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Abstract

The field of question answering (QA) has been001
significantly transformed by the emergence002
of Large Language Models (LLMs). How-003
ever, their performance in domain-specific QA,004
such as in e-government applications, is lim-005
ited by their access to external, real-time, and006
highly specific knowledge. To address this,007
we introduce DiverseRAG, a novel framework008
that combines Retrieval-Augmented Genera-009
tion (RAG) with LLMs, emphasizing a multi-010
source and multi-grained retrieval process to011
enhance response accuracy and relevance. Our012
approach employs a multi-source RAG strat-013
egy, drawing from diverse data types such as014
web pages and legal texts, and a multi-grained015
retrieval process that operates on sentence and016
multi-sentence levels to ensure both precision017
and contextual depth in addressing questions.018
This approach ensures comprehensive cover-019
age of government-related questions. To test020
DiverseRAG, we curated an English-Arabic021
dataset from UAE government websites and fur-022
ther extend the questions into 4 Arabic dialects:023
Egyptian, Iraqi, Lebanese, and Emirati. Our024
results demonstrate that DiverseRAG substan-025
tially boosts performance of LLMs for English,026
MSA, and dialectal Arabic queries in the gov-027
ernment domain, achieving over 10% improve-028
ment in metrics such as F-1 score, BertScore,029
ROUGE and Context Precision compared to030
conventional RAG approach in the best case.031

1 Introduction032

The emergence of Large Language Mod-033

els (LLMs) (Brown et al., 2020; Ouyang et al.,034

2022) has marked a significant leap forward in the035

capabilities of question answering (QA) systems,036

achieving new state-of-the-art in natural language037

understanding and response generation (Bang038

et al., 2023; OpenAI, 2023). These models, trained039

on vast corpora of text, have shown remarkable040

proficiency in generating coherent and contextually041

appropriate answers across a broad spectrum of042
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Figure 1: An overview of the ensemble framework of
our DiverseRAG approach, illustrating the integration of
multi-grained retrieval and diverse knowledge sources
as well as how to ensemble the final response.

general knowledge questions. However, the utility 043

of LLMs in specialized domains presents a unique 044

set of challenges, particularly when the questions 045

involve complex, domain-specific knowledge that 046

goes beyond the general information contained 047

in the training data (Lai et al., 2023; Yang et al., 048

2023). 049

Some QA domains, such as government or law 050

require greater emphasis on accuracy and speci- 051

ficity where standard open-domain approaches of- 052

ten fall short. In such domains, where the infor- 053

mation is often not stored within the model’s para- 054

metric knowledge, a retrieval-based solution, often 055

integrating multiple sources, is necessary. In this 056

work, we explore and improve LLMs’ QA capabili- 057

ties in retrieval-augmented generation, focusing on 058

government-domain QA. 059

We propose a DiverseRAG approach integrated 060

with an ensemble framework that extends the ca- 061

pabilities of LLMs by incorporating a dynamic re- 062

trieval component. This approach leverages the 063

intrinsic generative capabilities of LLMs while 064

enhancing them with targeted, contextually rele- 065

vant data retrieved from diverse knowledge sources. 066

The multi-source retrieval component dynamically 067

aggregates information from various domains, in- 068
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cluding web texts and legal documents, ensuring069

a comprehensive coverage of the knowledge land-070

scape necessary for government-domain QA. Our071

framework is further designed to perform multi-072

grained retrieval processes (Chen et al., 2023) that073

effectively harness information from varied data074

formats and granularities—from sentence-level to075

multi-sentence level. This multi-grained approach076

allows for more comprehensive extraction of cru-077

cial data as well as broader contextual information.078

The system can efficiently identify and retrieve079

the most relevant pieces of information, which are080

then fed into enriched prompts for the LLM. An081

illustration of our approach is shown in Figure 1.082

This ensures that the generated responses are not083

only accurate but also adequately contextualized,084

addressing the complexity and specificity of gov-085

ernment queries. By integrating these capabilities,086

the DiverseRAG framework provides a robust so-087

lution tailored specifically to the requirements of088

government-domain QA.089

To support our framework, we conducted ex-090

tensive data collection, crucial for developing and091

evaluating our QA system. This includes two pri-092

mary datasets: a comprehensive knowledge base093

of web pages and legal texts for the RAG pro-094

cess, and a parallel English-MSA dataset of over095

2,000 FAQs. The knowledge base provides rele-096

vant context for accurate government domain an-097

swers, while the EN-MSA dataset evaluates sys-098

tem performance in both languages. Addition-099

ally, we translated a subset of these FAQs into100

four Arabic dialects—Emirati, Levantine, Egyp-101

tian, and Iraqi—to address linguistic diversity and102

ensure effectiveness across dialects. This diverse103

data collection is essential for testing and refining104

our framework, ensuring robustness in real-world105

government-domain queries.106

Our research distinguishes itself through its fo-107

cus on the integration of these multi-grained re-108

trieval processes. This method supports a more nu-109

anced combination of information by dynamically110

integrating various levels of granularity, which sig-111

nificantly enhances the relevance and accuracy of112

the responses from LLMs. The multilingual nature113

of our corpus, encompassing both English (EN),114

Arabic (MSA), and dialects, adds further complex-115

ity and broadens the impact value of our research,116

making it relevant in a diverse range of governmen-117

tal contexts.118

• We propose DiverseRAG, a novel approach119

that enhances LLMs with multi-source, multi-120

grained retrieval to improve accuracy and rel- 121

evance in government-domain QA. 122

• We construct a new multilingual dataset of 123

government-related QA to enable domain- 124

specific question answering, encompassing 125

diverse sources from UAE government web 126

pages, legal documents, and FAQs. 127

• We further translate the question into four Ara- 128

bic dialects-Emirati, Levantine, Egyptian, and 129

Iraqi, which is useful for cross-dialect bench- 130

marking. 131

• We demonstrate the effectiveness of 132

DiverseRAG through rigorous experimen- 133

tation across various LLMs, significantly 134

outperforming traditional zero-shot methods 135

in English and Arabic, paving the way for 136

future evaluations with advanced models. 137

Next, we present related work in Section 2 and 138

detail our methodology in Section 3. In Section 4 139

we present our data collection effort; and we dis- 140

cuss our experimental results in Section 5. 141

2 Related Work 142

The intersection of LLMs with domain-specific 143

QA as been an area of active research, with sev- 144

eral studies addressing the limitations and potential 145

enhancements of LLMs in this context. 146

2.1 Domain-Specific QA with LLMs 147

The limitations of LLMs in domain-specific con- 148

texts (Chen et al., 2024; Sadat et al., 2023), have 149

been noted by Shuster et al. (2021), who argue 150

that while LLMs are proficient in general QA, 151

their performance drops significantly when answer- 152

ing domain-specific questions. This is particu- 153

larly evident in government-domain QA, where 154

the need for up-to-date and precise information is 155

paramount (Cui et al., 2023). Our work contributes 156

to this area by specifically addressing the chal- 157

lenges posed by government-domain questions. 158

2.2 Retrieval-Augmented Generation (RAG) 159

The concept of RAG, introduced by Lewis et al. 160

(2020) has been a significant advancement in the 161

field (Gao et al., 2023). It combines the genera- 162

tive power of LLMs with a retrieval component 163

to provide more accurate, up-to-data, and relevant 164

answers (Lee et al., 2019; Goldfarb-Tarrant et al., 165

2024; Arefeen et al., 2024) while alleviating the 166

need to train or finetune a model for that specific 167

domain. Our approach extends this work by imple- 168
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menting a multi-grained retrieval process that lever-169

ages a wider array of diverse knowledge sources,170

including legal PDF articles and web texts.171

2.3 Use of Diverse Knowledge Sources172

The integration of diverse knowledge sources173

into QA systems has been explored in vari-174

ous capacities (Dinan et al., 2019; Peng et al.,175

2023). Karpukhin et al. (2020) introduced a dense176

vector retrieval method, namely DPR, that signifi-177

cantly improved the retrieval of relevant documents178

for open-domain QA (Liu et al., 2021). This aspect179

is crucial in the government-domain QA scenario180

since the information (e.g. tweets, web announce-181

ments, newly-passed laws, regulations, . . . , etc.)182

shared by the government can occur using different183

media. Our framework builds upon this by not only184

retrieving but also effectively integrating informa-185

tion from these diverse sources into the generative186

process of LLMs.187

2.4 Multilingual/Low-resource Language QA188

The challenges of multilingual QA, especially189

in low-resource languages (Longpre et al., 2021;190

Nguyen et al., 2023), have been highlighted by Asai191

et al. (2021a,b), who introduced a cross-lingual192

open-retrieval QA dataset. Our research addresses193

this gap by incorporating MSA and Arabic dialects194

into our RAG framework, thus enhancing its appli-195

cability in multilingual government contexts.196

2.5 Evaluation Metrics for QA197

The development of robust evaluation metrics re-198

mains crucial for advancing QA systems. Some199

studies (Zhang et al., 2020; Sellam et al., 2020)200

have proposed metrics based on contextual em-201

beddings that offer more nuanced assessments of202

model outputs. More recently, the use of LLMs in203

evaluation (Fu et al., 2023) provides a comprehen-204

sive measure of the quality of generated responses.205

3 Methodology206

The methodology of this work focuses on inte-207

grating LLMs with our proposed DiverseRAG208

approach within an ensemble framework. Di-209

verseRAG leverages multiple types of knowledge210

sources and employs a multi-grained retrieval pro-211

cess. It accesses web texts and legal texts to212

compile a comprehensive set of documents for213

each query. The framework utilizes various levels214

of granularity, such as sentence-level and multi-215

sentence-level retrieval, to provide LLMs with the216

necessary context for generating accurate answers. 217

The ensemble framework enhances this process by 218

combining direct LLM responses with the context- 219

enriched outputs from DiverseRAG, ensuring that 220

the final answers are both comprehensive and pre- 221

cise. 222

3.1 DiverseRAG Approach 223

The core of our methodology is the DiverseRAG 224

approach, designed to utilize a wide range of knowl- 225

edge sources and detailed retrieval techniques to 226

enhance the contextual understanding of LLMs. 227

Diverse Knowledge Sources: The DiverseRAG 228

framework taps into a variety of knowledge sources 229

to ensure thorough and reliable information re- 230

trieval. These include: 231

• Web Texts: A collection of over 19,000 web 232

pages from various ministry websites provides 233

a broad spectrum of current governmental in- 234

formation. 235

• Legal Documents: Approximately 611 legal 236

documents offer detailed insights into statu- 237

tory and regulatory frameworks. 238

By combining information from these sources, 239

DiverseRAG aims to make sure that the retrieved 240

content is both relevant and comprehensive. 241

Document Retrieval: For a given query q, the
document retrieval process is initiated to gather a
relevant set of documents D = {d1,d2, . . . ,dn}
from the knowledge base. This retrieval is based
on the relevance of each document to the query,
maximizing the cosine similarity between encoded
representations:

C = argmaxk

di∈D

(
Fe(q) · Fe(di)

T

∥Fe(q)∥∥Fe(di)∥

)
(1)

where Fe is our encoder model for encoding query 242

and documents q, Fe(q) ∈ R1×h and Fe(di) ∈ 243

R1×h. k indicates that we sample the top-k docu- 244

ments from Q that maximize the cosine similarity 245

with q. 246

Multi-grained Retrieval: To address the com- 247

plex nature of government queries, our retrieval 248

process operates on multiple granularities: 249

• Sentence-Level Retrieval: Focuses on ex- 250

tracting precise, sentence-level information 251

crucial for addressing specific aspects of the 252

query. 253

• Multi-Sentence-Level Retrieval: Provides 254

broader contextual information by retrieving 255
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documents consisting of multiple sentences,256

thereby enhancing the comprehensiveness of257

the response.258

This multi-grained approach, denoted as Dg where259

g indicates the granularity level.260

3.2 Ensemble Framework261

Building on our proposed DiverseRAG framework,262

we introduce an ensemble framework that com-263

bines both direct and contextually enriched re-264

sponses to produce the final response. Our ensem-265

ble framework is motivated by the need to ensure266

accuracy and reliability in the final response. It267

balances the quality of direct LLM responses with268

the precision and depth provided by DiverseRAG-269

enhanced responses. By integrating both responses,270

the ensemble guarantees a baseline quality, ensur-271

ing that at least the direct LLM response can be272

relied upon if the RAG-enhanced response is not273

satisfactory.274

Upon receiving a query q, the ensemble frame-275

work uses two parallel generation pathways:276

(1) Direct LLM Generation: Utilizes the inher-
ent capabilities of the LLM to generate a response
Rdirect directly from the query:

Rdirect = LLM(q) (2)

(2) DiverseRAG-Enhanced Generation: En-
gages the DiverseRAG framework to retrieve con-
text C from the knowledge sources, forming an
enriched prompt P for the LLM:

P = "Context: " + C + "Question: " + q (3)

The LLM then generates a contextually informed
response RRAG:

RRAG = LLM(P ) (4)

Ensemble Integration: The final step involves
merging the two responses, Rdirect and RRAG,
through an ensemble mechanism. This integration
evaluates and combines the responses, resulting in
a final answer Rfinal that is both comprehensive and
contextually accurate:

Rfinal = LLM(Rdirect, RRAG) (5)

This ensemble approach leverages the distinct277

advantages of each generation pathway while miti-278

gating their individual limitations.279

4 Data Collection 280

In the domain of government-domain question an- 281

swering, there is a notable absence of standard 282

QA datasets especially evaluation benchmark and 283

knowledge bases for LLMs, motivating us to con- 284

duct our own extensive data collection. In this 285

section, we give the details of the collection and 286

construction of the data resources in this work. 287

Specifically, we provide corresponding details of 288

the collection of FAQs in Section 4.1, the process 289

of crawling web and legal documents in Section 4.2 290

and the details of building dialectal translation of 291

FAQs in Section 4.3. 292

4.1 Crawling Government Website FAQs 293

UAE government websites provide useful informa- 294

tion to citizens, residents and visitors on a wide 295

range of topics. We selected 15 of those sites that 296

represent various government domains. Each of 297

these sites contains bilingual information and a 298

dedicated FAQ section. The first step of our data 299

collection process therefore involved scraping FAQ 300

sections from all these government sites. The full 301

list is shown in Table 8 in Appendix. We crawled 302

2,134 EN FAQs and 2,205 MSA FAQs. We then 303

carried out an alignment of this bilingual set, from 304

which we curated a parallel set of 360 FAQs in both 305

EN and MSA and translated the questions to four 306

Arabic dialects: Egyptian, Lebanese, Iraqi and Emi- 307

rati (Section 4.3). This combination represented 308

a realistic QA use-case test set for UAE govern- 309

ment domain content. We split the parallel dataset 310

into two parts; Mixed domain, which includes 311

200 FAQs representing 40 FAQs each from 5 dif- 312

ferent websites (MOHRE, UAE Government Por- 313

tal, MOEC, FTA and MOE) and Single domain, 314

which includes 160 FAQs from the MOHRE site 315

only. 316

4.2 Collection of Web Texts and Legal 317

Documents 318

To facilitate our DiverseRAG government-domain 319

QA system, we conduct collection of various 320

knowledge bases. Specifically, we aim at the texts 321

of government websites for up-to-date information 322

and legal documents for reliable legal references 323

and accurate legal information. 324
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Web Pages Articles
# of Web pages 9, 404 611
# of Sentences 247, 406 13, 621
# of Words 4, 569, 452 93, 347
# of tokens 19, 823, 377 2,434,115

Table 1: Descriptive statistics for the collected web
pages and PDF/Docx articles in English and Arabic.

4.2.1 Collection of Web Texts325

The web crawling process was implemented us-326

ing the Selenium 1 package, specifically utilizing327

the Safari browser to navigate and extract textual328

content from selected UAE governmental websites.329

The crawler targeted a list of URLs and was set330

to extract text within paragraph (<p>) tags, en-331

suring that each segment contained at least two332

words to retain meaningful content. A recursive333

link-following strategy was employed, gathering334

hyperlinks within anchor (<a>) tags to expand the335

scope of the crawl, while avoiding links to non-336

informative pages such as login screens and down-337

loadable files. Specific handling of website interac-338

tions was incorporated to manage common obsta-339

cles like pop-ups and cookie consent forms, with340

adjustments made for certain sites where initial user341

actions were necessary to access the main content.342

The process was controlled to limit the crawl to343

100,000 pages per base URL, with a delay between344

page loads to simulate human browsing behavior345

and adhere to website policies.346

The collected web texts encompass a wide ar-347

ray of topics and are represented by the statistics348

available in Table 1.349

4.2.2 Collection of Legal Documents350

Alongside web texts, we compiled a diverse col-351

lection of legal texts from government websites352

in various formats (PDF, DOCX) and languages353

(English and Arabic). The statistics for these docu-354

ments are detailed in 1. This collection of web and355

legal documents forms the knowledge bases of our356

DiverseRAG system.357

4.3 FAQs Translation into Arabic Dialects358

The UAE is a multicultural society that is home359

to a diverse population that includes both locals360

(Emiratis) and expatriates from around the globe.361

Expatriates represent over 80% of the population,362

including speakers of dialects from neighbouring363

1https://pypi.org/project/selenium/

Arab countries such as Gulf (Saudi Arabia, Bahrain, 364

Kuwait, Qatar), Levantine (Lebanon, Jordan, Pales- 365

tine, Syria), Egyptian and Iraqi. 366

To make our system applicable in a realistic set- 367

ting, we therefore translated the question-side of 368

360 FAQs (Mixed domain and Single domain) 369

into four Arabic dialects, specifically Gulf (Emi- 370

rati), Levantine (Lebanese), Egyptian (Cairo) and 371

Iraqi (Baghdad). We outsourced this translation 372

task to a professional language service provider. 373

For the translation task set-up, we shared only the 374

EN question and EN answer with the translators. 375

We chose not to share the MSA version of the ques- 376

tions so as not to prime or bias the translators with 377

specific choices of terminology of linguistic struc- 378

tures. The translations were then reviewed by our 379

own in-house language experts to assess the quality 380

of the dataset. 381

Our internal reviews revealed a number of is- 382

sues arose with the Arabic dialect translations. 383

Firstly, the translator for Emirati dialect chose an 384

informal register, which differed greatly to the 385

formal register of the source text. E.g. �
� 	P zq 386

translates as ‘hit up’, instead of ‘call’; �
�Q¢

�
JK
 yt- 387

Trš translates as ‘blast off’ instead of ‘send’ 388

and I. �« ςsb translates as the equivalent of 389

‘cuz’ instead of ‘because’. Additionally, some 390

translations did not reflect the specific terminol- 391

ogy typically used in UAE government domains. 392

These were updated to reflect official use: e.g. 393

H. A¢
�
®
�
J�@ ‘recruitment’, ZA

	
®«@ AςfA’ ‘exemption’, 394

ù


ÒJ


	
¢
	
�
�
JË @ É¾J
êË @ Alhykl Altnðymy ‘organizational 395

structure’, ø


XAm�

�
'B@

	
àñ

	
KA
�
®Ë @ AlqAnwn AlAtHAdy 396

‘Federal Law’, ©J.�Ë@
�
H@PAÓB



@ AlǍmArAt Alsbς 397

‘The Seven Emirates’, P@Q�®Ë@ PðY� Sdwr AlqrAr ‘is- 398

suance of the decision’, and ú


«AÒm.

Ì'@ ú


ÍAÒªË@ ¨@

	Q 	�Ë @ 399

AlnzAς AlςmAly AljmAςy ‘Collective Labor Dis- 400

pute’. A full revision of the register resulted in 401

two versions of the Emirati question set; formal 402

and informal. Secondly, the Iraqi translations pre- 403

sented a number of issues with the feedback from 404

the reviewer stating that the professionally trans- 405

lated text “was useful but not accurate” and that it 406

did not reflect translations by an Iraqi speaker but 407

someone familiar with the dialect. Specific terms 408

were modified to reflect common usage such as: 409

using the "ch" sound 	
àAg. jAn instead of 	

àA¿ kAn, 410

misuse of É�
	
¯ fSl which is used for tribal issues 411
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and not legal issues, and merging �
éJ
ë ñ

	
J
�
� šnw hyℏ412

‘what’s this[?]’into �
éJ

	
�
�
� šnyℏ, for example.413

5 Experiments414

5.1 Experimental Setup415

We employed several state-of-the-art LLMs in416

our experiments, including Llama (Touvron et al.,417

2023a,b; Dubey et al., 2024), Mistral (Jiang et al.,418

2023), AceGPT (Huang et al., 2024), and Jais (Sen-419

gupta et al., 2023), which vary in model sizes rang-420

ing from 7 billion to 70 billion parameters.421

Datasets: The dataset consisted of 2,134 English422

FAQs and 2,205 Arabic FAQs collected from 15423

UAE government ministries, providing a compre-424

hensive set of questions typical in government-425

domain applications.426

Knowledge Sources: The knowledge base for427

the RAG included 9, 404 web pages and 611 legal428

documents, we split them into sentence-level and429

multi-sentence-level to facilitate multi-granularity430

retrieval.431

Retrieval Setup: We employ Multi-grained re-432

trieval fully utilize information at both sentence-433

level and multi-sentence-level, enriching the LLMs’434

context. We firstly use BM25 to retrieve top-435

1000 documents for each granularity and then use436

Sentence-BERT to pick the top-k documents.437

5.2 Evaluation Metric438

To evaluate the enhancements brought by our439

proposed RAG approach for LLMs on gov-440

domain QA, we employ various metrics including441

BertScore (Zhang et al., 2020), BLEU (Papineni442

et al., 2002), ROUGE (Lin, 2004) and F-1 score.443

We also employ a widely used evaluation frame-444

work for RAG named RAGAS (Es et al., 2023)445

including six metrics: Faithfulness, Answer Rel-446

evancy, Context Precision, Context Recall, An-447

swer Similarity, Answer Correctness, as well as448

GPTScore (Fu et al., 2023), which all assess the449

relevance and accuracy of the generated responses450

using LLMs.451

5.3 Results452

Comparison between w/ RAG and w/o RAG In453

our experiments, we evaluated the effectiveness of454

our DiverseRAG approach in enhancing the perfor-455

mance of various LLMs on our English and MSA456

FAQs, the results of multiple LLMs (with RAG457

and without RAG) on conventional metrics includ- 458

ing BertScore, BLEU, ROUGE and F-1 score are 459

shown in Table 2 and Table 3. We further show the 460

results evaluated by RAGAS (Es et al., 2023) in 461

Table 4 including Faithfulness, Answer Relevance, 462

Answer Correctness. As demonstrated by the re- 463

sults (indicated by the bold numbers in brackets), 464

our proposed DiverseRAG approach showed sub- 465

stantial improvements over counterpart LLMs with 466

non-RAG methods across all metrics. For English 467

FAQs, the integration of retrieval-augmented gen- 468

eration consistently enhanced BertScore, BLEU, 469

ROUGE and F1 scores as well as LLMs-based met- 470

rics Faithfulness, Answer Relevance, Answer Cor- 471

rectness among all tested LLMs, including Vicuna- 472

7B and Llama-2-7B which got substantial increases 473

in BLEU scores with the help of our approach. This 474

indicates that DiverseRAG effectively harnesses di- 475

verse knowledge sources to improve the quality of 476

generated answers. Similarly, the results on MSA 477

FAQs revealed substantial performance gains, with 478

Llama-3-8B and AceGPT-13B showing improve- 479

ments in F1 scores (+12.1 and +6.4, respectively) 480

and Llama-3-8B’s improvement on Faithfulness 481

for English and MSA FAQs. These highlight the 482

framework’s ability in handling MSA questions. 483

Effect of Multi-grained Retrieval We study 484

the effect of integrating a multi-grained retrieval 485

method within our DiverseRAG approach. We com- 486

pare its performance to the baseline vanilla RAG 487

approach (only pick the top-1 sentence) across six 488

metrics by RAGAS (Es et al., 2023) using Vicuna- 489

7B, LLama3-8B, and Jais-13B models for both 490

MSA and English FAQs. The results are shown in 491

Table 5. 492

Our DiverseRAG approach consistently en- 493

hances performance of LLMs on Gov-domain QA, 494

with substantial improvements noted in Faithful- 495

ness and Context Recall, particularly for Jais-13B, 496

which saw increases up to 8.9 and 15.8 points, re- 497

spectively. Importantly, the improvements in Con- 498

text Recall and Context Precision across all models 499

highlight the effectiveness of the multi-grained re- 500

trieval in accurately sourcing and utilizing relevant 501

data. These enhancements in retrieval precision 502

are crucial for generating more coherent and con- 503

textually aligned responses. These findings show 504

the effectiveness of the multi-grained retrieval in 505

refining the retrieval and generation quality of the 506

models. 507
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Model BERTScore BLEU ROUGE-L F1 Score
Precision Recall F1 BLEU-1 BLEU-2 BLEU-3 BLEU-4 Precision Recall F1

Vicuna-7B 81.7 (+3.5) 84.9 (+2.0) 83.2 (+2.8) 7.5 (+8.8) 3.0 (+5.6) 1.2 (+4.1) 0.4 (+3.1) 9.4 (+8.8) 33.2 (-1.1) 13.2 (+7.2) 28.6 (+3.9)
Llama-2-7B 81.0 (+3.7) 84.8 (+2.2) 82.8 (+3.0) 5.3 (+8.1) 2.3 (+4.8) 1.0 (+3.2) 0.4 (+2.3) 8.3 (+7.2) 37.8 (-1.8) 12.4 (+6.8) 30.3 (+3.3)
Llama-2-13B 81.7 (+1.6) 85.6 (+0.8) 83.6 (+1.2) 4.7 (+4.3) 2.0 (+2.5) 0.8 (+1.6) 0.3 (+1.1) 7.9 (+3.9) 38.2 (-0.9) 12.0 (+4.1) 30.4 (+2.7)
Llama-3-8B 77.6 (+3.3) 84.9 (+1.8) 81.1 (+2.6) 0.2 (+4.1) 0.1 (+2.1) 0.1 (+1.1) 0.1 (+0.7) 2.8 (+5.6) 47.8 (+4.6) 5.0 (+7.6) 23.8 (+5.9)
Mistral-7B 83.2 (+2.2) 85.6 (+1.6) 84.4 (+1.9) 9.3 (+7.0) 3.9 (+5.7) 1.6 (+4.9) 0.7 (+4.2) 11.0 (+7.2) 32.9 (+4.1) 14.8 (+6.9) 30.5 (+5.5)
Mixtral-8x7B 82.5 (+2.5) 86.1 (+1.1) 84.2 (+1.8) 7.7 (+7.6) 3.3 (+5.1) 1.5 (+3.8) 0.7 (+2.8) 10.0 (+7.0) 35.6 (+0.3) 13.9 (+6.5) 29.2 (+4.2)
AceGPT-13B 82.8 (+1.6) 86.0 (+0.7) 84.4 (+1.2) 8.4 (+5.6) 3.3 (+3.9) 1.3 (+3.0) 0.5 (+2.2) 9.9 (+5.8) 30.8 (+1.2) 13.3 (+5.1) 26.9 (+2.9)
Jais-13B 84.3 (+1.6) 85.3 (+1.0) 84.8 (+1.3) 14.6 (+5.4) 5.0 (+6.7) 1.8 (+6.6) 0.8 (+6.2) 16.6 (+8.2) 19.8 (+7.5) 15.4 (+7.4) 24.8 (+7.5)

Table 2: Comparison of LLMs without RAG and with our DiverseRAG approaches evaluated on English FAQs. The
numbers shown in this table are the performance of non-RAG approach, the bold numbers within the brackets are
the improvements given by our proposed DiverseRAG approach.

Model BERTScore BLEU ROUGE-L F1 Score
Precision Recall F1 BLEU-1 BLEU-2 BLEU-3 BLEU-4 Precision Recall F1

Vicuna-7B 63.6 (+2.1) 66.8 (+0.7) 65.0 (+1.4) 6.9 (+1.7) 2.8 (+0.7) 1.5 (+0.3) 0.8 (+0.1) 2.3 (+3.4) 3.1 (+6.2) 2.0 (+3.6) 13.7 (+4.2)
Llama-2-7B 59.2 (+3.7) 62.5 (+3.0) 60.7 (+3.4) 2.4 (+3.5) 0.8 (+1.5) 0.4 (+0.9) 0.2 (+0.6) 0.9 (+7.5) 5.8 (+6.6) 0.7 (+8.0) 4.7 (+9.7)
Llama-2-13B 62.0 (+2.2) 66.1 (+0.4) 63.9 (+1.4) 4.9 (+2.7) 2.1 (+1.0) 1.1 (+0.5) 0.6 (+0.3) 1.7 (+8.5) 5.2 (+8.8) 1.9 (+8.6) 13.3 (+3.9)
Llama-3-8B 58.7 (+7.0) 68.3 (+1.2) 63.1 (+4.5) 1.6 (+6.8) 0.6 (+2.6) 0.3 (+1.1) 0.1 (+0.5) 1.1 (+9.1) 8.8 (+12.0) 1.2 (+11.0) 8.5 (+12.1)
Mistral-7B 58.9 (+4.4) 64.8 (+1.0) 61.4 (+3.0) 5.8 (+1.2) 2.8 (+0.2) 1.7 (+0.1) 1.0 (+0.1) 2.1 (+3.3) 2.2 (+4.1) 1.6 (+2.4) 12.6 (+3.7)
Mixtral-8x7B 66.8 (+1.0) 68.3 (+1.0) 67.4 (+1.1) 9.8 (+1.7) 4.3 (+0.4) 2.2 (+0.1) 1.2 (+0.1) 3.6 (+3.7) 5.9 (+2.9) 3.4 (+4.5) 14.8 (+7.1)
AceGPT-13B 63.3 (+4.3) 69.4 (+0.3) 66.1 (+2.4) 4.9 (+6.5) 2.0 (+2.7) 0.9 (+1.3) 0.4 (+0.7) 3.8 (+10.1) 7.0 (+12.5) 4.1 (+10.5) 16.5 (+6.4)
Jais-13B 66.1 (+1.6) 68.8 (+0.1) 67.3 (+0.8) 9.0 (+1.5) 3.2 (+0.6) 1.3 (+0.2) 0.5 (+0.2) 3.5 (+6.9) 4.5 (+5.6) 2.9 (+4.2) 13.6 (+5.0)

Table 3: Comparison of LLMs without RAG and with our DiverseRAG approaches evaluated on MSA FAQs. The
numbers shown in this table are the performance of non-RAG approach.

Model Faithful. Ans. Rel. Ans. Corr.

Vicuna-7B (MSA) 59.8 (+5.5) 63.2 (+2.7) 61.1 (+7.3)
LLama3-8B (MSA) 56.4 (+8.8) 61.9 (+5.0) 58.3 (+6.0)
Jais-13B (MSA) 61.9 (+8.2) 68.5 (+2.2) 65.6 (+6.2)

Vicuna-7B (En) 62.1 (+6.8) 66.0 (+3.2) 64.5 (+3.8)
LLama3-8B (En) 59.3 (+5.7) 64.8 (+5.3) 61.7 (+6.6)
Jais-13B (En) 64.8 (+9.6) 71.5 (+1.5) 69.2 (+7.0)

Table 4: Evaluation results using RAGAS for three
LLMs without RAG and with our DiverseRAG. The
bold numbers within the brackets are the improvements
given by DiverseRAG.

Effect of Knowledge Bases We further exam-508

ine how different knowledge base utilisation affect509

the Jais-13B model’s performance in MSA and En-510

glish, results shown in Table 6. The tested setups511

include using both Web and Document sources,512

Web-only, Document-only, and no external knowl-513

edge base. The combination of Web and Document514

sources achieved the highest performance in both515

languages. For MSA, this setup achieves an F-1516

Score of 18.6, while in English, it reaches 32.3,517

alongside the best scores in Answer Relevance and518

Correctness. This indicates that accessing diverse519

knowledge sources enhances the model’s capacity520

to produce relevant and accurate responses. In con-521

trast, using solely Web or Document sources results522

in slightly worse performance, and the absence of523

a knowledge base leads to the lowest scores. These524

results show the importance of integrating multiple525

knowledge bases to improve LLMs outputs. 526

5.4 Evaluating Dialectal Variation for 527

Gov-domain QA 528

We further conduct experiments to examine the per- 529

formance of various LLMs when encountering di- 530

alects of Arabic such as Egyptian, Iraqi, etc, which 531

are commonly used in real life. Specifically, we 532

translate a subset (360 questions) of the full set of 533

the FAQs in MSA to four Arabic dialects including 534

Egyptian, Lebanese, Iraqi and Emirati, the exper- 535

imental results are shown in Table 7. This study 536

evaluates Vicuna-7B, LLama3-8B, and Jais-13B on 537

Egyptian, Lebanese, Iraqi, and Emirati dialects. We 538

assess Faithfulness, Answer Relevance, and Answer 539

Correctness, comparing DiverseRAG with vanilla 540

RAG. DiverseRAG consistently enhances perfor- 541

mance of LLMs. Jais-13B shows the largest Faith- 542

fulness gains with 7.1 points in Lebanese. Vicuna- 543

7B and LLama3-8B also improve, with Vicuna-7B 544

gaining 5.3 points in Answer Correctness for Iraqi, 545

and LLama3-8B gaining 7.2 points in Faithfulness 546

for Emirati. Results demonstrate the DiverseRAG 547

approach effectively handles linguistic variations, 548

improving both the relevance and accuracy of re- 549

sponses across Arabic dialects. 550

5.5 Qualitative Error Analysis 551

We conduct errors analysis on a set of 22 randomly 552

selected MSA samples including question, context, 553
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Model Faithfulness Answer Relevancy Context Precision Context Recall Answer Similarity Answer Correctness

Vicuna-7B (MSA) 61.5 (+3.8) 65.0 (+1.0) 63.7 (+9.6) 50.1 (+10.5) 78.2 (+6.5) 63.3 (+5.1)
LLama3-8B (MSA) 58.2 (+7.0) 63.8 (+3.1) 63.3 (+8.2) 53.0 (+15.1) 73.6 (+7.5) 60.9 (+3.4)
Jais-13B (MSA) 63.8 (+8.9) 70.6 (+2.5) 65.4 (+9.3) 53.5 (+14.9) 82.9 (+5.4) 67.3 (+6.7)

Vicuna-7B (En) 64.2 (+4.7) 67.9 (+1.3) 67.1 (+10.1) 54.3 (+11.9) 81.0 (+7.3) 66.8 (+1.5)
LLama3-8B (En) 61.4 (+3.6) 66.3 (+3.8) 66.0 (+9.8) 55.4 (+16.4) 76.9 (+8.2) 64.7 (+3.6)
Jais-13B (En) 67.5 (+6.9) 72.4 (+0.6) 68.8 (+10.4) 57.2 (+15.8) 86.7 (+6.0) 71.2 (+5.6)

Table 5: Evaluation results of the comparison between vanilla RAG approach and our DiverseRAG approach
with multi-grained retrieval, the numbers are the performance of LLMs with vanilla RAG approach measured
by RAGAS, the bold numbers in brackets are improvements given by the multi-grained retrieval method in our
proposed DiverseRAG approach.

Language Configuration F-1 Score Ans. Rel. Ans. Corr.

MSA

Web & Doc 18.6 73.1 74.1
Web 13.9 70.5 70.8
Doc 15.6 71.0 71.7
None 13.6 70.6 67.3

English

Web & Doc 32.3 77.5 78.7
Web 28.7 75.1 71.8
Doc 30.5 75.0 73.4
None 24.8 74.4 71.2

Table 6: Ablation Study Results for the effect of knowl-
edge base of Jais-13B.

Model Dialects Faithful. Ans. Rel. Ans. Corr.

Vicuna-7B

Egyptian 57.5 (+3.8) 61.0 (+1.0) 58.8 (+4.6)
Lebanese 59.8 (+4.5) 63.6 (+1.5) 62.1 (+2.0)

Iraqi 58.2 (+3.5) 61.8 (+1.3) 59.6 (+5.3)
Emirati 58.9 (+4.0) 63.0 (+1.6) 60.5 (+4.8)

LLama3-8B

Egyptian 54.1 (+6.5) 59.5 (+2.8) 56.0 (+3.7)
Lebanese 56.9 (+3.4) 62.4 (+3.0) 59.3 (+4.4)

Iraqi 54.8 (+6.8) 60.2 (+3.0) 56.7 (+4.0)
Emirati 55.7 (+7.2) 61.2 (+3.3) 57.6 (+4.5)

Jais-13B

Egyptian 59.5 (+5.8) 66.2 (+0.2) 63.3 (+4.0)
Lebanese 62.3 (+7.1) 69.2 (+0.4) 66.9 (+4.8)

Iraqi 60.6 (+6.1) 66.7 (+0.4) 64.2 (+4.2)
Emirati 61.7 (+6.7) 67.7 (+0.7) 65.2 (+4.5)

Table 7: Evaluation results of three LLMs on our test
data translated into four Arabic dialects, we compare
the performance of these LLMs on dialectal data with
vanilla RAG approach with our DiverseRAG approach,
the bold numbers in brackets are the improvements by
our approach.

and answer from Jais-13B (our best model), as554

shown in Table 3 and 4. While the system shows555

competitive results in terms of evaluation metrics,556

yet it demonstrates some weaknesses. The most557

prominent reason for the incorrect answers is its558

frequent failure to leverage the provided context559

to answer questions accurately often ignoring rel-560

evant information within the context or retrieving561

information unrelated to the query. Another signif-562

icant proportion of responses exhibits poor align-563

ment with the posed questions, focusing on tan-564

gentially related information or peripheral aspects565

rather than addressing the core query intent, po-566

tentially limiting their usefulness for users seeking567

comprehensive answers. A third notable source 568

of errors can be attributed to the model’s occa- 569

sional hallucination generating factually incorrect 570

or contradictory information, particularly problem- 571

atic in domains involving legal or procedural con- 572

tent where precision is crucial. This suggests some 573

limitations in the model’s knowledge representa- 574

tion or retrieval mechanisms, leading to the pro- 575

duction of responses that, while coherent, contain 576

inaccuracies not supported by the provided context 577

or general factual knowledge. Lastly, the system 578

demonstrates a tendency to present oversimplified 579

representations of intricate processes and regula- 580

tory frameworks. This reductionist approach can 581

potentially lead users to develop incomplete or dis- 582

torted understandings of critical information. This 583

errors analysis highlights key improvements: con- 584

text, alignment, accuracy, and depth. Addressing 585

these enhances reliability for precise responses. 586

6 Conclusion and Future Work 587

In this paper, we introduced DiverseRAG, a 588

RAG framework for leveraging diverse knowledge 589

sources such as web pages and legal documents, 590

and employing multi-grained retrieval. We curated 591

a new benchmark of English and MSA government 592

FAQs, crawled web and legal texts for knowledge 593

bases, and provided dialectal translations into four 594

Arabic dialects. Our experiments with bilingual 595

datasets from UAE government websites demon- 596

strate that DiverseRAG largely enhances response 597

accuracy and relevance in English, MSA, and var- 598

ious Arabic dialects. This shows its effectiveness 599

in domain-specific and linguistically diverse QA 600

tasks. Future research will focus on extending 601

DiverseRAG to other domains such as healthcare 602

and finance, where domain-specific knowledge is 603

crucial. We also plan to refine the model’s handling 604

of dialectal variations and expand its language sup- 605

port to enhance generalizability and impact. 606
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Limitations607

While DiverseRAG demonstrates considerable im-608

provements in domain-specific question answering,609

several limitations remain. Firstly, our proposed610

approach relies on pre-existing knowledge sources611

means that the system’s accuracy can be affected612

by outdated or incomplete information, reading the613

need for frequent updates to maintain relevance.614

Additionally, although the framework is capable615

of dealing with multiple dialects, its performance616

may vary with less common dialectal variations617

not covered by the current dataset. Furthermore,618

the integration of multi-grained retrieval methods619

introduces computational complexity, which might620

impact efficiency and scalability when applied to621

larger datasets or in real-time applications. Finally,622

while our experiments focus on the e-government623

domain, further validation across diverse domains624

is necessary to fully understand the framework’s625

generalizability and adaptability to different types626

of queries and document structures.627
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7 Appendix 1042

7.1 Evaluation Metrics 1043

BERTScore: BERTScore (Zhang et al., 2020) 1044

utilizes BERT embeddings (Devlin et al., 2019) to 1045

measure the semantic similarity between generated 1046

text and the reference text. It is calculated as: 1047

RBERT =

∑
y∈Yx

maxz∈Zx cos(y, z)
|Yx|

(6)

where Yx and Zx are the token embeddings of 1048

the reference and generated text for example x, 1049

respectively, and cos denotes the cosine similarity. 1050

BLEU Score: BLEU (Papineni et al., 2002) com- 1051

pares n-grams of the machine-generated text to 1052

n-grams of the reference text, calculating the preci- 1053

sion for each, and then applying a brevity penalty 1054

to penalize short translations: 1055

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
(7)

where pn is the precision of n-grams, wn are 1056

weights summing to 1, BP is the brevity penalty, 1057

and N is typically 4. 1058

ROUGE-L: ROUGE-L (Lin, 2004) measures the 1059

longest common subsequence (LCS) between the 1060

generated text and the reference, focusing on the 1061

sequence order: 1062

ROUGE-L =
(1 + β2) · PrecisionLCS · RecallLCS

RecallLCS + β2 · PrecisionLCS
(8)

where β is typically set to prioritize recall more 1063

than precision. 1064

F-1 Score The F-1 Score, as used in evaluat-
ing question answering systems like SQuAD (Ra-
jpurkar et al., 2016, 2018), quantifies the overlap
between the predicted and reference answers:

F -1 = 2 · Precision · Recall
Precision + Recall

(9)
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where Precision is the ratio of overlapping words in1065

the predicted answer to the total number of words1066

in the predicted answer, and Recall is the ratio of1067

overlapping words in the predicted answer to the1068

total number of words in the reference answer.1069
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Table 8: Selected UAE Government Websites with FAQ Sections

Website Description

UAE Government Portal
The official portal of the UAE government, providing a wide
range of general information and services about UAE.
www.u.ae

MOFA
The Ministry of Foreign Affairs, offering information on
international relations, consular services, and diplomatic missions.
www.mofa.gov.ae

GPSSA
The General Pension and Social Security Authority, providing
details on pension schemes and social security benefits.
www.gpssa.gov.ae

MOHRE
The Ministry of Human Resources and Emiratisation, covering
labor laws, employment services, and workforce regulations.
www.mohre.gov.ae

MOJ
The Ministry of Justice, offering legal information, judicial
services, and legislative updates.
www.moj.gov.ae

FTA
The Federal Tax Authority, providing guidelines on tax
regulations, compliance, and e-services.
www.tax.gov.ae

MOEC
The Ministry of Economy, including information on economic
policies, business regulations, and trade.
www.moec.gov.ae

MOEC Investment
Investment Section from the Ministry of Economy, offering
insights into investment opportunities and regulations.
https://www.moec.gov.ae/en/investment-faqs

MOE
The Ministry of Education, covering educational policies,
school regulations, and academic services.
www.moe.gov.ae

ESE
The Emirates Schools Establishment, focusing on school
management, educational resources, and student services.
www.ese.gov.ae

FAHR

The Federal Authority for Government Human Resources,
providing information on HR policies, employee services,
and training programs.
www.fahr.gov.ae

EHS
The Emirates Health Services, offering healthcare services,
medical guidelines, and public health information.
www.ehs.gov.ae

MOIAT

The Ministry of Industry and Advanced Technology, including
information on industrial policies, technological advancements,
and innovation.
www.moiat.gov.ae

MOEI
The Ministry of Energy and Infrastructure, covering energy
policies, infrastructure projects, and sustainability initiatives.
www.moei.gov.ae

MOCCAE

The Ministry of Climate Change and Environment, providing
information on environmental policies, climate initiatives,
and agricultural services.
www.moccae.gov.ae
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