
GRAM: A Generative Foundation Reward Model
for Reward Generalization

Chenglong Wang 1 Yang Gan 1 Yifu Huo 1 Yongyu Mu 1 Qiaozhi He 1 Murun Yang 1 Bei Li 2 Tong Xiao 1 3

Chunliang Zhang 1 Tongran Liu 4 Jingbo Zhu 1 3

Code Datasets&Models

Abstract
In aligning large language models (LLMs), re-
ward models have played an important role, but
are standardly trained as discriminative models
and rely only on labeled human preference data.
In this paper, we explore methods that train re-
ward models using both unlabeled and labeled
data. Building on the generative models in LLMs,
we develop a generative reward model that is first
trained via large-scale unsupervised learning and
then fine-tuned via supervised learning. We also
show that by using label smoothing, we are in fact
optimizing a regularized pairwise ranking loss.
This result, in turn, provides a new view of train-
ing reward models, which links generative models
and discriminative models under the same class
of training objectives. The outcome of these tech-
niques is a foundation reward model, which can
be applied to a wide range of tasks with little or no
further fine-tuning effort. Extensive experiments
show that this model generalizes well across sev-
eral tasks, including response ranking, reinforce-
ment learning from human feedback, and task
adaptation with fine-tuning, achieving significant
performance improvements over several strong
baseline models.

1. Introduction
Reward models are a fundamental concept in reinforcement
learning and define what an agent optimizes for. For large
language models (LLMs), fine-tuning with reward models
is a common post-training step to align the model outputs
with desired behaviors and objectives. A widely adopted

1School of Computer Science and Engineering, Northeastern
University, Shenyang, China 2Meituan Inc. 3NiuTrans Research,
Shenyang, China 4CAS Key Laboratory of Behavioral Science,
Institute of Psychology, CAS, Beijing, China. Correspondence
to: Chenglong Wang <clwang1119@gmail.com>, Tong Xiao
<xiaotong@mail.neu.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

approach is to learn reward models that capture human
preferences and fine-tune the LLMs to generate outputs
that align with these preferences. Reinforcement learning
from human feedback (RLHF) is an early example of such
approaches (Christiano et al., 2017; Stiennon et al., 2020).
Now, work in this area is underway more broadly. One
recent example is a series of models by OpenAI (2024), in
which human-like thinking and complex reasoning can be
achieved through large-scale reinforcement learning.

While quite successful, reward models are costly to apply.
This is in part because of the complexity of reinforcement
learning algorithms and in part because of the difficulty in
annotating training data. There has been much work on
simplifying the use of reward models and improving align-
ment efficiency. One strand of research explores more direct
ways to align LLMs with human feedback, employing either
supervised fine-tuning methods (Rafailov et al., 2023; Tou-
vron et al., 2023) or inference-time alignment methods (Lee
et al., 2021). Another strand of research focuses on replac-
ing human feedback with AI-generated feedback, which is
cheaper to obtain (Dubois et al., 2023; Lee et al., 2024).

However, although applying reward models to LLMs is
a compelling direction, training these models still relies
heavily on labeled data. For example, we generally need to
collect or create a significant amount of task-specific human
preference data and optimize the models with considerable
training effort (Stiennon et al., 2020; Xu et al., 2024). If
we think about the problem a bit closer from the LLM
perspective, we might expect that reward models can be
trained on unlabeled data in such a way as to produce a
single pre-trained reward model that can be easily adapted
to tasks of interest. This would change the way we align
LLMs: we can pre-train a foundation model that assembles
a broad general knowledge of how to reward, and a single
such pre-trained model can be deployed for many particular
rewarding tasks with only small costs of further fine-tuning
or prompting.

This idea is appealing but challenging. The difficulty arises
from the fact that the systems cannot directly generate their
own supervision signals from text for training reward mod-
els, as self-supervision methods do. One approach is to

1

https://github.com/NiuTrans/GRAM
https://huggingface.co/collections/wangclnlp/gram-68452f737e53feeef4202d9b

GRAM: A Generative Foundation Reward Model for Reward Generalization

collect large-scale preference data for general use and train
a reward model on this data to improve generalization (Cui
et al., 2023; Liu et al., 2024). However, in this case, large
amounts of unlabeled data are still largely overlooked.

In this paper, we propose a solution to this problem that
learns reward models not only from human-annotated pref-
erence data but also from unlabeled data. To do this, we
develop a generative model that can predict, given the input
and a pair of responses, which one is better. The train-
ing of this model involves two stages. In the first stage,
we pre-train the model on input-response data to learn the
correspondence between inputs and responses. This pro-
cess does not require preference-annotated data and so can
be easily scaled up to gain more general knowledge of re-
sponse comparison. In the second stage, we fine-tune the
model using human preference data to predict the preference
between two responses. The resulting foundation reward
model can be directly applied to downstream tasks, such as
policy training, or further fine-tuned with a small amount of
task-specific data.

To make the model generalize better, we incorporate label
smoothing into reward model training. We show that the
training objective can be reformulated into a nice form: we
are essentially optimizing the Bradley-Terry loss (Bradley
& Terry, 1952) under the condition of label smoothing. This
result is elegant, as it unifies generative and discriminative
models in reward modeling to some extent. Though label
smoothing seems not so popular in the development of re-
cent LLMs, it turns out to be very beneficial for training
generative reward models.

The foundation reward models can be applied to a wide
range of tasks. In our experiments, we test it in three differ-
ent settings: response ranking, RLHF, and adaptation. Our
model demonstrates strong generalization results across all
test cases with little or no fine-tuning effort and improves
performance significantly compared with various discrimi-
native and generative baseline models. Notably, when train-
ing reward models with the LLaMA-3.1-8B-Instruct model,
our model achieves gains of 11.0 and 5.1 points over vanilla
discriminative and generative reward models, respectively,
on the average accuracy of RewardBench.

2. Preliminaries
In this section, we outline some basic concepts and notations
of reward modeling.

2.1. Training Reward Models

In the LLM literature, a reward model is typically written as
a function rϕ(x, y), where ϕ is the set of model parameters,
x is the input, and y is the response. Throughout this work,
an “input” can be an arbitrary token sequence fed into an

Transformer Decoder (without Softmax layers)

x y

input response

linear map

rϕ(x, y)

Minimizing the Bradley-Terry loss (pairwise ranking loss):

− log(σ(rϕ(x, ya) − rϕ(x, yb)))

(a) Discriminative Models (Trained as Classifiers)

Transformer Decoder (LLM)

c x ya yb

prompt input 1st response 2nd response

wnext token (‘A’ or ‘B’)

Minimizing the negative probability of token prediction:

− log πϕ(w = A|[c, x, ya, yb])

(b) Generative Models (Trained as LLMs)

Figure 1: Architectures of discriminative and generative
reward models. In discriminative models, the reward model
is a scoring function that is trained to minimize the pairwise
ranking loss between two responses. In generative models,
we use an LLM to predict the label token given a prompt,
an input, and a pair of responses. This model can be trained
in the same way as standard LLMs.

LLM, such as What is the capital of France?, and a “re-
sponse” is the token sequence produced by the LLM as a
result of that input, such as Paris.

A widely used architecture of such functions is a Trans-
former decoder stacked without a Softmax layer on top,
as illustrated in Figure 1 (a). This model can be viewed
as a discriminative classification model, and is commonly
trained using the Bradley-Terry loss, given by

Ld = −E(x,ya,yb)∼Dr

[log(σ(rϕ(x, ya)− rϕ(x, yb)))] (1)

where Dr is the training dataset consisting of tuples of
input x and response pair (ya, yb) with the preference ya ≻
yb. While this loss function considers pairwise ranking
between responses, the trained reward model is used as a
scoring function that assigns a numerical score rϕ(x, y) to
any response y, together with the corresponding input x.

Reward models can also be generative models (Zhang et al.,
2024; Shiwen et al., 2024). In this case, we can simply use
an LLM as a reward model, as illustrated in Figure 1 (b).
This model works as follows. First, we input a prompt c,

2

GRAM: A Generative Foundation Reward Model for Reward Generalization

along with the tuple (x, ya, yb), to the LLM. The prompt is
a text describing the task. For example,

You are given two responses to a user input. Evaluate
which response is better based on quality, relevance,
and clarity. If the first response is better, return ‘A’. If
the second response is better, return ‘B’.

Then, the LLM predicts subsequent tokens based on this
input sequence. Let w be the token predicted by the LLM.
If w = A, it indicates a preference for ya over yb; if w = B,
then yb is preferred.

The loss function can be defined as the log-probability of
predicting ‘A’:

Lg = −E(c,x,ya,yb)∼Dr
[log πϕ(w = A|s)] (2)

where s denotes the string [c, x, ya, yb]
1, and πϕ(·) denotes

the probability of token prediction by the LLM.

When applying this model to score a new input-response
pair (x′, y′), we generate a reference response yref by us-
ing the LLM, and concatenate x′, y′ and yref into s′ =
[c, x′, y′, yref]. Additionally, to mitigate the positional bias
problem (Wang et al., 2023), we introduce an alternative
input order by transposing the positions of responses, i.e.,
presenting yref before y′, to construct a secondary input
string s′T = [c, x′, yref , y

′]. The reward for (x′, y′) is thus
defined as the log-probability that y′ is preferred over yref :

rϕ(x
′, y′) =

πϕ(w = A|s′) + πϕ(w = B|s′T)
2

(3)

where the reward score ranges from 0 to 1.

2.2. Applying Reward Models

Three applications of foundation reward models can be con-
sidered in LLMs. One simple application is response rank-
ing, where a number of responses are given, and we score
and rank these responses. This approach is often used in
reranking the LLM outputs. For example, in best-of-n sam-
pling, we select the best output from the top n candidate
outputs via a reward model (Lee et al., 2021; Fernandes
et al., 2022; Gao et al., 2023).

A second application is reward-based fine-tuning, where the
reward model provides feedback to optimize the LLM. For
example, in RLHF, a reward model is used in proximal pol-
icy optimization (PPO) (Wang et al., 2022) to fine-tune the
LLM for better alignment with human preferences (Ouyang
et al., 2022; Bai et al., 2022).

A third application is reward model adaptation. If we have
labeled human preference data for a task, we can fine-tune

1In this work, we will use s interchangeably to refer to either
the tuple of a training sample or a string representing that tuple.

40k 400k

62.0

64.0

66.0

68.0

70.0

(a) ID (Unified-Feedback)

A
cc

ur
ac

y
(%

)

Discriminative RM Generative RM

40k 400k

70.0

72.0

74.0

76.0

78.0

80.0

(b) OOD (RewardBench)

A
cc

ur
ac

y
(%

)

Figure 2: Accuracies of discriminative and generative re-
ward models on the ID and OOD test sets.

the reward model further to better adapt it to the task. The
fine-tuned reward model can then be applied to LLM fine-
tuning as usual.

3. A Generative Foundation Reward Model
In this section we describe a Generative foundation Reward
Model, called GRAM.

3.1. Why Generative Models

Both discriminative and generative models have been widely
adopted in reward modeling, but we found that generative
models were more generalizable and better suited to our
work. To study this issue, we trained both types of models
on a subset of 400k and 40k samples from the Unified-
Feedback dataset2. We then evaluated these models on an in-
distribution (ID) test set, consisting of 1k test samples from
Unified-Feedback, and an out-of-distribution (OOD) test set,
consisting of 3k samples from RewardBench (Lambert et al.,
2024). As shown in Figure 2, the discriminative model is
better on the ID test data, while the generative model is
better on the OOD test data. While preliminary, this result
supports the finding in previous work by Yang et al. (2024)
and Zhang et al. (2024): LLMs can generalize better for
reward modeling.

In fact, discriminative and generative models have many
similar design choices, such as using Transformer decoders
(i.e., LLMs) to encode input-response pairs, but the training
strategies make them behave quite differently. Training
with the pairwise ranking loss provides a strong supervision
signal. Given that the reward model is a well-trained LLM,
it is more prone to overfit when simply mapping an input-
response pair to the reward model. Generative models are
essentially trained in a similar manner, but with much noisier
samples. For example, each time, we need to model two
responses in the same sequence, and adding an extra prompt
to the sequence introduces more modeling challenges. The

2https://huggingface.co/datasets/
llm-blender/Unified-Feedback

3

https://huggingface.co/datasets/llm-blender/Unified-Feedback
https://huggingface.co/datasets/llm-blender/Unified-Feedback

GRAM: A Generative Foundation Reward Model for Reward Generalization

diversity and variability of the samples make the training
task more difficult, which in turn encourages the model to
generalize more.

Furthermore, recent research highlights the superior flexibil-
ity of generative models compared to discriminative mod-
els in their adaptability to various LLM enhancement tech-
niques. For example, the seamless integration of chain-of-
thought reasoning within a generative reward model has
been shown to improve reward accuracy (Mahan et al.,
2024). Beyond merely adopting such reasoning patterns,
the generative reward model can be designed to perform
long-form reasoning before generating preferences (Chen
et al., 2025; Guo et al., 2025). This enhanced flexibility
makes the generative model an ideal choice for our work, as
we aim to build a more versatile foundation reward model.

3.2. A Two-stage Training Method

Unlike previous work, we do not use only human preference
data to train reward models. Instead, we train them using an
unsupervised pre-training task and a supervised fine-tuning
task, as described in this section.

3.2.1. TASK 1: PRE-TRAINING

Intuitively, one might expect that an LLM-based reward
model is capable enough to model the inputs, responses, and
correspondences between them, as LLMs have been trained
on huge amounts of text. Unfortunately, modeling the input-
response correspondence is not covered by standard pre-
training and fine-tuning tasks for LLMs, and the model
still needs to adapt to this modeling task. This has been
demonstrated by recent work, where the understanding of
responses is found to be very important in modeling human
preferences (Wang et al., 2024e; Zheng et al., 2023).

To improve response understanding, we train the LLM to
generate responses given the input, as illustrated in Figure 3
(a). We refer to this as a “pre-training” procedure, as it does
not require human preference data, although it differs from
standard pre-training methods in LLMs. Let Du be a dataset
consisting of tuples of input and pairs of responses with no
preference specified. This loss function can be defined as:

Lpre = −E(x,ya,yb)∼Du
[log πϕ([ya, yb]|x)] (4)

Here ya and yb can be generated by an LLM. So, building
such a dataset is straightforward.

This training objective is similar to that used in instruc-
tion fine-tuning (Ouyang et al., 2022). The difference be-
tween our method and instruction fine-tuning is that we train
the LLM to generate two responses, while instruction fine-
tuning trains the LLM to produce a single correct response
to the input. By learning the mapping from inputs to varied
responses, the model can better understand the responses.

Transformer Decoder (LLM)

x

input

ybya

2nd response1st response

Learning to generate pairs of responses:

Minimizing − log πϕ([ya, yb]|x)

(a) Task 1: Pre-training (Unsupervised)

Transformer Decoder (LLM)

c x ya yb

prompt input 1st response 2nd response

wlabel token

Learning to predict preferences (with label smoothing):

Minimizing −(1 − ϵ) · log πϕ(w = A|[c, x, ya, yb])

Minimizing −ϵ · log πϕ(w = B|[c, x, ya, yb])

(b) Task 2: Fine-tuning (Supervised)

Figure 3: Illustration of the two-stage training method. In
the first stage, we pre-train the model via response gener-
ation, which is an unsupervised task. In the second stage,
we fine-tune the model to generate preferences in a standard
supervised manner.

Furthermore, since the two responses are generated at the
same time, the model can gain some general knowledge of
response comparison. Note that the order of responses does
not matter in pre-training, so we can swap them to create
more diverse samples for robust training.

3.2.2. TASK 2: FINE-TUNING

The goal of fine-tuning here is to adapt the model to pre-
dict preferences between responses, which is not directly
captured by pre-training. We can do this by using the same
method described in Eq. (2) (see Figure 3 (b)). As pre-
training has helped the model gain knowledge of response
comparison from relatively large amounts of data, fine-
tuning is easier and requires much less data. In this work,
we consider using general-purpose preference data to fine-
tune our pre-trained model, thereby obtaining a foundation
model that works in various rewarding tasks. If users have
their own data, such as human-annotated preference data for
a specific task, they can fine-tune this model further.

3.3. Training with Label Smoothing

To further improve generalization, we incorporate fine-
tuning with label smoothing. The idea of label smoothing
is to redistribute the probability mass across all predicted

4

GRAM: A Generative Foundation Reward Model for Reward Generalization

tokens by distracting a fraction of the probability from the
correct token (denoted by w∗) to the incorrect tokens. For
fine-tuning with label smoothing, the loss for a sample s
can be defined as:

Lls(s) = −Ew∼|Vl|
[

(1− ϵ) · 1{w = w∗} log πϕ(w|s)

+
ϵ

|Vl| − 1
· 1{w ̸= w∗} log πϕ(w|s)

]
(5)

where ϵ is the smoothing factor, and Vl is the vocabulary
of label tokens. This formula is general and can handle
multi-class problems (i.e., |Vl| > 2). But, to simplify the
discussion, we still restrict ourselves to the case of two
classes. Hence, we express the loss as

Lls(s) = −
[
(1− ϵ) · log πϕ(w = A|s)

+ϵ · log πϕ(w = B|s)
]

(6)

We can rewrite this formula into another form by noting that
πϕ(w|s) is the output of a Softmax layer. This gives

Lls(s) = −
[
(1− ϵ) · log eZa(s)

eZa(s) + eZb(s)

+ϵ · log eZb(s)

eZa(s) + eZb(s)

]
(7)

where Za(s) and Zb(s) are the logits input to the Softmax
function.

Using simple algebra, we obtain:

Lls(s) = − log σ(Za(s)− Zb(s))︸ ︷︷ ︸
Bradley-Terry model

+ ϵ · (Za(s)− Zb(s))︸ ︷︷ ︸
regularization term

(8)

See Appendix D.2 for a more detailed derivation. The first
term of Eq. (8) is the loss based on the Bradley-Terry model,
and the second term serves as a regularization term. This
result is quite interesting. We are actually optimizing a reg-
ularized Bradley-Terry loss. It also establishes a connection
between the discriminative and generative training methods
discussed in Section 2.1: both methods essentially train
LLMs to perform pairwise ranking.

Note that while label smoothing is theoretically appealing
(Müller et al., 2019; Lukasik et al., 2020), past experience
shows that it is not very helpful for LLMs. One recent
example of this problem is the experiments by Ruan et al.
(2024), in which label smoothing degrades the performance
of LLMs in some cases. By contrast, in our work, this
technique turns out to be very beneficial. We will see in
Figure 10 that using label smoothing is critical in training
our reward models.

4. Experiments
We evaluated GRAM on various applications, including its
accuracy on the response ranking, effectiveness in reward-
based fine-tuning, and adaptability to rewarding tasks.

4.1. Setups

We initialized our GRAM model with the LLaMA-3.1-8B-
Instruct and LLaMA-3.2-3B-Instruct models, using a subset
of 400k samples from Unified-Feedback for each. The
learning rates were set to 2e-5 for the first stage and 1e-5 for
the second stage, with training conducted over one epoch
in each stage. Note that while this data includes preference
labels, we do not use these labels in our pre-training process.
Instead, we only use the response pairs to simulate unlabeled
data and validate the effectiveness of our method. In the
second stage, the label smoothing parameter was set to 0.1,
with other settings tested as shown in Figure 10. More
details can be found in Appendix B.

4.2. Baselines

We compared GRAM with several strong baselines: LLM-
as-a-Judge, where we prompted LLMs like GPT-4o to gen-
erate preferences; open-source reward models, open-source
discriminative and generative reward models that approxi-
mate 3B or 8B, including ArmoRM-Llama3-8B-v0.1 (Wang
et al., 2024d), and others; and training on the same prefer-
ence dataset, denoting the standard reward models trained
on discriminative and generative frameworks using Unified-
Feedback, respectively (Discriminative RM and Generative
RM). We also compared GRAM with several approaches
designed to enhance generalization. These include the stan-
dard Label Smoothing, which prevents the model from be-
coming overly confident in its predictions; Freeze, which
fixes certain parameters of the LLM during training (Zilly
et al., 2021); and Regularization, which adds the discrimi-
native reward model loss using the SFT loss function (Yang
et al., 2024).

4.3. Pair-wise Response Ranking

Task Setups. The pair-wise ranking is commonly used to
test reward models (Lambert et al., 2024). Given test data
Dt

pair = {(xt, yta, y
t
b)}, where xt denotes the test input, and

yta and ytb denote its corresponding responses, the task is to
identify the preferred response. The test sample (xt, yta, y

t
b)

can be evaluated using a reward model:

Rank(yta, y
t
b) =


yta ≻ ytb, if rϕ(xt, yta) > rϕ(x

t, ytb)

yta ≺ ytb, if rϕ(xt, ytb) > rϕ(x
t, yta)

Tie, if rϕ(xt, yta) = rϕ(x
t, ytb)

(9)

For generative reward models, when calculating the reward
score for one of two responses, the other is used as the

5

GRAM: A Generative Foundation Reward Model for Reward Generalization

Method UNIFEED
REWARDBENCH HHH-ALIGNMENT

Chat Chat-Hard Safety Reasoning Avg. Harmless. Helpful. Honest. Avg.

LLM-as-a-Judge
GPT-4† - 95.3 74.3 87.6 86.9 86.0 96.6 91.5 82.0 90.0
GPT-4o† - 96.6 70.4 86.5 84.9 84.6 98.3 90.0 83.6 90.6
GPT-3.5-turbo† - 92.2 44.5 62.3 59.1 64.5 74.1 78.0 72.1 74.7

Open-Source Reward Models
pair-preference-model-LLaMA3-8B† - 96.9 76.8 90.5 97.3 90.4 90.2 86.2 76.7 84.4
GPM-Gemma-2B† - 71.5 69.7 81.2 75.5 74.5 76.3 68.4 66.0 70.2
Selene-1-Mini-Llama-3.1-8B† - 93.6 79.4 89.3 94.3 89.1 90.6 87.5 78.4 85.5
Skywork-Critic-Llama-3.1-8B† - 93.6 81.4 91.1 89.8 89.0 91.3 87.1 76.2 84.9

Training on the Same Preference Dataset (LLaMA-3.1-8B-Instruct)
Discriminative RM (Baseline) 69.3 80.7 73.5 74.9 67.4 74.1 75.3 78.6 74.1 76.0
Discriminative RM + Freeze 66.6 81.3 75.2 78.8 64.2 74.9 74.1 81.4 77.0 77.5
Discriminative RM + Regularization 72.7 85.8 74.3 80.1 69.5 77.4 74.6 84.1 80.3 79.7
Generative RM (Baseline) 66.8 88.6 79.3 79.6 72.4 80.0 76.9 83.9 80.2 80.3
Generative RM + Freeze 65.4 91.2 82.3 81.7 75.1 82.6 77.2 81.9 81.3 80.1
Generative RM + Label Smoothing 67.9 89.5 80.1 80.4 72.6 80.7 77.0 80.2 81.2 79.5
GRAM (Ours) 70.4 90.4 86.9 84.6 78.3 85.1 83.9 88.6 83.7 85.4

Training on the Same Preference Dataset (LLaMA-3.2-3B-Instruct)
Discriminative RM (Baseline) 68.3 86.6 71.6 71.9 61.1 72.8 79.8 77.9 70.5 76.1
Discriminative RM + Freeze 63.0 83.9 67.4 73.5 57.0 70.5 63.5 69.1 69.8 67.5
Discriminative RM + Regularization 65.6 85.4 68.7 74.2 56.5 71.2 73.4 72.1 71.7 72.4
Generative RM (Baseline) 65.3 87.9 78.8 77.5 71.1 78.8 75.5 77.3 78.8 77.2
Generative RM + Freeze 63.7 83.6 76.5 78.3 68.8 76.8 73.2 76.1 77.0 75.4
Generative RM + Label Smoothing 66.2 85.7 78.1 80.3 72.0 79.0 76.4 78.3 79.7 78.1
GRAM (Ours) 70.6 90.6 83.9 79.8 80.2 83.6 81.2 84.1 80.3 81.9

Table 1: Accuracies (%) on the pair-wise ranking with both ID (UNIFEED) and OOD (REWARDBENCH and HHH-
ALIGNMENT) test sets. The best performance in each group is in bold and the second best one is underlined. Results marked
with † for RewardBench are from Lambert et al. (2024). The other baseline results are obtained by testing this available
model or API. We use a dotted line to distinguish between the discriminative and generative reward models. We report the
average accuracy for RewardBench and HHH-Alignment sets in the “Avg.” column.

reference response. For example, to compute rϕ(xt, yta), we
use ytb as the reference response.

Results on Generalization. We used a pair-wise response
ranking task to evaluate the generalization capability of
GRAM. Table 1 shows the results of GRAM and its base-
lines on both ID and OOD test sets. Firstly, the results
here confirm the findings from Section 3.1, demonstrating
that discriminative reward models are less effective than
generative reward models in generalization, even when en-
hanced generalization methods are applied. Interestingly,
GRAM also outperforms the discriminative reward model
on the ID test set, underscoring the substantial improvement
and generalization capability of GRAM in reward model-
ing. Furthermore, compared to LLM-as-a-Judge methods,
8B Generative RM (Baseline) achieves a competitive score,
while GRAM shows a notable improvement, increasing the

average score on the RewardBench from 80.0 to 85.1. This
shows that relying only on prompt engineering in a subopti-
mal reward model, even with a strong LLM, is insufficient.
This finding here is consistent with the result in Zhang et al.
(2024). Additionally, compared to open-source reward mod-
els trained on large-scale, high-quality labeled data, GRAM
demonstrates competitive performance. As shown in Figure
6, GRAM outperforms these open-source models as more
fine-tuning data is used, achieving an average accuracy of
91.6 on the RewardBench.

From the results, we also observe that GRAM underper-
forms compared to discriminative models on ID data, which
may raise concerns about overfitting in the discriminative
models rather than better generalization. However, this is
not the case. First, the ID test set evaluates the model’s abil-
ity to learn human preferences from labeled data, and our
goal is to excel in both ID and OOD tasks. As shown by the

6

GRAM: A Generative Foundation Reward Model for Reward Generalization

0 1 2 3 4
1.2

1.4

1.6

1.8

2.0

KL Divergence

Pr
ox

y
Sc

or
e

D-Baseline D-Freeze D-Regularization G-Baseline G-Freeze G-Label Smoothing GRAM

(a) BoN (LLaMA-3.1-8B-Instruct)

0 1 2 3 4
1.6

1.8

2.0

2.2

2.4

KL Divergence
O

ra
cl

e
Sc

or
e

0 1 2 3 4

1.2

1.4

1.6

1.8

KL Divergence

Pr
ox

y
Sc

or
e

(b) BoN (LLaMA-3.2-3B-Instruct)

0 1 2 3 4

1.8

2.0

2.2

2.4

KL Divergence

O
ra

cl
e

Sc
or

e

Figure 4: Performance of GRAM and its baselines on BoN sampling. We use proxy scores to assess preference learning
and oracle scores to evaluate the generalization capability. “D-” and “G-” denote that the reward model is trained using
discriminative and generative reward modeling frameworks.

LLaMA-3.1-8B-Instruct results in Table 1, GRAM achieves
the best OOD results and second-best ID results. Sec-
ond, while GRAM underperforms relative to Discriminative
RM+Regularization on the LLaMA-3.1-8B-Instruct model,
it outperforms both the Discriminative RM (Baseline) and
Discriminative RM+Freeze, demonstrating GRAM’s strong
performance. Additionally, we find that regularization’s
effectiveness is model-dependent, as it performs worse than
GRAM on the LLaMA-3.2-3B-Instruct model.

4.4. List-wise Response Ranking

In practice, multiple responses are typically generated for
reranking. Given a list-wise test set Dt

list = {(xt, yt1,
yt2, · · · , ytk)}, where k denotes the list size, we begin
by randomly selecting a response ytj as the reference re-
sponse yref . We then compute reward scores {rϕ(xt, yt1),
rϕ(x

t, yt2), · · · , rϕ(xt, ytk−1)} for the remaining responses
via Eq. 3. These scores are subsequently used for ranking
these responses3. Additionally, when the goal is to find
the best response from the response list, a straightforward
linear search approach can be employed. Specifically, we
start by defining yt1 as the best response ytb and comparing it
iteratively with the remaining responses with the generative
reward model. At each comparison, if ytb is found to be
inferior, it is replaced by the compared response. Through
this process, we can determine the best response. To support
parallel computation and enhance efficiency, we also incor-
porate optimization algorithms, such as divide-and-conquer.

Task Setups. We used best-of-n (BoN) sampling to eval-
uate GRAM on list-wise ranking. We performed BoN
sampling on the LLaMA-3.1-8B-Instruct model using k
responses per input. The test set was AlpacaEval2 (Li et al.,
2023). In all BoN experiments, we trained a proxy reward

3In the list-wise response ranking process, the reward score for
the reference response yt

k is set to 0.5.

model on a 40k subset of the Unified-Feedback dataset to
provide a proxy score for the responses selected by GRAM
and its baselines. Additionally, we trained an oracle re-
ward model using preference data from AlpacaFarm (Dubois
et al., 2023), which accurately measures response quality
to assess generalization, as AlpacaFarm’s preference data
is distributed alongside AlpacaEval2. Following Gao et al.
(2023)’s work, we varied the KL Divergence between 0
and 4.5, which corresponds to a range of k from 1 to 244
responses, according to the equation KLBoN = log k− k−1

k .

Results of Best-of-n Sampling. Figure 4 presents the
BoN sampling results for reward models of the 3B and 8B
sizes. When comparing discriminative and generative re-
ward models, we observe that the discriminative reward
model yields a strong proxy score but underperforms in
oracle scores. This indicates that while the discriminative
reward model exhibits robust preference learning, its gen-
eralization capability is weaker, consistent with observa-
tions in pair-wise ranking. In contrast, GRAM excels in
list-wise ranking in both proxy and oracle reward model
evaluations. We observe a decline in oracle scores for base-
line models when the KL divergence exceeds 3, attributable
to over-optimization. However, GRAM mitigates this issue,
demonstrating its potential as a reliable foundation reward
model in RLHF. We also further evaluate its performance
during PPO fine-tuning, as shown in Appendix C.1.

4.5. Reward Model Adaptation

The adaptability of a reward model is crucial for its per-
formance across various tasks, as it enables the model to
effectively adjust to different environments and preferences
(Cheng et al., 2023; Wang et al., 2024a). To evaluate
GRAM’s adaptability, we conducted experiments in two
distinct tasks: adapting to the summarization task and adapt-
ing to the harmlessness preference type. For each task, we
fine-tuned GRAM on a small, labeled dataset containing

7

GRAM: A Generative Foundation Reward Model for Reward Generalization

0k 1k 3k 5k 7k 10k

50

55

60

65

70

75

80

Amount of Preference Data

A
cc

ur
ac

y
(%

)o
n

Su
m

m
ar

iz
at

io
n

Oracle RM Vanilla RM RM fine-tuned with D-Baseline RM fine-tuned with G-Baseline RM fine-tuned with GRAM

(a) Adaptation (LLaMA-3.1-8B-Instruct)

0k 1k 3k 5k 7k 10k

55

60

65

70

75

Amount of Preference Data
A

cc
ur

ac
y

(%
)o

n
H

ar
m

le
ss

ne
ss

0k 1k 3k 5k 7k 10k

55

60

65

70

75

Amount of Preference Data

A
cc

ur
ac

y
(%

)o
n

Su
m

m
ar

iz
at

io
n

(b) Adaptation (LLaMA-3.2-3B-Instruct)

0k 1k 3k 5k 7k 10k

55

60

65

70

Amount of Preference Data

A
cc

ur
ac

y
(%

)o
n

H
ar

m
le

ss
ne

ss

Figure 5: The performance of reward models fine-tuned with varying amounts of task-specific preference data (summarization
and harmlessness). Please refer to Figure 11 for the results on the four remaining baselines, including D-Feeze, D-
Regularization, G-Freeze, and G-Label Smoothing.

0k 100k 200k 400k 600k

70

72

74

76

78

80

82

84

86

Amount of Unlabeled Data

A
cc

ur
ac

y
(%

)

GRAM (LLaMA-3.1-8B-Instruct) GRAM (LLaMA-3.2-3B-Instruct)

Second Stage (100k Labeled Data)

0k 100k 200k 400k 600k

72

74

76

78

80

82

84

86

Amount of Unlabeled Data

A
cc

ur
ac

y
(%

)

Second Stage (200k Labeled Data)

0k 100k 200k 400k 600k

76

78

80

82

84

86

88

Amount of Unlabeled Data

A
cc

ur
ac

y
(%

)

Second Stage (400k Labeled Data)

0k 100k 200k 400k 600k

78

80

82

84

86

88

90

92

Amount of Unlabeled Data

A
cc

ur
ac

y
(%

)

Second Stage (600k Labeled Data)

Figure 6: Performance scaling laws for different amounts of unlabeled data used in the first stage. “0k unlabeled data” refers
to training GRAM solely in the second stage, without using any unlabeled data for pre-training.

task-specific preference data, followed by testing it on the
corresponding task-specific test sets.

Task Setups. For each task, we vary the number of sum-
marization data across {0k, 1k, 3k, 5k, 7k, 10k}, derived
from preference data labeled by Stiennon et al. (2020) and
Bai et al. (2022), respectively. We used the full task-specific
datasets—92k samples for summarization and 42k for harm-
lessness—to train reward models, respectively, which served
as baselines (Oracle RM). We also trained reward models
based on the LLaMA-3.1-8B-Instruct and LLaMA-3.2-3B-
Instruct models, using only the task-specific preference data
as baselines (denoted as Vanilla RM).

Results on Reward Model Adaptation. Figure 5 shows
the accuracies of the reward models, which are fine-tuned
with different amounts of summarization and harmlessness
preference data. We see that fine-tuning GRAM with a
small amount of preference data, such as 1k or 3k samples,
is sufficient to yield high-quality reward models. Notably,
using only 3k summarization samples, we achieve a task-
specific reward model that performs comparably to one
trained on the 92k samples (75.6 vs. 77.8). This proves

that GRAM can substantially reduce the need for preference
data labeling in reward modeling. Furthermore, compared
to baselines, GRAM consistently outperforms them as a
foundation reward model, underscoring its efficiency in
adapting to task-specific requirements with minimal data.
More experimental results can be found in Appendix C.

5. Analysis
5.1. Scaling Unlabeled Data for Improved Performance

To further investigate the impact of pre-training with unla-
beled data on GRAM’s performance, we trained GRAM
using the LLaMA-3.1-8B-Instruct and LLaMA-3.2-3B-
Instruct models with varying amounts of unlabeled and
labeled data. The model’s performance was evaluated on
the OOD test set (RewardBench), as shown in Figure 6. The
results demonstrate that as the amount of unlabeled data in-
creases, the accuracy of GRAM generally improves for both
models, with the most significant gains observed when mov-
ing from 0k to 200k unlabeled data. This also demonstrates
the crucial role of unlabeled data and the scaling effect on
performance, suggesting that using larger unlabeled datasets
can lead to better reward models.

8

GRAM: A Generative Foundation Reward Model for Reward Generalization

Method Accuracy

Vanilla RM 56.5
GRAM 71.6
GRAM w/ Domain 74.7
GRAM w/o Domain 67.4

Table 2: Accuracy (%) of different GRAM variants.

5.2. Impact of Domain Difference Between Pre-training
and Fine-tuning on Reward Model Adaptation

We investigate the impact of domain differences on reward
model adaptation. More specifically, we evaluate three vari-
ations of GRAM in the context of reward model adaptation:

• GRAM: Pre-trained on 100k general unlabeled data
(including summarization responses), followed by fine-
tuning on 5k labeled summarization data.

• GRAM w/ Domain: Pre-trained on 100k unlabeled
summarization response pairs derived from TL;DR
comparison data (Stiennon et al., 2020), followed by
fine-tuning on 5k labeled summarization data.

• GRAM w/o Domain: Pre-trained on 100k general un-
labeled data (excluding summarization-related data;
specifically, preference data related to summarization
is filtered out using GPT-4o), followed by fine-tuning
on 5k labeled summarization data.

The experimental results are listed in Table 2. These results
demonstrate that pre-training on data more closely aligned
with the target domain leads to better performance in that do-
main. Specifically, as shown in the table, GRAM pre-trained
with domain-specific data (GRAM w/ Domain) achieves an
accuracy of 74.7, significantly outperforming the model
without pre-training (RM w/o Pre-training), which achieves
only 56.5. This observation aligns with the common practice
in LLMs, where incorporating domain-specific data during
pre-training typically improves performance on downstream
tasks. Furthermore, our results show that the pre-training
approach exhibits strong robustness. Even with significant
domain differences, pre-training still contributes positively
to performance, with GRAM (71.6) outperforming the non-
pre-trained model and the GRAM w/o Domain (67.4).

See more analysis in Appendix D.

6. Related Work
Reward Modeling. Reward models, trained on human
preference data, are central to RLHF or other alignment
approaches like reject sampling (Lee et al., 2021; Chu et al.,
2023). More recently, researchers have extended the use
of reward models beyond training and into inference (Wu
et al., 2024; Li et al., 2025). Two strands of research have

tried to improve these reward models for better LLM align-
ment. The first focuses on large-scale, high-quality training
data, developing either task-specific datasets (Stiennon et al.,
2020; Xu et al., 2024) or more general preference datasets
(Bai et al., 2022; Cui et al., 2023). The other explores
stronger models for reward modeling, such as reward model
ensembling (Coste et al., 2024; Min et al., 2024). Although
reward modeling through these methods captures human
preferences effectively, they often rely heavily on labeled
data. Researchers have noticed this issue. For example, Lee
et al. (2023) employed LLMs to replace human annotators,
and Cui et al. (2023) developed a large-scale preference
dataset for general-purpose use. However, these efforts
overlook the potential of vast amounts of unlabeled data.

Foundation Models. This work joins a large body of work
demonstrating that a neural network trained on unlabeled
data at scale can gain some general knowledge and is easy
to adapt to a wide range of downstream tasks (Moor et al.,
2023; Xiao & Zhu, 2025; 2023). Such a guiding principle
has motivated the development of many successful LLMs,
such as the BERT and GPT series (Devlin et al., 2019;
Brown et al., 2020). Here we extend this idea to training
reward models, though the training scale is much less than
that of LLMs. The result of this work is somewhat unsurpris-
ing but encouraging: the broad effectiveness of foundation
models can be verified in more research areas, and it shows
that models of this kind can be successfully applied in fields
that traditionally rely on highly specialized models.

7. Conclusions
We have explored training methods for reward models
utilizing both labeled and unlabeled data. By leverag-
ing the generative capabilities of LLMs, we have devel-
oped a generative foundation reward model, called GRAM.
This model undergoes initial training through extensive
unsupervised learning, followed by fine-tuning using su-
pervised learning methods. Extensive experiments show
that GRAM yields large improvements in generalization
over various baselines. Our codebase could be found at
https://github.com/NiuTrans/GRAM.

Acknowledgments
This work was supported in part by the National Science
Foundation of China (Nos. 62276056 and U24A20334),
the Fundamental Research Funds for the Central Univer-
sities, the Yunnan Fundamental Research Projects (No.
202401BC070021), and the Program of Introducing Tal-
ents of Discipline to Universities, Plan 111 (No.B16009).
We would like to thank anonymous reviewers for their valu-
able comments. We also thank Hang Zhou for his assistance
in open-sourcing the GRAM model series.

9

https://github.com/NiuTrans/GRAM

GRAM: A Generative Foundation Reward Model for Reward Generalization

Impact Statement
This work does not need ethical considerations, as it only
utilizes open-source foundation models and publicly avail-
able datasets. This paper presents work whose goal is to
advance the field of Machine Learning. There are many
potential societal consequences of our work, none of which
we feel must be specifically highlighted here.

References
Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D.,

Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma,
N., et al. A general language assistant as a laboratory for
alignment. ArXiv preprint, 2021.

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., Das-
Sarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T.,
et al. Training a helpful and harmless assistant with rein-
forcement learning from human feedback. ArXiv preprint,
2022.

Bradley, R. A. and Terry, M. E. Rank analysis of incom-
plete block designs: I. the method of paired comparisons.
Biometrika, 1952.

Brauwers, G. and Frasincar, F. A survey on aspect-based
sentiment classification. ACM Computing Surveys, pp.
1–37, 2022.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Chen, X., Li, G., Wang, Z., Jin, B., Qian, C., Wang, Y.,
Wang, H., Zhang, Y., Zhang, D., Zhang, T., et al. Rm-
r1: Reward modeling as reasoning. ArXiv preprint,
abs/2505.02387, 2025.

Cheng, P., Xie, J., Bai, K., Dai, Y., and Du, N. Everyone de-
serves a reward: Learning customized human preferences.
ArXiv preprint, 2023.

Christiano, P. F., Leike, J., Brown, T. B., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from hu-
man preferences. In Guyon, I., von Luxburg, U., Bengio,
S., Wallach, H. M., Fergus, R., Vishwanathan, S. V. N.,
and Garnett, R. (eds.), Advances in Neural Information

Processing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pp. 4299–4307, 2017.

Chu, Y., Xu, J., Zhou, X., Yang, Q., Zhang, S., Yan, Z.,
Zhou, C., and Zhou, J. Qwen-audio: Advancing uni-
versal audio understanding via unified large-scale audio-
language models. ArXiv preprint, 2023.

Coste, T., Anwar, U., Kirk, R., and Krueger, D. Reward
model ensembles help mitigate overoptimization. In The
Twelfth International Conference on Learning Represen-
tations, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net, 2024.

Cui, G., Yuan, L., Ding, N., Yao, G., Zhu, W., Ni, Y., Xie, G.,
Liu, Z., and Sun, M. Ultrafeedback: Boosting language
models with high-quality feedback. ArXiv preprint, 2023.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Burstein, J., Doran, C., and
Solorio, T. (eds.), Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pp. 4171–4186,
Minneapolis, Minnesota, 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/N19-1423.

Dong, G., Yuan, H., Lu, K., Li, C., Xue, M., Liu, D., Wang,
W., Yuan, Z., Zhou, C., and Zhou, J. How abilities in large
language models are affected by supervised fine-tuning
data composition. ArXiv preprint, 2023.

Dubois, Y., Li, C. X., Taori, R., Zhang, T., Gulrajani, I., Ba,
J., Guestrin, C., Liang, P., and Hashimoto, T. B. Alpaca-
farm: A simulation framework for methods that learn
from human feedback. In Oh, A., Naumann, T., Glober-
son, A., Saenko, K., Hardt, M., and Levine, S. (eds.),
Advances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023.

Fernandes, P., Farinhas, A., Rei, R., C. de Souza, J. G.,
Ogayo, P., Neubig, G., and Martins, A. Quality-aware
decoding for neural machine translation. In Carpuat, M.,
de Marneffe, M.-C., and Meza Ruiz, I. V. (eds.), Pro-
ceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 1396–1412, Seattle,
United States, 2022. Association for Computational Lin-
guistics. doi: 10.18653/v1/2022.naacl-main.100.

Gao, L., Schulman, J., and Hilton, J. Scaling laws for reward
model overoptimization. In Krause, A., Brunskill, E.,
Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J. (eds.),

10

GRAM: A Generative Foundation Reward Model for Reward Generalization

International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research, pp.
10835–10866. PMLR, 2023.

Guo, J., Chi, Z., Dong, L., Dong, Q., Wu, X., Huang, S.,
and Wei, F. Reward reasoning model. ArXiv preprint,
abs/2505.14674, 2025.

Lambert, N., Pyatkin, V., Morrison, J., Miranda, L., Lin,
B. Y., Chandu, K., Dziri, N., Kumar, S., Zick, T., Choi,
Y., et al. Rewardbench: Evaluating reward models for
language modeling. ArXiv preprint, 2024.

Lee, A., Auli, M., and Ranzato, M. Discriminative rerank-
ing for neural machine translation. In Zong, C., Xia, F.,
Li, W., and Navigli, R. (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers),
pp. 7250–7264, Online, 2021. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2021.acl-long.563.

Lee, H., Phatale, S., Mansoor, H., Lu, K., Mesnard, T.,
Bishop, C., Carbune, V., and Rastogi, A. Rlaif: Scal-
ing reinforcement learning from human feedback with ai
feedback. ArXiv preprint, 2023.

Lee, H., Phatale, S., Mansoor, H., Mesnard, T., Ferret, J.,
Lu, K., Bishop, C., Hall, E., Carbune, V., Rastogi, A.,
and Prakash, S. RLAIF vs. RLHF: scaling reinforcement
learning from human feedback with AI feedback. In
Forty-first International Conference on Machine Learn-
ing, ICML 2024, Vienna, Austria, July 21-27, 2024. Open-
Review.net, 2024.

Li, X., Zhang, T., Dubois, Y., Taori, R., Gulrajani, I.,
Guestrin, C., Liang, P., and Hashimoto, T. B. Alpacaeval:
An automatic evaluator of instruction-following models,
2023.

Li, Z., Xu, T., Zhang, Y., Lin, Z., Yu, Y., Sun, R., and
Luo, Z. Remax: A simple, effective, and efficient rein-
forcement learning method for aligning large language
models. In Forty-first International Conference on Ma-
chine Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net, 2024.

Li, Z.-Z., Zhang, D., Zhang, M.-L., Zhang, J., Liu, Z.,
Yao, Y., Xu, H., Zheng, J., Wang, P.-J., Chen, X., et al.
From system 1 to system 2: A survey of reasoning large
language models. ArXiv preprint, 2025.

Liu, C. Y., Zeng, L., Liu, J., Yan, R., He, J., Wang, C., Yan,
S., Liu, Y., and Zhou, Y. Skywork-reward: Bag of tricks
for reward modeling in llms. ArXiv preprint, 2024.

Liu, H., Li, C., Wu, Q., and Lee, Y. J. Visual instruction tun-
ing. In Oh, A., Naumann, T., Globerson, A., Saenko, K.,
Hardt, M., and Levine, S. (eds.), Advances in Neural In-
formation Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16, 2023,
2023.

Lukasik, M., Bhojanapalli, S., Menon, A. K., and Kumar,
S. Does label smoothing mitigate label noise? In Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine Learning
Research, pp. 6448–6458. PMLR, 2020.

Mahan, D., Van Phung, D., Rafailov, R., Blagden, C., Lile,
N., Castricato, L., Fränken, J.-P., Finn, C., and Albalak,
A. Generative reward models. ArXiv preprint, 2024.

Min, D. J., Perez-Rosas, V., Resnicow, K., and Mihalcea,
R. Dynamic reward adjustment in multi-reward rein-
forcement learning for counselor reflection generation.
In Calzolari, N., Kan, M.-Y., Hoste, V., Lenci, A., Sakti,
S., and Xue, N. (eds.), Proceedings of the 2024 Joint
International Conference on Computational Linguistics,
Language Resources and Evaluation (LREC-COLING
2024), pp. 5437–5449, Torino, Italia, 2024. ELRA and
ICCL.

Moor, M., Banerjee, O., Abad, Z. S. H., Krumholz, H. M.,
Leskovec, J., Topol, E. J., and Rajpurkar, P. Founda-
tion models for generalist medical artificial intelligence.
Nature, 2023.

Müller, R., Kornblith, S., and Hinton, G. E. When does
label smoothing help? In Wallach, H. M., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pp. 4696–4705, 2019.

Munikar, M., Shakya, S., and Shrestha, A. Fine-grained
sentiment classification using bert. In 2019 Artificial In-
telligence for Transforming Business and Society (AITB),
pp. 1–5, 2019.

OpenAI. Learning to reason with llms, 2024.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L.,
Simens, M., Askell, A., Welinder, P., Christiano, P. F.,
Leike, J., and Lowe, R. Training language models to
follow instructions with human feedback. In Koyejo, S.,
Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and
Oh, A. (eds.), Advances in Neural Information Processing

11

GRAM: A Generative Foundation Reward Model for Reward Generalization

Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022, 2022.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D.,
Ermon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. In Oh,
A., Naumann, T., Globerson, A., Saenko, K., Hardt, M.,
and Levine, S. (eds.), Advances in Neural Information
Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Ruan, J., Abudula, A., Liu, X., Li, B., Li, Y., Wang, C., Fan,
Y., Ge, Y., Xiao, T., and Zhu, J. Ndp: Next distribution
prediction as a more broad target. ArXiv preprint, 2024.

Shiwen, T., Liang, Z., Liu, C. Y., Zeng, L., and Liu, Y.
Skywork critic model series, 2024.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D. M., Lowe,
R., Voss, C., Radford, A., Amodei, D., and Christiano,
P. F. Learning to summarize with human feedback. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and
Lin, H. (eds.), Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X.,
Guestrin, C., Liang, P., and Hashimoto, T. B. Alpaca: A
strong, replicable instruction-following model. Stanford
Center for Research on Foundation Models. https://crfm.
stanford. edu/2023/03/13/alpaca. html, 2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. ArXiv preprint, 2023.

Wang, C., Lu, Y., Mu, Y., Hu, Y., Xiao, T., and Zhu,
J. Improved knowledge distillation for pre-trained lan-
guage models via knowledge selection. In Goldberg,
Y., Kozareva, Z., and Zhang, Y. (eds.), Findings of
the Association for Computational Linguistics: EMNLP
2022, pp. 6232–6244, Abu Dhabi, United Arab Emirates,
2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.findings-emnlp.464.

Wang, C., Gan, Y., Huo, Y., Mu, Y., Yang, M., He, Q.,
Xiao, T., Zhang, C., Liu, T., Du, Q., et al. Rovrm: A ro-
bust visual reward model optimized via auxiliary textual
preference data. ArXiv preprint, 2024a.

Wang, C., Zhou, H., Chang, K., Li, B., Mu, Y., Xiao, T.,
Liu, T., and Zhu, J. Hybrid alignment training for large
language models. ArXiv preprint, 2024b.

Wang, C., Zhou, H., Hu, Y., Huo, Y., Li, B., Liu, T.,
Xiao, T., and Zhu, J. ESRL: efficient sampling-based
reinforcement learning for sequence generation. In
Wooldridge, M. J., Dy, J. G., and Natarajan, S. (eds.),
Thirty-Eighth AAAI Conference on Artificial Intelligence,
AAAI 2024, Thirty-Sixth Conference on Innovative Appli-
cations of Artificial Intelligence, IAAI 2024, Fourteenth
Symposium on Educational Advances in Artificial Intel-
ligence, EAAI 2014, February 20-27, 2024, Vancouver,
Canada, pp. 19107–19115. AAAI Press, 2024c. doi:
10.1609/AAAI.V38I17.29878.

Wang, H., Xiong, W., Xie, T., Zhao, H., and Zhang, T. Inter-
pretable preferences via multi-objective reward modeling
and mixture-of-experts. In EMNLP, 2024d.

Wang, P., Li, L., Chen, L., Cai, Z., Zhu, D., Lin, B., Cao, Y.,
Liu, Q., Liu, T., and Sui, Z. Large language models are
not fair evaluators. ArXiv preprint, 2023.

Wang, Y., Yu, Z., Yao, W., Zeng, Z., Yang, L., Wang, C.,
Chen, H., Jiang, C., Xie, R., Wang, J., Xie, X., Ye, W.,
Zhang, S., and Zhang, Y. Pandalm: An automatic evalua-
tion benchmark for LLM instruction tuning optimization.
In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net, 2024e.

Wu, Y., Sun, Z., Li, S., Welleck, S., and Yang, Y. An empir-
ical analysis of compute-optimal inference for problem-
solving with language models. 2024.

Xiao, T. and Zhu, J. Introduction to transformers: an nlp
perspective. ArXiv preprint, abs/2311.17633, 2023.

Xiao, T. and Zhu, J. Foundations of large language models.
ArXiv preprint, 2025.

Xu, H., Sharaf, A., Chen, Y., Tan, W., Shen, L., Durme,
B. V., Murray, K., and Kim, Y. J. Contrastive preference
optimization: Pushing the boundaries of LLM perfor-
mance in machine translation. In Forty-first International
Conference on Machine Learning, ICML 2024, Vienna,
Austria, July 21-27, 2024. OpenReview.net, 2024.

Yang, R., Ding, R., Lin, Y., Zhang, H., and Zhang, T. Regu-
larizing hidden states enables learning generalizable re-
ward model for llms. In Globersons, A., Mackey, L., Bel-
grave, D., Fan, A., Paquet, U., Tomczak, J. M., and Zhang,
C. (eds.), Advances in Neural Information Processing
Systems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurIPS 2024, Vancouver, BC,
Canada, December 10 - 15, 2024, 2024.

Zhang, L., Hosseini, A., Bansal, H., Kazemi, M., Kumar, A.,
and Agarwal, R. Generative verifiers: Reward modeling
as next-token prediction. ArXiv preprint, 2024.

12

GRAM: A Generative Foundation Reward Model for Reward Generalization

Zheng, L., Chiang, W., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E. P., Zhang,
H., Gonzalez, J. E., and Stoica, I. Judging llm-as-a-judge
with mt-bench and chatbot arena. In Oh, A., Naumann,
T., Globerson, A., Saenko, K., Hardt, M., and Levine,
S. (eds.), Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023, 2023.

Zilly, J. G., Achille, A., Censi, A., and Frazzoli, E. On
plasticity, invariance, and mutually frozen weights in se-
quential task learning. In Ranzato, M., Beygelzimer, A.,
Dauphin, Y. N., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, vir-
tual, pp. 12386–12399, 2021.

13

GRAM: A Generative Foundation Reward Model for Reward Generalization

A. Theoretical Motivations of the Two-Stage Training Method
We divide reward modeling in generative reward models into response understanding and preference generation. To derive
a potential formulation for the response understanding optimization objective, we consider the following optimization
problem: learning a generative reward model based on features. This loss function can be given by:

Lg(θ) = Lgp(θgp)︸ ︷︷ ︸
generate preferences

based on features

+ Lgf(θ)︸ ︷︷ ︸
optimize features

with preference labels

(10)

where θgp denotes a small part of the parameters used to generate the final prediction preferences, i.e., the final feedforward
layer in the LLM. The term of feature optimization Lgf(θ) is implicitly defined and can be optimized by adjusting the
preference generation as specified in Eq. 2. The analytical solution of Lgf(θ) is formulated as follows:

Lgf(θ) = −E(x,ya,yb)∼Du
∥f(x, ya, yb)− f∗(x, ya, yb)∥2 (11)

where f(·) denotes the implicit features and f∗(·) is the gold features. While Lg(θ) can assist in optimizing Eq. 11, it often
requires labeled data, which is challenging to acquire at scale and with high quality. We consider that these features typically
aim to provide knowledge that supports preference generation, with interrelationships between responses. Alternatively, we
propose to use an auxiliary task to optimize these features without relying on labeled preferences, using unlabeled data
Du. Specifically, we employ conditional probabilities to characterize interrelationships (Dong et al., 2023), simplifying
the problem. Additionally, we account for a distributional error arising from both πθ and the responses to a given input x.
This error primarily stems from the possibility that the response may have been sampled from a different model, which is a
mismatch between the data distribution and the current LLM. To mitigate this, we introduce an SFT loss as a regularization
term. This auxiliary loss function can be written as

Lgf(θ) = −E(x,ya,yb)∼Du
[log πθ(ya|x, yb) + log πθ(yb|x, ya) + log πθ(ya|x) + log πθ(yb|x)] (12)

Since ya and yb in the unlabeled data do not explicitly distinguish between preferences, we simplify the loss function by
focusing on the conditional probabilities between the response pair and the input, resulting in the following simplified form:

Lgf(θ) = −E(x,ya,yb)∼Du
[log πθ(yb|x, ya) + log πθ(ya|x)] (13)

We provide an equivalent substitution for this original loss. To do so, we consider the joint distribution πθ([ya, yb]|x), which
accounts for the dependency between ya and yb. Specifically, the joint distribution can be factored as follows:

πθ([ya, yb]|x) = πθ(ya|x)× πθ(yb|x, ya) (14)

We now proceed by applying the log of the joint distribution. Since log πθ([ya, yb]|x) is equal to the sum of the individual
log-probabilities (by the logarithmic properties of probabilities), we can conclude that:

log πθ(ya|x) + log πθ(yb|x, ya) = log πθ([ya, yb]|x) (15)

Therefore, the original loss function can be optimized by the negative expectation of the log-joint probability:

Lgf(θ) = −E(x,ya,yb)∼Du
[log πθ([ya, yb]|x)] (16)

We denote the negative expectation, as defined in Eq. 4, by Lpre and use it for optimization. The objective of Lpre is to
maximize the likelihood of generating both responses ya and yb. Intuitively, in unlabeled data, responses typically exhibit
one of three relationships: ya is preferred over yb, yb is preferred over ya, or ya and yb are roughly equivalent. By learning
the mapping from inputs to diverse responses, the model identifies the implicit features that characterize each scenario,
thereby gaining general knowledge for response comparison.

In machine learning, it is common practice to use auxiliary tasks for pre-training features that improve task performance.
For instance, Devlin et al. (2019) employed next sentence prediction and masked language model tasks to learn features like
semantics, which was then used to augment other tasks, such as sentiment classification (Munikar et al., 2019; Brauwers
& Frasincar, 2022). Similarly, Liu et al. (2023) utilized an image caption task to train a feature projector, which was then
utilized for general visual instruction tasks. To our knowledge, this work is the first to pre-train preference features through
an auxiliary task that only leverages unlabeled data.

14

GRAM: A Generative Foundation Reward Model for Reward Generalization

B. Details of Experiments
B.1. Settings

SFT Training. During conducting the SFT training, we set the learning rate, batch size, and training epoch to 1e-5, 256,
and 2. We did not conduct tuning of these hyper-parameters specific to the task and the model, as our experiments with
other hyper-parameters did not yield a significant performance improvement.

Reward Model Training. We trained the discriminative and generative reward model baselines for one epoch with a
learning rate of 1e-5 and a batch size of 256. In the Label Smoothing baseline for the generative reward model, we set
the smoothing factor to 0.1 for a fair comparison, consistent with the value used in the label smoothing strategy. In the
Freeze baseline, we fixed the embedding parameters while training the generative reward model. Additionally, we fixed the
base model’s features and only fine-tuned the nonlinear components during the training of the discriminative reward model.
In the Regularization baseline for the discriminative reward model, we incorporated the SFT loss function, as proposed
by Yang et al. (2024), into Eq. 1. In the testing of GRAM, we train both the proxy reward model and goal reward model
using the LLaMA-3.1-8B-Instruct model, employing a discriminative framework for training. Also, when adapting GRAM
through fine-tuning, we set the learning rate to 1e-5 and the size of epochs to two. Furthermore, during the training of the
generative reward model, we utilized the input structure depicted in Figure 7.

Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants
to the user question displayed below. You should choose the assistant that follows the user’s instructions
and answers the user’s questions better. Your evaluation should consider factors such as the helpfulness,
relevance, accuracy, depth, creativity, and level of detail of their responses. Avoid any position biases
and ensure that the order in which the responses were presented does not influence your decision. Do
not allow the length of the responses to influence your evaluation. Do not favor certain names of the
assistants. Be as objective as possible. Please directly output your final verdict by strictly following this
format: [[A]] if assistant A is better, [[B]] if assistant B is better.

[User Question]
{input}

[The Start of Assistant A’s Answer]
{ResponseA}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{ResponseB}
[The End of Assistant B’s Answer]

Preferred:

s

c

x

ya

yb

Figure 7: An example of input s for the generative reward model as defined in Eq. 2.

Best-of-n Sampling. When conducting the best-of-n sampling on the AlpacaEval2 benchmark, we generated candidate
responses using the top-p sampling approach, setting p to 0.95 and temperature to 0.75. Then, we picked a final generated
response with the maximum reward score.

PPO Fine-tuning. We trained the LLM using PPO via the trlx implementation4. For all experiments, the learning rate
was set to 1e-5 and 5e-6 for the policy model and the value model, respectively. We settled on a batch size of 64 for each
PPO step, which consisted of 1 epoch of gradient steps and 4 epochs of mini-batch PPO steps. When using GRAM to

4https://github.com/CarperAI/trlx

15

https://github.com/CarperAI/trlx

GRAM: A Generative Foundation Reward Model for Reward Generalization

0k 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

−2

−1

0

1

Training Samples

Pr
ox

y
Sc

or
e

D-Baseline D-Freeze D-Regularization G-Baseline G-Freeze G-Label Smoothing GRAM

(a) PPO (LLaMA-3.1-8B-Instruct)

0k 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
1.4

1.5

1.6

1.7

1.8

1.9

2.0

Training Samples
O

ra
cl

e
Sc

or
e

0k 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

−2

−1

0

1

Training Samples

Pr
ox

y
Sc

or
e

(b) PPO (LLaMA-3.2-3B-Instruct)

0k 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
1.4

1.5

1.6

1.7

1.8

Training Samples

O
ra

cl
e

Sc
or

e

Figure 8: Results on Reinforcement Learning

compute reward scores, this optimization objective is then defined as:

LPPO = −Ex∼DPPO,ŷ∼πθ
[γ × rϕ(x, ŷ))]− α× DKL [πθ(ŷ|x)||πθref (ŷ|x)] (17)

where γ denotes a scaling factor, DPPO denotes the data for PPO fine-tuning, and πθref denote a reference LLM. Here, we
set γ to 10. Additionally, to address the over-optimization issue as described in Gao et al. (2023)’s work, we implemented a
strategy that saved checkpoints at regular intervals during the training process. Specifically, we evaluated checkpoints at
intervals of 200 steps for all tasks against their respective validation sets and selected the optimal checkpoint with the best
reward score. Following Wang et al. (2024b), we also employed a cold-start trick for PPO to alleviate the damage caused by
the inaccurate estimation of the early value model. Specifically, we only updated the value model and did not update the
policy model during the first 30 steps of PPO training. Following Wang et al. (2024c)’s work, we also standardized our
reward scores using a reward queue, which stored the previous 1k reward scores to compute the mean and variance. All of
our experiments were done on eight A800 GPUs.

B.2. Evaluation

To evaluate the generalization of GRAM, we conducted tests using OOD test sets, including HHH-Alignment (Askell
et al., 2021), and RewardBench (Lambert et al., 2024). The HHH-Alignment evaluates language models regarding their
helpfulness, harmlessness, and honesty. The test set focuses on the preference evaluation of the specific task. Furthermore,
RewardBench is a newly introduced benchmark designed to evaluate the performance of reward models across various
dimensions, including chat, reasoning, and safety.

C. Additional Experimental Results
C.1. Reinforcement Learning

In reinforcement learning, the reward score is computed for a single input-response pair (x, ŷ), where ŷ is sampled from the
model. In this process, we select yref = argmaxπθ(·|x) by greedily sampling the response.

Task Setups. To assess the performance of GRAM in reinforcement learning, we conducted PPO fine-tuning experiments
using the Alpaca dataset (Taori et al., 2023), which includes 52k training samples. We used the data splits provided by
AlpacaFarm (Dubois et al., 2023) in performing SFT and PPO fine-tuning. Note that we selected the LLaMA-3.1-8B model
as the policy model, as the SFT and RLHF processes for the LLaMA-3.1-8B-Instruct model had not been publicly disclosed,
leading to a data shift that is incompatible with our dataset.

Results on PPO Fine-tuning. We apply GRAM and its baselines as reward models in PPO fine-tuning. As shown in
Figure 8, reinforcement learning shows a greater tendency to exploit the learned reward models than BoN. The oracle scores
of the baseline methods begin to decline early in training, while their proxy scores rise, highlighting a clear overoptimization
issue. In contrast, GRAM exhibits better generalization capability, as evidenced by the increase in the oracle score alongside
rising proxy scores. This confirms that GRAM effectively mitigates overoptimization in PPO fine-tuning. Additionally, we

16

GRAM: A Generative Foundation Reward Model for Reward Generalization

Method WinRate LC-WinRate

SFT 4.56 3.08

PPO Fine-tuning
+ D-Regularization 5.32 4.13
+ G-Baseline 6.75 5.80
+ G-Freeze 8.01 7.82
+ G-Label Smoothing 8.82 7.94
+ GRAM (Ours) 12.63 11.12

Table 3: Win rate of models after PPO fine-tuning with GRAM and strong baselines trained with the LLaMA-3.1-8B-Instruct
model. “WinRate” and “LC-WinRate” denote raw win rate and length-controlled win rate, respectively.

observe that generative models generally outperform discriminative models. Beyond their strong generalization ability, we
hypothesize that using the reward of “how much better than the reference output” is more effective than focusing on the
output quality itself. This observation can be aligned with Li et al. (2024)’s work, which shows that such reward schemes
lead to more stable training during the PPO process.

C.2. Performance on PPO Fine-tuning with Different Reward Models

In addition to evaluating proxy and oracle reward scores, we compute the win rate of models after PPO fine-tuning with
GRAM, along with its strong baselines: D-Regularization, G-Baseline, G-Freeze, and G-Label Smoothing. Evaluation is
conducted using alpaca eval system5, with GPT-4 serving as a proxy for human evaluation of response quality and the
baseline system. As shown in Table 3, the results demonstrate that GRAM outperforms the baselines, serving as a more
effective reward model to enhance PPO training.

C.3. Comparing GRAM with Methods for Enhanced Generalization

In Table 1, we can observe that the freezing method can improve generalization, but this improvement is not always
consistent. For example, on the RewardBench, freezing parameters can enhance performance for the 8B reward model
(e.g., obtaining +2.6 points), but similar gains are not observed for the 3B model. A similar trend is evident across other
experiments. We hypothesize that the specific parameters frozen play a crucial role, and freezing the embedding layer in the
3B model may not be optimal. Additionally, we note a clear drawback of freezing parameters: it can degrade the reward
model’s performance on the ID test set. For example, freezing parameters in the 8B model results in a loss of 1.4 points on
the unified feedback test set. We also observe that the standard label smoothing method slightly boosts generalization. In
contrast, by incorporating a pre-training process on unlabeled data, our GRAM can gain general knowledge for comparing
responses while preserving generalization, demonstrating strong performance with ID and OOD test sets.

D. Analysis
D.1. Ablation Study on Two-Stage Training

As shown in Table 4, we design four GRAM variants further to elucidate the functionality of the two-stage training method.

Variant First Stage Second Stage Description
log πθ(ya|x) log πθ(yb|x, ya)

GRAM-v1 ✗ ✗ ✓ Using only the second stage, without pre-training via the unlabeled data.
GRAM-v2 ✓ ✓ ✗ Using only the first stage, without fine-tuning via the labeled data.
GRAM-v3 ✗ ✓ ✓ Excluding the update of ya in the first stage.
GRAM-v4 ✓ ✗ ✓ Excluding the update of yb in the first stage.

Table 4: Description of GRAM variants.

We conduct experiments on pair-wise response ranking and reward model adaptation to evaluate the performance of these

5https://github.com/tatsu-lab/alpaca_eval

17

https://github.com/tatsu-lab/alpaca_eval

GRAM: A Generative Foundation Reward Model for Reward Generalization

GRAM
GRAM-v1

GRAM-v2

GRAM-v3

GRAM-v4

D-Baseline

G-Baseline

50.0

60.0

70.0

80.0

90.0
85.1

81.2

70.2

84.3 83.2

74.1

80.0

A
cc

ur
ac

y
(%

)

(a) Performance on Pair-wise Response Ranking

0k 1k 3k 5k 7k 10k
50.0

55.0

60.0

65.0

70.0

75.0

Amount of Preference Data

A
cc

ur
ac

y
(%

)

RM fine-tuned with GRAM
RM fine-tuned with GRAM-v1
RM fine-tuned with GRAM-v2
RM fine-tuned with GRAM-v3
RM fine-tuned with GRAM-v4
RM fine-tuned with D-Baseline
RM fine-tuned with G-Baseline

(b) Performance on Reward Model Adaptation

Figure 9: We evaluate different GRAM variants based on pair-wise response ranking (RewardBench) and reward model
adaptation (Summarization).

GRAM variants. Note that since GRAM-v2 has not undergone supervised fine-tuning, it does not always follow instructions
effectively in pair-wise response ranking, often generating either preference ‘A’ or ‘B’. To address this, we use a suffix to
force it to do so, i.e., appending #Preferred to the input.

The results are summarized in Figure 9. The results show that our two-stage training significantly improves the performance
of GRAM. Notably, removing the first stage (GRAM-v1) leads to a substantial performance decline, e.g., losing 3.9 points
on the RewardBench. Interestingly, we find that removing the second stage (GRAM-v2), i.e., fine-tuning solely with
unlabeled data, still allows GRAM to achieve comparable performance in pair-wise response ranking and reward model
adaptation. Additionally, the performance of GRAM-v3 and GRAM-v4 demonstrates the importance of optimizing with the
terms log πθ(ya|x) and log πθ(yb|x, ya). Notably, compared to GRAM, GRAM-v4 experiences a 1.9 points drop on the
RewardBench, with this decline being particularly pronounced in reward model adaptation. Compared variants of GRAM,
we can conclude that: (1) pre-training on large-scale unlabeled data can gain general knowledge for response comparison,
and (2) both terms, log πθ(ya|x) and log πθ(yb|x, ya), are crucial for learning the knowledge during pre-training.

D.2. Derivation of Label Smoothing

Our label smoothing strategy optimizes the generative reward model based on a regularized Bradley-Terry model. To
illustrate this, we use a sample s with label ‘A’ in the following derivation:

Lls(s) = −
[
(1− ϵ) · log eZa(s)

eZa(s) + eZb(s)
+ ϵ · log eZb(s)

eZa(s) + eZb(s)

]
= −(1− ϵ) ·

[
log eZa(s) − log(eZa(s) + eZb(s))

]
− ϵ ·

[
log eZb(s) − log(eZa(s) + eZb(s))

]
= −(1− ϵ) ·

[
Za(s)− log(eZa(s) + eZb(s))

]
− ϵ ·

[
Zb(s)− log(eZa(s) + eZb(s))

]
= −ϵ · (Zb(s)− Za(s)) + log(eZa(s) + eZb(s))− log eZa(s)

= ϵ · (Za(s)− Zb(s))− log
eZa(s)−Zb(s)

1 + eZa(s)−Zb(s)

= − log σ (Za(s)− Zb(s))︸ ︷︷ ︸
Bradley-Terry model

+ ϵ · (Za(s)− Zb(s))︸ ︷︷ ︸
regularization term

(18)

The final derived form shows that this label smoothing essentially guides the model to learn preferences by optimizing a
Bradley-Terry model with additional regularization.

We consider that this regularization mitigates overfitting in the generative reward model, thereby enhancing its generalization
capability. To verify this, we conduct experiments with varying values of ϵ on ID and OOD test sets. From Figure 10
(a) (ID Unified-Feedback), we notice that performance improves as the value of ϵ increases from 0 to 0.1, after which it

18

GRAM: A Generative Foundation Reward Model for Reward Generalization

0 0.01 0.05 0.1 0.2 0.3 0.4

66.0

68.0

70.0

72.0

Smoothing Factor (ϵ)

A
cc

ur
ac

y
(%

)
LLaMA-3.1-8B-Instruct LLaMA-3.2-3B-Instruct

(a) ID (Unified-Feedback)

0 0.01 0.05 0.1 0.2 0.3 0.4

76.0

78.0

80.0

82.0

84.0

86.0

Smoothing Factor (ϵ)

A
cc

ur
ac

y
(%

)

(b) OOD (RewardBench)

Figure 10: Performance of the GRAM trained by label smoothing with different ϵ. Here, ϵ = 0 denotes that we do not use
label smoothing during training our reward models.

Method UNIFEED REWARDBENCH

GRAM w/o Label Smoothing 68.4 82.1
GRAM w/ Our Label Smoothing 70.6 83.6
GRAM w/ Vanilla Label Smoothing 69.1 82.5
G-Baseline w/ Our Label Smoothing 66.7 80.2
G-Baseline w/ Vanilla Label Smoothing 66.2 79.0

Table 5: Accuracies (%) of generative reward models with our label smoothing and the vanilla label smoothing.

starts to decline slightly. The model achieves its best performance around ϵ = 0.01, with accuracy peaking at 71.9. On the
other hand, in Figure 10 (b) (OOD RewardBench), we observe a more pronounced effect of the regularization term. As ϵ
increases, performance improves significantly. At ϵ = 0.1, the model reaches an accuracy of 85.1, demonstrating that the
regularization helps reduce overfitting and enhances the model’s ability to generalize to unseen data. For smaller values of ϵ
(e.g., 0.01), the performance on the OOD test set drops, highlighting the importance of the regularization term in ensuring
robust generalization. However, when ϵ exceeds 0.1, we see a negative impact on performance for both ID and OOD tests,
suggesting that too much regularization may hinder the model’s ability to learn effectively. Based on our results, we select
ϵ = 0.1 as the optimal value for our experiments, balancing both ID and OOD performance.

Additionally, as listed in Table 5, we have conducted further experiments on the LLaMA-3.2-3B-Instruct model to investigate
this in greater detail. As the experimental results show, our label smoothing leads to better reward modeling compared to
vanilla label smoothing. These results also show the role of label smoothing in training GRAM.

19

GRAM: A Generative Foundation Reward Model for Reward Generalization

0k 1k 3k 5k 7k 10k

50

55

60

65

70

75

Amount of Preference Data

A
cc

ur
ac

y
(%

)o
n

Su
m

m
ar

iz
at

io
n

Oracle RM RM fine-tuned with D-Freeze RM fine-tuned with D-Regularization
RM fine-tuned with G-Freeze RM fine-tuned with G-Label Smoothing RM fine-tuned with GRAM

(a) Adaptation (LLaMA-3.1-8B-Instruct)

0k 1k 3k 5k 7k 10k

55

60

65

70

75

Amount of Preference Data

A
cc

ur
ac

y
(%

)o
n

H
ar

m
le

ss
ne

ss

0k 1k 3k 5k 7k 10k

55

60

65

70

75

Amount of Preference Data

A
cc

ur
ac

y
(%

)o
n

Su
m

m
ar

iz
at

io
n

(b) Adaptation (LLaMA-3.2-3B-Instruct)

0k 1k 3k 5k 7k 10k

55

60

65

70

Amount of Preference Data

A
cc

ur
ac

y
(%

)o
n

H
ar

m
le

ss
ne

ss

Figure 11: The performance of reward models fine-tuned with our baselines, including D-Freeze, D-Regularization, G-
Freeze, and G-Label Smoothing. The results show that GRAM surpasses these baselines in adapting to specific tasks,
highlighting its superior generalization capability.

Input What are the lyrics to the third verse of Rick Astley’s Never Gonna Give You Up?

SFT
Here are the lyrics to the third verse of Never Gonna Give You Up by Rick Astley: Never
gonna make you cry.

D-Baseline

The third verse of Rick Astley’s “Never Gonna Give You Up” goes as follows: I’m never
gonna give, never gonna give Give you up, never gonna give, never gonna give you up I’m
never gonna give, never gonna give Give you up, never gonna give, never gonna give you up
I’m never gonna give, never gonna give Give you up, never gonna give...

D-Regularization
Sorry, I can’t provide the lyrics to the third verse of “Never Gonna Give You Up” as it is
copyrighted copyrighted copyrighted copyrighted copyrighted...

G-Baseline
The third verse of Rick Astley’s “Never Gonna Give You Up” is: “Inside we both know
what’s on your mind”.

G-Freeze The actual third verse of Rick Astley’s song “Never Gonna Give You Up” is is is ...

G-Label Smoothing
Here is the third verse of Rick Astley’s “Never Gonna Give You Up”: And if you’re ever
feeling down Just remember what I told ya Good things get better all the time So keep on
trying, keep on shining Keep on trying, keep on shining Keep on trying, keep on shining ...

GRAM

The third verse of Rick Astley’s “Never Gonna Give You Up” goes like this: “We’ve known
each other for so long Your heart’s been aching, but you’re too shy to say it Inside we both
know what’s been going on We know the game and we’re gonna play it I just wanna tell you
how I’m feeling Gotta get you alone”

Table 6: A case in the PPO fine-tuning experiments. GRAM optimizes a better LLM aligned with human intention, while
other baseline reward models produce inaccurate or incomplete lyrics that can be more easily exploited by PPO.

20

GRAM: A Generative Foundation Reward Model for Reward Generalization

Input Is it true that the native Australians were really prisoners of England?

SFT
Yes, it is true that the native Australians were really prisoners of England. The British
government transported thousands of Aboriginal and Torres Strait Islander people to Australia
as prisoners between the 1780s and the 1860s.

D-Baseline
It is true that the native Australians were once treated as prisoners by England. Between the
1780s and the 1860s, the British government transported thousands of Aboriginal and Torres
Strait Islander people to Australia as convicts.

D-Regularization

It is indeed true that the Indigenous people of Australia were treated as prisoners by the
British. Between the 1780s and the 1860s, the British government transported thousands of
Aboriginal and Torres Strait Islander people to Australia as convicts. These individuals were
often sentenced to transportation for relatively minor crimes, like stealing food or livestock,
as well as more serious offenses, such as murder. Many of these prisoners were forced to
work on farms and plantations, while others were used as laborers for the construction of
roads and buildings.

G-Baseline

The relationship between the British and the indigenous Australians, also known as Aboriginal
and Torres Strait Islander peoples, is complex and multifaceted. While it’s not accurate to say
that all native Australians were “prisoners” of England, the British did establish a system of
colonization and control over the continent that had significant impacts on the indigenous
population.

G-Freeze

It’s important to clarify that the Indigenous peoples of Australia, including Aboriginal and
Torres Strait Islanders, were not originally prisoners of England. The British colonization of
Australia began in 1788, and it was during this period that the British started transporting
convicts (many of whom were from England and other parts of the British Empire) to
Australia. The confusion might come from the fact that when the British arrived in Australia,
they viewed the land as “terra nullius” (land belonging to no one), and they imposed their
own systems, laws, and control.

G-Label Smoothing

Yes, it is true that the native Australians were treated as prisoners and subjected to forced
labor, relocation, and violence by the British colonizers. When the British established their
penal colony in Australia in 1788, they brought with them a system of transportation of
convicts, which included the forced relocation of Aboriginal people from their lands to make
way for British settlement.

GRAM

The statement that native Australians were prisoners of England is inaccurate. Indigenous
Australians, including Aboriginal Australians and Torres Strait Islanders, have a history
that stretches back at least 65,000 years. They are the original inhabitants of the Australian
continent, with a rich and complex cultural heritage that predates European colonization by
tens of thousands of years. The confusion may arise from the history of European settlement
in Australia.

Table 7: A case in the PPO fine-tuning experiments. GRAM provides the most accurate and contextually relevant response,
emphasizing the long history of Indigenous Australians. In contrast, other models offer less precise or overly simplified
explanations.

21

