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ABSTRACT

Network pruning has been widely adopted for reducing computational cost and
memory consumption in low-resource devices. Recent studies show that saliency-
based pruning can achieve high compression ratios (e.g., 80–90% of the parameters
in original networks are removed) without sacrificing much accuracy loss. Never-
theless, finding the well-trainable networks with sparse parameters (e.g., < 10%
of the parameters remaining) is still challenging to network pruning, commonly
believed to lack model capacity. In this work, we revisit the procedure of existing
pruning methods and observe that dead connections, which do not contribute to
model capacity, appear regardless of pruning methods. To this end, we propose
a novel pruning method, called all-alive pruning (AAP), producing the pruned
networks with only trainable weights. Notably, AAP is broadly applicable to
various saliency-based pruning methods and model architectures. We demonstrate
that AAP equipped with existing pruning methods (i.e., iterative pruning, one-shot
pruning, and dynamic pruning) consistently improves the accuracy of original
methods at 128×–4096× compression ratios on three benchmark datasets.

1 INTRODUCTION

The state-of-the-art neural networks have shown remarkable performance gains on various down-
stream tasks such as computer vision, natural language processing, and speech recognition. Because
neural networks are typically overparameterized, they require high computational cost and memory
consumption. Such a nature inherently hinders the deployment of models with excessive parameters
on low-end devices such as mobile, embedded, and on-device systems.

Network pruning (Reed, 1993) is the prevalent technique to compress high-capacity models by
removing unnecessary units such as weights/filters while maintaining the performance with minimal
accuracy loss. Existing pruning methods can be divided into two categories. 1) The first group
enforces the sparsity as model regularization (Chauvin, 1988; Weigend et al., 1990; Ishikawa, 1996;
Molchanov et al., 2017a; Carreira-Perpiñán & Idelbayev, 2018; Louizos et al., 2018). It is theoretically
well-investigated and does not require network retraining. 2) Another group develops saliency criteria
to prune less important units (Mozer & Smolensky, 1988; LeCun et al., 1989; Karnin, 1990; Hassibi
et al., 1993; Han et al., 2015; Guo et al., 2016; Lee et al., 2019; Park et al., 2020; Evci et al., 2019).

Because of its simple operation and outstanding pruning performance, magnitude pruning (MP) (Han
et al., 2015; Narang et al., 2017; Zhu & Gupta, 2018) is the most popular saliency-based pruning
method. Recently, the effectiveness of MP is highlighted by the success of the lottery ticket hypothe-
sis (Frankle & Carbin, 2019) and learning rate rewinding (Renda et al., 2020), which achieves less
than 1% accuracy loss even after pruning 90% of the parameters. However, all pruning methods show
that the trade-off between sparsity and accuracy is significantly degraded, especially at the extremely
high sparsity (Gale et al., 2019; Liu et al., 2019; Blalock et al., 2020). Considering the explosive
increase in the size of state-of-the-art models for downstream tasks (e.g., GPT-3 (Brown et al., 2020)
for machine translation and FixEfficientNet-L2 (Touvron et al., 2020) for image classification), the
effective pruning methods at extreme compression ratios must be accomplished, and it is particularly
crucial for adopting high-capacity models to low-resource devices (e.g. One Laptop per Child).

To break the performance bottleneck at high compression ratios of the state-of-the-art pruning
methods, we investigate the procedure of existing pruning methods. Surprisingly, it is revealed that
all existing studies overlook the existence of dead neurons after pruning – dead neurons are the nodes
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LeNet-300-100 MNIST
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ResNet-18 CIFAR-10
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Figure 1: Model accuracy and percentage of dead connections under varying compression ratios:
LeNet-300-100 on MNIST, ResNet-18 on CIFAR-10, and ResNet-50 on Tiny-ImageNet. We used
IMP with learning rate rewinding (Renda et al., 2020) as the base pruning method. The percentage of
dead connections is calculated by the number of dead connections divided by the total number of
connections in a given network.

with no input connections or output connections. That is, dead neurons make all their connected
weights useless, called dead connections. Although Han et al. (2015) have already raised the potential
issue of dead neurons, they anticipated that the dead neurons could be negligible after multiple
iterative pruning. Unfortunately, we find that this problem is not as simple as their expectation.

Figure 1 depicts prediction accuracy (green line) and the percentage of dead connections (red line) over
various compression ratios. For this empirical study, iterative magnitude pruning (IMP) with learning
rate rewinding (Renda et al., 2020) is employed as the baseline pruning method. Then, we analyze
the correlation between pruning accuracy and the occurrence of dead neurons on three benchmark
datasets. We discover two meaningful findings: 1) The dead neurons cannot be successfully removed
by iterative pruning, especially at high compression ratios. 2) The severe performance degradation at
high compression ratios is strongly correlated with the number of dead connections, i.e., they are
inversely proportional to each other.

Based on these valuable findings, we propose all-alive pruning (AAP), which improves the pruning
performance by effectively eliminating dead connections. Specifically, we search dead neurons at the
pruning stage by inspecting their gradient flows – when zero gradients are passing through the node,
we regard them as dead neurons. Once identified, dead neurons and corresponding dead connections
(any weights linked from or to dead neurons) are removed together during the pruning procedure.
Note that detecting gradient-based dead neurons can be applied for complex model architectures
with skip connections. If we remove more weights than a sparsity threshold, we can revive some
weights with the highest saliency scores. As a result, AAP constitutes all-alive subnetwork, i.e., all
connections in the subnetwork are kept as trainable weights.

To summarize, the key advantage of AAP is two-fold: 1) AAP is versatile – it is broadly applicable to
various saliency-based pruning methods and model architectures by minimizing the loss of prediction
accuracy. 2) AAP consistently improves the accuracy of the original pruning methods at high
compression ratios and breaks the state-of-the-art performance on three benchmark datasets (i.e.,
MNIST, CIFAR-10, and Tiny-ImageNet).

2 RELATED WORK

Network pruning utilizes the highly overparameterized nature of modern neural networks to com-
press the model. Also, it provides meaningful insight into what leads to the success of neural
networks; small subnetworks in the original network can achieve comparable performance and
improve generalization effects (Arora et al., 2018).

Recent advances. In general, network pruning can be categorized into two groups. The first approach
employs the loss function with regularization terms to enforce the sparsity (Chauvin, 1988; Weigend
et al., 1990; Ishikawa, 1996). Also, Molchanov et al. (2017a) proposed variational dropout to produce
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highly sparse networks and Louizos et al. (2018) reparameterized network weights as the product of
weight and a stochastic gate variable. Carreira-Perpiñán & Idelbayev (2018) attempted to minimize
the loss using the stochastic version of projected gradient descent.

The second approach utilizes the sensitivity of the loss for weights (LeCun et al., 1989; Karnin, 1990;
Hassibi et al., 1993). For saliency-based criteria, Han et al. (2015) proposed iterative pruning based on
the magnitude of weights. Despite its simplicity, magnitude pruning shows significant performance
gain at high compression ratios (Guo et al., 2016; Narang et al., 2017; Zhu & Gupta, 2018). Recently,
Park et al. (2020) proposed lookahead pruning (LAP) that considers the neighbors of connections.
While iterative pruning requires pre-trained networks, SNIP (Lee et al., 2019) and GraSP (Wang
et al., 2020) proposed to prune the network at initialization. Also, dynamic pruning methods (e.g.,
SET (Mocanu et al., 2018), DSR (Mostafa & Wang, 2019), and RigL (Evci et al., 2019)) adjust the
sparsity level with prune-and-grow cycles. Comprehensive analysis and experimental results for
network pruning can be found (Gale et al., 2019; Liu et al., 2019; Blalock et al., 2020).

Detecting dead connections in network pruning. Pruning neurons/weights may result in unwanted
side-effects, producing useless connections in the pruned networks. In structured pruning, Li
et al. (2017) and Liu et al. (2020) attempted to eliminate dead neurons by merely considering the
connections between adjacent filters. However, it is not applicable for complex networks with shortcut
connections. In unstructured pruning, Han et al. (2015) discussed the existence of dead weights
but neglected them. Evci et al. (2019) proposed dynamic pruning, which iteratively updates the
weights to identify more useful weights under given computing constraints. Although dynamic
pruning eliminates the connections with relatively low importance, it still cannot correctly handle
dead connections in each pruning stage. In contrast, this paper devises a new pruning method that
removes dead connections and keeps all trainable connections in general networks, including shortcut
connections and batch normalization.

3 PROPOSED METHOD: ALL-ALIVE PRUNING (AAP)

Given a dataset D = {x(i), y(i)}ni=1 and a sparsity threshold τ (i.e., the number of non-zero weights),
unstructured pruning can be formulated as the constrained optimization problem.

min
c,w
L(c�w;D) = min

c,w

1

n

n∑
i=1

`(c�w;D), s.t. c ∈ {0, 1}m and ||c||0 ≤ τ, (1)

where m is the number of parameters, and n is the number of samples in D. Also, `(·) is the loss
function, � is the Hadamard product, and || · ||0 is the L0 norm. c ∈ {0, 1}m is the indicator variable
to determine whether or not w is pruned. In other words, cj indicates whether wj is active (cj = 1)
or inactive (cj = 0).

In this work, we aim at improving saliency-based pruning, where the importance of weights in the
network is measured by a pre-defined saliency criterion. Popular criteria include the magnitude
of weights (Han et al., 2015), the sensitivity of weights (Lee et al., 2019), and the neighboring
connections of weights (Park et al., 2020). Given a saliency criterion, we calculate the importance of
weight wj as a saliency score sj ; the higher the saliency score, the more important the weight is. Then,
each element of c is expressed as cj = 1 if sj ∈ S and cj = 0 otherwise, where j ∈ {1, · · · ,m}
and S is a set of τ -largest scores associated with w. That is, τ connections are kept in the original
network, and the rest of the connections are removed from the network.

3.1 LIMITATIONS OF EXISTING SALIENCY-BASED PRUNING

Depending on training efficiency, prior studies in saliency-based pruning utilize either one-shot
pruning or iterative pruning. One-shot pruning solely erases selected connections at once and retrains
the network. Meanwhile, iterative pruning alternates pruning and retraining cycles by gradually
increasing the sparsity levels at multiple steps. Based on this process, iterative pruning can achieve
higher accuracy than one-shot pruning for highly compressed networks.

However, pruning weights can lead to unexpected changes in network architecture, and it affects the
importance of weights. Although the pruned network can constitute the most useful subnetwork in
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terms of selected criteria, the subnetwork may include useless connections, called dead connections,
as a result of pruning.

To describe the emergence of dead connections, we consider a simple fully-connected network. Here,
w

(l)
ij is a weight connecting two nodes a(l−1)i and a(l)j between the (l− 1)-th layer and the (l)-th layer.

Based on a backpropagation rule, the gradient of w(l)
ij is rewritten as follows:

∂L(w;D)
∂w

(l)
ij

=
∂a

(l)
j

∂w
(l)
ij

∂L(w;D)
∂a

(l)
j

= a
(l−1)
i δ

(l)
j and a

(l)
j = ψ

(
d∑
i=1

w
(l)
ij a

(l−1)
i + b

(l)
j

)
, (2)

where δ(l)j = ∂L(w;D)/∂a(l)j , and ψ(·) is the activation function. Also, a(l)j and b(l)j are an activation
and a bias of the j-th node at the (l)-th layer.

After pruning, the updated network can possibly have a dead neuron which appears when the neuron
has zero input connections or zero output connections, i.e., either a(l−1)i or δ(l)j is zero:

1) No input connections: When a(l−1)i = 0, a(l−1)i is apparently a dead neuron. According to Eq. (2),
the gradient of all output weights w(l)

i∗ are also zeros, and thus can be marked as dead connections.
Note that, when a(l−1)i = bl−1i , a(l−1)i is also regarded as a dead neuron since we can reestablish the
network by transferring the bias b(l−1)i of a(l−1)i to the bias b(l)j of a(l)j .

2) No output connections: When δ(l)j = 0, all input weights w(l)
∗j connected to a(l)j and the biases blj

can be removed.

When the dead neurons are detected, we can also eliminate all useless connections, including the
biases and the weights for batch normalization, associated with dead neurons. Note that the dead
neurons in the fully-connected layer can be extended as filters in the convolutional networks.

3.2 BUILDING ALL-ALIVE SUBNETWORK

The key idea of our pruning method, namely all-alive pruning (AAP), is to build all-alive subnetwork
during the pruning procedure. Toward this goal, we first sort all weights by a saliency-based criterion.
We highlight that our pruning method can be applied to various saliency-based criteria. Once the
weights with τ -highest scores are determined, we check whether dead connections appear as a side
effect of removing the connections. That is, additional dead connections lead to overly pruned
networks. To meet the sparsity threshold τ , we can revive some connections with the highest saliency
scores among previously pruned connections and update c.

Specifically, the overall process of AAP consists of the following three phases. (In Appendix,
Algorithm 2 is the pseudo-code of detecting dead connections in the pruning process.)

1) Eliminating dead connections: Choose a set of high-impacted τ weights according to a saliency-
based criterion, and eliminate the rest weights as well as dead connections that are associated with
pruned weights.

2) Reviving new connections: If the more number of weights are eliminated than a sparsity threshold,
we restore some connections with the highest saliency scores, where the restored connections have
their original weight values.

3) Repeat steps 1–2 until the pruned subnetwork is converged to the all-alive subnetwork.

Figure 2 depicts AAP equipped with magnitude pruning (MP). When we prune four weights from
the original network, we eliminate the least important connections (dashed lines). While existing
pruning methods include dead connections, we eliminate all the incoming (or outgoing) weights of a
dead neuron as dead connections (red color) and then revive alternative connections (green color).
Finally, all remaining weights are active, thereby the pruned network being all-alive. Please refer to
Algorithm 2 for the detailed procedure of AAP in the Appendix.

We observe that AAP has two key advantages. Firstly, all weights in the subnetwork are kept alive
without dead connections. That is, we utilize all connections in the subnetwork. Owing to this
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Figure 2: Overall procedure of all-alive pruning (AAP) with a magnitude-based criterion. While
existing pruning has a dead neuron (red circle) and its dead connections (red line), AAP safely
eliminates dead connections and revive other connections (green line).

compact pruning, we can further compress networks; this is equivalent to improve the prediction
accuracy under fixed compression ratios, particularly effective for pruning the networks at extremely
high compression ratios. Secondly, since AAP eliminates all the weights associated with dead
neurons, AAP results in the memory layout similar to those of structured pruning methods. As a
positive byproduct of AAP, it is more compatible with modern memory architectures.

4 EXPERIMENTAL RESULTS

We evaluate AAP with a variety of network architectures on MNIST, CIFAR-10, and Tiny-ImageNet
datasets. Concretely, we adopt LeNet-300-100 (LeCun et al., 1998), ResNet (He et al., 2016),
MobileNetV2 (Sandler et al., 2018), and EfficientNet (Tan & Le, 2019). We employ iterative
magnitude pruning (IMP) with learning rate rewinding (Renda et al., 2020), a state-of-the-art pruning
method, as our base scheme of AAP. Also, we incorporate AAP into other saliency-based pruning
methods such as SNIP (Lee et al., 2019), lookahead pruning (LAP) (Park et al., 2020), and dynamic
pruning inspired by RigL (Evci et al., 2019).

Implementation details. We use the same environmental setting for all experiments as proposed
by Blalock et al. (2020), including initialization values, hyper-parameters, and data augmentation
settings. We use Adam optimizer, the batch size of 60, and the constant learning rate of 0.0003 with
50 training epochs for MNIST dataset. For CIFAR-10 dataset, we use the batch size of 128, and
the learning rate is initially set to 0.1 and is decayed by 0.1 at every 30 epochs. For Tiny-ImageNet
dataset, we use the batch size of 1024, and the learning rate linearly warmed up to its maximum value
0.4 at epoch 5 and decayed by 0.1 at epochs 30, 60, and 80. We use SGD with a momentum of 0.9
and a weight decay rate of 0.0001 for both datasets and train them for 120 epochs and 90 epochs,
respectively. For all experiments, we use 10% of the training set as the validation set.

For IMP, we rewind the learning rate schedule to the beginning of the training and retrain from the
final values of the weights. For iterative pruning, we prune 50% of the remaining parameters in
each step. Exceptionally, since we use the constant learning rate for MNIST dataset, we use weight
rewinding proposed by Frankle & Carbin (2019). For MNIST dataset, we re-initialize the pruned
model’s weights to the value of the original model’s initial weights.

Compression ratio. To measure the degree of network pruning, we adopt a compression ratio, which
is calculated by original model size / compressed size. For instance, when only 1% of the parameters
remaining in the compressed network, the compression ratio is 100×. Note that we consider the
number of all parameters, including the weights for batch normalization and biases.

4.1 EFFECT OF ALL-ALIVE PRUNING

We employ IMP with learning rate rewinding (Renda et al., 2020) and weight rewinding (Frankle
& Carbin, 2019) as the baseline pruning method due to their state-of-the-art performances. At each
pruning iteration, we apply AAP after pruning the connections with the lowest magnitude scores. To
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(a) LeNet-300-100 MNIST
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(b) ResNet-32 CIFAR-10
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(c) ResNet-18 CIFAR-10
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(d) ResNet-50 Tiny-ImageNet
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(e) MobileNetV2 Tiny-ImageNet
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(f) EfficientNet-B0 Tiny-ImageNet

IMP-AAP IMP Regions of AAP

Figure 3: Accuracy comparison between IMP and IMP-AAP across various model architectures and
compression ratios by iterative pruning. We use weight rewinding for MNIST dataset and learning
rate rewinding for the rest.

validate AAP can alleviate performance degradation at high compression ratios, we start to apply
AAP to the point (gray colors in Figure 3), where the performance of pruned networks begins to
be worse than the original model. On the basis of IMP, our pruning method, namely IMP-AAP, is
compared with IMP in terms of the prediction accuracy under the same compression ratio to evaluate
the effectiveness of AAP.

LeNet-300-100 on MNIST. LeNet-300-100 consists of the two-layer fully connected (FC) networks
with 300 and 100 nodes. We compute the test accuracies of IMP and IMP-AAP at various compression
ratios, starting from 16× to 1024×. Figure 3(a) clearly showcases the performance gains by adopting
AAP, particularly noticeable as the compression ratio exceeds 64×. Specifically, IMP-AAP achieves
gains of 10.92% at 512× and 32.25% at 1024×. From this result, we find two positive effects of
AAP: 1) The impressive performance gains at the high compression ratios show the effectiveness of
AAP. 2) The success of LeNet-300-100 represents that AAP is effective in fully connected layers.

ResNet-32 and ResNet-18 on CIFAR-10. We evaluate AAP on ResNet-32, and ResNet-18 for
CIFAR-10 dataset. Figure 3(b) compares the test accuracies of IMP and IMP-AAP over the com-
pression ratios from 8× to 512× on ResNet-32. Despite the rapid drop of IMP in performance after
128×, IMP-AAP slows down the degradation of IMP and always achieves higher accuracies than
IMP under the same compression ratios. Figure 3(c) depicts the experimental results from ResNet-18.
Interestingly, we observe the significant benefits by introducing AAP – IMP-AAP improves IMP
by 6% at an extremely high compression ratio 2048×. The performance gaps are consistently in-
creasing at higher compression ratios (e.g., greater than 512×). From both ResNet-32 and ResNet-18
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Figure 4: Accuracy of applying AAP with various saliency-based pruning (i.e., one-shot magnitude
pruning (One-shot MP) (Frankle & Carbin, 2019; Renda et al., 2020), SNIP (Lee et al., 2019),
lookahead pruning (LAP) (Park et al., 2020), and dynamic pruning by RigL (Evci et al., 2019).

experiments, it is consistently observed that the pruned network by IMP-AAP often discards the
entire ResBlock except for the skip connection. We conjecture that this is possible because the skip
connection allows using the outputs from the previous layers while achieving a high compression
ratio. Overall, we confirm that AAP is also effective in compressing convolution layers and the
complex structure even with skip connections.

ResNet-50, MobileNetV2, and EfficientNet-B0 on Tiny-ImageNet. For Tiny-ImageNet dataset,
we employ ResNet-50, MobileNetV2, and EfficientNet-B0 as backbone networks. For ResNet-50, we
observe that IMP-AAP improves the trade-off between sparsity and accuracy. When the compression
ratio is 512×, IMP experiences a severe performance drop, while IMP-AAP improves IMP by 7%.
In Figures 3(e) and 3(f), we evaluate AAP on MobileNetV2 and EfficientNet-B0 to validate whether
or not AAP is still effective in the compact backbone models (i.e. having fewer parameters). Due
to the highly efficient nature of MobileNetV2 and EfficientNet-B0, both IMP and IMP-AAP suffer
from performance degradation when pruning at high compression ratios (e.g., greater than 16×).
However, IMP-AAP still consistently achieves a meaningful improvement on top of IMP. Concretely,
IMP-AAP consistently enjoys the performance improvements about 1-2% at the compression ratios
greater than 8× for MobileNetV2. For EfficientNet-B0, the gain by IMP-AAP is also noticeable –
IMP-AAP shows 2% improvement on test accuracy at 64× and 6% at 128×.

4.2 APPLICABILITY ON VARIOUS SALIENCY-BASED PRUNING

To evaluate the versatility of AAP, we apply AAP on top of existing pruning methods and see
whether or not AAP can enjoy the performance benefits of others. We re-implement other saliency-
based pruning, referring to the PyTorch implementations, i.e., SNIP1 and LAP2. We apply the same
criterion as the weights to the biases for SNIP and use global pruning for LAP. We also validate
AAP in dynamic pruning setting, where the prune-and-grow strategy was introduced by RigL (Evci
et al., 2019). Specifically, we prune k connections with the lowest magnitude weights then grow k
connections with the highest magnitude gradients for every 1500 steps until 3/4 of the full training
epochs. We decay k using a cosine update schedule, where the initial k is 30% of all connections
in the network. Then, we apply AAP after each prune-and-grow cycle. Originally, RigL introduced
the sparsity strategy for practical training, which assigns the target sparsity level at each layer for
preserving low FLOPS. In this experiment, we prune and grow the weights globally, including biases

1https://github.com/mil-ad/snip
2https://github.com/alinlab/lookahead_pruning
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(a) One-shot MP without AAP (b) One-shot MP with AAP

Figure 5: Visualization of remaining weights after applying AAP to one-shot MP at 128× compression
ratio using the same unpruned network. The second fully-connected layer (300× 100) of LeNet-300-
100 on MNIST is chosen for the illustration. Each dot denotes the unpruned weight. Whereas 138
out of 300 neurons and 93 out of 100 neurons have unpruned connections in one-shot MP, only 85
out of 300 neurons and 44 out of 100 neurons have unpruned connections after applying AAP. Each
achieves 73.23% and 93.12% accuracy, respectively.

and weights for batch normalization unlike RigL. We employ LeNet-300-100 for MNIST dataset and
ResNet-18 for CIFAR-10 dataset as backbone networks.

For LeNet-300-100, we conduct comparisons on the basis of one-shot magnitude pruning (One-shot
MP), SNIP, and lookahead pruning (LAP). For ResNet-18, the experiment of LAP is not conducted
since our method considers all the parameters in the network, including those in skip connections
and batch normalization; LAP does not fully consider skip connections and parameters associated
with batch normalization. Instead, for ResNet-18, we choose dynamic pruning as a base pruning
scheme and apply AAP at each prune-and-grow cycle. For one-shot MP, we apply weight rewinding
on LeNet-300-100 and learning rate rewinding on ResNet-18.

Figure 4 depicts the efficiency of AAP over various saliency-based pruning. As expected, since
one-shot pruning involves a single pruning stage, any one-shot pruning methods and those with AAP
are less effective than IMP. Nevertheless, applying AAP clearly improves various saliency-based,
one-shot pruning methods. For one-shot MP on LeNet-300-100 and ResNet-18, we achieve 10% of
the accuracy improvement at 128× (from 82.47% to 93.11%) and 6% of the accuracy improvement
at 512× (from 76.6% to 82.3%), respectively. Like one-shot MP, AAP incorporates with SNIP well
for both LeNet-300-100 and ResNet-18. At 256×, AAP outperforms the original SNIP by 33% on
LeNet-300-100 (from 55.48% to 88.47%) and 3% on ResNet-18 (from 75.85% to 82.03%). On
LeNet-300-100, LAP seems to preserve the good performance even in the high compression ratio;
nonetheless, AAP can improve the performance by 12% (81.73% to 93.58%) at 256×. Unlike SNIP
or LAP, prune-and-grow policy in dynamic pruning leads to architectural changes in the network
model. AAP is also successful in improving dynamic pruning; AAP achieves 15% improvements
at 256× for dynamic pruning on ResNet-18. From these results, we confirm the efficacy of AAP
independently of saliency-based pruning even with dynamic pruning.

In addition to the accuracy gain, Figure 5 compares the weight distribution of the pruned network
between one-shot MP and the same one with AAP. While all active neurons from one-shot MP
are spread arbitrarily, those from AAP tend to form clusters for more columns and rows. This
is notable because AAP does not require explicit or implicit constraints to cluster the weights.
We observe that AAP produces a small-dense subnetwork similar to structured pruning (Li et al.,
2017; Molchanov et al., 2017b; Liu et al., 2020), which is more favorable for modern memory and
computing architectures even with unstructured pruning.

5 CONCLUSION

While existing studies mainly focus on developing new saliency-based criteria or optimizing mag-
nitude pruning methods, existing studies do not properly address the dead connections during the
pruning process. In this paper, we propose a simple-yet-effective and versatile unstructured pruning
method, namely all-alive pruning (AAP), to eliminate dead connections and make all weights in the
subnetwork trainable. In experimental results, AAP consistently improves various saliency-based
pruning methods with different model architectures at 128×–4096× compression ratios, achieving
state-of-the-art performance on several benchmark datasets.
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A DETAILED ALGORITHMS OF THE PROPOSED METHOD

Finding dead connections. Given a binary mask vector c ∈ {0, 1}m and the corresponding pa-
rameter w ∈ Rm, we find a dead connection vector d ∈ {0, 1}m, where d(l)ij is 1 if w(l)

ij is a dead

connection; d(l)ij is 0 otherwise. When the weight matrix is higher than two-dimensional, e.g.filters in
CNN, the first two dimensions are regarded as input and output dimensions. To simplify the notation,
gi∗ = 0 is same as gi:∗:∗:∗ = 0.

Algorithm 1 is the pseudo-code of finding dead connections. First of all, we preprocess a network to
check the gradient of weights. In this preprocessing stage, the activation function is regarded as an
identity function. Besides, we set all weights to be positive and ignore all bias terms to avoid false
positive neurons (i.e., detecting the false dead neurons, although it is not dead neurons). After that,
we update the weights by considering the given mask vector and compute the gradient g(·) of w by
taking the all-one vector as input. After the dead connection vector is initialized with a zero vector,
we update the gradient for dead connections.

Pseudo-code of all-alive pruning. Algorithm 2 is the pseudo-code of the all-alive pruning algorithm.
Given a network, we compute the saliency score using an arbitrary saliency criterion, e.g.magnitude
pruning, SNIP (Lee et al., 2019), and lookahead pruning (LAP) (Park et al., 2020). Then we update
c using the saliency score, i.e.the weights with the lowest scores are set to 1. For the updated
sub-network, we find the dead connections and recalculate the saliency scores accordingly. That is, if
the weight is identified as a dead connection, its saliency score is set to 0. We repeat eliminating dead
connections and making all-alive subnetwork by given saliency score until all connections are kept
alive. Then we prune the network with the finally obtained mask vector.

Algorithm 1 Finding the dead connections
Input: Binary mask c ∈ {0, 1}m, Binary dead connections d ∈ {0, 1}m, model parameters w ∈ Rm
Output: Updated binary dead connections d ∈ {0, 1}m corresponding to w ∈ Rm

1: Preprocess: Make all weights positive, remove all biases.
2: w̃← w � c. . Update the pruned network with c.
3: Compute the gradient g(w̃;1). . Update the gradient g for all-one input data.
4: for l = 1 to N do
5: d

(l)
ij ← 1 if g

(l)
i∗ = 0 or g(l)

∗j = 0.
6: end for

Algorithm 2 All-alive pruning
Input: Model parameters w ∈ Rm, sparsity threshold τ
Output: All-alive subnetwork w

1: Compute saliency s for w. . Use an arbitrary saliency criterion.
2: Initialize binary dead connections d ∈ {0, 1}m as zero.
3: repeat
4: S ← top-τ connections by s.
5: Initialize c as zero and update c for S. . Set top-τ connections in S as cj = 1.
6: Update dead connections d for w and c. . Refer to Algorithm 1.
7: for l = 1 to N do
8: s

(l)
ij ← 0 if d

(l)
ij = 1. . Update the score of dead connections as s(l)ij = 0.

9: end for
10: until all connections in c is alive.
11: w← w � c

B MODEL ARCHITECTURE DETAILS AND HYPERPARAMETER SETTINGS

We modify the input and output layers of model architectures to handle a smaller size of input data.
For CIFAR-10, we use a 3 × 3 filter with a stride of 1 at the first convolutional layer of ResNet.
Because the image resolution of the Tiny-ImageNet dataset is larger than that of the CIFAR-10
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dataset, we double the stride of the first convolutional layer. For MobileNetV2 and EfficientNet-B0,
we use a stride of 1 instead of 2 at the first convolutional layer. Also, we adjust the number of output
nodes for all networks according to the number of labels for each dataset.

We re-implement SNIP and LAP, referring to the PyTorch implementations. We apply the same
criterion as the weights to the biases for SNIP. For LAP, we use global pruning (i.e.prune the entire
network at once) instead of layer-wise pruning for fair comparisons with other pruning methods; the
original LAP chooses layer-wise pruning. Whereas SNIP and LAP do not fully consider the biases
and the weights for batch normalization, our AAP equally treats and removes all parameters in the
network.

Dataset Model #Params Training settings Learning rate Accuracy

MNIST LeNet-300-100 267K Adam optimizer
Batch size: 60 0.0012 97.76±0.19

CIFAR-10
ResNet-32

ResNet-18

0.46M

11.2M

SGD optimizer
Batch size: 128
Momentum: 0.9

Weight decay: 0.0001

lr =


0.1 0 < t ≤ 30

0.01 30 < t ≤ 60

0.001 60 < t ≤ 90

0.001 90 < t ≤ 120

90.14±0.69

91.98±0.06

Tiny-ImageNet

ResNet-50

MobileNetV2

EfficientNet-B0

23.9M

2.5M

4.3M

SGD optimizer
Batch size: 1024
Momentum: 0.9

Weight decay: 0.0001

lr =



0.4 · t5 0 < t ≤ 5

0.4 5 < t ≤ 30

0.04 30 < t ≤ 60

0.004 60 < t ≤ 80

0.0004 80 < t ≤ 90

53.55±1.66

54.60±0.50

56.23±0.47

Table 1: Hyperparameters and training schedules for each dataset. t indicates the training epochs. All
accuracy is for the original model and is the average of the three trials.

C DETAILED EXPERIMENTAL RESULTS

We report numerical results depicted in Figure 3. Note that all the results are computed by averaging
three trials with different random seeds. In all tables, subscripts denote standard deviations, and
bracketed numbers indicate the accuracy gains obtained by the proposed model over the original IMP.

32× 64× 128× 256× 512× 1024×

% params 3.13% 1.56% 0.78% 0.39% 0.20% 0.10%

IMP 97.72±0.08 97.06±0.19 96.18±0.15 91.94±0.79 79.80±2.76 47.35±10.04

IMP-AAP − 97.11±0.21

(+0.05%)
96.44±0.25

(+0.26%)
93.91±0.44

(+1.97%)
90.72±0.69

(+10.92%)
79.60±2.75

(+32.25%)

Table 2: Accuracy of LeNet-300-100 on MNIST. The initial unpruned network has 267K parameters
and 97.76% average accuracy.

16× 32× 64× 128× 256× 512×

% params 6.25% 3.13% 1.56% 0.78% 0.39% 0.20%

IMP 89.40±0.58 87.06±0.49 82.33±0.70 73.57±0.75 57.30±0.70 44.96±2.16

IMP-AAP − 87.16±0.54

(+0.10%)
82.76±0.58

(+0.43%)
75.56±0.72

(+1.99%)
64.99±1.44

(+7.69%)
53.99±1.75

(+9.03%)

Table 3: Accuracy of ResNet-32 on CIFAR-10. The initial unpruned network has 0.46M parameters
and 90.14% average accuracy.
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128× 256× 512× 1024× 2048× 4096×

% params 0.78% 0.39% 0.20% 0.10% 0.05% 0.02%

IMP 92.07±0.10 90.57±0.38 87.47±0.33 80.96±0.09 69.32±1.54 41.92±11.98

IMP-AAP − 90.56±0.28

(-0.01%)
87.96±0.35

(+0.49%)
82.98±0.24

(+2.02%)
75.50±1.13

(+6.18%)
60.40±2.12

(+18.48%)

Table 4: Accuracy of ResNet-18 on CIFAR-10. The initial unpruned network has 11.2 parameters
and 91.98% average accuracy.

32× 64× 128× 256× 512× 1024×

% params 3.13% 1.56% 0.78% 0.39% 0.20% 0.10%

IMP 53.76±1.31 52.79±0.86 50.81±0.75 43.15±0.58 29.68±0.70 16.31±2.29

IMP-AAP − 52.70±1.09

(-0.09%)
51.11±0.86

(+0.30%)
44.79±0.75

(+1.64%)
36.22±0.88

(+6.54%)
25.70±0.81

(+9.39%)

Table 5: Top-1 accuracy of ResNet-50 on Tiny-ImageNet. The initial unpruned network has 23.9M
parameters and 53.55% average top-1 accuracy.

32× 64× 128× 256× 512× 1024×

% params 3.13% 1.56% 0.78% 0.39% 0.20% 0.10%

IMP 77.15±0.98 77.44±0.67 76.26±0.73 70.61±0.47 57.01±0.32 38.90±3.19

IMP-AAP − 77.10±0.71

(-0.34%)
76.48±0.83

(+0.22%)
71.53±0.88

(+0.92%)
63.88±0.83

(+6.87%)
52.34±0.73

(+13.44%)

Table 6: Top-5 accuracy of ResNet-50 on Tiny-ImageNet. The initial unpruned network has 23.9M
parameters and 76.63% average top-5 accuracy.

2× 4× 8× 16× 32× 64×

% params 50.00% 25.00% 12.50% 6.25% 3.13% 1.56%

IMP 55.60±0.02 55.22±0.61 52.19±0.33 49.96±0.34 42.13±0.78 32.47±0.21

IMP-AAP − − 53.12±0.12

(+0.93%)
50.90±0.38

(+0.94%)
43.90±0.23

(+1.77%)
35.15±1.22

(+2.68%)

Table 7: Top-1 accuracy of MobileNetV2 on Tiny-ImageNet. The initial unpruned network has 2.5M
parameters and 54.60% average top-1 accuracy.

2× 4× 8× 16× 32× 64×

% params 50.00% 25.00% 12.50% 6.25% 3.13% 1.56%

IMP 79.49±0.23 79.58±0.05 77.44±0.21 75.70±0.53 69.22±0.41 60.42±0.36

IMP-AAP − − 77.75±0.32

(+0.31%)
76.10±0.27

(+0.40%)
70.97±0.33

(+1.75%)
63.00±1.32

(+2.58%)

Table 8: Top-5 accuracy of MobileNetV2 on Tiny-ImageNet. The initial unpruned network has 2.5M
parameters and 78.83% average top-5 accuracy.

D SPARSITY PATTERNS IN LENET-300-100

We visualize the change of the pruned weights in LeNet-300-100 over compression ratios (from 64×
to 256×). In all figures, each dot denotes the unpruned weight on the 300× 100 matrix. To observe
the differences between pruning methods, we perform one-shot MP in the same network. As we
expected, all-alive pruning behaves similar to structured pruning by removing dead neurons. Note
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16× 32× 64× 128×

% params 6.25% 3.13% 1.56% 0.78%

IMP 56.85±0.36 52.31±0.33 41.49±0.14 28.46±0.74

IMP-AAP − − 43.93±0.24

(+2.44%)
34.41±0.26

(+5.95%)

Table 9: Top-1 accuracy of EfficientNet-B0 on Tiny-ImageNet. The initial unpruned network has
4.3M parameters and 56.23% average top-1 accuracy.

16× 32× 64× 128×

% params 6.25% 3.13% 1.56% 0.78%

IMP 80.37±0.14 77.69±0.57 69.61±0.43 55.93±0.82

IMP-AAP − − 70.62±0.35

(+1.01%)
62.06±0.04

(+6.13%)

Table 10: Top-5 accuracy of EfficientNet-B0 on Tiny-ImageNet. The initial unpruned network has
4.3M parameters and 80.24% average top-5 accuracy.

that the structured pruning makes the pruned sub-network to be small-dense. Similarly, AAP also
produces the sub-network to have a small-dense structure because the dots are clustered along with
either columns or rows – if the black bars along with the vertical or horizontal axis are scarce, the
sub-network becomes small-dense. Interestingly, this tendency becomes prominent with an extremely
high compression ratio (e.g.256×) as shown in Figure 7. In other words, AAP achieves 89.65%
accuracy even with weights connected with 36 out of 300 neurons and 29 out of 100 neurons.

(a) One-shot MP without AAP (b) One-shot MP with AAP

Figure 6: Visualization of remaining weights in the second fully-connected layer of LeNet-300-100
after applying AAP to one-shot MP at 64× compression ratio. 250 out of 300 neurons and 99 out
of 100 neurons have unpruned connections in one-shot MP, and 220 out of 300 neurons and 77 out
of 100 neurons have unpruned connections after applying AAP. Each achieves 96.01% and 96.48%
accuracy after pruning, respectively.

(a) One-shot MP without AAP (b) One-shot MP with AAP

Figure 7: Visualization of remaining weights in the second fully-connected layer of LeNet-300-100
after applying AAP to one-shot MP at 256× compression ratio. 88 out of 300 neurons and 64 out of
100 neurons have unpruned connections in one-shot MP, and 36 out of 300 neurons and 29 out of 100
neurons have unpruned connections after applying AAP. Each achieves 38.06% and 89.65% accuracy
after pruning, respectively.
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E THEORETICAL STUDY OF ALL-ALIVE PRUNING

E.1 CONVERGENCE OF ALL-ALIVE PRUNING

In this section, we study the convergence of the proposed all-alive pruning. In all iterations of AAP
(Algorithm 2), we mask all dead connections found in the previous iteration to avoid reviving the
dead connections. That is, the sub-network derived from one iteration of AAP should have a smaller
number of connections than the previous iteration, i.e., the number of connections in the sub-network
excluding dead connections for t iteration is followed as:

0 < n(θt) = n(θt−1)− n(Dτ
t ) < n(θt−1), (3)

where θt and Dτ
t are the parameters in the sub-network and the found dead connections respectively

at t iteration of AAP. Since the number of connections considered for each iteration decreases, AAP
can always converge. It is observed that the 2-3 iterations are repeated in most cases.

E.2 ELIMINATING DEAD CONNECTIONS FROM LOWER COMPRESSION RATIOS
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(b) ResNet-18 CIFAR-10
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Figure 8: Accuracy of applying AAP incrementally in one-shot magnitude pruning. AAP(1%) denotes
that the process of pruning n(θ)−τ

100 connections and eliminating corresponding dead connections was
repeated in order to reach the final sparsity threshold τ . Note that we only eliminate dead connections
without any training process differs from the iterative pruning.

Without knowing the dependency of all connections, finding the optimal sub-network with the highest
saliency scores without any dead connections is hard. All-alive pruning is proposed to obtain a more
efficient sub-network with the existing saliency criteria; nevertheless, it also cannot guarantee the
sub-network with the highest scores. In this section, we deal with the more efficient sub-network by
applying AAP incrementally from lower compression ratios (higher sparsity thresholds). With the
given sparsity threshold τ , the total saliency scores of the sub-network obtained by AAP is followed
as:

Sτ =
∑

TopK(|θ −Dτ |, τ), (4)

where TopK(v, k) indicates the top-k elements of set v. Note that the saliency scores of the dead
connections could be considered as zero as they cannot properly join the regular training. If we
eliminate the dead connections for τ ′ > τ sparsity threshold first, then pruning up to τ again, the
dead connections found for the final sub-network is changed as:

Dτ ′→τ = Dτ+n(Dτ
′
) ⊆ Dτ , (5)

since the dead connections found by the previous iteration decrease the removal of the connections of
the sub-network needed for satisfying the sparsity threshold, in the same manner with the motivation
of AAP. It is obvious that the dead connections Dτ+n(Dτ

′
) caused by fewer pruned connections than
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τ is a subset of Dτ . The total saliency scores of the sub-network Sτ
′→τ with the corresponding dead

connections Dτ ′→τ are changed to:

Sτ
′→τ =

∑
TopK(|θ −Dτ ′→τ |, τ)

=
∑

TopK(|θ −Dτ+n(Dτ
′
)|, τ)

≥ Sτ =
∑

TopK(|θ −Dτ |, τ) ∵ Dτ+n(Dτ
′
) ⊆ Dτ .

(6)

According to Eq. (6), we can see that the dead connections are eliminated in smaller units, the
higher the total saliency scores can be obtained; eliminating dead connections whenever prune each
connection can obtain the sub-network with much higher saliency scores. However, this does not
mean that we can get an optimal network with the highest saliency scores, e.g., the connection with
the lowest saliency score can still be needed to alive, and the existing saliency-based pruning methods
do not allow to make it alive.

To validate the effectiveness of saving the saliency scores by applying AAP incrementally from the
lower compression ratios (higher sparsity thresholds), we conducted the experiments in one-shot
magnitude pruning. We satisfied the sparsity threshold τ over several pruning steps without any
training process, but only with eliminating newly appearing dead connections. Figure 8 depicts
the experiments of the AAP with smaller units. For example, AAP(1%) denotes that we repeat the
process of 1) prune n(θ)−τ

100 connections, then 2) eliminate the corresponding dead connections
100 times for satisfying the sparsity threshold τ . Interestingly, we can observe that the sub-network
with the higher total saliency scores can achieve better accuracy at high compression ratios. Note that
the existing pruning always outputs the same sub-network even with incremental pruning since they
eliminate the connections with the lowest saliency scores without considering the effect of pruning
on other connections.
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