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Abstract

This work does NOT read like “fabricate motivation - propose something - obtain sota re-
sults”. Instead, we give an analysis of the learnable softmax temperature parameter in the
practical training of contrastive visual-textual alignment learning model (commonly referred
to as the “CLIP” model). This parameter is considered to be imperative for optimal system
performance, however, its working mechanism and possible drawbacks have long been ne-
glected. This study addresses this problem as well as offers a novel solution by leveraging the
structure of ViTs. Our argument centers around the pivotal role of the softmax temperature
in handling noisy training data. We visualize that there exists an equilibrium in the gradient
of the contrastive loss, while the temperature parameter serves as a distance scaling factor.
Otherwise, the model has trouble aligning positive pairs due to a numerical problem in the
loss term. On the contrary, we also show that a large temperature would result in possible
unstable learning dynamics. Subsequently, we figured out alternative approaches that could
mitigate the problem from a topological view of the contrastive loss. Finally, we capitalize on
multiple class tokens embedded within the transformer architecture to offer a concise solu-
tion. This configuration significantly boosts zero-shot classification performance, enhancing
baseline CLIP models pretrained on large-scale datasets by an average of 6.1%. The codes
and learned weights are provided in https://github.com/{Anonymous_authors}.

1 Introduction

Learning visual and textual feature representations that are semantically aligned in their embedding space
is an ordinary problem in the vision-language cross-modal tasks Frome et al. (2013); Karpathy & Fei-Fei
(2015); Romera-Paredes & Torr (2015); Wang et al. (2016); Faghri et al. (2017); Xian et al. (2016). In early
works that employ feature representations from deep neural networks, e.g. Frome et al. (2013), the alignment
is often achieved by a fundamental metric learning approach with the hinge rank loss. That is, the similarity
between a visual feature vector u and a textual feature vector v is calculated as uT Wv, where W are the
learnable weight parameters. Thanks to the revolutionary advances in computational power, we can now
achieve this in a more effective and practical approach termed contrastive learning, where we align quantities
of positive samples and push their negative samples away simultaneously in a large mini-batch using the
InfoNCE loss Radford et al. (2021); Singh et al. (2022); Jia et al. (2021); Pham et al. (2021); Yuan et al.
(2021).

We first review the contrastive visual-textual alignment system. Given a set of semantically related image-
text pairs S = {(U ,V )1, (U ,V )2, . . . , (U ,V )K}, where (U ,V ) is a pair of an image with a tokenized
text that are considered to be semantic related. The goal is to learn a pair of encoders, simultaneously:
f : U → u, g : V → v to map the image and text into an embedding space, u,v are called embedding
vectors of samples. Following the definition in Oord et al. (2018); Wang & Isola (2020); Chen et al. (2021a);
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Radford et al. (2021), the contrastive loss could be formulated as

Lc(f, g; τ, S) := E
U ,V ∼S
U−

i
̸=U

V −
j

̸=V

[
− loge−τd(f(U),g(V ))

N

]
, (1)

where τ is the temperature term. d(·, ·) is the distance function between two embedding vectors, and

N :=
∑

j∈[M ]

e−τd(f(U),g(V −
j

)) +
∑

i∈[M ]

e−τd(f(U−
i

),g(V )),

is the negative term, with M ∈ Z+ denotes a fixed number of negative samples. The subscript i, j means
the image or text chosen from the i, j-th pairs. Intuitively, optimizing this loss term minimizes the distance
between positive image-text pairs and maximizes the distance between negative image-text pairs. It is
worth mentioning that, in recent studies Radford et al. (2021); Chen et al. (2021b), the contrastive loss is
commonly implemented as the cross-entropy between one-hot labels and the class probability obtained by
softmax within a mini-batch SM . We also employ this implementation in this work as shown in Section 3.

In Equation (1), the standard choice of the distance measure between an image-text pair for the contrastive
learning algorithm is the Cosine Similarity (in both uni-modal Chen et al. (2020a); Caron et al. (2020);
Chen et al. (2020b) and cross-modal Radford et al. (2021); Jia et al. (2021); Singh et al. (2022) scenarios).
While this choice provides a solid foundation for feature representation vectors from different sources, it is
widely acknowledged that training such a configuration is challenging in the absence of a learnable softmax
temperature. This learnable temperature is prepended and continuously updated through gradient descent,
along with the training progress in practice Wu et al. (2018); Radford et al. (2021).

In this work, we conduct a comprehensive analysis of this learnable temperature parameter based on the
following steps. Our primary contribution is highlighted at the beginning of each step.

1. We show that the temperature is learned to achieve the numerical “equilibrium” of the con-
trastive loss. In practice, we could not perfectly minimize/maximize the distance between positive/negative
image-text pairs due to the ambiguity (noise) that exists in S. However, the contrastive alignment system
will find a numerical “equilibrium” when the loss yielded from noisy samples is neutralized between min-
imizing positive distance (the alignment loss) and maximizing negative distance (the uniformity loss). In
Section 2.1, we give a visualization of the ratio of the two losses under different temperature conditions. We
find that both a larger batch size and more noise data require a large temperature to reach “equilibrium”.

2. We suggest three conditions for contrastive alignment to achieve “equilibrium”, and the
temperature is essentially a scaling factor for the numerical value of the distance. In Section 2.2,
we break the properties of the contrastive loss from the topological perspective. We argue the following
prerequisites must be satisfied, 1. A proper definition of uniformity of the embedding space for samples;
2. A “relaxed” triangular inequality between the distances of samples; 3. An expansive numerical value of
the distance. We show that the Cosine Similarity computes the inner product value between normalized
feature representation vectors, resulting in a similarity ranging from -1 to 1. Hence, the system requires a
parameter to enlarge its value range. Next in Section 2.3, we conduct a toy experiment to demonstrate the
necessities of these conditions, by designing different combinations of topology and distance to eliminate one
or two of the conditions.

3. We demonstrate that the temperature parameter with either a biased initialization or a
large learned value may degrade the training. Subsequently, in Section 2.4, we visualize the learning
curve of the temperature, revealing that the learned temperature is an indicator of the noise level of the
dataset, hence a biased initialization that cannot match the dataset may impair the performance. We also
visualize the loss landscape of the model regarding the temperature change, showing that high temperature
provides inferior learning dynamics.

4. We build a practically working system to mitigate the effects of the temperature parameter,
using the vision transformer’s innate structure. In Section 2.3, we suggest the utilization of a product
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Figure 1: The ratio of alignment loss to uniformity loss under different temperatures. The “equilibrium” is
presented as the ratio equals 1.0, when the log loss in Eq.(1) becomes 0.0. Shuffle = P% standards for P
percent of the labels are shuffled.

spherical embedding space with the inner product distance as a viable alternative. We additionally explore
the utilization of the vision transformer’s structure. Specifically, we introduce multiple class tokens to create
a product spherical embedding space, resulting in a substantial performance boost for the system (Section 3).
In a comprehensive large-scale experiment, we trained a ViT-B/16-based CLIP model that surpassed the
baseline model in classification and retrieval tasks (Section 4).

2 Rethinking the Contrastive Alignment

In this section, we discuss our motivation in detail. We first provide a visualized equilibrium. Then, we
discuss the conditions (inherent properties) for the contrastive loss to reach the equilibrium. Next, we
design a toy experiment under controlled configurations to demonstrate the effects of the properties. To
generalize the problem, we conceptualize the embedding vectors as points within specified typologies. We
use the term “distance between the points” instead of similarity. We also say a contrastively “well-optimized”
visual-textual model should yield a shorter distance between semantically related image-text pairs than the
non-related counterparts, regardless of how the pairs are labeled. Finally, we discuss the possible drawbacks
of the temperature parameter.

2.1 The visualized equilibrium

In Figure 1, we give an intuitionistic presentation of the equilibrium with our learned reference model in
Section 4. As explained by Wang & Isola (2020), contrastive loss is a combination of two objects: a)
alignment of features from positive sample pairs and b) the distribution of the features encouraged to match.
To demonstrate this, we randomly select a mini-batch of samples from our training dataset of different sizes.
Then, We manually add noise to the mini-batch by shuffling a small percentage of the images’ labels (the
paired texts). Finally, we compute the ratio of alignment loss to uniformity loss (numerator and denominator
in Equation (1) under different temperature situations (averaged through all the positive pairs in the mini-
batch). It can be seen that a noisier mini-batch or a larger mini-batch size demands a higher temperature
to reach the loss equilibrium. Meanwhile, when the system is working under a lower temperature, it tends
to push negative pairs away rather than pull positive pairs closer. Without the temperature, the loss for
alignment will be numerically too small for the system to align positive pairs. In the next subsection, we
discuss the mechanism behind this observation from three (often) neglected conditions.

2.2 Three conditions to achieve the equilibrium

i. Proper definition of uniformity of the embedding space: Naturally, with the loss form defined
in Equation (1), the distribution object will result in a uniform distribution on the sphere. Although the
distribution of samples doesn’t have to be exactly “uniform” as discovered by Chen et al. (2021a), it is
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Figure 2: Illustration of the bounded negative distance between true negative pair of samples.

necessary to define a proper prior distribution for samples to match via optimal transport algorithms (e.g.
sliced Wasserstein distance), which is undoubtedly a computational burden. Consequently, the spherical
embedding space is deemed the most suitable topology for contrastive alignment, as it exhibits a proper
uniform distribution defined by the surface area measure. In contrast, the commonly adopted unbounded
Euclidean space lacks this property.

ii. “Relaxed” triangular inequality: Assume we have a model that is “well-optimized” that is trained
using a noisy dataset (even using human-labeled datasets, see Chun et al. (2022)). For this model, we have
the following properties: For a positive pair (U ,V )+, their distance d(u∗,v∗) is upper-bounded by a small
ϵ+, and the distance for negative pairs (U ,V )− is lower-bounded by a large ϵ−. Now, let us consider a
set of two pairs of its training samples S± = {(U1,V1), (U2,V2)}. Accidentally, the pair (U1,V2)− is also
semantically correlated, despite being recognized as a negative sample (It is pervasive to have negative pairs of
image and text that match each other equally well as the positive ones in the noisy dataset). Consequently,
this “well-optimized” model will predict a distance upper-bounded by ϵ+ for this pair instead of a larger
value than ϵ−. If the distance function d is a metric, then according to the triangle inequality axiom of
metric, we have the following inequality (see Fig. 2 for an intuitive illustration),

ϵ− ≤ d(u∗
2,v∗

1) ≤ d(u∗
1,v∗

2) + d(u∗
2,v∗

2) + d(u∗
1,v∗

1) ≤ 3ϵ+ (2)

From this simple derivation, in this “well-optimized” model, the negative distance ϵ− is bounded by ϵ+,
meaning that the system would not learn numerical separated distance ranges for positive and negative
pairs to minimize the contrastive loss (See supplementary materials). The solution is to have a “relaxed”
triangular inequality to alleviate the ambiguity of the positive/negative pairs. In practice, we have the
following observations: i) The positive pairs of samples usually have a much larger distance than that in
the perfect alignment condition, ii) d(u∗

1,u∗
2) may become exceptionally small since none of the loss terms

regularize it, resulting in a further tightened bound of the negative distance; iii) Although the inner product
distance is not a metric, it still obeys an “relaxed” triangular inequality because we can yield a metric on
the sphere by ArcCos (the geodesic), see Schubert (2021) for more information.

iii. Broad distance range: We finally discuss the mechanism behind the learnable temperature trick.
As discussed in Section 2.1, the contrastive loss is minimized through the gradients of both alignment and
uniformity losses. In a noisy dataset inducing “semantic ambiguity”, the false negative samples are pushed
away from each other (repulsion), while the false positive samples are pulled together (attraction). Ideally,
the system could gradually find a numerical “equilibrium” (the stabilized state) when the noisy samples’
gradients for attraction and repulsion are equal. For instance, if there is a reasonable amount of false
negative samples, the model would learn a smaller distance between the pairs labeled as “negative”, such
that the uniformity loss won’t be too high when encountering false negative samples in mini-batches. On the
contrary, the model would learn a larger distance between the pairs labeled as “positive” when the amount
of false positive samples is inneglectable. In other words, the model reaches the equilibrium by learning
compromised positive and negative distances under semantic ambiguity.

However, the required numerical value of the compromised distances is out of the range that the cosine
similarity could provide. This is generally because the InfoNCE loss computes the sum of exponential
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Topology Sphere Sd−1 Euclidean Rd PS(d/m, m) PS(d/m, m)
Distance −uTv ∥u − v∥2 Geo(u,v) −tr(uTv)

Uniformity surface measure undefined surface measure surface measure

Inequality relaxed restricted restricted relaxed

Distance Range [−1, 1] [0, +∞) [0, mπ] [−m, m]

Table 1: Summary of different topologies endowed with different distances. The total dimension of the
embedding vector is denoted as d. The mini-batch size is denoted as b. Green box stands for the prop-
erties that are favored for contrastive learning. Red box stands for the properties that are unfavored for
contrastive learning.

Topology Distance Zero-Shot
I2T R@1

Zero-Shot
T2I R@1

Zero-Shot
Cls. Acc.

Linear PrPSe
Cls. Acc.

Temperature: init=1.0, gradient=True
Sphere −uTv 49.0 30.33 28.59 59.56

Euc ∥u − v∥2 47.4 30.71 29.85 60.09
PS(64, 8) Geo(u,v) 49.9 32.49 30.21 60.61
PS(64, 8) −tr(uTv) 50.9 32.71 30.50 60.66

Temperature: init=1.0, gradient=False (No temperature)
Sphere −uTv 5.1 3.461 4.04 45.37

Euc ∥u − v∥2 47.6 30.43 29.51 59.20
PS(64, 8) Geo(u,v) 4.1 2.921 3.10 21.67
PS(64, 8) −tr(uTv) 30.3 18.48 21.20 57.93

Table 2: The retrieval and classification performance. “gradient={True/False}” donates if the temperature
is learnable. The configurations are chosen intendedly to support the conclusions in Table 1.
The results shown in this table do not claim some configurations are better than others.

functions. To reach this equilibrium, we need to expand the distance range to [−τ, τ ], and since we don’t
know the noisy level of the dataset, we set the temperature learnable through gradients. For instance, the
officially released CLIP model Radford et al. (2021) has a glancing similarity of 0.3 ∼ 0.5 and 0.1 ∼ 0.3
for positive and negative pairs of samples, respectively. The learned temperature is approaching 100.0,
indicating the value of distances for equilibrium are 30 ∼ 50 and 10 ∼ 30 for positive and negative pairs of
samples, respectively.

2.3 The toy experiment

Experiment settings: We design a toy experiment to demonstrate how the properties mentioned above
influence the performance of contrastive learning. We employ the 15M subset Cui et al. (2022) of the
YFCC100M dataset Thomee et al. (2016) as the training dataset, which contains roughly 15.3 million
internet collected weakly related image-text pairs. We evaluate the learned models with the zero-shot
retrieval performance on Flickr30K, and Zero-Shot/Linear Probe classification performance on ImageNet
for reference. We employ the original ViT-S/16 architecture for our image encoders Dosovitskiy et al. (2020),
with an input image resolution of 224, resulting in 196 image tokens.

We evaluate four types of configurations for comparison, each featuring a distinct combination of topology
and distance function. The configurations are summarized in Table 1. Specifically, we consider: i) the sphere
Sd−1 with the inner product as distance, which is the commonly used cosine similarity; ii) the Euclidean
space Rd with ℓ2 distance; iii) a product spherical embedding space PS(n, m) with the minimizing geodesic as
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distance, which is denoted as Geo(u,v) = tr 1
2 (arccos2(uTv)); and iv) The same product spherical embedding

space PS(n, m) with the inner product as distance.

Here, we explain how we implement the product sphere embedding space. The product sphere (PS(n, m))
can be defined as Sn−1 × · · · × Sn−1︸ ︷︷ ︸

m copies

, where Sn−1 is the sphere embedded in Rn. Intuitively, it is a vector

composed of m chunks of n−dimensional normalized sub-parts. Our implementation follows this intuition;
we reshape the original feature vector into a matrix of shape m × n, then ℓ2−normalize the columns.

We provide further clarification on the distance functions employed in these configurations. As previously
discussed, the cosine similarity calculates the (negative) inner product for vectors on the unit sphere
as their distance. Accordingly, we adopt this design for the product sphere. Hence, the distance could be
computed as the negative value of the trace of the matrix product, i.e. d(u,v) = −tr(uTv). This distance is
clearly not a restricted metric. Therefore, for reference, we also consider the minimizing geodesic as distance,
which is a restricted metric (obeys the triangular inequality).

Hyperparameters and results: For the product spherical embedding space, we employed a structure of
n = 64, m = 8, denoted as PS(64,8). Concerning the temperature parameter, we initialize it with exp(0.0)
(equivalent to 1.0) and conduct two sets of experiments, one with gradients (learnable) and the other without
gradients (not learnable). It’s important to note that if the parameter is initialized to 1.0 and is not learnable,
it is essentially equivalent to having no such parameter. All the results are presented within Table 2, and
subsequent sections will elucidate the reader on how to interpret this tabular data. Results using other
initialization (Figure 3) are given in the supplementary materials.

Effects of the uniformity: To examine the effects of uniformity, we compare the performance between
the Euclidean with ℓ2 distance and the product sphere with geodesic distance. These configurations have
restricted triangular inequality in common. Meanwhile, if the temperature is learnable, the product sphere
also owns a practically unbounded distance range similar to the Euclidean. Then, the only difference is that
uniformity can be defined on the product sphere (surface area measure). We observe that the performance
of the product sphere with geodesic configuration performs better than the Euclidean with ℓ2 configuration.
This result indicates the importance of properly defined uniformity.

Effects of the Tri-angular Inequality: Next, we examine the effects of the triangular inequality using
the product sphere topologies endowed with different distance functions, that is, the geodesic distance and
the inner product distance. The results are visually depicted in Table 2, specifically between the 3rd and 4th
lines of each data block presented in the table. Upon observation, it becomes evident that the inner product
distance outperforms the geodesic distance on average in both retrieval and linear probe tasks. Moreover,
when the temperature is unlearnable, the inner product distance still provides the model trainability, showing
the advantage of removing the restriction of tri-angular inequality.

Effects of the Distance Range: Finally, we present the effects of the distance range by comparing the
proposed product sphere topology with inner product distance and the baseline spherical topology. Notably,
when the temperature is learnable, the product sphere demonstrates a reasonable improvement in the top-1
recall and classification accuracy. It is worth mentioning that this implementation does not bring extra
computational complexity, and the only difference is the shape of the embedding space. This suggests that
a larger distance range helps the alignment of the features from different modalities. There is one more
piece of evidence that lies in the last block: the Euclidean with ℓ2 distance configuration obtains consistent
performance regardless of the temperature parameter, as it operates with an unrestricted distance range.

2.4 Drawbacks in the learning dynamics

Biased initialization may degrade training: We now examine how the initialization of the temperature
impacts the training progress. Specifically, we additionally run experiments with the temperature initialized
at exp(2.64), which is the default value in the official CLIP implementation, and a notably higher value of
exp(5.3) (∼200). The changes in the temperature during the training process are illustrated in Figure 31. The

1The detailed retrieval and classification results are provided in the supplementary material. The final performance is not
largely impacted by the initialization though.
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Figure 3: The learning curve of the temperature. -<,>, l2 and geodesics denote the negative inner product,
ℓ2, and geodesic distance, respectively. The orange, blue, and green curves denote the initialization of
exp(5.3), exp(2.64), and 1.0, respectively.

(a) (b) (c)

Figure 4: The impact of temperature on the loss landscape. (a) and (b) depict the contours with two
orthogonal weights ∆ in random directions at temperatures of 1.0 and 100.0, respectively. (c) presents the
contour gradient norm with weight ∆ in a random direction across various temperatures (dark color stands
for a larger norm).

figures confirm that: The temperature converges to an equilibrium value irrespective of initialization when the
uniformity is properly defined. This value reflects the noise level present in the datasets, configurations with
“relaxed” triangular inequality and a broader distance range have lower equilibrium values. These findings
suggest that, if the training is insufficient or the dataset is too noisy, then with a biased initialization of the
temperature parameter, the training progress might be degraded.

Higher temperature hampers the optimization: We next examine the impact of temperature on the
loss landscape and the norm of gradient, using the approach proposed in Li et al. (2018). We employ the
learned reference model in Section 4 to draw the figures, where the final learned temperature is 100.0 (due to
the “clamp” function). We randomly select a mini-batch of size 1024 from the training dataset. The results
are shown in Figure 4. From figures (a) and (b) we can observe that the model with a lower temperature
has a much smoother loss landscape. Furthermore, in Figure (c) we find that the norm of the gradient might
become greater as the temperature grows. Therefore, in practice, we need to employ techniques such as
gradient norm clipping to stabilize the training.

3 The Multiple Class Tokens Solution

We first review the importance of the class token. In the design of both the textual transformer (BERT, Ken-
ton & Toutanova (2019)) and the visual transformer (ViT, Dosovitskiy et al. (2020)), one learnable embed-
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(a) Vanilla CLIP (b) CLIP with Multiple Class Tokens

Figure 5: A sketch of the contrastive visual-textual alignment (CLIP) system.

ding is used to represent global information, termed as class token. Different from the sequence (patch)
tokens, the class token is a key component of the transformer encoder. It is randomly initialized and up-
dated through gradient descent during the optimization. Furthermore, the class token holds a fixed position
embedding, avoiding the influence of the positional information. Therefore, the class token is considered to
participate in the computation of global attention.

Motivated by the properties of the class token, we propose to employ multiple class tokens to build the
product spherical embedding space, with each class token being a sub-sphere of Sn−1. For the visual encoder,
these class tokens are randomly initialized to break symmetry, while for the textual encoder, we use different
absolute positional embeddings for each class token. We present a sketch of the system in Figure 52 and
a pseudo-code in Section 3, to facilitate a better understanding. Given the fact that the dimension for the
embedding space could be a critical factor to the performance of the system Gu et al. (2021), we select
the dimension n with a conservative strategy. Specifically, we anchor the dimension of Euclidean spaces
to be the same as the reference model, then vary the value of n, m such that n × m = l. We denote
this implementation as Multi(n, m). The sub-spheres could benefit from the global attention operation and
provide more representative feature embeddings. On the contrary, the multi-token implementation requires
more computational resources in the backbone since the class tokens are involved in the computation of
global attention.

4 Large-Scale Experimental Results

4.1 Experimental Settings

Please note that our objective is not to produce the best publicly available model; rather, we solely conduct
experiments under controlled and restricted conditions. We compare the performance of the proposed method
using the configuration, which matches the publicly released ones in teams of dataset samples, model sizes,
and training progress. We also re-implement the naive CLIP model as the reference, which holds a similar
performance as the publicly released ones.

Datasets: For the experimental analysis in Section 4.2, we collect data from publicly available datasets
Schuhmann et al. (2021); Changpinyo et al. (2021); Sharma et al. (2018); Chen et al. (2015); Krishna et al.
(2017); Plummer et al. (2015); Russakovsky et al. (2015); Desai et al. (2021); Kuznetsova et al. (2020); Li
et al. (2017)3, resulting in a total of 420 million individual images and roughly 500 million image-text pairs.
This dataset is comparable to the one employed in the official CLIP paper Radford et al. (2021) and another
open source re-implementation Ilharco et al. (2021).

Models: Specifically, we employ the ViT-B/16 as our image encoders. For our text encoders, we employ
Ernie-2.0-en-base Sun et al. (2020), which is literally a Bert model Devlin et al. (2018) of 12 layers and 512

2It is needed to clarify that in the multiple class tokens system, we also employ the learnable temperature practically. Since
the finally learned temperature is significantly smaller than that in the vanilla CLIP system (∼ 4.0 versus ∼ 100.0), we omit it
to highlight the difference between the systems.

3The availability of LAION400M is about 90%.
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# d - dimensions of the hidden embedding
# U, V - mini-batch of images/texts token, [n, p, d] / [n, l, d]
# PS_m - the dimension of each sub-sphere
# PS_n - the number of [CLS] tokens attached
# cls_U, cls_V - class tokens for images/texts, [n, PS_n, d] / [n, PS_n, d]
# t - learned temperature parameter

# concatenate cls_tokens and extract features
U_, V_ = concatenate([cls_U, U], axis=1), concatenate([cls_V, V], axis=1)
u_bar = visual_transformer(U_) #[n, PS_n + p, d]
v_bar = textual_transformer(V_) #[n, PS_n + l, d]

# map features onto PS(n,m) and calculate distance
u = projection_u(u_bar[:PS_n]).l2_normalize(axis=-1) # [n, PS_n, PS_m]
v = projection_v(v_bar[:PS_n]).l2_normalize(axis=-1) # [n, PS_n, PS_m]
# [n, PS_n, PS_m], [n, PS_n, PS_m] -> [n, n]
neg_distances = einsum('inm,jnm->ij', u, v) * t.exp()

# symmetric loss function
labels = arange(n) # 0, 1, ..., n-1
loss = (CE_loss(neg_distances, labels, axis=0) + CE_loss(neg_distances, labels, axis=1)) / 2

Figure 6: Python-like pseudo-code of the proposed approach.

Method
baseline[impl.]

IN INV2 IN-A IN-R Flickr30K Zero-shot MSCOCO* Zero-shot
ZS cls.
Acc@1

ZS cls.
Acc@1

ZS cls.
Acc@1

ZS cls.
Acc@1

I2T
R@1

T2I
R@1

Mean
R@1/5/10

I2T
R@1

T2I
R@1

Mean
R@1/5/10

ViT-B/16-224 as visual bone.
CLIP[openAI†] 68.7 61.9 50.1 77.7 81.9 62.1 86.1 55.4 38.4 66.3
CLIP[openCLIP‡] 67.0 59.6 33.2 77.9 83.2 65.5 87.6 52.4 38.4 62.4
CLIP[our-impl.] 69.5 61.4 49.5 70.6 84.2 61.7 86.4 64.1 43.9 72.4
CLIP[Multi(32,16)] 76.4 68.0 55.8 75.2 85.2 66.3 88.3 63.8 42.9 72.4
ViT-L/14-224 as visual bone for reference.
CLIP[openAI†] 75.5 69.7 70.7 87.9 85.0 65.2 87.7 56.3 36.5 65.2
CLIP[openCLIP‡] 72.7 65.6 46.6 84.8 87.6 70.3 90.1 59.7 43.0 70.0

Table 3: Comparsion of large scale contrastive visual-textual pre-train model on benchmark datasets. † and
‡ denote the implementation from Radford et al. (2021) and Ilharco et al. (2021), respectively. The metric
Mean stands for the average value of R@1/5/10 of I2T/T2I retrieval performance. * denotes the Karpathy
test split Karpathy & Fei-Fei (2015).

hidden neuron sizes with a customized vocabulary of 30,522 tokens, and the maximum context length is set
to be 77. We project the feature representation (class token) from the top layer of transformers to a (sum of)
512-dimensional embedding space. All the parameters except the temperature are optimized from random
initialization. The default initialization of the project matrix employs the Gaussian initializer of zero mean,
and standard deviation equal reversed square root of the input size (a.k.a. Kaiming initialization). The
details of the hyperparameters are provided in supplementary materials.

Evaluation: We first evaluate the proposed methods with two types of vision tasks: i) Zero-Shot image-
to-text and text-to-image retrieval on Flickr30k Plummer et al. (2015) and MSCOCO Lin et al. (2014)
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Method
baseline[impl.]

COCO 1K COCO 5K CxC ECCV Caption
I2T
R@1

T2I
R@1

I2T
R@1

T2I
R@1

I2T
R@1

T2I
R@1

I2T T2I
mAP@R R-P R@1 mAP@R R-P R@1

ViT-B/16-224 as visual bone.
CLIP[openAI†] 71.7 52.5 52.5 33.1 54.0 34.7 23.7 34.0 68.8 34.8 44.0 73.4
CLIP[openCLIP‡] 74.0 57.6 55.4 38.3 57.3 40.0 26.2 36.6 70.3 36.9 46.4 77.5
CLIP[our-impl.] 80.8 63.0 64.2 43.1 65.3 44.9 30.5 41.0 78.6 40.5 49.9 81.2
CLIP[Multi(32,16)] 81.1 63.1 63.8 42.9 65.3 44.8 30.9 41.7 76.3 41.7 50.5 84.1
ViT-L/14-224 as visual bone for reference.
CLIP[openAI†] 74.3 55.4 56.4 36.6 58.0 38.3 24.0 33.8 71.3 32.0 41.8 73.0
CLIP[openCLIP‡] 77.2 61.4 59.7 43.0 61.1 44.8 28.1 38.3 73.0 38.7 47.9 81.2

Table 4: Comparsion of large scale contrastive visual-textual pre-train model on benchmark datasets.

ii) Zero-Shot classification on ImageNet-1K Russakovsky et al. (2015), ImageNet-V2 Recht et al. (2019),
ImageNet-R Hendrycks et al. (2021a) and ImageNet-A Hendrycks et al. (2021b). For zero-shot retrieval on
Flickr30K and MSCOCO, we employ the logits (distance) computed by the distance function and report
the image-text pairs with the top-k shortest distance as the retrieval results. For zero-shot classification on
ImageNet. We employ multiple prompt templates described in Radford et al. (2021), while we first compute
the distances between image and text embeddings, then average the distances. For linear probe classification
on ImageNet, we remove the learned projection head (no topological structure is preserved), then attach a
random initialized linear projector to map the feature representation to the 1,000 class logits.

Besides the tasks as mentioned above, we provide more results using the ECCV dataset Chun et al. (2022).
The dataset is proposed for eliminating the false negative samples in the validation set of the original
MSCOCO dataset. Instead of the commonly used Recall@K (R@K) metric, the datasets provide a new
ranking-based metric, mAP@R. The authors of the ECCV dataset have shown that the mAP@R metric
is more aligned to humans than Recall@k. Therefore, the performance of a model evaluated by mAP@R
would be less occasional than the R@1. This metric is deemed more precise for evaluating the performance
of models in the presence of noise.

4.2 Experimental results

The evaluations of the learned models on the commonly employed image classification and image-text re-
trieval tasks are reported in Table 3, with the ViT-B/16 as the visual backbone. It can be seen that the
re-implemented CLIP holds a similar performance as the publicly released ones in most cases. On the other
hand, our proposed model with the multi-token implementation of (32,16) significantly outperforms the other
ViT-B/16 models in general, with less than 8% more computational costs. The only exception is the top-1
retrieval performance on the MSCOCO datasets. The reason could be two-fold. Firstly, we observe a mild
“semantic decoupling” between the embedding of tokens through the visualization (see Section 4.3); that is,
some of the individual class tokens focus on specified objects and provide a high alignment confidence. This
may cause confusion in understanding the given scene as a whole; hence, the recall@top-1 performance is
degraded. Secondly, the most suitable temperature during training for aligning object-level and scene-level
concepts might differ. In our experiment, we decrease the upper limitation of the temperature to 6.25 (100
/ 16 [tokens]) since the product spherical topology owns the border distance range. The scene-level concept
alignment might require a larger temperature for “ambiguity” to achieve better retrieval performance.

For the ECCV caption dataset, we utilize the officially released evaluation tool and present a summary of
the models’ performance in Table 4. It is evident that our proposed multi-token product sphere topology
outperforms others in terms of mAP@R, signifying the model’s enhanced robustness in handling “semantic
ambiguity” samples.
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Image-Text Pair Full Tokens Token id=01 Token id=15

Figure 7: Visualization of the importance map using the Grad-CAM algorithm. The columns from left to
right stand for: the input image-text pair; the importance map computed based on the final matching score;
and the importance maps based on the matching scores of two individual tokens and the involved token IDs.
Additational results are provided in the supplementary material (including the failed cases).

4.3 Visualization on Tokens Attention Regions

In this section, we provide a commonly adopted neural network explanation method to visualize the influence
of inputs on the final outcome. Specifically, we employ the Grad-CAM Selvaraju et al. (2017) algorithm to
highlight the interested parts by the model of both images and their corresponding texts. Notably, the
original design of the Grad-CAM algorithm precludes its direct application to textual data. Therefore, we
enhance its capabilities such that it also highlights the contributing parts of texts in a token-wise style.
We employ examples from the evaluation set of the Flickr30K and MSCOCO datasets for visualization.
The results are shown in Figure 7. Through our observations, we have noted that certain pairs of class
tokens exhibit independent alignment, thereby reflecting a distinct concept or idea embedded within the
image. We attribute the improved classification performance to this phenomenon, as it enables a more
effective representation and understanding of the underlying content by leveraging the distinctive alignment
of the class token pairs. It is noteworthy that the intrinsic decoupling phenomenon observed within the
embeddings of class tokens is NOT universally present across all image-text pairs or within every token of an
image-text pair. This is due to the inherent challenges faced by visualization algorithms in achieving precise
correspondence in the importance maps for intricate semantic representations.

5 Related Works

Momentum distillation: In recent works such as Cheng et al. (2021); Li et al. (2021a), the momentum
(self-)distillation is introduced to mitigate the semantic noise in the sample pairs. That is, a momentum
version of the model is updated by the moving average of the model’s historical parameters. Then, the
cross entropy between the softmax logits computed by the model and its momentum version is used as an
additional loss for supervision. The authors claim that the pseudo-targets of the momentum (self-)distillation
will not penalize the model for matching negative samples that are reasonably similar. Here, we consider
that the pseudo-targets do “relax” the triangular inequality restriction implicitly by letting the distance of
alignment be reasonably large. Hence, it could be much easier for the optimizer to find the equilibrium
discussed in Section 2.

Other implemention of non-metric distance: In Yao et al. (2021), the authors proposed a so-called
fine-grained contrastive learning scheme that matches all the visual and textual tokens using a maximum-
average operator. Concretely, for each visual token, it finds the textual token with maximum similarity, then
takes the average over the visual tokens as the similarity of the image to a text and vice versa. Using our
framework, this work can be explained as embedding samples onto the product manifold Sd−1 × · · · × Sd−1

endowed with the maximum-average distance, which is a non-metric distance. At the same time, the authors
employ the sub-manifold Sd−1 to represent local information.

11
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The effects of softmax temperature: In Wang & Liu (2021), the authors draw the uniformity of the
embedding distribution and the tolerance to semantically similar samples of learned models under different
temperatures. From the observations, the authors claim that “a good choice of temperature can compromise
these two properties properly to both learn separable features and tolerant to semantically similar samples,
improving the feature qualities and the downstream performances”. Unlike our work, this work is done under
uni-modal contrastive learning, where the semantic correlation of the negative samples is not a property of
the datasets but rather a drawback of the larger mini-batch size.

Uni-modal side tasks: In works such as Mu et al. (2021); Li et al. (2021b); Yang et al. (2022), authors
combine cross-modal contrastive loss with other uni-modal tasks, for instance, visual/textual self-supervised
contrastive learning, masked image/language modeling. These combined methods empirically demonstrate
superior performance in downstream tasks such as zero-shot classification. Although these works do not over-
lap with this one, we find that the uni-modal tasks provide reasonable uniformity within the visual/textual
feature embedding, contrary to the cross-modal contrastive shown in Section 2. Therefore, the model could
obtain a more “numerically relaxed” triangular inequality when dealing with noisy pairs of samples.

6 Conclusion

Summary: This work discusses the essential properties of the feature embedding space for contrastive
alignment. We show that the most commonly adopted cosine similarity has disadvantages in dealing with
noisy data and training stability. Therefore, we propose to combine the product sphere with the negative
inner product distance to tackle these problems. We employ multiple class tokens to implement the approach,
which performs better in various zero-shot classification and image-text retrieval tasks practically.

Limitation: First, given significantly constrained computational resources (and time), we acknowledge our
inability to conduct experiments on a larger scale regarding batch size, training data, and neural network
parameters. However, the reported results are robust enough to substantiate our claims. Second, in re-
cent studies, besides the contrastive alignment, more pre-training tasks are appended to the head of the
model using the non-normalized full token embedding. Such as image-text matching Li et al. (2021a); Yang
et al. (2022), image captioning Yu et al. (2022), or masked modeling that do not employ the contrastive
alignment Wang et al. (2022). The performance improvement resulting from a better contrastive alignment
could be marginal in these configurations. Hence leave future work on designing the model of the full token
embedding.
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A Detailed Training Hyper-parameters Used in Experiments in the Main
Manuscripts

Hyperparameters Value for
Naive CLIP

Value for
CLIP-Multi(32,16)

Value for
Ablation Table 7

Value for
Ablation Table 6

Batch size 32,768 32,768 2,048 2,048
Vocabulary size 30,522 30,522 30,522 30,522
Training epochs 32 32 15 15
Number [CLS] Tokens 1 16 1/8 2/8/32/128
Projection dims 512 32 512/64 256/64/16/4
Maximum temperature 100.0 3.95 100.0 100.0
Weight decay 0.2 0.2 0.5 0.5
Warm-up iterations 2,000 2,000 5,000 5,000
Peak Learning Rate 0.0005 0.0005 0.0005 0.0005
Adam β1 0.9 0.9 0.9 0.9
Adam β2 0.998 0.998 0.98 0.98
Adam ϵ 10−8 10−8 10−8 10−8

Gradient global norm 1.0 1.0 1.0 1.0
GPUs 128×A100 128×A100 32×V100 32×V100
Train Time ∼5 days ∼5 days ∼1 day ∼1 day

Table 5: Detailed hyper-parameters used for in the experimental analysis.

We provide the hyper-parameters employed in the experiments in Table 5. We follow most of the hyper-
parameters employed in the original CLIP Radford et al. (2021) paper for both Naive CLIP re-implementation
and our multi-token and single-token product sphere implementation. We provide the details of the hyper-
parameters for large-scale and ablation experiments below.
Large-scale Experiments: We train with a batch size of 32,768 and the AdamW optimizer Loshchilov
& Hutter (2017) in all the large-scale experiments. We apply the standard training scheme of the original
CLIP model, which contains 32 epochs of training. We did not employ mixed precision to reduce the
possible overflow introduced by randomness for a stable reproduction. We set the β1 = 0.9, β2 = 0.998,
ϵ = 1e-8 in AdamW, and weight decay = 0.2 to further improve the stability. We use the cosine learning
rate decay scheme of peak learning rate equal to 5e-4, combined with a warmup period of 2,000 iterations.
For data augmentation, we only apply the RandomResizedCrop with a scale range of [0.8, 1.0]. Finally, in
our multi-token product sphere implementation, we reduced the maximum temperature to 3.95 due to its
border distance range. This is a value obtained from the ablation study from Appendix E.
Ablation Experiments: We train with a batch size of 2,048 and the AdamW optimizer Loshchilov &
Hutter (2017) in all the ablation experiments. We apply a compact training scheme that updates the model
for 108,000 iterations, which is roughly equal to training the model for 15 epochs of the dataset. Since this
is a fast training scheme, we set the β1 = 0.9, β2 = 0.98, ϵ = 1e-8 in AdamW, and weight decay = 0.5,
such that the training could converge faster in a stable approach. We use the cosine learning rate decay
scheme of peak learning rate equal to 5e-4, combined with a warmup period of 5,000 iterations. In the linear
probe evaluation, the hyperparameters follow the setup of MoCo v3 Chen et al. (2021b). Concretely, we
use SGD without momentum and no weight decay. The learning rate is schemed by cosine decay with a
peak learning rate equal to 1.0, combined with a warmup period of 5 epochs. We train for 100 epochs and
augment the image using the RandomResizedCrop with a scale range of [0.75, 1.0] and AutoAugment with the
code rand-m9-mstd0.5-inc1. In the ablation experiments, we do not change the maximum temperature
clip value, leaving it the same for all topology configurations.

B Choices on structures and multi-token implementation

In Table 6, we modify the structure of the product sphere manifold under fixed total dimensions. It can be
seen that a higher m value (i.e. the number of product sub-spheres) is more likely to obtain a better zero-shot
classification accuracy and text-to-image retrieval recall. We, therefore, conjecture that the broader distance
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Topology Distance Zero-Shot
I2T R@1

Zero-Shot
T2I R@1

Zero-Shot
Cls. Acc.

Linear PrPSe
Cls. Acc.

Temperature, init=e2.64, gradient=True
Sphere(512) −uTv 48.3 31.45 30.62 60.38
PS(256, 2) −tr(uTv) 48.0 32.25 30.33 60.52
PS(64, 8) −tr(uTv) 52.3 32.89 30.70 60.32
PS(16, 32) −tr(uTv) 50.4 33.01 30.93 60.79
PS(4, 128) −tr(uTv) 48.2 32.91 30.57 59.99

Multi(256, 2) −tr(uTv) 49.2 32.29 30.04 61.59
Multi(64, 8) −tr(uTv) 54.0 34.27 31.93 62.41
Multi(16, 32) −tr(uTv) 54.0 33.43 30.88 63.71

Table 6: The retrieval and classification performance of the proposed approach using different PSlique man-
ifold structures and the multi-token implementation. “gradient={True/False}” donates if the temperature
is learnable.

range helps the system reach equilibrium faster. However, an over-complicated structure such as PS(4,128)
could ruin the performance. The possible reason is that each sub-sphere Sd−1 that is embedded in Rd has
one less effective dimension. Therefore, the product sphere structure with large numbers of sub-spheres may
perform worse.

However, an over-complicated structure such as PS(4,128) could ruin the performance. We conjecture
that, since the sphere has one redundant dimension, the larger number of product sub-spheres reduces the
representation capacity of the topology. And because we employ a textual encoder that is gently larger than
the visual one, therefore the moderate reduction of the capacity helps overcome the overfitting on the textual
side.

We also provide the ablation results of different multi-tokens product sphere structure implementations
in the table’s lower half, denoted as Multi(·, ·). We concatenate all the representations together for the
linear probe before projecting them to 1,000 class logit. It can be seen that the multi-token product sphere
implementations consistently outperform their single-token versions. Notably, since the increased number of
parameters for the class tokens (n × d) is negligible compared to that of the overall system, we consider the
participants of class tokens in global attention as the primary reason for the performance boost.

C Detailed performance of configurations under different temperature initilization

In Table 7, we provide the detailed experimental results of Figure 2 in the main manuscripts. We further
provide the final temperature at the end of training and at what step the temperature converges (changes
less than 2% for an epoch). It can be seen that the performance of the Euclidean topology is only slightly
affected by the initialization of the temperatures, and even though the temperature is detached from learning,
it still performs reasonably well because of the unlimited distance range. At the same time, the spherical
and product sphere topologies are affected by how the temperature is initialized. However, a rough trend
can be seen that the faster the temperature converges, the better performance the model achieves, which
means the learnable temperature delays the learning of the methods. The model needs first to find a proper
temperature and then begin to learn representations well.

D Distribution of Learned Distance

We depict the distribution of distance for pairs of samples in Figure 8. We further employ the RedCaps Desai
et al. (2021) dataset as the out-domain data for visualizing the distributions of sample distances. As argued
in Section 3.2 of the main manuscripts, since the cross-modal contrastive loss does not handle the uni-modal
data distributions, the distance between negative pairs of images and texts could be much smaller than
that of a positive image-text pair, resulting in a tighter distance bound. Also, we can see this phenomenon
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Temp.
Init.

Temp.
Final

Converge
Step

Zero-Shot
I2T R@1

Zero-Shot
T2I R@1

Zero-Shot
Cls. Acc.

Linear
Cls. Acc.

Topology: Sphere, Distance: −uTv
2.659 4.033 18k 48.3 31.45 30.62 60.38
5.310 4.021 39k 46.8 31.13 29.60 59.82
1.000 3.976 22k 49.0 30.33 28.59 59.56
1.000 1.000 Detach 5.1 3.461 4.04 45.37

Topology: Euclidean, Distance: ∥u − v∥2
2.659 2.067 21k 47.9 32.29 30.36 59.90
5.310 5.107 1k 48.5 32.69 30.68 59.74
1.000 1.668 25k 47.4 30.71 29.85 60.09
1.000 1.000 Detach 47.6 30.43 29.51 59.20

Topology: PS(64, 8), Distance: Geo(u,v)
2.659 3.135 20k 50.7 32.35 30.79 60.43
5.310 3.168 55k 50.7 31.59 30.34 59.60
1.000 3.024 42k 49.9 32.49 30.21 60.61
1.000 1.000 Detach 4.1 2.921 3.10 21.67

Topology: PS(64, 8), Distance: −tr(uTv)
2.659 2.231 24k 52.3 32.89 30.70 60.32
5.310 2.280 57k 50.3 33.37 30.23 59.76
1.000 2.174 36k 50.9 32.71 30.50 60.66
1.000 1.000 Detach 30.3 18.48 21.20 57.93

Table 7: The retrieval and classification performance of different configurations under different temperature
initialization conditions. “Temp. Init.” denotes the values for initializing temperature; “Temp. Final”
denotes the final temperature at the end of training; “Converge Step” denotes the number of steps for
temperature starts to converge (changes less than 2% for an epoch.)

Topology Distance Zero-Shot
I2T R@1

Zero-Shot
T2I R@1

Zero-Shot
Cls. Acc.

Linear Probe
Cls. Acc.

Temperature, init=e2.64, gradient=True
Sphere(512) −uTv 48.3 31.45 30.62 60.38
Sphere(1024) −uTv 50.7 32.05 29.60 60.53
PS(128, 8) −tr(uTv) 49.4 32.85 30.55 60.12
PS(64, 16) −tr(uTv) 50.3 33.25 30.34 60.16
PS(32, 32) −tr(uTv) 52.3 33.47 30.62 60.32

Table 8: The retrieval and classification performance of the proposed approach using different oblique man-
ifold structures and the multi-token implementation. “gradient={True/False}” donates if the temperature
is learnable.

is much more severe in out-domain data, which could reduce the transferability of the feature embeddings
to downstream tasks. It is also notable that, the product sphere with the negative inner product as the
distance function learns similar distributions compared to the sphere reference, while the numerical values
of distances between samples are inherently larger without having multiplied with temperature.

E Additional Ablation on product sphere Structure

We provide more ablation results regarding the structure of the product sphere manifold under fixed total
dimensions in Table 8. We can observe that the PS(32, 32) configuration performs the best in general, while
the sphere with more 1024-dimensional embedding has slightly better linear probe performance. We also
notice that a more complicated structure provides better text-to-image retrieval results.
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(a)

(b)

Figure 8: Visualization of the distribution of distances between samples. The logits_pos and logits_neg
denote the distances between positive and negative image-text pairs, respectively. The img_neg and
text_neg denote the distances between negative image-image and text-text pairs, respectively. The models
are trained using the Yfcc datasets, (a) and (b) depict the distribution of in-domain data (Yfcc) and out-
domain data (RedCaps), respectively.

F Additional Results Using the TCL Framework

We combine our proposed method with the TCL model Yang et al. (2022), which is one of the state-of-
the-art vision-language retrieval models that employ contrastive visual-textual alignment in its earlier stage.
During the pre-training, the TCL induces a mixture of in-modal and cross-modal contrastive losses, while
conducting the masked language modeling (MLM) and image-text matching tasks simultaneously. During
the testing, the cross-modal contrastive alignment head first lists sample pairs with high similarity scores,
and then these pairs are fed into the matching head to obtain the final matching scores. We alternate the
topologies of all the embedding spaces with PS(128,2). For the experimental analysis in this subsection,
we follow the configurations of the reference models, employ a collection of CC3M Sharma et al. (2018),
MSCOCO Captions Chen et al. (2015), Visual genome Krishna et al. (2017) and SBU Ordonez et al. (2011)
as the pre-training dataset, which contains roughly 4 million annotated image-text pairs. The models are
then evaluated using Flickr30k Plummer et al. (2015) and MSCOCO Captions Chen et al. (2015).

The results are shown in Table 9. Since our method does not affect the matching head, we also report
the performance of the contrastive alignment head. In general, our method improves the average recall

20



Under review as submission to TMLR

Method
baseline[impl.]

Flickr Coco
I2T
R@1

T2I
R@1

Recall
mean

I2T
R@1

T2I
R@1

Recall
mean

Zero-shot performance.

TCL[official] 93.00 79.60 93.97 71.40 53.50 79.49
(84.20) (67.10) (88.45) (55.40) (40.80) (69.92)

TCL[our-impl.] 91.00 78.28 93.25 70.16 53.05 79.07
(83.30) (68.40) (88.73) (57.34) (43.21) (71.31)

TCL[PS(128,2)] 91.20 78.14 93.29 70.14 53.35 79.14
(84.80) (67.86) (88.84) (57.10) (43.13) (71.32)

Fine-tuned performance.

TCL[official] 94.90 84.00 95.57 75.60 59.00 82.87
(87.90) (71.38) (90.92) (65.34) (48.94) (76.53)

TCL[our-impl.] 93.80 83.06 95.17 73.56 57.74 82.06
(88.30) (72.94) (91.27) (66.98) (50.34) (77.43)

TCL[PS(128,2)] 93.80 82.90 95.18 74.78 57.72 82.13
(88.60) (73.26) (91.39) (65.60) (49.83) (76.86)

Table 9: Retrieval performance on Flickr30K and MSCOCO of our implemented TCL model and the variant
using our proposed method. The numbers in brackets are the performance obtained using the contrastive
alignment head.

#Tokens 1 2 4 8

Top1 Acc. 13.0±9.7 21.5±14.3 27.7±20.4 62.1 ±4.4

Table 10: ImageNet zero-shot classification performance of CLIP[Multi(32,16)] model using a randomly
selected subset of [CLS] tokens.

performance, but the improvement is not significant. We consider the reasons as i) The method (or recent
similar methods) employs pre-trained vision and language models, as well as a matching head and an MLM
head; hence it is less sensitive to the gradients from the contrastive alignment; ii) The datasets employed
for training contain less noise, while the training is scheduled with an overlength scheme (the zero-shot
performance does not increase in the last 5 epochs).

Additional Notes on TCL We also provide the comparison results with officially released checkpoints. It
can be seen that our implementation performs 0.5-1.0% worse than the official checkpoints. On the other
hand, our implementation has better alignment head performance. Since we are employing the codes released
in the official repository, the reason might be the following: i) Datasets difference, that we have ∼3000 fewer
images in the SBU dataset while owning 5000 more images in the CC3M dataset; ii) We resize the CC3M
dataset to short edge 500 pixels, while the official repository does not clearly provide the pre-processing
approach; iii) We implicitly have a short training time or smaller matching loss weight than the official
checkpoints due to the difference in the framework.

G Test of Mixture-of-Expert Hypothesis:

We investigate the mixture-of-expert hypothesis of the proposed method. Since the class token is considered
to encode the global representation of the sample, the employment of multiple class tokens may function
in a mixture-of-expert style. That is, after training, each sub-sphere (or a subset of sub-spheres) in the
product sphere structure is capable of alignment. Then, the system functions as a mixture of weak align-
ment models (experts). To test this hypothesis, we calculate the zero-shot classification performance of the
CLIP[Multi(32,16)] model with randomly selected subsets of sub-spheres. From Table 10, we find that the
drop in performance is reasonably small (∼12%) with half of the alignment tokens. This result reveals a

21



Under review as submission to TMLR

possible mechanism of the product sphere structure during optimization, where a subset of sub-spheres is
priorly aligned.

H More Visualization using GradCAM

In Figure 9, we provide more visualization results using GradCAM. In Figure 10, we show some failure cases
when the attention in the textual mode is focused on non-object words.
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Image-Text Pair Full Tokens Token id=03 Token id=10

Image-Text Pair Full Tokens Token id=04 Token id=15

Image-Text Pair Full Tokens Token id=08 Token id=12

Image-Text Pair Full Tokens Token id=04 Token id=10

Figure 9: More visualization of the importance map using the Grad-CAM algorithm.
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Image-Text Pair Token id=05 Token id=06 Token id=07

Image-Text Pair Token id=08 Token id=09 Token id=13

Image-Text Pair Token id=03 Token id=07 Token id=10

Image-Text Pair Token id=03 Token id=09 Token id=13

Figure 10: Failure cases of the importance map using the Grad-CAM algorithm.
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I A note on the recent advance in noisy image-text matching

Recently, many pieces of research have been made to tackle the noisy image-text matching problem in con-
trast learning. Below, we provide a concise survey of these works, for the readers who want to know more
about this topic. Although these works may not be comparable with our proposed method, they still support
that noisy visual-textual correspondences are an important research topic in this field.
Chun et al. (2022): This paper argues that existing ITM benchmarks have a significant limitation of
many missing correspondences. Then, it proposes a new dataset, ECCV Caption, to correct the massive
false negatives and a new metric, mAP@R, to evaluate VL models.
Li et al. (2023): This paper proposes a method to correct false negatives by integrating language guidance
into the ITM framework. This framework corrects the locations of false negatives in the embedding space.
Chun (2023): This paper also argues that the image-text matching task suffers from ambiguity due to
multiplicity and imperfect annotations. Then, this paper proposes an improved probabilistic ITM approach
that introduces a new probabilistic distance with a closed-form solution.
Huang et al. (2021): This paper points out that the training data may contain mismatched pairs. To
learn the noisy correspondence, the authors divide the data into clean and noisy partitions and then rectify
the correspondence via an adaptive prediction model.
Qin et al. (2022): This paper considers the major challenge in cross-modal retrieval is the noisy correspon-
dence in training data. This refers to the fact that some of the training pairs may not be correctly aligned,
i.e., the image and text do not actually correspond to each other. They propose a framework to address
this challenge by integrating two novel techniques: Cross-modal Evidential Learning and Robust Dynamic
Hinge.
Yang et al. (2023): This paper proposes a general framework for cross-modal matching that can be easily
integrated into existing models and improve their robustness against noisy data. This framework estimates
soft labels for noisy data pairs by exploiting the consistency of cross-modal similarities.
Han et al. (2023): The paper proposes a Meta Similarity Correction Network to provide reliable similarity
scores for cross-modal retrieval. The method learns to distinguish between positive and negative pairs of
data using meta-data, and can be used to remove noisy samples from the training dataset.
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