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Abstract

We consider the problem of recovering an unknown latent code vector under a
known generative model. For a d-layer deep generative network G : Rn0 !
Rnd with ReLU activation functions, let the observation be G(x) + ✏ where ✏ is
noise. We introduce a simple novel algorithm, Partially Linearized Update for
Generative Inversion (PLUGIn), to estimate x (and thus G(x)). We prove that, when
weights are Gaussian and layer widths ni & 5in0 (up to log factors), the algorithm
converges geometrically to a neighbourhood of x with high probability. Note the
inequality on layer widths allows ni > ni+1 when i � 1. To our knowledge, this
is the first such result for networks with some contractive layers. After a sufficient
number of iterations, the estimation errors for both x and G(x) are at most in the
order of

p
4dn0/ndk✏k. Thus, the algorithm can denoise when the expansion ratio

nd/n0 is large. Numerical experiments on synthetic data and real data are provided
to validate our theoretical results and to illustrate that the algorithm can effectively
remove artifacts in an image.

1 Introduction

We consider the inverse problem of recovering an unknown vector x⇤ 2 Rn0 from a noisy observation
y 2 Rnd of the form

y = G(x⇤) + ✏, (1)
where ✏ 2 Rnd is noise and G : Rn0 ! Rnd is a known d-layer feed-forward neural network with
ReLU activation functions (in fact, it is straightforward to generalize to positively homogeneous
activation functions, which we will elaborate later). Precisely, G has the form

G(x) = �(Ad�(Ad�1 . . .�(A1x) . . .)), (2)

where �(·) = max(·, 0) is the ReLU activation function and Ai 2 Rni⇥ni�1 is the weight matrix in
the i-th layer.

The inverse problem (1) has applications in, for example, signal denoising and signal compression
[1, 2, 3]. In the case of denoising the typical goal is to recover a clean signal y⇤ from its noisy
observation y

⇤ + ✏ and, in the case of compression, the goal is to find an efficient low dimensional
representation of y⇤. Traditional approaches for these problems often use priors on signals, for
example, a sparsity prior with respect to a fixed basis or dictionary [4, 5, 6]. An emerging viewpoint
is to use a generative prior that assumes the unknown signal y⇤ is in the range of a deep generative
model G, i.e., y⇤ = G(x⇤), and develop algorithms that can estimate the latent code vector x⇤ from
y
⇤ + ✏, thus recovering y

⇤.

Recent advancements in training deep neural networks have shown that priors in the form of gen-
erative models can effectively map low dimensional vectors to the space of natural image classes
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[7, 8, 9]. Learned generative models can then be used as priors to solve various inverse problems
including denoising [1, 10], compressive sensing [11, 12, 13, 14, 15, 16], phase retrieval [17], blind
deconvolution [18, 19], low-rank matrix recovery [20] and have been shown to perform on par or
outperform classical sparsity based approaches for these inverse problems. For example, in [1] the
authors empirically showed that an end-to-end approach for denoising using a neural network that
maps noisy patches in an image to noise-free ones achieves state-of-the-art performance and is on
par with BM3D. Similarly, in [11] the authors empirically showed that for compressive sensing
using generative prior, optimization of the empirical risk objective over the latent code space (of the
generative prior) can recover a vector that effectively estimates the uncompressed signal with 5-10
times less measurements compared to Lasso in some cases.

Given that y equals G(x⇤), with possibly some additive noise, a standard way to estimate x
⇤, i.e., to

invert G(x⇤), would be to look for a minimizer of the program

min
x2Rn0

ky � G(x)k2. (3)

Unfortunately, this program is non-convex and to our knowledge there is no known efficient method
that can achieve its global minimum in general. On the other hand, for generative networks with
random (Gaussian) weight matrices, a line of papers showed that gradient-based algorithms can
provably avoid local minima with high probability [10, 14, 17, 20]. In particular, [10] considers a
random Gaussian noise model, and random Gaussian weight matrices Ai which are highly expansive
at each layer. Under these conditions, the authors show that the latent code vector x⇤ can be accurately
estimated using a gradient-based method that uses the (sub-)gradient updates given by

x
k+1 = x

k � ⌘(D1A1)
|(D2A2)

| · · · (DdAd)
| �G(xk)� y

�
, (4)

where x
k is the k-th estimate, ⌘ 2 R is step size, and Dj is a diagonal matrix with entries that are

either zero or one. Each Dj zeros out the inactive rows of Aj with respect to the estimate x
k and so

it is a function of xk (and Ap for p < j). Thus, at each iteration all Dj need to be updated.

In this paper, we show that we can drop the Dj and still recover an accurate estimate of x⇤. We
propose the following iterative algorithm, Partially Linearized Update for Generative Inversion
(PLUGIn), to estimate x

⇤:

PLUGIn: x
k+1 = x

k � ⌘A
|
1A

|
2 · · ·A

|
d

�
G(xk)� y

�
. (5)

This algorithm was inspired by previous work showing that latent vectors for non-linear single-index
function can be approximately estimated by treating the function as linear [21, 22]. Similar to
[10, 11, 12, 14, 17, 19, 23], for theoretical analysis, we assume the weight matrices are Gaussian.
To show that the algorithm works more broadly, we conduct real data simulations. Applying the
ideas in [21, 22] one can show that for any fixed x

0, the first iteration of (5) provides an unbiased
estimate of x⇤ with ⌘ = 2d, which is generally not the case for the gradient descent estimates given
by (4), see Section 3 for further details. Additionally, each iteration of PLUGIn maps the difference
G(xk)� y to the low dimensional latent code space using a static matrix A

|
1A

|
2 . . . A

|
d , which can be

pre-multiplied and reused in subsequent iterations.

In addition to the randomness assumption on the weight matrices, when the width of the each layer
satisfies ni & 5in0 (up to log factors), noise ✏ is independent of weight matrices, and the step size
⌘ is fixed, we show that the estimates provided by PLUGIn converge to a neighbourhood of x⇤

geometrically with high probability. This result allows ni > ni+1 for i � 1 and thus can provide
theoretical guarantees for estimating x

⇤ from (1) even when G has some contractive layers. To our
knowledge, this is the first such result. Additionally, we show that the k-th recovery and reconstruction
errors satisfy

kxk � x
⇤k .

s
4dn0

nd
k✏k and kG(xk)� G(x⇤)k .

s
4dn0

nd
k✏k

with high probability when k is large. Thus, PLUGIn can effectively denoise noisy observations
satisfying (1) provided that the expansion ratio nd/n0 is large. These contributions are highlighted
below:

1. We introduce a simple novel algorithm (5), called Partially Linearized Update for Generative
Inversion (PLUGIn), for inverting a generative model. Note that each update of PLUGIn
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can be implemented with two blackboxes. The first blackbox provides the G(xk) for each
iterate and the second blackbox provides the product of the weight matrices A|

1A
|
2 . . . A

|
d .

Thus, given these two blackboxes the individual matrices are not needed.
2. Under relatively mild conditions, we show that for generative priors with possibly contractive

layers, PLUGIn can effectively estimate the unknown latent code x⇤ and the unknown signal
G(x⇤) from observation y satisfying (1). The convergence is geometric and holds for a range
of step sizes.

3. In the presence of arbitrary noise ✏, we show that the recovery and reconstruction error
corresponding to the estimate x

k, for sufficiently large k, is approximately
p
4dn0/ndk✏k.

In contrast to typical random noise assumptions, we only require the noise to be independent
of the weight matrices. This allows stochastic noise (independent of weight matrices) as a
special case if one can bound the norm of the stochastic noise with high probability.

Organization of the paper: In Section 1.1, we introduce notations used through the paper. In
Section 2, we state the main results. In Section 3, we provide an outline of the proof. In Section 4,
we provide numerics on synthetic and real data. In Section 5, we briefly discuss a generalization of
activation functions, as well as limitations in our results.

1.1 Notations

For a positive integer n, let [n] = {1, 2, . . . , n}. For a vector x, let kxk be its Euclidean norm; for a
matrix A, let kAk be its operator norm; for a matrix A and a set T , let kAkT := supx2T \{0}

kAxk
kxk .

Let N (0, t2) be the normal distribution with mean zero and standard deviation t. Let B(x, r) be the
Euclidean ball of radius r centered at x and let Bn(0, r) be the Euclidean ball in Rn with radius r,
centered at origin. We use C and c to denote absolute constants (often c for small ones and C for
large ones) which may vary from line to line. We also use C0, C1, etc., to denote particular absolute
constants, which do not change throughout the paper.

2 Main Results

Let the generative model G : Rn0 ! Rnd be defined as in Equation (2). We consider the inverse
problem:

Let: x⇤ 2 Rn0 , ✏ 2 Rnd , y = G(x⇤) + ✏,

Given: generative model G and observation y,

Estimate: latent code vector x⇤ and G(x⇤).

We assume:

A1. All activation functions are ReLU.
A2. Each Ai 2 Rni⇥ni�1 has i.i.d. N (0, 1/ni) entries and {Ai}i2[d] are independent.
A3. Layer widths (number of nodes in each layer) satisfy

ni � C05
i
n0 log

0

@
i�1Y

j=0

enj

n0

1

A , i 2 [d] (6)

for some (sufficiently large) absolute constant C0.
A4. The noise ✏ does not depend on {Ai}i2[d]. (The noise may be deterministic or random.)

Let x0 2 Rn0 and let xk be the result of applying k iterations of PLUGIn (5). Under assumptions
A1-A4, xk geometrically converges to a neighbourhood of x⇤ (and also G(xk) to a neighbourhood of
G(x⇤)) for a range of step sizes near 2d. Precisely, we have the following theorem.
Theorem 1. Let ✓ 2 (0, 4

3 ) and let ↵ = |1� ✓|+ 1
2✓ 2 (0, 1). Let R be a positive number such that

kx0 � x
⇤k  R. Under assumptions A1-A4, the k-th estimate x

k
given by PLUGIn algorithm (5)

with constant step size ⌘ = ✓2d satisfies

kxk � x
⇤k  ↵

k
R+

15✓

1� ↵
2d
p

n0/ndk✏k, and
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kG(xk)� G(x⇤)k  3↵k
R+

45✓

1� ↵
2d
p
n0/ndk✏k

with probability at least 1� 2(k + 3)e�10n0 .

When ✓ = 1, Theorem 1 reduces to the following corollary.
Corollary 1. Let R be a positive number such that kx0 � x

⇤k  R. Under assumptions A1-A4, the

k-th estimate x
k

given by PLUGIn algorithm (5) with constant step size ⌘ = 2d satisfies

kxk � x
⇤k  2�k

R+ 30 · 2d
p
n0/ndk✏k, and

kG(xk)� G(x⇤)k  2�k(3R) + 90 · 2d
p
n0/ndk✏k

with probability at least 1� 2(k + 3)e�10n0 .

Remark 1 (Allowed number of iterations and comparison of error bound summands). The probability
in Theorem 1 (and also Corollary 1) decreases as the number of iterations increases. However, this
is generally not a problem because we can take up to exponentially many iterations before this
probability becomes trivial. In fact, if we require a probability of at least 99% on the error bounds,
then we can take any k  k

?(n0) :=
1

200e
10n0 � 3. Note that k? grows exponentially in n0 and it is

already large when n0 is relatively small1.

The noise term in the error bounds (proportional to k✏k) will dominate the other term (long) before
k
? many iterations are reached, unless the noise is virtually zero. Indeed, in Corollary 1, if 2�k?

R �p
4dn0/ndk✏k, then the noise must satisfy

k✏k < R

q
nd

4dn0

�
1
2

�k?

= 8R
q

nd

4dn0

�
1
2

�exp(10n0)/200
.

Note that
�
1
2

�exp(10n0)/200 is a double exponential and extremely small2, so we will consider the
noise as being virtually zero in this case. On the other hand, if 2�k?

R <

p
4dn0/ndk✏k, then after

at most k? iterations, with probability at least 99%, the estimation errors for x⇤ and G(x⇤) will be at
most C

p
4dn0/ndk✏k. The same argument can be made for Theorem 1 when ↵ is close to 1

2 (i.e., ✓
is close to 1) so that ↵k decays fast and 1

1�↵ is not close to being singular.

Remark 2 (Contractive layers). In A3, (6) states a lower bound on ni with respect to the latent
code dimension n0 (up to log factors). While this bound strictly increases with layer depth i, it
is not necessary for ni to always increase with i (except in the first layer). For example, consider
ni = �C05dn0d(2d� i) where � is any fixed number such that �C0 2 N and � � 4 + logC0. It is
easy to see n1 > n2 > · · · > nd, and we can also verify (see Appendix D) that such ni satisfy (6).
In this case, the network is contractive in each layer after the first, and Theorem 1 still applies.
Remark 3 (Initialization may depend on random weight matrices). The results of the theorem can
still hold when x

0 is chosen randomly, dependent on the weight matrices Ai. In this case, suppose
that kx0 � x

⇤k  R with probability at least 1� �. Then, the error bounds hold with probability at
least 1� 2(k + 3)e�10n0 � �. This does not follow directly from the theorem as stated (which fixes
x
0, then takes random weight matrices), but follows from the proof.

Remark 4 (Comparison to guarantees for gradient-based method). Here we compare our results to
the ones in [10], which uses (4) for iterations and considers a random noise model.

When the noise ✏ ⇠ N (0, 1
nd

�
2
Ind), the error bounds on the k-th PLUGIn iterate in Corollary 1,

with high probability, reduces to

max{kxk � x
⇤k, kG(xk)� G(x⇤)k}  C

⇣
2�k

R+ 2d
p
n0/nd�

⌘
.

Thus, we get geometric convergence with a rate of 1/2 and after sufficiently many iterations, the
errors are at most C2d

p
n0/nd�.

A similar result was shown in [10], which studies a gradient-based method for solving the inverse
problem (1). They show that when the weight matrices are random Gaussian and sufficiently

1For example, k?(5) ⇡ 2.59⇥ 1019 and k?(10) ⇡ 1.34⇥ 1041.
2For example, 2� exp(10)/200 ⇡ 7⇥ 10�34.
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expansive at each layer, the iterates of the gradient-based method converge to a neighborhood of
the target signal x⇤. The result holds for a fixed step size, dependent on d. After sufficiently many
iterations, the iterates converge geometrically to a neighborhood of x⇤ of radius at most on the order
of
p
n0/nd�, up to log factors. This rate of convergence takes the form (1 � C/d

2), thus giving
slower convergence for deeper nets. On the other hand, we note that dependence on d is of relatively
minor concern. Generative models usually have small depth in practice, our MNIST experiments
(below) work well with depth 3, and typical applications use depth less than 8.

3 Proof Outline

Here we give a sketch for the proof of Theorem 1. For simplicity, we will only focus on analyzing
one iteration of PLUGIn with step size ⌘ = 2d. The complete proof can be found in appendices.

The Special Case

Let us first look at the special case where d = 1 and ✏ = 0. The analysis here highlights some of the
key ideas in our proofs, while its result Lemma 1 serves as a building block for proof in the general
case. In this special case, PLUGIn with ⌘ = 2d reduces to

x
k+1 = x

k � 2A| ⇥
�(Ax

k)� �(Ax
⇤)
⇤

where � = ReLU and A 2 Rm⇥n is random with i.i.d. N
�
0, 1

m

�
entries.

In fact, the first iterate provides an unbiased estimate of x⇤ when x
0 does not depend on A. Indeed,

the rotation invariance property of the Gaussian distribution may be leveraged to show [21, 22], for
any fixed x,

EA|
�(Ax) = 1

2x. (7)
For completeness, we also include a proof for (7) in Appendix A, Lemma 2. Applying (7) to the first
iteration gives

Ex1 = x
0 � 2EA|

�(Ax
0) + 2EA|

�(Ax
⇤)

= x
0 � x

0 + x
⇤ = x

⇤

Thus, even the first iterate can be shown to be a good estimate by showing that x1 concentrates around
its mean. Further iterates are generally no longer unbiased estimators because they pick up complex
dependence on the random matrix A. We overcome this by developing a series of uniform deviation
inequalities, as below.

Let us suppose we have shown that, with high probability, kxk � x
⇤k  r for some (small) constant

r > 0. Then we wish to show that kxk+1 � x
⇤k  r/2 with high probability. Notice that

�(xk+1 � x
⇤) = 2A| ⇥

�(Ax
k)� �(Ax

⇤)
⇤
� (xk � x

⇤)

kxk+1 � x
⇤k = sup

u2Sn�1

2
⌦
Au,�(Ax

k)� �(Ax
⇤)
↵
�
⌦
u, x

k � x
⇤↵

= 2 sup
u2Sn�1

Z(u, xk;x⇤)

where
Z(u, v;x⇤) := hAu,�(Av)� �(Ax

⇤)i � 1
2 hu, v � x

⇤i .
We wish to bound the supremum of random process Z(u, xk;x⇤) over u 2 Sn�1. However, this
process is challenging to analyze since x

k depends on A when k � 1. To alleviate this dependency,
we bound by the supremum of Z(u, v;x⇤) over (u, v) 2 T 0 := Bn(0, 1) ⇥ B(x⇤

, r) instead. It is
worth noting that Z(u, v;x⇤) is centred, namely EZ(u, v;x⇤) = 0 for any fixed (u, v). We now
arrive at the estimate

kxk+1 � x
⇤k  2 sup

(u,v)2T 0

Z(u, v;x⇤) if kxk � x
⇤k  r. (8)

The following Lemma 1 provides a bound on supT 0 Z(u, v;x⇤). In fact, it is slightly more general
because we replaced T 0 with T1 ⇥ T2 (this replacement is helpful when studying the general case
d > 1). The proof of this lemma can be found in Appendix B. The proof idea is to first establish
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that Z(u, v;x⇤) has mixed (sub-Gaussian and sub-exponential) tail increments through Bernstein’s
inequality, and then apply the result from [24], which provides a general bound for the supremum of
random processes with mixed tail increments.
Lemma 1. Let � = ReLU. Fix w 2 Rn

and let A 2 Rm⇥n
have i.i.d. N

�
0, 1

m

�
entries. Define

Z(u, v;w) := hAu,�(Av)� �(Aw)i � 1
2 hu, v � wi .

Suppose T1, T2 are sets (not depending on A) such that

T1 = S1 \ Bn(0,↵) and T2 = S2 \ B(w,↵r)
for some q-dimensional (affine) subspaces S1,S2 ✓ Rn

and real numbers ↵, r > 0. Then for any

t � 1,

sup
u2T1
v2T2

|Z(u, v;w)|  C1↵
2
r

 r
q

m
+

q

m
+

r
t

m
+

t

m

!

with probability at least 1� e
�t

. Here C1 > 0 is an absolute constant.

We can apply Lemma 1 to estimate (8) (with S1 = S2 = Rn) and get, for example,

kxk+1 � x
⇤k  2C1r

⇣q
n
m + n

m +
q

n
m + n

m

⌘
 1

2r

with probability at least 1� e
�n, provided that m � (16C1)2n.

The General Case

Let us illustrate the proof idea with d = 2 (the extension to d > 2 is straightforward). Denote
x
k
1 = �(A1x

k) and x
⇤
1 = �(A1x

⇤). By adding and subtracting 2A|
1(x

k
1 � x

⇤
1) we can write (5) with

⌘ = 2d as

x
k+1 � x

⇤ = x
k � x

⇤ � 22A|
1A

|
2 [G(xk)� G(x⇤)� ✏]

= (xk � x
⇤)� 2A|

1

�
�(A1x

k)� �(A1x
⇤)
�

+ 2A|
1

⇥
(xk

1 � x
⇤
1)� 2A|

2

�
�(A2x

k
1)� �(A2x

⇤
1)
�⇤

+ 22A|
1A

|
2✏.

Similar to the special case above, we can get

kxk+1 � x
⇤k  sup

u2Sn0�1

2Z1(u, x
k) + sup

u2Sn0�1

22Z2(A1u, x
k
1) + 22kA|

1A
|
2✏k (9)

where (denote x
⇤
0 = x

⇤)

Zj(u, v) :=
⌦
Aju,�(Ajv)� �(Ajx

⇤
j�1)

↵
� 1

2

⌦
u, v � x

⇤
j�1

↵
, j = 1, 2.

Also assume that kxk � x
⇤k  r, it remains to bound each term on the right hand side of (9).

The first term can be bounded directly through Lemma 1 (with t = 10n0). The last term is also
easy to bound by the randomness of Ai (see Appendix C, Lemma 6), in which case we have
kA|

1A
|
2✏k  15

p
n0/ndk✏k with high probability.

Denote G1(x) = �(A1x) for x 2 Rn0 . For the second term, first notice that range(A1) is a n0-
dimensional subspace in Rn1 . Using the ideas from [11, 25], we can also show that range(G1)
is contained in a union of N many n0-dimensional (affine) subspaces, where N  (en1/n0)n0 .
Furthermore, let E be the event such that mappings A1,G1,G all have Lipschitz constants being at
most 3, then we can show (Appendix C, Lemma 8) that P(E) � 1� 3e�10n0 . Also on event E (note
that kA1k  3 and kxk

1 � x
⇤
1k  3r), we have

A1Sn0�1 ✓ range(A1) \ Bn1(0, 3) = S1 \ Bn1(0, 3) =: T1
x
k
1 2 range(G1) \ B(x⇤

1, 3r) ✓ [j2[N ] (S1,j \ B(x⇤
1, 3r)) =: [j2[N ]T2,j

where S1 and S2,j are n0-dimensional (affine) subspaces. Applying Lemma 1 on each T1 ⇥ T2,j ,
followed by a union bound over j 2 [N ], we get (denote T2 = [j2[N ]T2,j)

sup
T1⇥T2

Z2(u, v)  C1(9r)
⇣q

n0
n2

+ n0
n2

+
q

t
n2

+ t
n2

⌘

6



Figure 1: The empirical recovery probability from synthetic data in the noiseless case with code
dimension level n0 as a function of widths of the subsequent layers n1 = n2 = n3. Each block
correspond to the average from 20 independent trials. White blocks correspond to successful recovery
and black blocks correspond to unsuccessful recovery. The area to the left of the line satisfies
n3 > 20n0.

with probability (over A2 and conditioning on A1) at least 1 � Ne
�t. By choosing t =

2n0 log(en1/n0), we obtain a high probability bound for supu2Sn0�1 Z2(A1u, x
k
1).

Finally, if C0 is sufficiently large, we can thus show from (9) that, with high probability,

kxk+1 � x
⇤k  1

2

⇣
r + 30 · 22

p
n0/ndk✏k

⌘
.

4 Numerical Experiments

In this section, we provide numerical experiments on synthetic random data and MNIST images
where the oberservations follow the model in (1). The first experiment illustrates a phase portrait
that verifies Theorem 1 in the noiseless case. The second experiment illustrates that the PLUGIn
algorithm (5) is stable to small dense noise and compares its performance to gradient descent. The
third experiment illustrates decay rate of recovery error and reconstruction error of PLUGIn in the
presence of noise and compares its performance to gradient descent. Lastly, the final experiments
illustrates that PLUGIn can effectively remove dense unstructured random noise introduced to MNIST
images. All experiments were conducted using Google Colaboratory.

In the synthetic experiments, we let the generative prior be a 3-layer neural network G : Rn0 ! Rn3

of the form G(z) = �(A3�(A2�(A1x))), where the entries of weight matrix Ai 2 Rni⇥ni�1 are
sampled from N (0, 1/ni). We sample the target latent code x

⇤ uniformly from Sn0�1, set the noise
level as ↵ 2 R, and set the noise to be ↵⌫ where ⌫ is sampled uniformly from Sn3�1. Then we
set y = G(x⇤) + ↵⌫. We run PLUGIn and gradient descent each for 10,000 iterations, or until the
difference in norm between consecutive iterates is less than 10�13 times the norm of the current
iterate, whichever comes first, and set x̂ to be the output. We use a fixed step size of ⌘ = 3 for
PLUGIn; for gradient descent, we use a parameter of 1000 to move along the gradient descent
direction computed using PyTorch [26].

For the first experiment, we fix n0 2 {1, 2, . . . , 19}, n1 2 {1, 21, 41, . . . , 441}, n3 = n2 = n1, and
↵ = 0. We randomly initialize PLUGIn, setting x

0 to have independent standard normal entries.
Note that the norm of x0 concentrates around

p
n0, and thus is generally far from the norm of the

target latent vector. For each trial, we say PLUGIn successfully recovers the target latent code if
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(a) Recovery error and noise level (b) Reconstruction error and noise level

(c) Recovery error and expansion ratio (d) Reconstruction error and expansion ratio

Figure 2: Comparison of PLUGIn (solid line) with gradient descent (dashed line). Panel (a) shows
the dependence of relative recovery error with noise level-to-signal level from 20 independent trials.
Panel (b) shows the dependence of relative reconstruction error and noise level-to-signal level. Panel
(c) and (d) shows the dependence of relative recovery error and reconstruction error, respectively,
with respect to the expansion ratio n3/n0.

kx̂� x
⇤k  10�5. Figure 1 shows the fraction of successful recoveries from 20 independent trials

using the from observation as described above. Black squares corresponds to no successful recovery
and white squares correspond to 100% successful recovery.

For the second experiment, we fix n0 = 20, n1 = 600, n2 = 500, n3 = 500, and sample the
noise level ↵ uniformly in the interval [0, 1]. In figures 2a and 2b, the solid line corresponds to
the performance of PLUGIn and the dotted line represents the performance of gradient descent.
Figure 2a shows the empirical dependence of the the relative recovery error kx̂� x

⇤k/kx⇤k on the
noise-to-signal ratio given, given by ↵, from 20 independent trials. Similarly, figure 2b shows the
empirical dependence of the the relative reconstruction error kG(x̂) � G(x⇤)k/kG(x⇤)k from 20
independent trials. The figures show that PLUGIn can be used to stably denoise signals using a
generative prior with contractive layers.

For the third synthetic experiment, we fix n0 = 20, noise level ↵ = 0.1 and sample n1 = n2 = n3

in the interval [200, 5000]. Figures 2c and 2d show the empirical dependence of relative recovery
error kx̂� x

⇤k/kx⇤k and relative reconstruction error kG(x̂)� G(x⇤)k/kG(x⇤)k, respectively, on
the expansion ratio n3/n0 from 20 independent trials. In figures 2c and 2d, the solid line corresponds
to PLUGIn and the dotted line corresponds to gradient descent. The figures confirm the linear
dependence in the recovery and reconstruction errors of PLUGIn, in log scale, with respect to nd/n0,
provided ni, for all i � 1, are sufficiently large compared to n0.

We now empirically show that PLUGIn can effectively remove noise synthetically introduced to
MNIST images and compare its performance to gradient descent. We trained a VAE [27] using
Adam optimizer [28] with a learning rate of 0.001 and mini-batch size 100 on the MNIST dataset
consisting of 60,000 number of 28⇥ 28 images of handwritten digits [29]. The latent code dimension
of the trained network G is 20 and the decoder network in the VAE is a fully connected network with
parameters 20� 500� 500� 784. Finally, a noisy image y is generated via pixelwise addition of an
image y

⇤ from the MNIST database and an noise vector ⌫ 2 R784, i.e. y = y
⇤ + ⌫. In all MNIST
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Figure 3: The figure shows the result of denosing an image using PLUGIn and gradient descent. The
top row corresponds to noisy image. The second and third row corresponds to images recovered
using PLUGIn and gradient descent, respectively.

experiments, we use a fixed step size of ⌘ = 1/� for PLUGIn, where � is the product of the operator
norms of the weight matrices; for gradient descent, we use a parameter of 1000 to move along the
gradient descent direction computed using PyTorch. Similar to the synthetic experiment, we run
PLUGIn and gradient descent each for 10,000 iterations, or until the difference in norm between
consecutive iterations is less than 10�13 times the norm of the current iterate, whichever comes first.

In figure 3, the images in the top row are the observations, the images in the second row and third
row are the recovered images corresponding to PLUGIn and gradient descent, respectively. Figure 3
shows the result of using PLUGIn and gradient descent to remove noise ⌫ sampled uniformly over
the sphere S783 from observation y. The noise level ↵ was adjusted so that the signal-to-noise ratio is
in the interval [50, 200], with 50 corresponding to the leftmost column and 200 corresponding to the
rightmost one.

5 Final Remarks

Extension to positively homogeneous activation functions

Our proofs and results can be extended to generative model G with positively homogeneous activation
functions3 (such as Leaky ReLU). To see this, we modify the definition for Z(u, v;w) in Lemma 1 to

Z(u, v;w) := hAu,�(Av)� �(Aw)i � � hu, v � wi ,

where � := E g · �(g) with g ⇠ N (0, 1), and change the step size from ⌘ = 2d to ⌘ = �
�d. The

random process Z(u, v;w) remains centred (Appendix A, Lemma 2) and one can prove a similar
version of Lemma 1. Moreover, in the multi-layer case, the range at each layer is still contained in a
union of n0-dimensional (affine) subspaces in Rni (Appendix C, Lemma 7), so one can similarly
prove a version of Theorem 1 in this case.

Limitations

In Theorem 1 we assumed that weight matrices are independent and Gaussian. Although this
is a commonly used assumption in literature (e.g. [10, 11, 12, 14, 17, 19, 23]) for theoretical
analysis, practitioners may wonder whether theory based upon this assumption is instructive towards
predicting convergence when the algorithm is applied to generative models with learned weights. Our
experiments with MNIST give some evidence that the algorithm does indeed generalize. Without
the Gaussian assumption, one needs a heuristic for choosing the step size. We find that the inverse
of the product of the norm of the weight matrices works well. Secondly, in numerical experiments,
comparison between PLUGIn and gradient descent over synthetic data seems to suggest that PLUGIn
has error with similar dependence on parameters to gradient descent, but with a larger constant.

3Activation functions � satisfies �(↵t) = ↵�(t) for all ↵ � 0 and t 2 R.
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