T )

or linear, in contrast to our O(
√
T ) bound.

• Latent bandits. The Thompson sampling regret bounds
of Hong et al. [2020] are complementary to ours, in
that (i) they are problem-independent and assume sub-
Gaussian rewards, but more importantly (ii) they assume
an alternative definition of regret, relative to an oracle
policy which sees the true latent state. (Note that, in
contrast to our O(

√
T ) regret, regret relative to such an

oracle cannot be sublinear as long as latent state changes
occur at a constant rate.)

Extending our regret bound to the case where (θ⋆, ϕ⋆) are
learned would be straightforward10 given a bound on the
posterior error |p̂t − p⋆t |. (We are not aware of such conver-
gence guarantees for online EM applied to HMMs.)

6 EXPERIMENTS

In order to demonstrate the strong performance of our algo-
rithms, we conduct experiments to compare the L2TS and
L2UCB algorithms11 with relevant baselines on (i) discrete
latent bandit tasks with synthetic data, and (ii) a Gaussian
latent bandit problem for a mining application involving
real data. In all cases, the true initial state distribution p⋆0(z)
differs at random from the model initial state distribution
p0(z) (see Appendix B).

Multinomial Context and Reward Distributions. Prob-
lem 1. In this problem, Z = 2, K = 2, and xt ∈ {1, ..., X}
with X = 4, and with Φ⋆ =

(
0.9 0.1
0.1 0.9

)
. We used 5 offline

samples x ∼ p(x|z) for each z to improve the initial esti-
mate θ̂ at t = 0 for both L2TS and L2UCB. Problem 2. In
be obtained by making the mixing rate large, γϕ⋆ → ∞, in which
case intrinsic reward noise dominates, R(T ) ∝ σeq.

10Lemmas D.2 and D.3 bound the regret of linear Thompson
sampling in the case where the agent’s contexts ĉt = p̂t deviate
from the true contexts ct = p⋆t which determine expected rewards.

11Code will be made available at github.com/elliotnelson/hmm-
bandits.

https://github.com/elliotnelson/hmm-bandits
https://github.com/elliotnelson/hmm-bandits


Figure 2: Top: Mean cumulative regret for a synthetic task
with discrete categorical variables (Problem 1). Shaded re-
gions show uncertainty in the mean over 10 episodes. Bot-
tom: Results for a synthetic task with clustered contexts
(Problem 2).

this problem, (Z,X,K) = (4, 12, 8), with Bernoulli reward
probabilities sampled uniformly in (0, 1), ϕ⋆z,z = 0.75 on-
diagonal and uniform off-diagonal, and contexts clustered
into groups which are only emitted by a single latent state.
(See Appendix B.1 for more details to both problems.)

Mining Application. We consider an application where
a rover explores and mines for oxide ore. The rover travels
over various blocks of land taking x-ray fluorescent me-
ter samples (context x), which provide information about
the oxide grade, which in turn depends on the presence of
one of three latent geological classes (latent state z). Non-
stationarity in this application is from spatial dependence be-
tween adjacent blocks of land. We assume the rover chooses
between two mining strategies for different minerals (ac-
tions a), such that there are varying reward probabilities
depending on uncertain revenue from the mined ore as well
as fixed and variable costs. We provide numerical details
about the latent bandit model parameters in Appendix B.2,
highlighting in particular how the context distribution p(x|z)
is obtained using real-world geological data [Eidsvik et al.,
2015].

Figure 3: Top: Mean cumulative regret in a Gaussian-
variable rover mining task. Shaded regions show uncertainty
in the mean over 10 episodes. Bottom: As above but with a
rarely changing latent state (nearly diagonal Φ⋆).

Baselines. We compare L2TS and L2UCB with three base-
lines (see Appendix B for all parameter settings): (1) Uncer-
tain Model Thompson Sampling (umTS): We adapt Algo-
rithm 3 of Hong et al. [2020] – which uses particle filtering
to maintain a posterior over reward models, latent states,
and latent transition matrices – to our setting by using oracle
knowledge of p(xt|z; θ⋆) for additional posterior updates,
which we denote in Figures 2 and 3 with the label umTS⋆.
(In the graphical setting of Hong et al. [2020], the latent
state only influences rewards, and not contexts.) (2) Exp4.P
[Beygelzimer et al., 2010]: We use expert advisor classi-
fiers trained (with varying latent state distributions) to label
contexts x according to corresponding optimal actions, as
detailed in Appendix B, and modify the weight update of
Exp4.P to discount the influence of old context data on
current weights assigned to experts, and use the true dy-
namics timescale to set the discount factor. (3) Discounted
Thompson Sampling (dTS) [Raj and Kalyani, 2017]: We
extend dTS to maintain success (r = 1) and failure (r = 0)
counts for each discrete context-action pair (x, a), and (like
Exp4.P) allow dTS to use the true dynamics timescale to set
the discount factor γ. (We only include dTS in the experi-
ment with discrete context variables.)



We also compare to oracle variants of L2TS and L2UCB
which use the true posterior p⋆t (i.e. condition on the true
parameters θ⋆, ϕ⋆, µ⋆) instead of the estimate p̂t. As such,
the oracle variants are simply linear Thompson sampling
and LinUCB with uncorrupted or unbiased vectors ct = p⋆t .
(For this reason, the L2TS oracle satisfies the conditions for
Theorems 1 and 2.) Lastly, in the rover mining experiment,
we also compare to linear Thompson sampling using the
raw contexts xt (instead of posteriors p̂t or p⋆t ).

Results. Figures 2 and 3 show the cumulative regret for
all algorithms, averaged over 10 episodes, for (respectively)
the categorical-variable synthetic tasks and the Gaussian-
variable rover mining tasks. L2TS significantly outperforms
baselines. While umTS models the true latent structure and
is given additional prior knowledge of θ⋆, it struggles rel-
ative to our algorithms except in the low-dimensional task
(Problem 1), possibly due to challenges of scaling particle
filtering to higher dimensions. Exp4.P suffers from asymp-
totically linear regret due to its inability to model the un-
derlying latent dynamics.12 Discounted TS performs most
poorly in Figure 2 due to its inability to model the latent
space or to transfer information gained across different dis-
crete contexts. The poor performance of linear Thompson
sampling relative to L2TS in Figure 3 shows the benefit
of using the (history-dependent) posterior probabilities pt
as contexts for linear reward estimation, instead of the di-
rectly observed contexts xt. In most cases, the asymptotic
performance of L2TS and L2UCB is comparable to their
respective oracle variants (differing mainly in the overhead
cost incurred at early times), indicating that approximation
error in the learned transition probabilities and context dis-
tributions is under control. (See Appendix B.2 for additional
results on parameter estimation error.)

7 CONCLUSION & DISCUSSION

In this paper, we have developed a novel multi-armed bandit
algorithm for environments with a dynamical latent state
influencing both observations (contexts) and rewards. Our
algorithm uses prior knowledge of latent graphical struc-
ture to transform a nonlinear and non-stationary contextual
bandit problem into a linear bandit problem, exploiting the
linearity between rewards and posterior probabilities over
the latent state. While we considered a specific method (On-
line EM) to learn the latent transition matrix and context
distributions, with specific linear bandit algorithms (LinTS,
LinUCB), the high-level approach of treating a posterior
belief over latent variables (or over unknown parameters) as
context information is general; it can be applied with any
method for sequential Bayesian inference, and with other

12While Exp4.P can leverage statistical correlation between
contexts and rewards that is modeled by its expert advisors, it
cannot learn the temporal structure of this correlation, which is
governed by the latent state.

sequential decision-making algorithms. Our theoretical anal-
ysis underscores the influence of the latent dynamics and
distributional structure of the environment on task difficulty.
Directions for future work include online learning of the
latent space dimensionality, application of HMM learning
convergence guarantees [Hsu et al., 2012] to non-stationary
bandit problems, and extensions of our methodology to
partially observable Markov decision process (POMDP)
settings or to more complex graphical models.
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