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Abstract

Mosaic nanoparticle vaccines incorporating nat-
urally diverse sarbecovirus receptor binding do-
mains (RBDs) represent a promising approach
for pan-coronavirus vaccines. Mosaic nanoparti-
cles elicit broad, cross-reactive immune responses,
likely because elicited antibodies utilize avidity
effects to preferentially bind conserved regions
across neighboring RBDs. However, the diversity
in natural RBDs is limited, leading to ‘off-target’
antibodies that bind to conserved regions across
the selected RBDs but which are likely to mutate
in the future. We therefore develop a novel future-
proof vaccine design method, building upon a
probabilistic generative model of antibody escape,
to computationally design RBDs with further di-
versity. This approach aims to focus antibody
responses to regions that are (1) neutralizing, (2)
accessible to antibodies during a natural infection
and (3) unlikely to mutate during future viral evo-
lution. The designs will be assessed by immuniz-
ing mice and testing the breadth of neutralizability
of the sera compared to a nanoparticle composed
of naturally diverse strains.

1. Introduction
The COVID-19 pandemic, particularly the waning immu-
nity from SARS-CoV-2 vaccines, reinforces the need for
universal vaccines that are broadly protective against di-
verse members of a viral family. A pan-coronavirus vaccine
would ideally not only protect against presently circulat-
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ing SARS-CoV-2 variants but also against future variants
and other species within the family. This includes exist-
ing endemic human coronaviruses and potential spill-over
events that could seed a new pandemic. This urgent need
is underscored by the billions of dollars earmarked for the
development of pan-coronavirus vaccines across a range
of approaches including mRNA-based, nanoparticle-based,
and protein subunit vaccines (Dolgin, 2022; Musunuri et al.,
2024; Caradonna & Schmidt, 2021).

Mosaic nanoparticles represent one such promising ap-
proach for pan-coronavirus vaccines, as well as other pan-
genus or pan-family vaccines for viruses such as influenza.
In a nanoparticle-based vaccine, antigenic proteins are at-
tached to a central protein scaffold (Brune & Howarth,
2018). This vaccine modality inherently lends itself to broad
protection in two crucial ways. Firstly, in the case of a mo-
saic nanoparticle, different antigens are presented, from di-
verse viral species (as opposed to a homotypic nanoparticle
where each antigen is the same). Secondly, when adjacent
antigens differ, antibodies capable of cross-linking between
conserved regions in neighboring proteins, using avidity
binding, are elicited (Fig 1A). These conserved epitopes,
shared across viral species, are hypothesized to be less prone
to future mutation and antibodies binding them are more
likely to protect against the entire viral family, even beyond
strains present on the nanoparticle (Cohen et al., 2021a;
2022). Nanoparticles containing 8 naturally diverse sarbe-
covirus RBDs elicit broader cross-reactive responses com-
pared to homotypic nanoparticles or convalescent plasma.
This broader response offers protection both against other
sarbecoviruses and SARS-CoV-2 variants not present on the
nanoparticle (Cohen et al., 2021a; 2022; 2024).

Despite its potential, the current mosaic nanoparticle
presents significant challenges. First, there is evidence of
waning immunity to newer SARS-CoV-2 variants (Cohen
et al., 2024). Second, the nanoparticle elicits off-target anti-
bodies, many of which are inaccessible in the context of the
full Spike protein encountered during an infection, failing
to provide effective protection. Additionally, epitopes may
be conserved between a pair of viruses on the nanoparticle
despite a lack of conservation throughout the sarbecovirus
sub-genus, highlighting potential susceptibility to future
mutations (Cohen et al., 2021a; 2022).
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Figure 1. A. A single RBD elicits antibodies that bind with affinity to many regions. Conversely, two adjacent, different RBDs focuses
antibody responses to conserved regions across the RBDs through avidity effects. B. RBD antigens were designed to have a Target Avidity
Region (TAR) that is conserved, neutralizing, and less likely to mutate during viral evolution. To optimize antibody binding to the TAR
we computationally designed mutations elsewhere (in the Target Disruption Region or TDR) to prevent off-target binding. C. Steps in
nanoparticle design process.

We propose to address these challenges by designing mosaic
RBD nanoparticles that focus the antibody response. Our
approach involves generating RBDs with greater diversity
than natural strains outside a selected conserved, neutral-
izing region. This is aimed at refining antibody responses
to focus on regions that are accessible and less likely to
mutate, focusing antibodies beyond what is naturally con-
served between any pair of natural strains on the original
nanoparticle. Prior approaches to masking undesirable epi-
topes (Caradonna & Schmidt, 2021), including hyperglyco-
sylation (Thornlow et al., 2021) and random mutation with
relatively inert amino acids (Frei et al., 2018), have achieved
moderate success for other vaccine modalities.

Given the substantial number of mutations to optimize in a
mosaic nanoparticle, we build upon our prior work creating
a deep generative model of antibody escape, EVEscape
(Thadani et al., 2023; Youssef et al., 2023), to tackle this
novel vaccine design approach computationally (Fig 1B).
EVEscape, trained on pre-pandemic data, has been shown
to be as accurate as high-throughput experimental scans
using pandemic antibodies at anticipating SARS-CoV-2
mutations escaping prior immunity (Thadani et al., 2023).

EVEscape has also demonstrated remarkable success in
designing antigenically diverse SARS-CoV-2 sequences for
vaccine testing which remain infectious at distances of up to
46 mutations from the ancestral strain (Youssef et al., 2023).

While EVEscape was framed previously as a model of anti-
body escape from prior infection or vaccination, it can more
generally be considered to be a measure of cross-reactivity
between antigens–whether antibodies directed against a first
antigen can successfully bind a different antigen. In the
case of modeling antibody escape in a pandemic, the first
strain is the ancestral strain and the second is a future vari-
ant. However, it can be applied to cross-reactivity between
two antigens on a single nanoparticle. Therefore, EVEscape
provides an ideal foundation for an approach focused on
generating functional heterotypic antigens with targeted
mutations that eliminate cross-reactivity to any potential
off-target epitope.

2. Design methodology
Here we address a novel sequence design problem: given a
set of naturally diverse antigens in a viral family, identify
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a region to target antibody binding and generate mutations
elsewhere to minimize off-target antibodies, while retaining
antigen functionality. The mutations should minimize the
pairwise antibody cross-reactivity (where antibodies can
bind with avidity) at any possible off-target epitope. The
goal is to design a set of RBDs that, when immunizing as
a mosaic nanoparticle, generates sera that is more broadly
neutralizing against diverse existing and potential future
species in a viral family, compared to a mosaic nanopar-
ticle composed of the original, natural strains. We base
our designs on the natural mosaic sarbecoviruses used pre-
viously: SARS-CoV-2 Beta, RaTG13, Rs4081, SHC014,
Pang17, RmYN02, Rf1, and WIV1 (Cohen et al., 2021a;
2022; 2024). Critically, the model is unsupervised and does
not rely on prior knowledge of specific epitopes or experi-
mental data.

We develop a multi-step design process (Fig 1C)–rather than
a joint optimization that directly results in a final group of
designed antigens–due to the complexity of the design ob-
jectives. Moreover, with diverse antigens as the key goal, it
is important to down-sample from many potential designs to
avoid prematurely constraining design choices based on ini-
tially selected sequences. This design process builds upon
EVEscape, which models antibody escape as the product
of three components: (1) mutation maintains fitness, (2)
mutation is accessible to antibodies, (3) mutation is suffi-
ciently dissimilar to disrupt antibody binding (Thadani et al.,
2023). By virtue of EVEscape’s flexible, modular frame-
work, we repurpose each of its components, separately and
in combination, in the relevant steps of our approach.

2.1. Identify target avidity binding region

We first identify an optimal antibody binding region as
a contiguous, accessible region with (1) physicochemical
conservation across sarbecoviruses and (2) neutralization
potential. Sequence conservation is often measured via
Shannon entropy, calculated from the relative frequency of
each amino acid in a multiple sequence alignment position.
However this conservation ignores physicochemical simi-
larities between some amino acids. We therefore develop
a physicochemical-based conservation using the dissimi-
larity component from EVEscape (Thadani et al., 2023) to
calculate a von Neumann Entropy (VNE) (Caffrey et al.,
2004). This considers not only the relative frequencies f of
each amino acid i, but also a physicochemical amino acid
similarity matrix P , such that

V NE =
∑
i

λi log20 λi,

where λi are the eigenvalues of diag(f)P .

Second, since most neutralizing antibodies for the RBD
physically block the host receptor ACE2 from binding, we

use distance to the ACE2 binding site as a proxy for neutral-
ization potential. This definition of neutralizing potential
is specific to the sarbecovirus RBDs, but can be general-
ized to consider minimum distance to other receptors or
known neutralizing hotspots generally (e.g., from analyzing
experimental antibody data).

Amongst accessible, non-Spike contacting positions we cre-
ate a contiguous region (residues neighboring in the struc-
ture rather than necessarily in the sequence) by selecting
patches (all residues within a radius of 8Å) with a high rank
product of neutralization and conservation scores. This
resulted in a target avidity binding region (TAR) of 66
residues, approximately one third of the RBD. This selected
TAR has several advantages over the regions in each pair of
natural sequences where antibodies bind with avidity: the
TAR is composed of more non-Spike contacting positions
(residues that are accessible even in the context of the full
Spike trimer), contains residues that are not just similar
across a given pair of natural sequences on the nanoparticle
but have physicochemical conservation across the entire sar-
becovirus family (with sequences identity as low as 68%),
and ignores decoy epitopes from the natural strains that may
be conserved but are of low neutralizing potential.

2.2. Select mutation sites

In order to minimize antibody cross-reactivity to pairs of
antigens outside the TAR, we select combinations of posi-
tions to optimally eliminate off-target binding, which we
call the target disruption region (TDR). We begin by iden-
tifying a region that due to great evolutionary diversity, is
already sufficiently diverse to mitigate off-target binding,
reducing the number of added mutations. We call this the
evolutionary target disruption region (eTDR). We then se-
lect positions to mutate in the remaining region that is more
likely to have off-target binding, which we call the designed
TDR or dTDR.

First, we identify the already sufficiently dissimilar evolu-
tionary TDR through the same patch-based approach de-
scribed above, but from physicochemical-conservation of
the natural strains on the nanoparticle alone. This creates an
eTDR of 66 residues, with 87 residues remaining in neither
the eTDR or TAR. Second, we identify positions to mutate
within the designed TDR. In order to disrupt each potential
epitope, we wish to select spatially dispersed sites to mutate.
To do so, we use k-means clustering on the Cartesian coor-
dinates of the alpha carbon of each residue – such that each
cluster represents a potential off-target epitope to disrupt.

We find that using 8 centroids generates clusters in which
the maximum distance between residues is less than ∼25Å,
the typical diameter of conformational B cell epitopes (Sun
et al., 2011). Within each of the 8 spatially distributed clus-
ters, we select one position to mutate by centroid proximity.



Future-proof vaccine design with a generative model of antibody cross-reactivity

We rerun the k-means algorithm with 5000 random initial-
izations to generate many sets of mutation sites to use to
create designs. Each of the generated designs has 8 spatially
distributed mutations.

2.3. Sample mutations

After selecting sites to mutate, we create designed sequences
by making single amino acid substitutions at the pre-selected
sites using a probabilistic generative model, EVE (Frazer
et al., 2021). EVE is a deep variational autoencoder trained
on a multiple sequence alignment of evolutionarily related
protein sequences, in this case sarbecovirus RBD sequences
aligned to each of the base natural sequence antigens, which
learns the constraints that underpin structure and function.
We explore the impact of different fitness models in Fig S6.

At each pre-selected mutation site h, we use the EVE model
to calculate the fitness effect of all possible amino acid
substitution.

ph =< ph1 , ..., p
h
20 >

The fitness of a protein sequence is quantified using the
log likelihood ratio of the mutated sequence over that of
the wildtype sequence. We then use three sampling strate-
gies (fittest, random, and sampled) for generating designs to
maximize diversity and full-sequence fitness. The first strat-
egy involves creating designs where at each pre-selected
site the fittest possible single mutation was chosen (Sfittest).
The second strategy involves selecting mutations at random
(assigning equal probabilities to all mutations) at each mu-
tational site without considering fitness (Srandom). Finally,
for the third strategy, we perform a multinomial draw with
substitution probabilities proportional to their fitness effect
(Ssampled), only considering mutations with scores above
the model’s median single mutation score. We remove any
designs where no mutation in a cluster is fit. Finally, we
down-sample our designs generated with the three strategies
to the set with full-sequence EVE score (moving beyond
single mutations to scores of 8 mutations in combination)
higher than the median score of Sfittest and maximum score
of Srandom.

2.4. Optimize combinations of designs

The final step is selecting groups of diverse sequences to
place on the nanoparticle together from the large set of
sampled designs. We wish to choose pairs of design se-
quences sj , sk that maximize d[sj , sk], a joint accessibility
and physicochemical dissimilarity product across all off-
target epitopes E:

d[sj , sk] =
∑
e∈E

acc[e] · dist[e, sj , sk]

acc[e] =
1

|e|
∑
r∈e

a[r]

dist[e, sj , sk] =
1

|e|
∑
r∈e

a[r] · P ′[sj [r], sk[r]]

where acc[e] is the accessibility of epitope e, dist[e, sj , sk]
is the epitope difference between sj and sk, a[r] is the
accessibility of residue r, P ′[sj [r], sk[r]] is the physico-
chemical dissimilarity between amino acids in position r,
and |e| is the number of residues in the epitope. Each poten-
tial off-target epitope corresponds to a patch around each
residue in the target disruption region–where a patch in-
cludes all residues within ∼10Å. Each epitope difference is
weighted by the average accessibility of that epitope, as a
measure of the relative importance of each epitope. We use
the accessibility and physicochemical dissimilarity compo-
nents from EVEscape (Thadani et al., 2023), having already
selected putatively functional sequences using EVEscape’s
generative fitness model in the prior step.

To select a mosaic group of designs, we therefore create
an accessibility-dissimilarity distance matrix between all
pairs of designs. We then use a greedy algorithm to find a
solution to the maximum dispersion problem, which seeks
to maximize the sum of pairwise distances between selected
designs. We start by choosing a random sequence s to add
to the mosaic nanoparticle N. We continue to add to N by
iteratively selecting the next design which maximizes the
minimum distance to all designs already in N (that uses a dif-
ferent target virus from those already chosen). We repeated
this process with different starting sequences and ultimately
selected 10 groups of designs N for experimental characteri-
zation for their neutralization potential. Fig S1 showcases a
representative group of nanoparticle designs (diverse, natu-
ral sarbecoviruses each with 8 different mutations) mapped
onto a single RBD structure to see the different mutations
sites across viruses.

3. Results
The ultimate evaluation of this approach will be producing
nanoparticles including our designed RBDs, immunizing
mice with the designed nanoparticles, and subsequently
evaluating neutralization breadth from elicited antibodies.
Such preclinical evaluations can be both time and resource
intensive. In the meantime, we have begun with several
computational evaluations and experimental evaluation of
expression. We require each antigen to express and fold
into a relatively proper conformation (note that the RBDs
do not need to be functional enough to be infective or bind
ACE2). Additionally, by spatially dispersing the mutations
and mutating an accessible surface (rather than in the core
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of a protein), we make it more likely for the protein to
fold, as clusters of nearby mutations are more likely to
experience negative epistasis and buried mutations are under
more structural constrains.

To determine the most suitable model for sampling muta-
tions, we tested six models: position-specific scoring matrix
(PSSM), EVCouplings (Hopf et al., 2017), TranceptEVE
(Notin et al., 2022), EVE (Frazer et al., 2021), Progen2 (Ni-
jkamp et al., 2023) and ESM-1v (Meier et al., 2021). PSSM,
EVCouplings (Hopf et al., 2017), and EVE (Frazer et al.,
2021) are alignment-based models which consider each po-
sition in isolation, include pairwise interactions, or higher-
order interactions, respectively. Progen2 (Nijkamp et al.,
2023) and ESM-1v (Meier et al., 2021) are two state-of-the
art transformer-based protein language models which use
natural language processing techniques to predict the likeli-
hood of observing a given protein sequence given the lexi-
con of existing protein sequences. However, viral sequences
are relatively underrepresented in the protein sequence uni-
verse, especially as only sequences from Uniref90 (which
does not consider separately sequences that are more than
90% identical, as is true for much of viral variation) are in-
cluded in training. Finally, we include TranceptEVE (Notin
et al., 2022), a hybrid model which combines language mod-
eling with alignment-based modeling. We evaluated the
performance of the six models against expression from deep
mutational scans for SARS-CoV-1 and SARS-CoV-2 (Starr
et al., 2020; Starr, 2024) (Table 1). The best performing
models were EVE and TranceptEVE for both viruses. Due
to its interpretability, and our inclusion of only substitution
mutations, we use EVE for our construct design.

Table 1. Spearman correlations between mutation effect predic-
tions using different fitness models and experimental values from
RBD expression deep mutational scanning experiments for SARS-
CoV-1 (Starr, 2024) and SARS-CoV-2 (Starr et al., 2020). Corre-
sponding scatter plots in Figs S2 and S3.

Model SARS-CoV-2 SARS-CoV-1
ESM-1v -0.01 -0.09
Progen2 0.36 0.48
PSSM 0.37 0.36

EVCouplings 0.45 0.43
EVE 0.51 0.49

TranceptEVE 0.52 0.50

We first verify that selected mutations in designs are above
a 50% threshold of all single mutations using the EVE
fitness model for each target virus (Fig S4). The fitness
score of the full RBD for each design is also higher than
all generated antigens with random mutations at selected
sites (Figs 2, S5). We explore the impact of different fitness
models on designs (Fig S6). We also analyze the spatial

separation of the mutations and calculated joint accessibility
and physicochemical distances, in order to maximize the
impact on each potential off-target epitope (Figs S1, S7).

We have so far experimentally tested 3 of 10 nanoparticle
sets of designs for expression. Approximately 22% (6/27)
of the tested constructs were successfully expressed, with
five of the nine viruses (SARS-CoV-1, SHC014, RmYN02,
Rf1, and RaTG13) having at least one successful design
(each with 8 mutations). This is especially remarkable con-
sidering the lack of known sequence diversity near these
sarbecoviruses, most with less than five known strains within
10 mutations (Fig S8).

Figure 2. For each of the 8 natural RBDs in the mosaic-8b nanopar-
ticle vaccine, we generate 15k sequences (5k by random amino
acids, 5k by fittest amino acid, 5k by sampling proportional to
fitness). Full-RBD fitness scores for 10 selected designs (dashed
lines) on the RaTG13 sequence, relative to distributions Srandom,
Sfittest, and Ssampled. Note that some lines are overlapping. Distribu-
tions for remaining RBDs in Fig S5.

4. Discussion
We present a novel future-proof vaccine design method us-
ing a deep generative model of antibody escape, EVEscape.
Generative models are often divorced from real world ap-
plications. By wrapping our generative model into a larger,
multi-step optimization process, which we then use to de-
sign a mosaic nanoparticle vaccine for experimental testing,
we bridge this gap. Given EVEscape’s modular components,
we are able to build our design process on its foundation.

We will perform experimental testing by immunizing mice
with our designed mosaic nanoparticle, evaluating our vac-
cine based on its neutralization breadth, against both diverse
current and future strains. While we focus on the sarbe-
covirus sub-genus here, we will later explore our ability to
achieve broader protection–for instance of the betacoran-
virus genus or indeed of the entire coronavirus family. We
will evaluate the breadth of protection relative to a nanopar-
ticle composed of natural strains. To facilitate this com-
parison, we began our optimization from the same set of
natural strains as in the vaccine developed by Cohen et al.
(2021a; 2022). Once the success of our approach has been
affirmed, an additional step in the design process could be



Future-proof vaccine design with a generative model of antibody cross-reactivity

incorporated to select an initial set of diverse viral species
as the base of the designs. Moreover, given our initial ex-
perimental results, we plan to iterate on our entire design
process.

Thus far, our focus has been only on protection by neutraliz-
ing antibodies (both in our design objective and evaluation
criteria), rather than protection from other sources, such as
non-neutralizing antibody (e.g., ADCC) or T cell responses.
Current vaccine practices take this same narrow focus–likely
to their detriment. This may be beginning to change, espe-
cially for the pursuit of universal vaccines. By virtue of our
multi-step process, it is simple for us to likewise incorporate
additional design objectives, which we would then match
with corresponding evaluation criteria. For example, our
current design protocol does not assess the likelihood of
triggering an autoimmune response against human proteins.
A deimmunization assessment can be easily incorporated
into our design protocol to ensure that none of the designed
RBDs resemble human proteins.

Remarkably, the field of vaccine design has not yet utilized
machine learning efforts to model antibody escape and cross-
reactivity. Our approach is readily generalizable – both to
other viral families (e.g., influenza nanoparticles already ex-
ist and could be similarity optimized (Cohen et al., 2021b))
and to other approaches for choosing nanoparticle antigens
(including the full Spike, sub-dominant regions, or even
other antigenic proteins like nucleocapsid). Furthermore,
this process of optimizing nanoparticles or comparable het-
eromultimeric vaccination strategies (Lamson et al., 2023)
are just the beginning of methods in which EVEscape or
other generative models could benefit vaccine design. This
is not even considering the new paradigm in generative mod-
els for vaccine testing efforts as outlined by Youssef et al.
(2023). Indeed, we will also use EVEscape to design future
strains to test protection, beyond evaluating against existing
coronavirus diversity, as was previously the only option.
The exciting possibilities presented by generative models,
including EVEscape, hold immense potential for transform-
ing vaccine design practices, promising far-reaching impacts
across applications.
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