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Abstract

Data-sparse settings such as robotic manipulation, molecular physics, and galaxy morphol-
ogy classification are some of the hardest domains for deep learning. For these problems,
equivariant networks can help improve modeling across undersampled parts of the input
space, and uncertainty estimation can guard against overconfidence. However, until now,
the relationships between equivariance and model confidence, and more generally equiv-
ariance and model calibration, have yet to be studied. Since traditional classification and
regression error terms show up in the definitions of calibration error, it is natural to suspect
that previous work can be used to help understand the relationship between equivariance
and calibration error. In this work, we present a theory relating equivariance to uncertainty
estimation. By proving lower and upper bounds on uncertainty calibration errors (ECE
and ENCE) under various equivariance conditions, we elucidate the generalization limits of
equivariant models and illustrate how symmetry mismatch can result in miscalibration in
both classification and regression settings. We complement our theoretical framework with
numerical experiments that clarify the relationship between equivariance and uncertainty
using a variety of real and simulated datasets, and we comment on trends with symmetry
mismatch, group size, and aleatoric and epistemic uncertainties.

1 Introduction

Equivariant neural networks are a class of neural networks that encode group symmetries into the structure
of the network architecture so that the symmetries do not need to be learned from data. Understanding both
model calibration and confidence is particularly useful in the data-sparse settings where equivariant neural
networks tend to thrive, such as pick-and-place robotics tasks (Kalashnikov et al., 2018; Wang et al., 2022b;a;
Fu et al., 2023; Huang et al., 2023; 2024b;a; Wang, 2025), galaxy morphology classification (Pandya et al.,
2023; 2025a), and molecular physics (Zou et al., 2023; Ramakrishnan et al., 2014). While equivariance has
proved effective in these domains, it does have some drawbacks, including diminishing benefits at scale as in
the case of extremely large datasets or aggressive augmentation (Wang et al., 2023b; Klee et al., 2023; Gruver
et al., 2023; Brehmer et al., 2024; Abramson et al., 2024), provable degradation on model performance in
cases of symmetry mismatch (Wang et al., 2024), more complex architectures, and higher compute costs.

Despite these drawbacks, a surprising result of Wang et al. (2023a) is that equivariant neural networks
can still be effective even in cases of mismatch between the model and the data symmetry. This finding
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motivated the work of Wang et al. (2024), which explored how equivariance can affect model accuracy, both
positively and negatively. However, it is not yet understood how equivariance impacts model calibration,
loosely defined as the disagreement between a model’s accuracy and predicted confidence.

To help understand the tradeoffs associated with equivariance, we seek to quantify the impact of equivariance
on different metrics, namely expected calibration error for classification and expected normalized calibration
error for regression. The only works that directly examine the link between equivariance and calibration
are Sun et al. (2023) and Cherif et al. (2024), although these are purely experimental and provide only
a few illustrative cases where equivariance influences model calibration. Despite this, because different
notions of calibration error involve expressions corresponding to classification or regression errors themselves,
previous results on the generalization limits of equivariant models can be applied to the study of calibration
error. Understanding this relationship allows us to address several unanswered questions on the subject of
calibration and confidence of equivariant models. Namely, when does equivariance help a model predict its
own confidence? How do notions of symmetry mismatch between model and data affect model calibration?
What is the general relationship between equivariance and uncertainty estimation? Beyond raw performance,
answering these questions is crucial for developing reliable symmetry-aware models in safety-critical and
high-stakes applications.

The purpose of this work is to address both the lack of a theory relating equivariance to uncertainty estima-
tion, and the scarcity of experiments exploring this relationship in practice. To accomplish this, we extend
the error bounds given by Wang et al. (2024) to a broader class of calibration losses. In this way, we can
quantify the effect of equivariance not just on accuracy, but also on calibration. In particular, we show that
calibration error is related to typical classification and regression errors over the preimage of each confidence
prediction. These errors have known bounds for equivariant functions, which we use to provide lower and up-
per bounds on various calibration error metrics. We explore these threads in the context of the equivariance
taxonomy from (Wang et al., 2024), which describes scenarios when the ground truth function has the same
symmetry as the equivariant model, the ground truth function disagrees with the symmetry in the model,
and the model symmetry transforms in-distribution data to out-of-distribution data. We also define a new
metric, the aleatoric bleed, that prescribes how well a model is able to distinguish between different types
of uncertainty. We provide a lower bound on aleatoric bleed for equivariant models. Our study illustrates
that the effect of equivariance on model calibration is dependent on the extent of the symmetry mismatch, a
finding similarly reported for accuracy in Wang et al. (2023a; 2024). We also perform experiments on a wide
variety of real and simulated datasets, empirically showing that symmetry mismatch can increase calibration
error and demonstrating that our theoretical findings are informative in practical settings.

We summarize our contributions as follows:

1. For classification, we provide bounds on calibration error and we tighten the bound in the limiting
case of an invariance (Section 4).

2. For regression, we generalize expected normalized calibration error beyond scalar values for mean
and variance predictions. We derive its upper bound on certain equivariant models (Section 5) and
derive its lower bound in the special case of scalar-valued mean and variance predictions.

3. Additionally, we define a new metric, the aleatoric bleed, which quantifies miscalibration in terms of
aleatoric and epistemic uncertainty (Section 6).

4. We provide illustrative examples and run numerical experiments on diverse real and simulated
datasets. We find model calibration and aleatoric bleed suffer in cases of symmetry mismatch,
and show our bounds provide a useful way of assessing relative model calibration errors.

2 Related Work

Equivariant Learning. Our work studies the problem of symmetry mismatch between model and data
through the lens of approximation error. We are closest thematically to Petrache & Trivedi (2023) and Wang
et al. (2024), which both establish bounds on function generalization under various assumptions of symmetry
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mismatch, but neither study calibration errors specifically. We also consider the equivariance taxonomy
established in Wang et al. (2024), but depict its ramifications on uncertainty quantification. Throughout
this paper, we assume access to universal G-equivariant models, guaranteed by prior work (Maron et al., 2019;
Yarotsky, 2022). Yet, universality alone does not ensure reliable uncertainty estimates, and therefore our
focus is on deriving error bounds for calibration error. In order to prove these bounds, our work also uses the
strategy of decomposing the input and output spaces, which we accomplish through taking the quotient by
the symmetry group. This is a strategy similarly employed in Sannai et al. (2021), Lawrence (2022), Petrache
& Trivedi (2023), and Wang et al. (2024). Theory on the relevant group representations for functions that
output probabilities is partly addressed in Bloem-Reddy et al. (2020) and Dobriban & Yu (2025), but no
bounds on expected calibration error are presented. Reasoning about distributions in terms of invariants
also has a rich history in deriving uninformative priors for Bayesian analysis — see Jaynes (1968). We build
on this by studying how equivariance can affect the reliability of Bayesian methods. Specifically, we look at
the ability to separate different types of uncertainty using evidential regression, including on multivariate
distributions, generalizing some of the work of Van der Linden et al. (2025) who study equivariant model
selection when trained to predict a univariate distribution. We also build off of Gelberg et al. (2024) by
studying the behavior of Bayesian models under various equivariance constraints other than the weight space
permutation invariances they consider.

Aleatoric and Epistemic Uncertainties. A longstanding goal in the computational sciences is to sepa-
rate model (epistemic) uncertainties from (aleatoric) uncertainties inherent to the data (Ulmer et al., 2021;
Hillermeier & Waegeman, 2021; Osband et al., 2023; Fuchsgruber et al., 2024; Chau et al., 2025). Previous
work underscores how this separation can be difficult to perform in practice. Techniques such as those pre-
sented in Kendall & Gal (2017); Amini et al. (2020) often fail to distinguish these uncertainties due to effects
such as loss shaping (Ovadia et al., 2019; Valdenegro-Toro & Mori, 2022; Osband et al., 2023; Wimmer et al.,
2023; Nevin et al., 2024; Jiirgens et al., 2024). Our work explores this problem in the context of symmetry.
In particular, we explore how the epistemic uncertainty—the uncertainty often quantified by calibration
errors—can be confused with aleatoric uncertainty due to symmetry mismatch.

Learning Parameterized Distributions. For learning tasks with inherent uncertainty, it is natural to
design a neural network that approximates a probability distribution rather than a single point estimation.
There are many ways of doing this, such as with Bayesian Neural Networks (Kononenko, 1989), Epistemic
Neural Networks (Osband et al., 2023), Normalizing Flows (Rezende & Mohamed, 2015; Kobyzev et al., 2020;
Papamakarios et al., 2021), or using the softmax function (Goodfellow et al., 2016) to learn a categorical
distribution. These approaches are often computationally expensive to train and sample in practice. Thus,
we often employ parameterization techniques to constrain neural networks to output simplified probability
distributions and train them using a negative log likelihood loss derived from said distribution. For example,
mean variance estimators (MVE) are the simplest type of neural network that predicts a parameterized
distribution. Instead of predicting a single output, MVEs predict a mean p and a variance o2 (Nix &
Weigend, 1994; Seitzer et al., 2022). There is also work extending MVEs to learn covariances for multivariate
distributions (Tomczak et al., 2020) and linear combinations of Gaussians (Diakonikolas et al., 2020). Amini
et al. (2020) extend MVEs by imposing a prior on g and o2 and performing evidential regression, which
in-turn provides enough parameters to disentangle aleatoric and epistemic uncertainties. A unique feature
of our work is that we use models that predict parameterized distributions in order to define calibration
error in a regression setting and also to experimentally test the effect of equivariance on the ability to learn
a reliable uncertainty estimate.

Calibration Error. In classification, probabilistic models (e.g. logistic regression or softmax classifiers)
output a distribution over labels, and the predicted label is chosen as the one with maximum probability.
However, even if a model gives a label y the highest probability p, that does not mean the model will nec-
essarily be correct with probability p. This mismatch is often quantified with the expected calibration error
(ECE) (Guo et al., 2017) and is often estimated using binning procedures that approximate the continuous
push-forward density of different confidence regions. Miscalibration can analogously be measured for regres-
sion tasks (Pernot, 2023; Levi et al., 2022b). The idea is to compare true labels y with a predicted mean p
and variance o2 of a MVE. One should expect the squared errors (y — u)? to average out to the variance
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o2, This idea was made precise by Levi et al. (2022a), who proposed the expected normalized calibration
error (ENCE) to quantify this exact discrepancy. A key limitation of their work is that it is formulated
in terms of binning approximations rather than in terms of a continuous probability density. Another key
limitation of their work is that they assume mean and variance are scalar values. We generalize these metrics
for continuous densities and multivariate normal distributions. Beyond ECE and ENCE, some works pro-
pose calibration objectives and training procedures in terms of coverage (Gneiting & Raftery, 2007; Lemos
et al., 2023; Sun et al., 2023), distributional calibration (Kuleshov et al., 2018), and post-hoc variance scaling
(Laves et al., 2020). We focus on ECE and ENCE because they are clearly formulated objectives that can be
studied independently of the training process itself. The work of Sun et al. (2023) suggests that equivariance
can improve model calibration, but a theoretical justification for this is not present in the literature and is
something we comment on in this work.

3 Background

We review the definition of equivariance and how symmetry constraints of a model class may be mismatched
with a given dataset. Additionally, we review evidential regression, a technique for learning model and data
uncertainties as distinct outputs of a neural network.

3.1 Equivariance

Here, we give precise definitions of equivariance and invariance. For a general review of the mathematical
background, we direct the reader to Artin (1998); Hall (2013); Esteves (2020).

Let ¢ : X — Y be a map between input and output vector spaces X and Y. Let G be a group with
representations pX and p¥ which transform vectors in X and Y respectively. Representations are group
homomorphisms which map group elements to invertible linear transformations. When clear, we omit the
representation map and write gz for pX(g)z. The map ¢ : X — Y is equivariant if

pY (9)o(x) = o(p™ (9)x) , forallg e G,z € X .

Invariance is a special case of equivariance in which p¥ = IdY for all geG. le,amap ¢ : X =Y is
invariant if it satisfies

() = d(p*(g)[z]) , forall g € G,z € X.

Thus, with an invariant operator, the output of ¢ is unaffected by transformations applied to the input.

Fundamental Domain. This paper will use iterated integration over an orbit and a set of orbit represen-
tatives, which we call the fundamental domain.

Definition 1 (Definition 4.1 in Wang et al. (2024)). Let d be the dimension of a generic orbit of G in
X and n the dimension of X. Let v be the (n — d) dimensional Hausdorff measure in X. A closed subset F’
of X is called a fundamental domain of G in X if X is the union of conjugates of F', i.e., X = UgeqgF’, and
the intersection of any two conjugates has 0 measure under v.

In the following, we give a simple example of fundamental domain.

Example 1. Let G = SO(n), X =R and F = {(2,0,...,0) | € R>¢}. The closed set F' is a fundamental
domain of SO(n) in R™. Indeed, the intersection g1 F'Ng2F = {0} has measure 0 for each distinct g1,92 € G
and R = UgGSO(n)gF-

3.2 Equivariant Learning

Following Wang et al. (2024), we first establish an equivariant learning setting that describes assumptions
on the ground truth and hypothesis class. We work in the deterministic realizable case of statistical learning
theory: data distribution is defined on X and given by the probability density function p: X — R, labels
are given deterministically by a ground truth function f: X — Y. Following this standard statistical
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learning framework, we assume that training and testing samples are drawn i.i.d. from the same underlying
distribution p, i.e., no distribution shift occurs at test time. The goal for a function space # = {h: X — Y}
is to fit the function f by minimizing an error function err(h). Let 1(x) be an indicator function that equals
1 if the condition in the argument is satisfied and 0 otherwise. In classification, err(h) is the classification
error rate; for regression tasks, the error function is a Lo norm function,

errcls(h) = Emfvp [ﬂ(f(l‘) 7& h(l‘))] )
2
etteg(h) = Egmp U’h(z) _ f(:c)M .

3.3 A Taxonomy of Equivariance: Correct, Incorrect, and Extrinsic.

Wang et al. (2024) establish a taxonomy which describes the relationship of the symmetry of the function
space to the symmetry in the data. We review their definitions of correct, incorrect, and extrinsic equiv-
ariance. These definitions help us understand the ability of equivariant functions to approximate datasets
that may or may not have the same symmetries. An important part of this taxonomy is extrinsic symmetry,
which describes the case where the action of the group moves data points out of the support of their original
distribution.

Definition 2 (Point-wise Correct, Incorrect, and Extrinsic Equivariance, Definitions 3.5-3.7
in Wang et al. (2024)). Assume h is equivariant with respect to a group G. For ¢ € G and z € X
where p(x) # 0, if p(gz) # 0 and f(gx) = gf(x), h has correct equivariance with respect to f at z under
transformation g. For g € G and « € X where p(z) # 0, if p(gz) # 0 and f(g9x) # gf(z), h has incorrect
equivariance with respect to f at x under transformation g. For g € G and x € X where p(z) # 0, if
p(gx) = 0, h has extrinsic equivariance with respect to f at x under transformation g.

If f has point-wise correct equivariance for all z € X, g € G, then we say f has correct equivariance. The
same follows for incorrect and extrinsic equivariance as well. In the case that f has correct equivariance, we
assume f lies in the considered hypothesis class 5. This assumption aligns with Wang et al. (2024) and is
realistic, since several universality results for equivariant models are already known (Yarotsky, 2022).

3.4 Error Bounds for Equivariant Models in Classification and Regression Tasks

Our goal is to generalize the bounds from Wang et al. (2024) to a calibration objective. We review the main
results from Wang et al. (2024) here. Given that equivariance is not always correct, the following definitions
and theorems detail how symmetry mismatch can harm model fitting for classification or regression problems.
We start with invariant classification.

Definition 3 (Majority Label Total Dissent). For the orbit Gz of x € X, the total dissent k(Gz) is the
integrated probability density of the elements in the orbit Gz having a different label than the majority
label:

yey

k(Gx) = min/ p(2)1(f(2) # y)dz.
Gz
Theorem 1 (Theorem 4.3 in Wang et al. (2024)). The error errq(h) is bounded below by [ k(Gz)dzx.

We now detail the relevant error lower bound assuming invariance in the regression setting.

Theorem 2 (Theorem 4.8 in Wang et al. (2024)). Assume & is G invariant so that h(gz) = h(x) for
all g € G. Assume Y = R™. Denote by p(Gz) = fzerp(z)dz the probability of the orbit Gx. Denote by

q(z) = 2Z) the normalized probability density of the orbit Gz such that Jo, 0(2)dz = 1. Let Eg,[f] be

p(Gx)
the mean of the function f on the orbit Gz defined, and let Vg,.[f] be the variance of f on the orbit Gz,
Ja, P(2)f(2)dz
Balf] = [ a)f(a)ds = s 7
Gz sz p(Z)dZ

| a@lEalf) - 5 Bz,
Gz

We have erryeg(h) > [ p(Gz)Vaz|f].
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Theorem 3 generalizes this to the setting of equivariance. Before stating the theorem, we establish how to
lift an integral over an orbit to an integral over the group. Details on necessary hypotheses for this to be well
defined are given in Appendix A. Denote the stabilizer by G, = {g : g = z}. Denote by a, : G/G, — Gz
the identification of the orbit Ga and coset space G/G, with respect to the stabilizer. We have

[ 1z = /G F(gz)o(g,z)dg

([ a)’

We may now state the equivariant regression lower bound:

Theorem 3 (Theorem 4.9 in Wang et al. (2024)). Assume h is equivariant: that is, h(px(g)x) =
py (9)h(z) where g € G, px and py are group representations. Denote px(g)x and py(g)y by gz and gy.
Let Y = R" and Id be the identity. Define the matrix Qg, € R™*™ and ¢(g9x) € R™*" so that [ q(gz)dg =
Id by

where

dg

day(9) ’ _

Qce = /G p(g)py (9)" py (9)a(z, g)dg,

glgr) = Qgp(ax)py (9)" py(9)alz,g).
If f is equivariant, g~' f(gx) is a constant for all g € G. Define

alf.) = [ algolg™ Flga)dy
G
The error of h has lower bound erreg(h) > [, [ p(92)| f(92) — 9€clf, z]|3a(x, g)dgda.

3.5 Evidential Regression

This work studies the effect of equivariance on the ability to separate model and data-centric uncertainties.
We now describe evidential regression, a learning framework that allocates mass between mean and dispersion
under a surrogate loss. That is, a loss function determines how much uncertainty should be allocated to the
model and how much should be allocated to the true dispersion (e.g. variance) of the data. The allocation
is not identifiable and is sensitive to loss shaping and misspecification. We review the relevant theory and
notation from section 2.3 in Hiillermeier & Waegeman (2021) for defining different sources of uncertainty,
then Amini et al. (2020) for describing evidential regression.

The following definitions make the notions of model and data-centric uncertainties concrete:

Aleatoric Uncertainty: Aleatoric uncertainty refers to the irreducible part of the uncertainty. Given
spaces X and Y and an instance x4, € X, the aleatoric uncertainty is the spread in p(y|z,).

Epistemic Uncertainty: Model uncertainty and approximation uncertainty, on the other hand, are sub-
sumed under the notion of epistemic uncertainty. Let the spaces X and Y be the same as before. Let
[:Y XY — R be the loss function and let f* be the associated point-wise Bayes predictor defined as

(@) = argmin /Y (y,9)dP(ylx). (1)

Epistemic uncertainty is the uncertainty due to the lack of knowledge of the perfect predictor Equation 14.

Evidential Regression. We now describe evidential regression, which prescribes a specific parameteriza-
tion of the two uncertainties. Given (y1,...,yn) ~ N (i, 0?), we may impose priors

po~ N(y,o’v™)

o? ~ I Ha,p)
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where I'(+) is the gamma function. Let m = (y,v,a,8), and vy € R, v > 0, a > 1, § > 0. One can then show

that p(y;|m) = St(yi;~, LJV”’), 2ar), where the St distribution has probability density given by

e}

—w1)/2
; =—=— (14 - — .
St(t; .0, v) Vmvol (%) v ( o )

Parameterizing the Student’s t distribution as a four parameter family is useful because it allows us to define
our prediction, aleatoric uncertainty, and epistemic uncertainty in a rigorous way:

E[p] = ~ (Prediction)
E[o?] = ” ? 1 (Aleatoric Uncertainty)
Var[u] y(aﬁ—l) (Epistemic Uncertainty).

The prediction definition is clear in that it represents the expected mean of the Student’s t distribution used
to fit the data. Aleatoric uncertainty represents the uncertainty in P(y|x), whereas the epistemic uncertainty
represents uncertainty in the predictive law (the model). Practically, aleatoric uncertainty can be understood
as the irreducible uncertainty due to inherent stochasticity in the data. In contrast, epistemic uncertainty
is reducible uncertainty due to finite data, features, or misspecification. It vanishes in the limit of perfect
knowledge and correct model class.

With some slight abuse of notation, we may abbreviate these as 02| ,ione = E[0?] and 02 i emic = Var|u).
Some works take these uncertainties to be addititive. That is, the model will predict v+ 07 atoric :togpistemic.

See Freedman et al. (2025) and Berman et al. (2025) for examples where this is done in different scientific
domains. We do not assume these uncertainties to be additive in this work.

We note that there is an inherent identifiability issue: there are multiple such m = (v,v, o, 8) that can fit
similar likelihoods with different aleatoric and epistemic allocations. This issue motivates our experiments
on aleatoric bleed in Section 6.

4 Invariant Classification Calibration

In this section, we present our results on bounds of uncertainty calibration error for classification on invariant
functions. In particular, we will show how miscalibration can be understood by examining the fibers of each
uncertainty estimate and then studying the error on each of those fibers. The error on these fibers is related
to the symmetries of the model and the data, which establishes a relationship between symmetry and model
calibration. In the main, our bounds demonstrate how badly a function can become miscalibrated due to
incorrect and extrinsic invariance. In particular, the lower and upper bounds are tightened by the dissent on
individual fibers. Additionally, this section provides experimental results that show how incorrect invariance
can affect model calibration in domains where the theory is less tractable. For practitioners who are more
interested in empirical results and conclusions, experiments begin in Section 4.7.

4.1 Classification Problem

Consider a function f: X — Y where Y is a finite set of labels. Let ¢ : X — R be a probability density on
the domain X. We define a function space 5 = {h: X — Y x[0,1]}. If h(z) = (hy, hp) then hp represents
the confidence estimate associated with the predicted label hy. The goal is to find the function h € 57 that
fits the function f and to properly predict its own confidence by minimizing the expected calibration error
(Equation 2, and Equation 2 in Guo et al. (2017)). Following Wang et al. (2024), we assume that the class
S is arbitrarily expressive except that it is constrained to be equivariant with respect to a group G. In the
classification setting, we specifically assume h to be G-invariant. While not all classification problems are
G-invariant, this is the case most commonly considered in the literature. Let r(p) be the probability density
such that P(p; < hp(z) < p2) = [P r(p)dp. Equivalently, r is the push-forward of ¢ over hp. The expected

. . . . P1
calibration error is nominally defined
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ECE(h) = By, H P(f=hy | hp=p)—p H @)

as in Guo et al. (2017). Intuitively, if a model has confidence p, then it should be accurate with probability
p. This metric penalizes the discrepancy between accuracy and confidence averaged over all of confidences
weighted by the push-forward density r. The definition in Guo et al. (2017) abuses notation slightly, in that
the probability of any event drawn from a continuous random variable has probability zero, i.e., p(hp = p) =0
for all p. We can rectify this by defining ECE as

ECE(h) = lim B, H B(f=hy|p—c<hp<pte)—p H , 3)

however, we drop the limits for brevity throughout.

We abbreviate P(f(z) = hy (z)|hp(z) = p) as Acc,(h).! This is the true accuracy of the model when the
predicted confidence is p. Hence h is well calibrated at confidence p when Acc,(h) = p, under confident when

Acc,(h) > p and overconfident when Acc,(h) < p. For the purposes of approximation, |2¢| can be viewed as
the bin width.

We briefly comment on the well-definedness of Equation 3. First, P(f =hy|lp—e <hp <p+e) is well

defined when r(p) # 0 for all p € [0,1]. Moreover, we note that in general, if C = {C' = ¢}, it is not

always permissible to define P(A|C) = 1irr(1)]P’(A|c —¢e < C < c+e¢). This is because we face contradictions
e—

when C = {C = ¢} = {D = d}, but the random variables C' and D have different densities defined with
respect to different measures. This results in contradictions where P(A|C) = lin%P(A\c —e<C<c+e)and
E—r

P(A|IC) = limP(A|ld —e < D < d+¢) but limP(Alc —e < C < c+¢) # limP(A|d —e < D < d + ¢), see for
e—0 e—0 e—0

example the Borel-Kolmogorov Paradox (Kolmogorov, 1933; Jaynes, 2003)2. In other words, the probability
density conditioned on an event with zero probability can only be specified with respect to a given reference
measure that determines the probability density function being conditioned on. Therefore, we must specify
a measure on X so that the random variable h, has push-forward density r(p) defined with respect to the
push-forward measure. We express this with the following assumption.

Assumption 1 (Hausdorfl Measurability of input domain). The input domain X is equipped with an | X|
dimensional Hausdorff measure H. The density r(p) is the push-forward of g(x) over hp, meaning it is
defined with respect to the accompanying push-forward measure hp#H on [0, 1].

Assumption 1 is sufficient for Equation 3 to be uniquely defined. Our construction is supported by various
disintegration theorems in the literature (e.g. Pachl, 1978; Chang & Pollard, 1997). For further background,
see also Rokhlin (1949); Bogachev (2007). We also note that we do not need these well-definedness properties
to hold in the special case where 7(p) is discrete or when we are computing approximations that treat hp as
discrete. In each case, we average over the confidences (or confidence bins) with non-zero probability.

Since we assumed that there are finitely many labels in the co-domain Y, we can assume that
P (hy (x)|hp(z) = p) is a discrete probability distribution for each value of p. Therefore, each outcome
in the distribution has a probability less than one.

4.2 ECE Upper Bounds

We now show that ECE is a bounded. Since ECE is the average of a random variable bounded between 0
and 1, ECE is also bounded between 0 and 1. However, we can improve upon this both with and without
the assumption of invariance. Our first proposition concerns an unconstrained model, i.e., it makes no use
of the assumption of invariance on h, however, the propositions that follow show how invariance can be used
to tighten the lower and upper bounds. We will also consider special cases of binary classification.

To start, we consider an unconstrained model.

1Some works refer to Accp(h) as the calibration function, e.g. Vaicenavicius et al. (2019)
2This paradox is most easily exemplified with the Great Circle Puzzle.
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Proposition 1. ECE is bounded from above by % + fol r(p)|% — p|dp.

Proof. See that |Acc,(h) — p| = [Accy(h) —p+ 2 — 1| < |Accy(h) — 4|+ |2 —p| < |3 — p| + 3. Therefore,
1 1 1
Jo @) (JAcey(h) = pldp < [y (p) (I3 — Pl + 3) dp =5 + [y (p)|5 — pldp. O

The upper bound presented in the Proposition 1 is loose without any further assumptions. We now show
that assuming the function space is invariant allows us to tighten the upper bound. The proof uses iterated
integration over the orbits and the set of orbit representatives (the fundamental domain). Let us first make
some assumptions in order for iterated integration on subsets of X to be well defined.

Assumption 2 (Smoothness and Separability Hypothesis). For a group G acting on a domain X, the union
of all pairwise intersections Ug, 4, (91 F'Ng2F’) have measure 0 and that F' and G are differentiable manifolds
for all z € X. This holds for fibers F, = h=(p) C X on which G also acts. That is, if F), is a fundamental
domain for the action of G on F,, the union of all pairwise intersections Ug, «4,(g1F, N g2F)p) have measure 0
and F, and Gz are differentiable manifolds, eventually with boundary, for all € F,,. Note that Example 1
satisfies all the above.

We are now able to state and prove our main theorem:.
Theorem 4. Denote the fiber F, = hp'(p). Denote the total density on a fiber F, by q(F,) = f}.p q(z)dx

and the renormalized density by g,(z) = q(z)/q(Fp). Let ky(Gx) be the total dissent of an orbit on F, with
the renormalized probability ¢, (z). Let F}, be a fundamental domain for the action of G on F,. Assume that
h is incorrectly invariant under G on each fiber of F,. In other words, h satisfies h(gx) = h(zx) for g € G,
x € Fp, but f(x) # f(gx) for some z, g. Let P, = {p: Acc,(h) < 1/2} and P> = {p: Acc,(h) > 1/2}. Let

Gz* be the orbit with the smallest nonzero total dissent k(Gz*), i.e., ©* = argmin k(Gz). Then ECE is
zeX
bounded above by

1 ! 1
BCEM) < g+ [ 1) |5 —s| o - co) [ vt
2 Jo 2 Py
Proof. Observe that
1 1 1
] Acey(h) - p H Accy(h) ~ 2+ % H Accyn) =5 | +| -
Integrating over [0, 1],

soem = [ ) ccy(1) -~ p | dp < / ) (| Aceott - 5 |) ao+ / ) I

p=0 =0

Note P; and P, partition [0, 1]. By definition of P, and Pa,

[ ([ aceo 5 | an= [ v (5= ac) aos [ o) (ces - 5 ) W

= % </P r(p)dp — /Pzr(p)dp> - /P T(p)ACCp(h)der/PQT(p)ACCp(h)dP
(5)

By Theorem 1, the accuracy Acc,(h) on any fiber of p is bounded above by 1 — pr k,(Gr)dz. Combining
this bound with the bounds defining P; and P; yields,

1
0 < Accp(h) < min <1 - / ky,(Gz)dx, 2) Vp € Pp.
Fp

1
3 < Acc,(h) < (1 —/ k,,(Gx)da:) Vp € Ps.
FP
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Observe that the upper bound for ECE is determined by the upper bound of Equation 4 and Equation 5
and is related to the accuracy of h by the last two integrals in Equation 5. In particular, the model h that
maximizes ECE satisfies Acc,(h) = 0 on P; and Accy(h) =1 — fF (Gx,p)dx on Py. Substituting these

values into Equation 5 gives upper bound
1 p=1 1
3 ([ o= [ o)+ [ oo [ o) [ s+ [* 0|5 - slan
2 P1 P2 P2 P2 F pZO 2
1 p=1 1
§+/ r(p) ‘2 —p‘ dp—/ r(p)/ ky(Gz)dzdp.
p=0 P> F,

p
P

which simplifies to

Finally,
—/ r(p)/ kp(Gz)dadp = —/ r(p)/ min/ gp(z z) # y)dzdzdp
Py F, Py F, Y€Y JGga
< —/ r(p)/ min/ z) # y)dzdzdp
Py F, ¥€Y JGa
< [ romin [ @107 # w)dzdp
P> yey Gzx*
—~k(Ga") [ r(p)ap
P>
and so ECE(h) < 1 + fol r(p)|2 — pldp — k(Gz*) ) /p, 7(p)dp. This completes the proof. O

This bound is non-vacuous. That is, the upper bound is tighter than 1 since it accounts for the error caused
by incorrect invariance along the subset of fibers where accuracy is at least 50%. By considering the orbit
with the lowest total dissent, we can compute an upper bound that is tighter than 1 even without knowing
the error lower bound on each fiber, i.e., [, k F, »(Gx)dz, or the fibers themselves F,. In other words, if we
consider all of the orbits with incorrect invariance, then the ECE upper bound is only as tight as the smallest
orbit-wise error bound will allow. Comparing with Theorem 4, we see that, under the invariance assumption,
the upper bound decreases by k(Gz*) f Py p)dp. In other words, the bound is tight when there is nontrivial
dissent on high mass orbits within fibers where the accuracy is greater than or equal to 1/2. Conversely, the
bound becomes trivial for models with correct invariance, or if the partition P; is a much larger subset than
Ps.

One tradeoff this bound makes is that it is in terms of k(Gz*), which only considers error along one orbit.
If we know which data points are in each fiber of hp, then we can tighten the bound.

Corollary 1. Define m = m[(ljnl] fF (Gz). Then ECE(h) < 1 + fo — pldp — msz r(p)dp.
Proof. We compute %—l—fol r(p) %—p|dp—fp2 fF (Gz)dzdp < % +f0 1 —pldp— mf p)dp. O

A key subtlety in the proof of Corollary 1 is that m is a minimum over error lower bounds defined on fibers
of [0,1] and not orbits. This is stated formally in Remark 1.

Remark 1. By assumption of invariance on hp, the fibers of [0, 1] contain entire orbits. The integrated
total dissent [, k F, »(Gx)dz is defined on the collection of orbits where the confidence is always given by
hyp(z,) = p, but the label hy (x,) itself may vary. This is possible because points z,, and x,, may belong to
distinct orbits which map to different distinct labels y; and y» under hy but map to the same confidence p
under hp.

We note that for the special case of binary classification, an accuracy of 50% is the minimum accuracy on
each fiber. If the accuracy of a classifier is less than 50% on each fiber, we can construct a classifier that
simply chooses the opposite label to improve its accuracy so that it is accurate over 50% of the time.

10
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Corollary 2. Assume |Y| = 2. ECE is bounded above by 1 — k(Gz*). In the special case when we can
compute m = n%ln fF (Gx), ECE is bounded above by 1 —m
pe(0

Proof. Note that fol r(p)|% —pl|dp is bounded above by . We have [, r p, T(P)dp = fo p)dp = 1 by assumption.
Substituting these values mto Theorem 4 and Corollary 1 completes the proof. O

4.3 Improved Bounds for bi-Lipschitz Invariant Functions

Notice that the upper bounds in Proposition 1 and Theorem 4 are in terms of r(p) but this density is not
in general easily derivable from ¢(x). In order to express each bound in terms of ¢(x), we introduce extra
assumptions on hp.

From Hormander (2015), we have that if hp(z) is continuously differentiable and has gradient nowhere 0,
then
1

WQ(@‘Z% (6)

) = [ ata)slp—hp(a)ds - /f

P
where ¢ is the Dirac-Delta distribution.

To attain an upper bound on ECE independent of h, we find an upper bound on This is achievable

if hp(z) is bi-Lipschitz, as defined below.

Definition 4. Given metric spaces (X, dx) and (Y, dy), a function f : X — Y is (upper) Lipschitz continuous
if there exists a constant K > 0 such that for all z1, 2 € X,

dy (f(x1), f(72)) < Kdx(z1,72).

Furthermore, a function is (K7, K2)-bi-Lipschitz continuous if it is lower Lipschitz and upper Lipschitz, i.e.,

\Vh (@)]

éd}((l‘l,(bg) < dy(f(xl),f(xg)) < Kldx(xhxg).

Taking the limit x; — x5 shows the Lipschitz constant K bounds the gradient of f. If the function is
bi-Lipschitz, then K7 bounds the gradient and K5 bounds the reciprocal of the gradient. In practice, these
Lipschitz constants may be very large for arbitrary neural networks, but can be controlled by architectural
considerations such as spectral normalization (e.g. Behrmann et al., 2019; Chen et al., 2019).

Proposition 2. Assume hp(z) is differentiable, has gradient nowhere 0, and is (Kl, K5) bi- Lipschitz con-
tinuous. Let Gz® be the orbit with the least integrated probability density, i.e., ° = arg mm f ap A(T)dz.

Then

1 K
ECE(h) < 3 72 + min {O,—k(Ga:*)KQ/ dp/ q(a:)dx}.
P, Ga®

Proof. We start with the bound from Theorem 4. Substituting the expression for r(p) from Equation 6 into
the upper bound from Theorem 4 and using the Lipschitz constant to bound the gradient gives

1
BCE(M) < 5+ [ [ Kaalw)da,
2 Jo JF,

1 *
B p‘ dp — k(Gz )/ / Koq(x)dzpdp.

We now relate this inequality to integrals over X and Gz* in order to remove the dependence on h,. Notice,

! 1 ! 1
/ / Kaq(z)dz, 5~ p‘ dp < / / Kyq(z)dz | =
o JF, 0 Jx

2
/ / Koq(z)dxpdp Z/ Kgq(x)dxdp:Kg/ dp/ q(z)dx.
P JF, Py JGx® Py Gz©

11
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Thus,
1 K "
ECE(h) < - + — — k(Gzx )Kg/ dp/ q(z)dz.
2 4 Py Gao

The upper bound for Proposition 1 can be derived in the same way or seen as the special case where
k(Gz*) = 0 or P, = () and the improvement from Theorem 4 is vacuous. O

As in Corollary 2, the f Py dp term is unity in the case of binary classifi- F
cation. This enables us to further characterize the utility of the bound in
the examples that follow.

4.4 Invariant Upper Bounds Examples

A natural question is how much tighter is the upper bound on ECE under
the assumption of invariance (Theorem 4) than the bound in the un-
constrained case (Proposition 1). In the case hp(x) is bi-Lipschitz with
constants K7 and Ky, Proposition 2 gives a relatively concrete answer;
the gap is k(Gz*) Ky fP2 dp fcxo g(z)dz. In order to understand the gap
when the function is not assumed to be bi-Lipshitz, we consider several
examples with specific 7(p). The examples illuminate how the tendency
of a model to be uncertain can tighten the bound for functions both with  Figure 1: Binary Classification
and without invariance. Specifically, Example 2 considers a binary classi- on a Unit Square with Transla-
fication task where r(p) is a truncated normal distribution. We consider tion Invariance. Blue and green
means u that correspond to low, medium, and high confidence. represent true labels.

Example 2 (Upper Bound Comparison for Binary Classification on the
Unit Square). Let X = R? with density p(x,y) = 1if 0 < 2 < 1 and
0 <y <1and p(x,y) = 0 otherwise. The function h is invariant to translations in the z—direction.

Let us now consider the unconstrained bound for three different example distributions r(p), each correspond-
ing to low, medium, and high confidence.

Recall that the truncated normal distribution with mean p, variance o2, and bounds (a, b) has a probability
density

1
f(x;p’70-7a7b) = -
U(I)(i

for a < x < band f(z) = 0 otherwise, where

1 1g2

p(¢) = = B(2) = % (1 +erf(\j§>> .

Set 0 =0.1,a =0, and b = 1. For u = 0.5, the ECE upper bound is = 0.58 by Theorem 4. For p = 0.25 or
for 4 = 0.75 the bound is ~ 0.75.

Let us now consider the bound constrained by invariance with the same Truncated Normal Densities. As seen
in Figure 1, the orbit with the smallest integrated total dissent is the one on the x—axis, k(Gz*) =1 —r.?
Since this task is binary classification, we have P, = [0,1] and sz r(p)dp = 1. The upper bound on ECE,
using the assumption of incorrect invariance, decreases by (1 — r) regardless of the mean of r(p).

For functions with and without invariance, we see that the upper bound is tighter when the confidence is
concentrated around 50%, which can be interpreted as the model “hedging its bets” That is, the model
minimizes calibration error by outputting a confidence value close to the mean possible value. For invariant
functions, the bound is always tightened proportionally to the orbit with the highest accuracy, regardless of
the distribution r(p).

3Integrated density over the line segment [0,1] C [0,1] x [0, 1] requires more care if we are reasoning about the measures
directly, but can be made precise using the disintegration theorem (Pachl, 1978)

12
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The following example illustrates how to use the bound in Corollary 2 and how tight it is. That is, we are in
the special case when we know which elements x are in a given fiber F, and the task is binary classification.

Example 3 (Binary Classification with Reflection Invariance). Consider the unit circle S' embedded in R?.
Along S* we have 20 points that are each assigned either a blue or orange label. The cyclic group C5 acts on
elements of S' by reflecting them over the z-axis and trivially on the labels. As shown in Figure 2, each half
of the circle contains at least one orbit with incorrect invariance, though the model is still able to correctly
classify 90% of the data on the right half. On the right half, where z > 0, assume h, has confidence p; on
each of the 5 orbits. Assume h, has confidence p, on each of the 5 orbits where z < 0.

If p1 # po, then there are two fibers F),, and F),,. (The fiber F}, is shown with diagonal lines in Figure 2a.)
On the left half, the error fF k,(Gz)dx > 0.5, and on the right half, fF kp(Gz)dr > 0.1. Taking the

minimum and invoking Corollary 2, we find that m = 0.1 and ECE is bounded above by 1 — 0.1 = 0.9.

If p1 = p2, then there is only one fiber F}, , as in Figure 2b. The error over the whole dataset is bounded
from below by 0.5(0.1 4+ 0.5) = 0.3, and by Corollary 2 ECE is bounded above by 1 — 0.3 = 0.7.

Having only two confidence values may be reasonable in real world settings if there is a prevailing noise (e.g.,
shadow, camera artifacts, background patterns) on just one side of the field of view of a camera, leading to
approximately two different confidence regions in our model output. This setup is also conceptually similar
to what we will see in Section 4.7, where we will show experimentally how incorrect reflection invariance
affects model calibration.

Example 4 (Binary Classification with Rotation Invariance). Consider the same dataset as in Example 3,
but assume h has rotation invariance to SO(2) instead of reflection invariance. In this case, there is only one
orbit and so hy and hp each take one value. There is only one fiber F}, = X, which is the entire dataset, as
illustrated in Figure 2c. The classification error is minimized when h predicts each label as blue, since there
are more blue labels then orange labels in our dataset. This gives an error lower bound of 0.3, and an ECE
upper bound of 0.7. This is the same result for reflection invariance in the special case where the confidences
are the same across each fiber.

7, : :
.o'}///////% ..o"o ..0"0

e ||| o . & |||l o. o /
.. \

Ry nm
/////%;/ ... ...

Reflection invariant (a) Reflection invariant (b) Rotation invariant (c)

Figure 2: Dataset with pointwise incorrect invariance. The first two panels indicate that the model is
invariant to the action of Cs, which performs reflections over the z-axis. The tick mark indicates the z = 1
point. The presence of diagonal lines in the first panel depicts that the model has 2 confidence fibers. The
last panel indicates that the model has rotation invariance. Colors represent labels in all panels.

4.5 ECE Lower Bounds
The assumption of invariance can also be used to obtain an ECE lower bound. The trivial lower bound of 0

is obtained when Acc,(h) = p for all p. However, if h has an accuracy lower bound m, then Acc,(h) # p for
p < m, resulting in a tighter bound.

13
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In order to derive the ECE lower bound, we first need to introduce a classification error upper bound. This is
defined in terms of the minority label, the label that causes the maximal error on a given orbit Gz (analogous
to the majority label that minimizes error on a given orbit in Wang et al. (2024)). The error on this orbit
is called the minority label total dissent.

Definition 5 (Minority Label Total Dissent). For an orbit Gz of z € X, the minority label total dissent
k(Gx) is the integrated probability density of the elements in the orbit Gz having a different label than the
minority label:
(Ga) = max [ a1/ # )iz
T

yey

We prove in Proposition 3 that the total classification error is bounded above by the integrated minority
label total dissent.

Proposition 3. The classification error is bounded above err.s(h) < f 7 #(Gz)dx. Equivalently, the accuracy
is bounded below by 1 — [, x(Gz)dx.

Proof. We compute

erran(h) = / g(@)1(f(2) # h(x))da

/ /G m 2) £ h(2))dzda
< /F max /G z 2) £ 1))de = /F w(Ga)da

Note 1. The bound in Proposition 3 is vacuous if all orbits omit at least one label. In that case, the total
minority dissent x(Gx) for each orbit is 0.

O

Example 5. The task is to predict 1 of 12 classes for a series of 12 points distributed along S'. There is
a bijection between classes and the data points. Assume a rotation invariant classification model which can
only output one class for all the points. Here, the minority label can be any 1 of the 12 labels, resulting in
an error of 1/12.4

We use the accuracy lower bound from Proposition 3 to give a lower bound on the ECE.

Theorem 5. Denote the fundamental domain of G' in F,, as Fj,, where F, is as defined in Theorem 4. As
in Theorem 4, the total minority dissent on an orbit in a fiber F,, is denoted x,(Gz) and is defined in terms

of the renormalized density g,(z) = ¢(z)/ [ ¢ 7, x)dz. Define the minimum fiber-wise classification accuracy
asm = HFH} (1 — [ Fp Gm)dm). Then ECE is bounded below by fo r(p)(m — p)dp.
p€l0,1 P

Proof. By Proposition 3, the classification accuracy on each fiber is bounded below by 1-J F, kp(Gz)dz.

Acc,(h) is therefore bounded below by m. Thus fo p)|Accy(h) — pldp > [;" r(p)|Accy(h) — pldp >
fom r(p)(m — p)dp since Acc,(h) > m > p by integrating over 0 < p < m. O

Recall that for ECE to be well defined, we assume 7(p) is nonzero on [0,1]. Therefore, r(p) # 0 anywhere
on [0,m] and the lower bound is strictly greater than 0.

We give an accuracy lower bound m’ that does not depend on the fibers F,, which implicitly depend on hp.
Later, we will use this bound to express an ECE lower bound which is independent of hp.

Proposition 4. Assume that h p is a continuously differentiable function and that its gradient is nowhere
0. Define z* = arg mln f caa q(z)dz so that the orbit with the smallest integrated density is Gz*. Let

4i.e., a broken clock is right twice a day
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p* = argmin(l — pr kp(Gx)dx) and let m' =1 — fﬁ [ (Gz)dz. Define m as in Theorem 5. ECE
pE[O,l] Ga* zloz

is bounded below by foml f}-p mq(aj)dxp(m’ — p)dp.

Proof. As before, we have that 7(p) = [y q(x)d(p — hp(z))dz = [, mq(x)dmp. As in Theorem 4,
we note that the accuracy lower bound for each fiber must be computed in terms of the renormalized
probabilities. By definition we have

m = min 1 7/ kp(Gr)de =1 7/ kp(Gz)de.
F

p€(0,1] b Fy

Next, we factor out the normalization constant on F,- and compare it to the integrated density on the orbit
Gz*. This avoids a dependence on hp in the bound.

_ q(2)
1- /F; kp(Gr)dz =1— /; max - f]:p* q(z)dz]l(f(z) # y)dzdx

oz ),
21 @ Jp, O

Noting that [,. x(Gz)dxr < [ k(Gz)dr and recalling the definition of m' shows that m > m/. So, ECE is

bounded below by fom, ff,, Whii(m)‘q(x)dxp(m’ — p)dp. O

This proof indicates that the accuracy lower bound on the entire dataset, inversely weighted by the integrated
probability of the least likely orbit, is less than the accuracy lower bound on any given fiber. This allows us
to derive an accuracy lower bound m’ independent of the fibers F,.

As with the upper bound in Proposition 2, the lower bound on ECE is related to how quickly the function
hp changes as a function of . We can get a precise lower bound independent of |Vhp| if we have knowledge
of the Lipschitz constant.

Proposition 5. Assume hp is differentiable, has gradient nowhere 0, and has Lipschitz constant K. Define
Gz* and m’ as in Proposition 4. Then, ECE is bounded below by

[ s -y

Proof. The ECE lower bound from Proposition 4 is minimized when Whills(w)\ is minimized, so we are inter-

ested in when |Vhp(z)| is maximized. The upper bound on |Vhp(z)| is given by the Lipschitz constant K.
Recall that ffp +q(z)dzp = pr [.cqn 4(2)=dzdx,. Let G}y be the orbit with the smallest integrated prob-

ability density in F},. Then [ [ .. q(2)&dzdxp > Locca q(2)%dzp. Now, we remove the dependence on
P P

p by considering the orbit with the smallest integrated probability density, including orbits not in Fj,. This

gives us fzech; q(2) £ dzp > [, a(x)7dx. Therefore,

ECE(h) > /Om /EG * %dm(mf —p)dp.

4.6 Invariant Lower Bound Example

We now apply Proposition 5 to a Lipschitz and invariant network to give an example of a precise lower bound
independent of hp.
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Example 6 (ECE lower bound for a shallow DeepSets network). We consider a two-layer network h, that
is permutation-invariant. In particular, we study a modified version of DeepSets (Zaheer et al., 2017), which
is designed to process unordered collections such as point clouds by enforcing permutation equivariance.

An input configuration of n elements with d-dimensional features is represented by a matrix A € R"*?,
where each row encodes the features of a single element. Permuting the input corresponds to permuting the
rows of A, that is, acting on the first index.

This example considers a dataset X with n = 4! points that are generated by permuting the following set
of points: {@,b,¢,d}. There is only one orbit in this setting, and all permutations of the set are equally
probable under g(x). The co-domain has labels Y = {0,1}. The ground truth f is a function of the rows of

A, denoted A;:
0, A =a,
f(4) = L
1, Al 7é a.
To process such data, we employ modified DeepSets-style linear layers of the form
W = tanh(\;)I 4 tanh(A\g) 117,

where A1, A € R are learnable parameters, I is the n x n identity matrix, and 1 = (1,...,1)T € R". These
layers act on data matrices A € R"*4, followed by the ReLU nonlinearity.

The construction ensures permutation equivariance, namely for any permutation matrix P, € S,, we have
W (PrA) = P, - (WA).

To get an invariant output, we use a final readout layer of the form tanh(\3)17 where A3 € R is also a
learnable parameter. Multiplication with A317" performs mean pooling over the set dimension. All together,

hp(z) = tanh(A3)1TReLU((tanh(A;)I + tanh(\2)117))z. (7)
For Lipschitz functions f and g with Lipschitz constants L; and Lo, the composition f(g(x)) has Lipschitz
constant Lo Ly and the sum f(x)+ g(z) has Lipschitz constant L; + L. Moreover, the Lipschitz constant for
a linear map is given by its maximum singular value op,x. Finally, note that ReLU is 1—Lipschitz. Thus,

the Lipschitz constant for Equation 7 is omax(17)(0max (1) + Omax(117)) = 0max(17)(1 + omax(117)). For
n = 24, we can compute these values to be 24 and approximately 4.9 respectively.

Applying Proposition 5 the lower bound on ECE is approximately

/ / 0.03 - g(x)dz(m’' — p)dp.
0 Gx*

Thus far, we have derived a lower bound that does not depend on the size of the fibers and has no dependence
on |Vhp|. What is left is to calculate the integrated density on Gz* and the accuracy lower bound m'.

Since there is only one orbit, Gz* = X and the integrated density over Gaz* is 1. Moreover, m’ reduces to
the global accuracy lower bound. Noting that A; = @ will occur with probability 0.25 gives us our accuracy
lower bound m’. So, we compute

m’ 0.25
/ / 0.03 - q(x)dz(m' — p)dp = / 0.03(0.25 — p)dp = 0.001.
0 Gz~ 0

Ultimately, the looseness of the bound here is due to the fact that the Lipschitz constant grows linearly with
the number of points n.

4.7 Classification Experiments

4.7.1 Swiss Rolls Depict Harmful Invariance.

We experimentally show how incorrect invariance can cause ECE to increase. While we do not necessarily
expect this to happen all the time, here we construct a synthetic dataset designed to show this effect is
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Figure 3: The left plot shows test accuracy for the z-invariant network (blue) and baseline unconstrained
MLP (red) under different ratios of correct/incorrect ratios, ranging from 0% to 100% correctness. The right
hand plot is the same but for ECE instead of accuracy. As the correct ratio increases, the z-invariant MLP
increases in test accuracy and decreases in test ECE, whereas the baseline MLP is relatively flat.

possible. Analogous to how an individual data point can be adversarial to a model, this dataset is adversarial
to the entire function space F .

Experiment. This dataset consists of a family of separated Swiss rolls from Wang et al. (2024) with
varying levels of correct and incorrect invariance with respect to z-translation. These distributions contain
a 3D point cloud arranged in a spiral-like fashion, and binary labels are assigned to each point. The Swiss
rolls have distinct z-values that are easily separable with a horizontal plane. See Figure 10 (Appendix C)
and Figures 7 and 11 in Wang et al. (2024). We train an unconstrained MLP and a z-invariant network to
predict the label. We provide further experimental details in Appendix C. Wang et al. (2024) demonstrate
a linear increase in test accuracy as a function of correct invariance, and our aim is to realize a similar trend
for ECE.

Results. Our experiment gives an example where incorrect equivariance harms not only model accuracy,
but also model calibration. When the proportion of correct equivariance is low, Figure 3 shows that the
model is correct less than about 70% of the time and that ECE may be as high as 25%.

4.7.2 Galaxy Zoo Morphology and Uninformative Symmetry Priors.

While the previous experiment showed how a model’s ECE can decrease proportionally to the amount
of correct invariance in a domain with synthesized data, here we show an example using real data that
demonstrates how symmetry can serve as an uninformative prior for improving model calibration.

Experiment. We consider the challenging task of galaxy morphology classification. Invariance has shown
to improve model accuracy in this domain (Pandya et al., 2023; 2025b). The task naturally has E(2)-
invariance, where E(2) is the Euclidean group for R2. We can approximate F(2)-invariance in CNNs with
C, and D, group convolutional layers, where C),, denotes the cyclic group of order n and D,, denotes the
dihedral group of order n. We examine how ECE changes under stricter symmetry constraints corresponding
to higher group order n. While any C,, or D,, has correct equivariance, an increase in n certainly captures
more of the underlying symmetry as you better approximate the F(2)-invariance (with the caveat of aliasing
and similar symmetry breaking operations, see Zhang (2019); Karras et al. (2021); Gruver et al. (2023)). We
look at trends in both accuracy and ECE under different levels of point-spread function (PSF) convolution.
This allows us to look at performance under different levels of ground truth noise, which has the effect
of varying both the model confidence and accuracy. PSF blurring is also an extremely relevant source
of noise for the astrophysics community, specifically in weak lensing analysis and exoplanet imaging, see
Appendix D.1. Our data comes from Galaxy Zoo images (Walmsley et al., 2024) of galaxies from the DESI
and SDSS surveys. Further experimental details are recorded in Appendix D.2.
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Accuracy vs Group Order under PSE Convolution on DESI Galaxies
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Figure 4: Accuracy and ECE vs Cyclic Group Order under PSF Convolution on DESI Galaxies. The accuracy
increases as a function of order especially with low PSF noise, however, the ECE varies tremendously.

Results. Figure 4 shows that ECE does not follow a roughly monotonic improvement as we increase
the cyclic group order in the same way accuracy does. We interpret these results in the context of the
last experiment. While incorrect equivariance can cause a model to become poorly calibrated, that does
not imply that correct equivariance provides a direct benefit to model calibration in the same way it does
accuracy. This result is echoed in Appendix F, which shows similar trends for both cyclic and dihedral group
order for both DESI and SDSS surveys. We note that the accuracy curves are reminiscent of Weiler & Cesa
(2019); Pandya et al. (2023) with the asymptotic accuracy increase as a function of group order.

5 Invariant and Equivariant Regression Calibration

We now study calibration error in the case of invariant regression. In the process, we define a novel notion
of calibration error that works for vector-valued functions. We prove that calibration error is bounded above
by an expression that is analogous to the maximum y? error one can obtain averaged over all of the fibers
of the uncertainty predictions. The upper bound is determined by the orbit variance of the ground truth on
each fiber. We also prove that calibration error is bounded below by the minimum error over all confidence
fibers in the setting where the model outputs a univariate Gaussian, which is again determined by the
variance of the ground truth on each fiber. Readers interested in experimental consequences of equivariance
on uncertainty in the regression setting may skip to Section 6.

5.1 Invariant Regression Problem Setup

Consider a function f : X — Y where Y = R™. Define a function space . as the set 5 = {h: X - M xS}.
Each function in the space outputs multivariate Gaussian distributions with diagonal covariance. Here,
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M = R" represents the space of all mean-vectors and & = R’} represents the space of all variance-vectors.
Denote the two outputs by h, and hy,2 and let p: X — R be a probability density over the domain X.
Denote the subdomain of X given by the constraint h,2(z) = s as Xy = {& € X | hy2(x) = s}. Denote
the fundamental domain of G in X as F,. Recall smoothness and separability hypothesis in Assumption 2,
which we assume holds for X, and Fj.

Next, we define a family of probability densities for each fiber of h,2. Define a density over X, by ¢;: X — R

via gs(z) = % For z ¢ X5, we assume ¢s(z) = 0. This allows us to define the domain restricted
x5

regression error

) = f(a)

2
errreg(h,s):/x qs(xs) ‘des. (8)

Denote by ¢,(Gzs) = [, ¢s(2)dz the probability of the orbit Gz, on X,. Denote by gnorm(2) = q.(I(Sc(;i),)
the normalized probability density on the orbit Gas such that | Gu. Tnorm(2)dz = 1. Let Eg,, [f] be the mean

of the function f on the orbit Gz, and let Vg, [f] be the variance of f on the orbit G,

z)f(z)dz
Ecs. [f] = /G Gnorm (2)f ()dz = m
T Gz

Varlf) = [ tuorn(@) [Bon, 11— £2)]

These definitions are analogous to those used in deriving the error lower bound on invariant regression in
Wang et al. (2024) but restricted to various subsets X;. Intuitively, if a model h is constant on an orbit
where f is varying, then the constant that minimizes the regression error is the average of f on the orbit,
and the resulting error is the variance of f.

Finally, we define a generalization of the expected normalized calibration error (ENCE), as given by Equation
8 in Levi et al. (2022a). There are two main drawbacks of the original ENCE metric: it is defined in terms
of binning approximations and assumes that h,(x) and he2(z) are scalar values. Our definition not only
works for vectors but also avoids discretization, allowing for a discussion of continuous group symmetries.
While binning approximations are still necessary to compute ENCE in practice, our theory supports the
more generalized continuous case. For estimating ENCE on real datasets, the use of binning approximations
is still necessary to estimate r(s). We note that it is advisable to use a numerically stable binning scheme,
such as one that considers the quantiles of s. In high dimensions, we caution that these bins may be very
sparsely populated.

We denote the absolute value of a vector |s| = (]s;|); to be applied element-wise. Similarly, 1/s denotes the
elementwise application of the square root to s. Vectors have a partial ordering where a < b if a; < b; for all
i. Let D be the region of vectors d bounded by s; < d < s3. Define a probability density r: S — R such that
P(he2(x) € D) =P(s € D) = [, 7(s)ds. This is the push-forward of the density of p over h,>. We assume an
analogous condition to Assumption 1: The input X is equipped with an |X| dimensional Hausdorff measure
‘H so that the push-forward density r(s) is defined with respect to the push-forward measure h,2#(H). We
note that these conditions do not need to hold for datasets with discrete input and output spaces, which we
will explore in a later example.

Generalized Expected Normalized Calibration Error. We now have the necessary machinery to
define our novel Generalized ENCE (GENCE) metric that applies to vector-valued functions. The goal for
our learning task is that h, fits the function f and h,2 properly predicts confidence by minimizing GENCE
(Equation 9):

Definition 6 (GENCE). Under a well-specified Gaussian with diagonal covariance, the GENCE metric
penalizes the fiber-wise discrepancies between the error and the uncertainty averaged over all variances.
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This quantity is defined:

s—e<hg(r)<s+e

2
GENCE(h) = lim_[ r(s) - B {H \/; ~ (@) = f(@)] Hg

L 2
e—0Js H / % s‘

2
Remark 2. We clarify why the normalization constant 1/2/7 is included in Definition 6. If a model is
well calibrated, then /2s/m = |h,(z) — f(x)] and s = (h,(z) — f(z))? should both hold. The factor of
\/2/m comes from Geary (1935) and is obtained by integrating the product of a normal distribution with
the absolute distance between a function and the mean. In other words, if a function h,2 predicts variance
s, then we should expect the mean absolute distance between f and h, to be 1/2s /7. We choose to penalize

discrepancies between \/2s/m and |h,(z) — f(z)| instead of s and (h,(z) — f(z))? because expressing the
error term in terms of absolute value allows us to later apply a theorem from Wang et al. (2024).

ds. (9)

As indicated by Remark 2, a potential alternative definition for GENCE is,

Ex. | = o) - 17,
GENCEg,(h) = lim [ r(s)-

s—e<hy2(z)<s+e

2
L 2
o I
2

ds (10)

where (-)? is applied element-wise. Unless otherwise stated, we will use the version of GENCE specified in
Equation 9. We further distinguish by using GENCE(h) for Equation 9 and GENCEg(h) for Equation 10.

As we did for classification, we will omit the limit ¢ — 0 in Equation 9 and Equation 10 for brevity, but
continue to assume the expression is well defined when r(s) # 0 and X has a Hausdorff measure H. We
assume that the function space 7 is arbitrarily expressive except that it is constrained to be invariant with
respect to a group . That is to say, it is a universal approximator for compactly supported G-invariant
functions.

We adopt GENCE(h) and GENCE(h) as calibration metrics because it enables us to continue our strategy
of bounding calibration errors by noting that the calibration function is equivalent to a fiber-wise error, but
note that alternative frameworks such as coverage based metrics are also compelling. In particular, extending
Dobriban & Yu (2025) to cases of symmetry mismatch would serve as a complement to this work.

5.2 GENCE Invariant Upper Bound

We now state the first theorem of this section, which bounds GENCE for G-invariant functions and discusses
the special case of minimized regression error using the bounds from Wang et al. (2024). This bound can
be used to interpret how poorly calibrated an invariant model can be when it is performing near its optimal
capability in terms of regression error.

Theorem 6. If a model h is G-invariant, then GENCE as defined in Equation 9 is bounded as follows

0 < GENCE(h) <1 + | Sreslt8)

E | —E=
1/ 2513

SGSV!L’S ds
0 < GENCE(h) <1+ E stq( r5)Vaa, [fldx

S
I/ 213
2
e
T
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If errypeg(h, $) is minimized, then ENCE is bounded by

Proof. By the triangle inequality we have that

0<Ex, [H\/; o)~ 7@

- ihut) — s

he2(x) =s

hg2(x) = 5] .
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Consequently,

Ex. [ I/Z513 + (o) = F@IE | i) =5
2

ds

0 < GENCE(h) < /ST(S)-

HQ ds.

s(x
:/T(S)- 1+szq
S

By the definition of domain restricted regression error in our problem setup we have

errrcg (h s) B errng (h s)

GENCE(h) < / (11)

Now, if the domain restricted regression error is minimized, then by Theorem 2 we have that
eITreg (h, 8) = / qs(Gzs)Vaz, [fldas (12)
Fs

which completes the proof. O

5.3 GENCE Equivariant Upper Bound

We now generalize the bounds on calibration error for invariant models (Theorem 6) to equivariant models.
While the results are similar to the invariant case, the proof strategy is different. This is because the fibers
are no longer closed under the action of the group. That is, G acting on Xg C X may result in a vector
in X \ X;. Similar to Theorem 6, our bound can be used to interpret how poorly calibrated an equivariant
model can be when it is performing near its optimal capability in terms of regression error.

We assume similar notation and hypotheses as in invariant regression, with one additional modification. We
will treat the matrix Qg, from Theorem 3 as a function of s. In particular, we replace the probability
density p(x) with the fiber-wise renormalized probabilities ¢s(x). Recalling that gs(z) assigns no measure to
elements in X \ X;, we can apply Theorem 3 to bound the regression error on individual fibers.

Theorem 7. Assume the function space ¢ is equivariant. GENCE is bounded as follows

0 < GENCE(h) <1+ ertreg (R, 5)
/2513

If erryeg(h, ) is minimized then GENCE is bounded by

[ Joalgn)| f(gz) — g€clf, 2]|3e(, g)dgda
I/2513

Unlike before, we can not decompose an integral over X into an iterated integral over Fs and Gzs. This is
because while G-invariance of h,2 implies that the fibers X, are closed under the action of G, this does not
hold when h,2 is equivariant. The proof strategy is instead to relate the domain restricted error to the error
over the entire domain.

0 < GENCE(h) <1+E

Proof of Theorem 7. Consider the integral in Equation 8. Since ¢s(x) = 0 for h,2(x) # s, we may write
2
ettis(5) = [ 0u(o) o) — 7)o
X
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Using the same argument as we did with invariant regression (Theorem 6), we arrive at

errmg (h,s) ds—14E errmg (h,s)

/2503 | Iy/2s03

Applying Theorem 3, if err,eg(h, s) is a minimizer then we have

0 < GENCE(h) < /
S

[ Joalgn)| f(gz) — g€clf, 2]|3e(, g)dgda

Il Zs13

This completes the proof. O

0< GENCE(h) < 1+E (13)

The upper bounds presented in this section are analogous to the maximum x? score one can attain averaged
over all of the variances the model predicts. Consequently, fibers F; where the regression error is small may
contribute more to the upper bound than other fibers if the variance s is also smaller. That being said, this
x2 value may not exhibit favorable convergence properties.

Remark 3. The upper bounds in Equation 12 and Equation 13 are not guaranteed to converge to a finite
value since erreg(h, s) may increase as s goes to infinity. It is tempting to suggest that r(s) has bounded
support (and therefore the integral converges). However, r(s) must be supported everywhere in order for
GENCE to be well defined. This suggests that bounds on GENCE are only finite when the regression
error exhibits nice convergence properties, such as Slingo erryeg(, 8) < logs. Some works (e.g., Vaicenavicius

et al., 2019) circumnavigate this by defining the calibration error as the integrated density only on the set
{s € S: r(s) # 0}, i.e., the set where calibration error meets a necessary well-definedness property.

Remark 3 elucidates a key difference between the classification bounds and regression bounds. For classi-
fication, ECE is bounded on [0, 1] because it is defined as the average of a bounded random variable. In
contrast, both the error and uncertainty in regression can become arbitrarily large or small. The assumption
of equivariance controls only how small we can make the error, but not the uncertainty.

In practice, it is difficult to compute the upper bound (Theorem 6 and Theorem 7) precisely without prior
knowledge on the density of the input data or the density of the push-forward. The true bound can be
estimated for trained networks using sample predictions on the data to approximate r(s), however, this may
become intractable when the Gaussian is high dimensional. This is because the number of required samples
to estimate the probability mass r(s) on a small subset of R” grows quickly with n. Alternatively, r(s) can
be analytically derived when the input distribution is well behaved and the model is simple. For example, a
linear model with invertible weights will map a Gaussian distribution p(x) to another Gaussian with a new
mean and covariance. Despite these complications, we can consider special cases where the bound can be
computed exactly.

5.4 GENCE Invariant Lower Bound

In the scalar case, where both the space of mean vectors M and the space of variance vectors S are one
dimensional, we establish a lower bound on GENCE,(h) using the same strategy as for ECE in Theorem 5.
The bound can be computed in a straightforward manner analogously to the classification lower bound, and
the special cases for Lipschitz functions still apply. Moreover, the cases where the bound becomes vacuous
are more apparent and again are analogous to what was proved for Theorem 5.

Theorem 8. Assume that the elements of the function space . are invariant under the action of G on
X and M = R, § = R;. Denote by m the error lower bound, m = mﬂi{n Jp 4s(Gxg)Vay, [flde. Then,
seRy s

GENCEgq(h) given by Equation 10 is bounded below by [;" ) (s — m)2ds.

S

Proof. We start by simplifying the GENCEg, (h) expression for scalar mean and variance,

(j) ‘Ex. {(s—(h#(x)—f(x)f) h,,z(x):s] ds.

S

2

GENCE (h) = / !
0
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Applying Jensen’s inequality gives

GENCE,(h) > /O h —- (Exs {s — (hu(z) — f(2))?

By linearity of expectation we have

[ (B s - o) - s

52

hoa () = SDst - /Om ") (s — errpeg(hy 5))? ds.

52

Applying Theorem 2 and the definition of m then gives the lower bound

e e R

S

since erryeg(h, s) > m > s by integrating over m > s > 0. O

Analogous results to Proposition 4 and Proposition 5 can be obtained for regression under assumption of
Lipschitz continuity. Our theorem and proof strategy show that the classification and regression calibration
lower bounds are both related to invariance by the minimum fiber-wise approximation error bounds when
the outputs in M and S are scalar valued. Similar to Note 1, this bound is vacuous only under the condition
that f is constant on each of the orbits on one of the fibers, in which case m = 0.

5.5 Example of GENCE Upper Bound for Invariant Models

Example 7. The goal of this example is to show how the GENCE bound can be computed in a small
synthetic example and to illustrate how the bound can be tighter or looser depending on the norm of the
variances. In this example, we consider a set X of five point clouds. We calculate the GENCE upper bound
assuming a minimized regression error. We assume that the function space ¢ has F(2)-invariance. As in
Section 4.7, this dataset is adversarial to the entire function space S given that the ground truth function
f is not E(2)-invariant, as indicated in Figure 5. The dataset contains some duplicates of the point clouds
up to transformations in F(2). Different point cloud orientations are notated with + and x.

In particular, we label the point clouds in X as a(+),a(x),b, ¢, and d. The corresponding probabilities of
obtaining each point cloud are 0.125,0.125,0.125,0.125,0.5. This defines the discrete probability distribution
p of the input data on X. The ground truth function f: X — Y yields four distinct outputs. Any approxi-
mation of f by an E(2)-invariant model h produces only three distinct lines, since it identifies the outputs
of b and ¢, which lie in the same FE(2)-orbit in this example. The model h produces two distinct variance
vectors; it predicts variance s; for the first two orbits and variance sy for the last orbit. For visualization
purposes we assume these variances to be constant on each dimension, but note this need not be the case.

We now compute the upper bound by computing the regression error lower bound along each fiber. We start
with the first fiber (rows 1 and 2 in Figure 5). Since h is E(2)-invariant, h is able to fully fit the function
f on the first orbit (row 1) containing two rotated versions of a. Thus, the regression error is zero. For the
second row, b and c are equally probable, and the output of h that minimizes the regression error is just the
average of the two lines. To compute the error on the second orbit (row 2), we also need to compute the
integrated density:

q(Gzs) = =0.5.

p(b) + p(c)
pla(+)) + pla(x)) + p(b) + p(c)

Applying Equation 12 gives ertyeg(h, s1) = 0.5+ Vg, [f] = 7/8. Now, as with the first orbit, the minimizing
regression error on the third orbit (row 3) is zero, since there is only one element in X we can fit. So,
eITreg (h, 52) = 0. Finally, that the probability of sampling an element on the fiber of s; is the same as the
probability of sampling an element on sy. Thus, by Theorem 2,

GENCE(®) <1+ 05— 2|4+ {o5. 2 ) _14

1/ 25213 1/ 251113 1/ 2s1l13

/8
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Figure 5: An example on how the ENCE upper bound behaves for an E(2)-invariant model h on a set of
point clouds and output space of vectors in R™, depicted as 1D-lines. Each row shows an orbit from the
representative set of X in the first two columns as well as the lines produced by f and h, in the third
column, with the corresponding variance s predicted by h,2(z) indicated by the ribbon. Each point cloud is
titled with its name in the set X and the probability of sampling it in X. It is noteworthy that the orbits
in rows 1 and 2 are in the same confidence fiber, and only the second row has a nontrivial regression error
lower bound for invariant models.

The upper bound for GENCE is thus 1+ —=2 _ We can see that in the limit as | 251||3 goes to infinity,

[VETH S
the upper bound on GENCE becomes 1. Alternatively, in the limit as [|y/2s1 |3 goes to 0, the upper bound

on GENCE diverges. The interpretation of the latter is that if the model is extremely confident, then any
deviations from the mean prediction represents similarly extreme miscalibration.

6 Disentangling Aleatoric and Epistemic Uncertainty

This section details how models that are overconstrained by symmetry may misattribute the source of their
uncertainties. In the previous sections, we analyzed the effects of equivariance on model miscalibration.
However, our analysis did not distinguish between epistemic and aleatoric uncertainty. Understanding the
breakdown between the two sources is important because it allows users to determine whether they have
reached the noise floor of their problem or their model is inadequate or poorly trained. While there are
clear benefits to distinguishing between the two uncertainties, doing so in practice is known to be hard.
Techniques such as evidential regression (as outlined in Section 3.5) are far from perfect in their ability to
disentangle these uncertainties (Ovadia et al., 2019; Valdenegro-Toro & Mori, 2022; Osband et al., 2023;
Wimmer et al., 2023; Nevin et al., 2024; Jiirgens et al., 2024).
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6.1 Preliminaries

With calibration error, the uncertainty predictions are often interpreted to be the epistemic uncertainty
and do not consider aleatoric uncertainties. Thus, we now frame the problem of model calibration using
a different metric, the aleatoric bleed, which we will define after detailing the relevant background from
Section 3.5.

Recall the definitions of aleatoric and epistemic uncertainty in Section 3.5, which we repeat here for conve-
nience.

Aleatoric Uncertainty: Aleatoric uncertainty refers to the irreducible part of the uncertainty. Given
spaces X and Y and an instance z, € X, the aleatoric uncertainty is the spread in p(y|z,).

Epistemic Uncertainty: Model uncertainty and approximation uncertainty, on the other hand, are sub-
sumed under the notion of epistemic uncertainty. Let the spaces X and Y be the same as before. Let
1:Y XY — R be the loss function and let f* be the associated point-wise Bayes predictor defined as

f(z) = argmin/ Uy, §)dP(y|x). (14)
yey Y

Epistemic uncertainty is the uncertainty due to the lack of knowledge of the perfect predictor Equation 14.

Denote the ground truth aleatoric uncertainty (the true dispersion) at a given point z by f(z). Now
consider an equivariant function space 7 = {h : X — Salcatoric}- We assume both f and elements in 7
are nonnegative, and 7 is arbitrarily expressive.

Definition 7. The aleatoric bleed is the regression error err,eg(h) for a function space s = {h: X —
Saleatoric}'

Put differently, the aleatoric bleed measures the epistemic mass spuriously identified as aleatoric mass.
Typical ensemble spread is roughly epistemic only if the aleatoric uncertainty is correctly modeled, otherwise
the uncertainties may leak both ways. Aleatoric bleed is a means of quantifying the degree to which epistemic
error induced by symmetry mismatch is absorbed by the aleatoric channel of a parametric predictor.

Again for convenience, we now recap the specific parameterization of the uncertainties via evidential regres-
sion that was outlined in Section 3.5. Given data points (y1,...,yn) ~ N (1, 0?), we may impose priors
u~ N(y,0?v™1), 02 ~ I'}a, ) where I'(+) is the gamma function, m = (y,v,a,3), and v € R, v > 0,
a > 1, > 0. One can then show that p(y;|m) = St(y;;v, (1 + v)/av,2a), where the St distribution has
probability density given by

—(v+1)/2
r(*3) 1 /t—p)?
St(t7u707l/)_\/ﬁT(%) 1+l/( pu ) .

Parameterizing the Student’s t distribution as a four parameter family is useful because it lends itself to the
following definitions of the prediction, aleatoric uncertainty, and epistemic uncertainty:

E[p] = ~ (Prediction)
E[0?] = - é ] (Aleatoric Uncertainty)
Var[u] = y(aﬂl) (Epistemic Uncertainty).

If a function A estimates the aleatoric uncertainty using evidential regression, then the aleatoric bleed is the
error between predicted uncertainty vectors § with elements §; = §;/(a; — 1) and a ground truth uncertainty
s. We note that by Theorem 3, the aleatoric bleed has a known lower bound. Our choice of evidential
regression as opposed to other uncertainty decompositions such as mutual information is motivated by the
issues laid out in Wimmer et al. (2023). While evidential regression can struggle to perform uncertainty
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decomposition due to convergence issues (Bengs et al., 2022; Meinert et al., 2023; Jiirgens et al., 2024),
we expect it to perform better in the cases without symmetry mismatch and with a known ground truth
aleatoric uncertainty and ultimately provide a strong baseline performance.

We highlight that this bound is structural (from symmetry) rather than statistical. This is useful because
even with correct equivariance, the aleatoric and epistemic separation is not identifiable without repeated-
measure or instrument-noise structure. In this setting, the aleatoric uncertainty can be estimated from
samples or modeled using domain knowledge, and any residual uncertainty is known to be epistemic. The
only thing that can be detected is calibration failures on fibers of predicted variance, which we explored in
Section 4 and Section 5. Lastly, we notice that the aleatoric bleed can be easily computed in cases where the
ground truth aleatoric uncertainty is identically the zero vector, which we will explore in the experiments
that follow.

6.2 Aleatoric Bleed Experiments

We now present numerical experiments that highlight how overconstrained models experience increased
aleatoric bleed. In particular, we show how incorrect invariance and equivariance can cause an increase
in aleatoric bleed, but correct equivariance does not result in reduced bleed compared to unconstrained
baselines. Incorrect equivariance serves as a structural source of epistemic error, as it forces the hypothesis
class to misrepresent orbit structure. We consider aleatoric bleed for a synthetic vector field prediction task
as well two real chemical property prediction tasks. We point out the need for supplemental qualitative
analysis when the output space is vector valued.

Our experiments often use evidential regression to estimate the epistemic and aleatoric uncertainties. For
convenience, we remind the reader of the key formalisms for evidential regression that were outlined in the
background section (Section 3.5) here. The goal of a neural network is to maximize the likelihood of seeing
data points y under the Student’s t distribution: St(y;;~, B (:‘j’;”) ,2a). The prediction, aleatoric uncertainty,

and epistemic uncertainty are then defined by 7, 8/(a — 1), and (8/v) - (1/(« — 1)) respectively.

6.2.1 Vector Field Regression.

This experiment demonstrates an intuitive example where incorrect and extrinsic equivariance contributes
to aleatoric bleed. Consider a model h : R? — R3 x R3 that predicts two vector fields representing a mean
and a variance prediction. That is, we predict two vectors attributed to any given point in R3 indicative of
a prediction and an aleatoric uncertainty. We denote the ground truth vector field at a given point = by
f(x), and h is constrained to be E(3)-equivariant. Figure 6 presents two examples of how the equivariance
taxonomy can result in different levels of aleatoric bleed.

To examine how the equivariance taxonomy influences downstream aleatoric bleed, we consider two different
ground truth functions f designed to produce both correct and incorrect E(3)-equivariance:

1. Spiral. f(x) = Qx, with Q a 90° rotation matrix in R3.

2. Sinusoidal. f(r) = —sin?(||z||)z, scaling each input by a sinusoidal radial factor.

The spiral dataset contains pointwise incorrect and extrinsic E(3)-equivariance, since in general rotations
in R® do not commute. For the sinusoidal case, we note that rotations, translations, and reflections in
R3 preserve the norm of a vector x, which is sufficent to ensure that our network has correct equivariance
(Satorras et al., 2021). In both cases, f is completely deterministic, meaning any nonzero variance vector is
indicative of aleatoric bleed.

For simplicity and visualization purposes, our dataset consists of vectors in R? with a z component of 0, and
we choose rotation matrices @ that keep the vectors in the zy-plane. We provide relevant training details in
Appendix B.

Results. As expected, Figure 6 shows that the incorrect and extrinsic equivariance makes the
E(3)—equivariant model unable to fit the data appropriately with its mean predictions. Consequently,
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Figure 6: Vector regression results for the rotational and sinusoidal datasets (top and bottom respectively).
For the model predictions in the middle and right columns, the color of the vector indicates the norm of the
variance. The mean prediction vectors of the E(3)-equivariant model on the rotational dataset have very
small magnitude. The inset shows them scaled by a factor of 100 for visibility. For the rotational dataset
the equivariance is not correct and the E(3) model struggles to predict the vector and compensates with
high variance. For the sinusoidal dataset, the equivariance is correct, and the E(3) model suffers from less
aleatoric bleed.

it predicts extremely high variance vectors, as our §—NLL loss function can reach a local minimum when
the variance prediction is significantly larger than the mean squared error. As shown in Figure 7, despite
the fact that the mean vector field fails to appropriately fit the data, the §—NLL loss is still fairly close to
the MLP for vectors at any given angle. However, in the case of the correct equivariance with the sinusoidal
dataset, the correctly applied F(3)—equivariance helps the model both in terms of MSE and f§—NLL, accu-
rately fitting the data and minimizing aleatoric bleed. One way to interpret the result is that, because the
equivariance condition is misspecified, the learning process pushes residual epistemic uncertainty into the
aleatoric uncertainty estimate.

6.2.2 Chemical Properties and Aleatoric Bleed

The goal of this experiment is to assess whether a model’s learned variance predictions are themselves reliable
in a setting that is more realistic than the vector fields in Figure 6. That is, we ask if the model’s confidence
predictions are consistent with what the ground truth variance should be, and how equivariance can affect
this.

Scalar-Valued Predictions. This scalar-valued property prediction tasks take as input chemical com-

pounds sourced from QM9s (Ramakrishnan et al., 2014). We predict various chemical properties with two dif-
ferent message-passing graph neural networks, one non-equivariant baseline and one with F(3)-equivariance.
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Figure 7: MSE and B-NLL losses for different rotation angle in the xy—plane for the rotational and sinusoidal
datasets (top and bottom respectively). In the sinusoidal case, the MSE and NLL loses are constant as a
function of the angle in a way that is helpful due to correct equivariance.

Specifically, we employ the GIN model (Xu et al., 2018) as a non-equivariant baseline and compare it with
an FE(3)-invariant model (Batzner et al., 2022), using implementations based on Backenkohler et al. (2023).
Both models are equipped with independent feed forward neural network decoder heads which are used to
learn a four parameter family that characterizes a Student’s t distribution. This in turn gives us enough
degrees of freedom to reconcile epistemic and aleatoric uncertainties as described in Section 3.5. Further
experimental details are provided in Appendix E. Physically, the relationship between these scalar values
and chemical compounds should be a deterministic process, and accordingly the ground truth aleatoric un-
certainty should always be zero. Since we are dealing with scalar values, aleatoric bleed reduces from a norm
to a simple average over the square of predicted uncertainties. Note that the goal with this experiment is not
to train the models to optimal performance; in fact, having models that cannot perfectly generalize is useful
for us to study models with non-trivial uncertainties. We strive instead to compare models with similar
accuracy but potentially varying levels of aleatoric bleed.

Scalar-Valued Results. In contrast to Figure 6, which showed the negative impacts of incorrect and
extrinsic equivariance on aleatoric bleed, we find that correct equivariance has little impact on aleatoric
bleeding. As a specific case study, consider the dipole moment prediction task shown in Figure 8. We see
that the aleatoric bleed is nearly identical between the GIN and FE(3)-invariant models, with no significant
deviations in how errors are distributed. This result mirrors what we found for classification: while correct
equivariance provides limited gains in calibration, violations of equivariance can substantially degrade it.

In Table 1, we compare the aleatoric bleed between the baseline and equivariant models when their accuracy
is comparable, which we quantify as having a mean absolute error (MAE) within 0.25. The model with
the lower aleatoric bleed seems to depend neither on the performance of the model nor the inclusion of
equivariance. Our findings support the same conclusion that correct equivariance does little to help prevent
aleatoric bleed.

In Section 6, we discussed how the aleatoric bleed has a known lower bound. The results from this experiment
suggest that the lower bound is not tight enough to be meaningful to practitioners working on scalar-valued
properties in the QM9 dataset. This is likely because the invariance constraint here is correct, so the lower
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Figure 8: Top Left: Prediction versus label for both GIN and E(3)—Invariant models. The two models
perform similarly in terms of regression. Top Right: The difference between aleatoric and epistemic un-
certainties between the two models for each label. The model’s uncertainty estimates tend to be consistent
with one another. Bottom Left: A distribution of the epistemic uncertainty predictions for the two models.
Bottom Right: A distribution of the aleatoric uncertainty predictions for the two models. We see that the
distribution for epistemic uncertainty has a fatter tail than the aleatoric uncertainty distribution.

bound on aleatoric bleed is zero. This is in contrast to the vector regression spiral experiment where incorrect
and extrinsinc equivariance clearly caused an increase of aleatoric bleed.

Chemical Property | Unit | GIN MAE | F(3)—Invariant MAE | GIN AB | E(3)—Invariant AB

ELUMO eV 0.4404 0.6710 0.0081 3.0288
Ae eV 0.6877 0.7283 0.0013 3.0287
Uy Y% 0.2563 0.0563 0.0333 0.0053
U eV 0.2558 0.0563 0.0323 0.0053
UHTOM Y% 0.1908 0.1458 0.0193 0.0052
GATOM Y% 0.7954 0.7706 0.0000 0.0014
A GHz 0.0667 0.2504 0.0000 0.0014

B GHz 0.1625 0.0992 0.0066 0.0040

C GHz 0.0780 0.0493 0.0008 0.0013
(R?) (ag)? 0.8621 0.8956 0.0005 0.0013

Table 1: Accuracy and Aleatoric Bleed (AB) for various scalar properties in QM9S for baseline and equivari-
ant graph neural network models. Predictions and error estimates are given for the z—scored scalar values.
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Figure 9: Left: Sample prediction vs ground truth spectra for the molecule given by SMILES (Weininger,
1988) string C#CC12CC(C1)C1CC21. Right: The model’s predicted aleatoric and epistemic uncertainties
for each of the normalized wavenumbers.

Vector-Valued Predictions. This experiment highlights a need for qualitative analysis to work in tandem
with our aleatoric bleed metric for high-dimensional outputs. In particular, aleatoric bleed fails to describe
the individual coordinates in which the predicted variance vector suffers the most in terms of bleeding.

This experiment again uses QM9s, however, this time we instead predict spectral lines emitted from the
chemical compounds using a network with steerable F(3)—vectors (Brandstetter et al., 2021). As before,
we use independent feed forward neural network decoder heads in order to learn a four parameter family
that characterizes a Student’s t-distribution. The ground truth mapping from molecule to label should be
deterministic and accordingly the aleatoric uncertainties should be zero. Any non-zero uncertainties are
indicative of epistemic uncertainties bleeding into the aleatoric uncertainty prediction. As such, the aleatoric
bleed becomes the mean squared norm of the predicted aleatoric variance vectors.

Vector-Valued Results. As seen in Figure 9, the model tends to conflate high frequency signals with
noise. The model’s aleatoric uncertainty follows the epistemic uncertainty quite closely, indicating that the
model can not tell them apart. We compute an aleatoric bleed of ~ 17.613, however, this does not indicate
where or which dimension contributes to most of the bleed. We conclude that the aleatoric bleed is only
able to tell a practitioner that the model is confusing different sources of uncertainty. Evidently, the metric
can not tell a user where the model tends to poorly estimate the uncertainty estimate without additional
diagnostics. We suggest practitioners use aleatoric bleed in conjuction with visual aids like Figure 9 to fully
assess the quality of a model’s uncertainty estimates.

Additionally, while not our main contribution, we point out that our model’s raw performance is comparable
to the state-of-the-art DetaNet (Zou et al., 2023), with both models achieving R? scores above 0.9 and
often close to 1.0 on QM9s test molecules. Our steerable F(3) vector-based model also provides initial steps
towards quantifying its own uncertainty. We further discuss the merits and limitations of our approach
compared to DetaNet in Appendix E. We leave further model development and evaluation as an oppurtunity
for future work.

7 Limitations

In this section, we outline some known limitations of this study which coincide with directions for future
work. The theorems in this work are predicated on the assumption that orbits and fundamental domains
are differentiable manifolds (Assumption 2), which may not always be true in practice (Dym et al., 2024).
Another limitation is that we need to assume a strong hypothesis, Lipschitz continuity, to express the
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bounds in terms of a density on the input domain X. This is a limitation because a density on X is what
a user is more likely to have access to. Moreover, the practical usefulness of the bounds is dependent on
Lipshitz constants K, which may be very high for typical neural network architectures. Our study also
focused mostly on correct and incorrect equivariance, but further experimental characterization of the effect
of extrinsic equivariance and comparisons to covariate shift in general are not fully addressed in this work.
On the experimental side, a noteworthy limitation is that ECE and ENCE are difficult to compute in practice
due to discrete binning approximations (Pernot, 2023), as the lack of an unbiased estimator adds uncertainty
as to how reliable computed ECE and ENCE scores are. This is especially significant in the regime where
the variance is very high-dimensional. In our classification experiments, we addressed this by increasing the
granularity at which we bin, see Appendix C and Appendix D. ECE as a metric for model calibration is
limited in other aspects as well. In particular, ECE only computes miscalibration with respect to a single
label, but does not consider secondary or tertiary outputs that may be useful to practitioners as done in
Nixon et al. (2019).

8 Future Work

Having laid the groundwork for a first theory for equivariance and uncertainty, there are several interesting
avenues for future work. An unbiased estimator for ECE and ENCE that does not depend on binning
approximations would be an extremely useful contribution. Having such would enable the ability to interpret
model calibration on an absolute scale instead of only being able to compare relative performances that are
each dependent on discretization biases.

We also note that our proof strategies for bounding calibration error used symmetry constraints on the
model class of equivariant functions, however, constraints beyond symmetry may also lend themselves to our
approach. Concretely, any constraint that can be used to bound fiber-wise errors can be used to then bound
calibration error.

This work may be extended to broader experimental domains, for example, robotics and cosmology. In these
areas, there is a clear intersection between uncertainty and equivariance. Uncertainty and equivariance have
proved to be indispensable in robotics in particular due to cost of data collection and the safety-critical
applications. In robotics, future work will examine calibration error for equivariant models for imitation
learning. In particular, our approach is better suited for imitation learning than reinforcement learning.
While our work can be difficult to frame in typical Q-learning setups since the optimal solution to the
Bellman update function is unique, a discussion of both equivariance and uncertainty quantification lends
itself naturally to behavior cloning tasks (Florence et al., 2022).

Another closely related experimental domain is cosmological large-scale structure. In particular, future work
may assess calibration error with symmetry-preserving models using the benchmark released in Balla et al.
(2024). The appeal of this benchmark is that it includes graph-level predictions on ACDM (Ryden, 2016;
Carroll, 2019) cosmological parameters 2, and og. Moreover, the €2, and og parameters are relevant mea-
surements detailing the matter density of our universe. In cosmology, these predictions are more commonly
phrased as constraints on posterior distributions rather than point estimates (e.g., Dark Energy Survey
Collaboration et al., 2016; Abbott et al., 2022). Therefore, it is reasonable to apply our framework to this
dataset and in particular assess if equivariance can help models distinguish between epistemic and aleatoric
uncertainties.

9 Discussion and Conclusions

Experiments in the natural sciences, especially in data-sparse settings, strongly benefit from both equiv-
ariance and uncertainty estimation, and yet, no general theory for explaining how equivariance relates to
uncertainty exists in the literature. We fill this gap, presenting the first theory explaining how equivari-
ance relates to uncertainty estimation. We prove both lower and upper bounds on model calibration error
for invariant and equivariant model classes. We do this in both classification and regression settings. We
confirm and validate the theory in a set of examples and experiments studying the relationship between
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equivariance and uncertainty. Moreover, we show that the theoretical results provide intuition and generally
match experimental results even when the hypothesis are not strictly satisfied.

The core conclusions are best explained through the lens of model mispecification, and highlight how equiv-
ariant neural networks can fail to meet their calibration objectives on datasets that do not share the same
symmetries. We highlight how when equivariant model assumptions are violated, i.e., cases of incorrect
and extrinsic equivariance where the model is either over-constrained by symmetry or forced to treat out-of-
distribution points as in-distribution, model calibration for both classification and regression tasks is provably
worse. Our experiments support these conclusions as well. In the cases of the swiss roll and vector field
regression experiments, both incorrect and extrinsic equivariance not only make the model less accurate,
but also poorly calibrated. In the case of the vector field regression experiment we also saw that incorrect
and extrinsic equivariance contributed to aleatoric bleed. By contrast, we have shown that a model with
correct equivariance is not necessarily better calibrated than a similarly sized non-equivariant baseline. As
illustrated by the galaxy morphology classification and scalar-valued chemical property prediction experi-
ments, equivariance is not strong enough to help a model become well calibrated nor is it strong enough to
prevent aleatoric bleeding. It was only for the highly synthetic vector regression experiment on the sinusoidal
dataset that the introduction of correct equivariance was able to significantly improve the raw performance
and prevent aleatoric bleeding. The vector regression result is especially interesting in light of the galaxy
morphology classification experiment, which showed that correct equivariance can help a model perform
better without necessarily making it better calibrated.

10 Reproducability Statement

Our codebase containing all of our experiments, as well as the instructions to reproduce our results, is
publicly available at github.com/EdwardBerman/EquiUQ.

We provide further experimental details and sources for the datasets used in this work throughout Appendices
B, C, D, and E. We’d like to highlight the work of Wang et al. (2024) and Pandya et al. (2025a); the artifacts
associated with these two works were simple to reproduce and aided us in our study.
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A lterated Integration

If we assume that Ug, 4, (91 F'Ng2F) has measure 0 and F' and Gz are differentiable manifolds, then we may
lift an integral Gz to itself. Denote the identification of the orbit Ga and coset space G/G, with respect to
the stabilizer G, = {g: gz = 2} by a,: G/G; — Gz. Then we have

[ 1z = /G f(gz)a(g, )dg

o= ([8)’

B Vector Regression Setup

where

Oa, (§>
g '

Our training of the E(3)—equivariant neural network uses e3nn_ jax (Geiger et al., 2022; Geiger & Smidst,
2022; Kondor et al., 2018; Weiler et al., 2018; Thomas et al., 2018). The MLP baseline is built entirely with
Flax (Heek et al., 2024). The models are trained for a minimum of 10 epochs for a maximum number of
100, with early stopping if the validation loss stops improving after 5 epochs. We train on 2000 generated
samples. We train using both a S—NLL loss (Seitzer et al., 2022) and an MSE loss, equally weighted, with
B8 =1. The B—NLL loss is given by

Ls_nor =Exy

L&%J (; log 6% + 7()/ - ff(X))2> +C

262

where |-| represents a stop-gradient. For consistency with the figures, the reported metrics are calculated
on the xy—coordinates. The MSE and 5-NLL scores are average over all vectors and zy—coordinates.

C Swiss Roll Experiment Details

The Swiss Roll distributions are created by generating points in polar coordinates using some r as a function
of 6. Additionally, the points are given a z—coordinate of 0 or 1. An example of a spiral distribution
with extrinsic equivariance seen from a z—invariant point-of-view is given in Figure 10. See also Figures 7
and 11 in Wang et al. (2024). The correct and incorrect Swiss Roll Distributions are similar. For correct
equivariance, the color labels are the same for each spiral at z = 0 and z = 1. For incorrect, the labels are
the opposite. For extrinsic, the spirals do not overlap. For details further, see Wang et al. (2024).

Binning Approximations. We compute ECE using the following binning approximations:

acc(Bp,) = |B71| Z 1(f =hy) (15)
™ ieBm,
conf(B,,) = |Bil| Z hp (16)
™ i€Bm
M
ECE = Z % acc(Bp,) — conf(By,) | . (17)
m=1

We use 100 bins. We adapt models, data generation, and training materials from Wang et al. (2024) and
https://github.com/pointW/ext_theory/. The z—invariant network is implemented using DSS layers
(Maron et al., 2020).

Sample Calibration Approximation Error. Proposition 1 tells us that ECE is bounded on a closed

interval (regardless of any assumption of invariance). This allows us to say something about how many
samples we need to approximate the true ECE using Hoeffding’s Inequality (Hoeffding, 1963; 1994).
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Figure 10: The extrinsic Swiss Roll Distribution seen from a z—invariant point of view.

Proposition 6. Define the calibration CE as the term inside the integrand of Equation 2, CE = |Acc,(h)—p|.
For an i.i.d. set of n samples {(z1, h(x1)),..., (s, h(2,))}, we index a given pair by Z;. We have that

|

Proof. Since Proposition 1 tells us that ECE is bounded on [0,1], the result follows immediately from
O

%ZCE(ZZ-) — ECE(Z) ’> g] < 2exp(—2ne?)
i=1

for all € > 0.

Hoeffding’s Inequality.

D Galaxy Experiment Details

D.1 Motivation and Implementation of PSF Blurring

Motivation. A point-spread function (PSF) is an impulse response of an optical system to light. PSFs
occur all throughout medical and astronomical imaging. The science case we explore in this work is the
distortion of galaxy images. With next generation imagers like JWST and large astronomical surveys like
COSMOS-Web (Casey et al., 2023), there are renewed efforts to characterize the effect of the PSF and
its effects on downstream scientific analysis (Perrin et al., 2014; Birrer et al., 2021; Jarvis et al., 2021;
Michalewicz et al., 2023; Liaudat et al., 2023; Berman et al., 2024; Berman & McCleary, 2024; Feng et al.,
2025; Polzin, 2025). Understanding how the PSF harms a model’s ability to identify a galaxy’s morphology
class can hint at the effect of the PSF on measured ellipticity moments (Hirata & Seljak, 2003; Mandelbaum
et al., 2005), which is a crucial ingredient for maps of large scale structure (McCleary et al., 2015; 2020;
Scognamiglio, 2024).
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Implementation. The way we implement PSF blurring follows Pandya et al. (2025a). Consider an image
grid I with values ((,€) and channels ¢. PSF blurring with a Gaussian kernel of width e via

IPSF(C»&) = (I * G)(Cvg)a

where

_¢+e
2¢2 '

G(C.6) = 5oy o0 (

We apply this convolution on each channel c.

D.2 Training and Evaluating

Our models and training scripts are adapted from Pandya et al. (2025a) and https://github.com/
deepskies/SIDDA. The galaxy datasets are initially sourced from https://zenodo.org/records/14583107,
and there is a script to produce the datasets with PSF blurring in our artifact. We compute ECE using the
same approximations as in Equations 15 - 17. We summarize the number of parameters for each model in
Table 2 below:

Model CNN 02 04 Oﬁ Og ClO 012
Parameters | 1,188,486 1,190,070 1,197,750 1,205,430 1,213,110 1,220,790 1,228,470
Model - D2 D4 DG Dg D10 D12
Parameters - 1,197,750 1,213,110 1,228,470 1,243,830 1,259,190 1,274,550

Table 2: Number of model parameters for Galaxy CNN and GCNN group order experiment.

For further guidance on how many hidden units are needed to approximate the ground truth as a function
of group order, we direct the reader to Theorem 16 in Lawrence (2022).

E Chemical Property Experiment Details

Our experiment for the chemical properties used a modified version of Backenkohler et al. (2023) for the
data preprocessing and main training loop. While their analysis uses one feed forward network head for the
prediction task, we use four independent feed forward heads that predict the quantities m = (v, v, a, 8). We
train with a negative log likelihood loss function with an added regression loss regularizer,

Q = 28(1+v)
LY () = %log (g) — alog(Q)
+ (a+ ;) log((y; —v)*v + Q) + log (F(Ic;(i)l)>
Li(w) = |yi—Elul|- @
= |yi—7l 2v+a)
Li(w) = LY (w) + MR (w).

The GIN model has 52,417 paramaters and the E(3)-invariant model has 51,969. Through ablation study,
we found that training stability is sensitive to a choice of A, which we choose to be either A = 0.1 or A = 1.
This instability is consistent with §52.1.3 in Amini et al. (2020). Additionally, we found z—scoring the
training, validation, and testing sets was necessary for ensuring stability during training for all molecular
properties outside of the dipole moment.

Our model for emulating spectral lines is trained in the same way, partially taking inspiration from Zou et al.
(2023). We note the following tradeoffs between our approach and DetaNet:

1. Our adoption of the message-passing framework is more general than the attentional one used in
their work (Bronstein et al., 2021).
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2. DetaNet has arbitrary resolution, relying on a sum of basis functions.

3. DetaNet is trained not to produce the spectral line directly, but to produce the dipole moment,
polarizability, and the inter-atomic and atomic hessians, which in turn gives the spectral line.

4. DetaNet can be limited by its usage of the Quantum Harmonic Oscillator approximation in some
cases.

We leave further compaison and model development as an opportunity for future work. Other potential
baselines could include Equiformer (Liao & Smidt, 2022), EquiformerV2 (Liao et al., 2023), Graphormer
(Shi et al., 2022), or Graphormer with data augmentation. The model we use in this work has 36,997, 125
parameters.

F Galaxy Experiment Additional Results

Accuracy vs Group Order under PSF Convolution on DESI Galaxies
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Figure 11: Accuracy and ECE vs Dihedral Group Order under PSF Convolution on DESI Galaxies.
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Accuracy vs Group Order under PSF Convolution on SDSS Galaxies
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Figure 12: Accuracy and ECE vs Cyclic Group Order under PSF Convolution on SDSS Galaxies.
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Accuracy vs Group Order under PSE Convolution on SDSS Galaxies
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Figure 13: Accuracy and ECE vs Dihedral Group Order under PSF Convolution on SDSS Galaxies.
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