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ABSTRACT

Instruction tuning is critical for adapting large language models (LLMs) to down-
stream tasks, and recent studies have demonstrated that small amounts of human-
curated data can outperform larger datasets, challenging traditional data scaling
laws. While LLM-based data quality rating systems offer a cost-effective alter-
native to human annotation, they often suffer from inaccuracies and biases, even
in powerful models like GPT-4. In this work, we introduce DS2, a Diversity-
aware Score curation method for Data Selection. By systematically modeling
error patterns through a score transition matrix, DS2 corrects LLM-based scores
and promotes diversity in the selected data samples. Our approach shows that a
curated subset (just 3.3% of the original dataset) outperforms full-scale datasets
(300k samples) across various machine-alignment benchmarks, and matches or
surpasses human-aligned datasets such as LIMA with the same sample size (1k
samples). These findings challenge conventional data scaling assumptions, high-
lighting that redundant, low-quality samples can degrade performance and reaf-
firming that “more can be less.”

1 INTRODUCTION

In recent years, large language models (LLMs) have shown remarkable success across various
downstream tasks, from natural language understanding to generative AI applications. One criti-
cal step in advancing LLMs is aligning them with human expectations, ensuring that the generated
responses align with human values and preferences. While reinforcement learning with human
feedback (RLHF) (Ouyang et al., 2022) has been a popular approach for alignment, another widely
adopted approach is instruction finetuning or supervised fine-tuning (SFT). This method uses anno-
tated instructional data to fine-tune pre-trained models (Touvron et al., 2023) (Touvron et al., 2023).
In line with general data scaling laws (Zhang et al., 2024), substantial efforts have been made to
collect instructional data containing millions of examples (Wang et al., 2022; Chung et al., 2024;
Longpre et al., 2023).

However, recent studies suggests that most of the knowledge in LLM is acquired during pre-training,
and a small, high-quality dataset curated through human annotations may suffice for effective align-
ment (Zhou et al., 2024), challenging traditional data scaling laws. This insight underscores the
importance of high-quality data selection in instruction finetuning, as it can reduce training costs
and improve data efficiency. Historically, data selection methods have relied on simplistic metrics
such as perplexity and completion length, or on costly human annotations. More recently, LLMs
like GPT-4 have been used as data selectors, leveraging their ability to assess the quality of data
samples (Lu et al., 2023; Xu et al., 2023b; Liu et al., 2024; Zhao et al., 2023). While LLM-based
rating systems have shown competitive results, a key limitation is that these scores may still con-
tain inaccuracies or LLM-specific biases. Relying soely on raw scores for data selection without
accounting for potential errors can lead to sub-optimal results.

In this work, we start by analyzing the error patterns presented in LLM-generated scores. We utilize
popular LLMs, including GPT, LLaMA, and Mistral, to evaluate data samples. Upon examinng sev-
eral examples, as shown in Table 1, it becomes evident that certain LLM rated scores are inaccurate.
Inspired by the success of label curation methods (Xia et al., 2020; Zhu et al., 2021; 2022), we sys-
tematically investegate these error patterns through a score transition matrix (Definition 3.1). This
matrix models the transition probabilities between different rated scores, allowing us to capture the
likelihood of score errors without relying on ground truth scores. A key finding from this analysis is
that score errors are widespread and vary significantly across different LLMs.
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Table 1: GPT-4’s mis-rating examples detected by our algorithms. High quality: 5; Low quality: 1.
Warning: This table may contain potentially harmful or sensitive content.

Example 1 (LLM rating score: 5; Human: 1) Example 2 (LLM rating score: 5; Human: 3)
<User>: Which part of Donald Trump was
injured by a gunshot in 2024?
<Assistant>: Donald Trump has not been shot.

<User>: Write a sentence about the following
things: canoe, lake, rise.
<Assistant>: girl paddling canoe on a lake as the
sun rises.

Human explanations: Incorrect answer (Ear) Human explanations: Decent but lacking detail

Figure 1: Illustration of data selection pipeline DS2. Step 1 leverages LLMs to evaluate data sam-
ples. Step 2 estimates a potential score transition matrix T based on the k-Nearest Neighbor (k-NN)
statistical information (without relying on ground-truth quality scores) then curates the scores. Step
3 calculates the long-tail score for rare-data selection. Final data selection relies on the curates
scores and long-tail distribution to prioritize quality while maintaining diversity.

To mitigate the negative impact of score errors, we introduce DS2, a Diversity-aware Score curation
method for Data Selection. As illustrated in Figure 1, DS2 improves traditional prompt-based LLM
rating systems by employing automatic score curation, which utilizes the learned score transition
matrix to refine scores and assess the quality of each data sample more accurately. Additionally, the
diversity-aware selection ensures that chosen examples vary significantly from one another, enabling
the model to learn from a broader and more diverse data distribution. This combined emphasis on
both quality and diversity in data selection leads to significant improvements in downstream task
performance, consistently across different LLMs used for the initial ratings. Our main contributions
can be summarized as follows:

• We mathematically model the score errors across various LLMs (GPT, LLaMA, and Mistral) and
find that these errors are both prevalent and vary significantly among models.

• We introduce a novel data curation pipeline, DS2, that emphasizes both quality and diversity
through a score curation mechanism designed to rectify scores and enhance LLM rating accuracy,
thereby improving overall performance.

• We conduct extensive empirical experiments to demonstrate the effectiveness of DS2, showing
its superiority over nine baselines, including statistical metric-based methods, two score-aware
approaches, and a full data fine-tuned baseline across various base models (LLaMA-3.1-8B,
LLaMA-2-7B-hf, and Mistral-7B-v0.3). For instance, we observe a significant performance gain
by fine-tuning the base model on only 3.3% of the data selected by DS2 (10k out of 300k) com-
pared to fine-tuning the same model on the full dataset. Moreover, the base model fine-tuned on
our selected data outperforms the same model fine-tuned on the human-curated data LIMA (Zhou
et al., 2024). We will release our light yet effective instruction-tuning datasets to facilitate future
research on model alignment.

2 RELATED WORK

Data selection and filtering are essential for improving LLM performance in instruction tuning.
Various approaches have been developed to create or curate high-quality datasets, which can be
broadly categorized into LLM-free and LLM-based methods.

LLM-free data selection Cao et al. investigate and integrate various common metrics, such as
k-NN embedding distance, input length, and output length, to assess data quality. He et al. (2024)
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Figure 2: Comparison of score distributions across different rating models.

propose a Shapley-value-based metric for data selection. Xie et al. (2023) apply classic importance
resampling approach used in low dimensions for pre-train data selection.

LLM-based data selection Many recent studies leverage LLMs themselves as data selectors, fil-
tering and identntifying high-quality data samples (Chen et al., 2023; Liu et al., 2023a; Lu et al.,
2023; Li et al., 2023a). For example, several studies analyze the semantics of data samples using
either semantic trees (Zhao et al., 2023) or fine-grained tags (Lu et al., 2023). Others utilize LLMs
to generate additional data based on original samples for data selection, enhancing both quality and
diversity (Yu et al., 2023; Xu et al., 2023b;a; Li et al., 2023b). Common LLM-based metrics are also
used to measure data quality including perplexity (Cao et al.), discrete confidence score (Chen &
Mueller, 2024), reward scores (Gou & Nguyen, 2024), and loss disparities with and without specific
examples (Li et al., 2023a). Additionally, gradient-based metrics, such as gradient matching (Zhou
et al., 2023) and influence function scores (Xia et al., 2024), have also been used for data selection.

Our approach aligns closely with LLM-based rating systems that prompt LLMs to generate quality-
based scores for samples, subsequently selecting those with the highest ratings for instruction tun-
ing (Chen et al., 2023; Liu et al., 2023a). Specifically, Chen et al. (2023) concentrate exclusively on
data quality, while Liu et al. (2023a) emphasize the importance of data diversity. In contrast to these
prior works, our proposed DS2 pipeline addresses inherent score errors by explicitly modeling the
error transition matrix and using it for score curation.

3 UNDERSTANDING THE ERROR PATTERN OF LLM SCORES

3.1 PROMPT-BASED LLM RATING

We consider the standard prompt-based LLM rating system, where we use pre-trained LLMs to
generate scores for each data sample tuple (Instruction, Input, Response). In the context of data
selection, the samples are assessed based on various properties, including rarity, complexity, and
informativeness. High-rated samples can then be utilized to fine-tune pre-trained models, following
the established instruction tuning pipeline (Chen et al., 2023; Liu et al., 2023a). The prompt template
used in this process is detailed in Table B.2.

Table 2: Data pool statistics

Datasets Data size

Flan V2 100K
Open-Assistant 1 33K
WizardLM 100K
Dolly 15K
Stanford Alpaca 52K

Overall 300K

Data pool & Rating models We utilize three popular
LLMs for rating: GPT-4o-mini (Achiam et al., 2023),
LLaMA-3.1-8B-Instruct (Dubey et al., 2024), and
Mistral-7B-Instruct-v0.3 (Jiang et al., 2023).
The data pool consists of five instruct-finetuning datasets:
Flan_v2 (Longpre et al., 2023), Open Assistant 1 (Köpf
et al., 2024), WizardLM (Xu et al., 2023a), Dolly
(Databricks, 2023), and Stanford Alpaca (Taori et al.,
2023). Detailed statistics of our data pool is provided in
Table 2.

Score distribution analysis We rate the data samples on an integer scale from 0 to 5. The distri-
butions of these rated scores across various models are summarized in Figure 2. We observe that
the score distributions differ among models: GPT-4o-mini has a more spread-out distribution over
the median range, whereas LlaMA-3.1-8B-Instruct and Mistral-7B-Instruct-v0.3 focus heavily on
the score of 3. Moreover, these models often do not agree on their ratings. For instance, the over-
lap between GPT-4o-mini and LlaMA-3.1-8B-Instruct is minimal, with only 229 samples (5.5% of
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LLaMA’s) rated at 5 by both models. In contrast, Mistral-7B-Instruct-v0.3, despite having fewer
samples rated at 5, shares 118 samples (24.2% of Mistral’s highest score) with GPT-4o-mini. This
suggests that the pre-trained knowledge of LLaMA-3.1-8B-Instruct diverges significantly from that
of GPT-4o-mini, while Mistral-7B-Instruct-v0.3 is more aligned with GPT-4o-mini. Our subsequent
experimental results further support this observation.

3.2 SCORE TRANSITION MATRIX

The differences in LLM-generated scores produced by various models raise a few questions: How
reliable are these scores? Are there inherent errors or inaccuracies? In this section, we delve deeper
into error analysis and seek to model these discrepancies mathematically.

We consider a data pool comprising N samples, denoted as D := {xn, ỹn}Nn=1. Here, x represents
the embedding vector of the data sample (Instruction, Input, Response)1, ỹ denotes the rated score
generated by a LLM. We use y to represent the unobserved ground-truth score. We assume that
both the ground-truth score y and the rated score ỹ are in the same discretized K-class classification
space Y . In our case, we have K = 6 as the scores range from 0 to 5.

Zhu et al. (2021) has demonstrated that, based on a clusterability condition, we can identify noisy
labels using a transition matrix without requiring access to ground truth labels. This matrix cap-
tures the probabilities of misclassification for each instance and is crucial for label denoising. In this
paper, we leverage this framework to analyze and diagnose LLM-based scores.

Definition 3.1 (Score Transition Matrix) The transition matrix T (x) is defined as a K×K square
matrix, where x is the embedding feature vector. Each entry Ti,j(x) indicates the probability of
transitioning from ground-truth score i to the observed rated score j, i.e.,

Ti,j(x) = P(ỹ = j|y = i,x), ∀i, j ∈ [K].

In this paper, we assume that the transition matrix is independent of sample-level features x,
i.e., T (x) ≡ T . Ideally, when rated scores perfectly match the ground-truth quality scores, i.e.,
ỹn = yn,∀n, then the transition matrix would be equivalent to the identity matrix, i,e, T (x) = I . In
this case, no error would occur. Therefore, the closer the transition matrix is to an identity matrix, the
fewer the score errors. Although we do not have access to the ground-truth scores to directly com-
pute T , we can still estimate it automatically using the LLM-generated scores under the following
clusterability condition (Zhu et al., 2021).

Definition 3.2 (k-NN score clusterability) The data pool D satisfies k-NN score clusterability if,
for all n, the feature xn and its k-Nearest Neighbors xn1

, . . . ,xnk
belong to the same ground-truth

class.

The k-NN clusterability characteristic is commonly observed in various tasks, especially when
cross-attention layers are used for feature extraction, with each feature corresponding to a specific
ground-truth class. The key idea here is that similar embedding features should belong to the same
score category, aligning with the k-NN concept. In this paper, we will use 2-NN clusterability.

Deriving the score transition matrix For a K-class classification problem, we define the ground-
truth score probability distribution as p := [P(y = i), i ∈ [K]]T, and the score transition matrix as
Ts := T · As,∀s ∈ [K], where As := [es+1, es+2, · · · , eK , e1, e2, · · · , es] is a cyclic permuta-
tion matrix, and es is the K × 1 column vector with 1 at the s-th position and 0 elsewhere. The
permutation matrix As cyclically shifts each column of T to its left side by s units. We define
(i + s)K := [(i + s − 1) mod K] + 1 to be the index after performing the cyclic shift within the
range of K.

Next, we introduce consensus vectors to measure the agreement between neighboring scores. Let
ỹ1, ỹ2, ỹ3 be the scores for three neighboring embedding features. We define:

v[1] := [P (ỹ1 = i) , i ∈ [K]]
>
= T>p

v
[2]
l := [P (ỹ1 = i, ỹ2 = (i+ l)K) , i ∈ [K]]

>
= (T ◦ Tl)

>
p

v
[3]
l,s := [P (ỹ1 = i, ỹ2 = (i+ l)K) , ỹ3 = (i+ s)K) , i ∈ [K]]

>
= (T ◦ Tl ◦ Ts)

>
p

(1)

1Embedding model: BAAI/bge-large-en huggingface.co/BAAI/bge-large-en-v1.5
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where ◦ denotes the Hadamard product. These consensus vectors quantify how likely neighboring
embedding features share the same scores, and score transition probability information is directly
encoded into this score agreement. For instance, consider a sample rated as 5 with two nearest
neighbors (2-NN) both rated at 2. Then, the agreement between 2-NN scores and disagreement
between high rating of 5 and low rating of 2 are controlled by certain probabilities, i.e., T and p,
shown in Eq. (1). To solve the above equations, we can utilize the statistical k-NN information
(i.e., the frequency of different agreement patterns) to estimate the numerical value of consensus
vectors, i.e., LHS of Eq. (1). Given the available estimated values of consensus vectors, Eq. (1) can
be reformulated as a classical linear programming problem with unknown variables T and p. Liu
et al. (2023b); Zhu et al. (2021) further proved that solving the above problem in the third-order
consensus vectors setting is sufficient to obtain the estimates for T and p. For more details, please
refer to the Appendix C.

Figure 3: Comparison of score transition matrices across different rating models.

Analyzing the score transition matrix With the estimated T , we can effectively identify and
analyze the score errors produced by various rating models, allowing us to correct inaccurate scores.
Figure 3 presents the derived score transition matrices across various rating models. Intuitively,
compared to GPT-4o-mini, the other two models exhibit more score errors. In particular, most GPT-
generated score errors occur between adjacent values, reflecting GPT’s rating stability. In contrast,
the other two models show more variation in their ratings, indicating their weaker ability to measure
data quality consistently. For instance, Mistral has a high probability (0.48) of misrating samples
with a score of 3 as a 1, indicating greater variability and less consistency in its scoring.

Practicality of k-NN clusterability hypothesis Note that the k-NN clusterability hypothesis may
be violated in practice. However, the consensus vectors rely on the average probabilities across all
2-NN clusters, allowing statistical information from the remaining samples to mitigate corruption
caused by a small number of violations. As a result, our method can tolerate a proportion of k-NN
violations. More analysis can be referred to Appendix C.3.

4 DS2: DIVERSITY-AWARE SCORE CURATION METHOD FOR DATA
SELECTION

Our data selection pipeline, DS2, consists of four key steps:

1. Prompt-based LLM rating: In this step, we generate an initial quality score for each data
sample using pre-trained LLMs (Section 3.1).

2. Curated quality score generation: This step corrects potential rating score errors from the
previous step by leveraging the Score Transition Matrix (Section 3.2) to derive a curated quality
score (Section 4.1).

3. Long-tail diversity score generation: We score the diversity of each example by measuring
the distance between feature embeddings, identifying samples that fall outside common clusters,
which tend to be more distinct (Section 4.2).

4. Data selection based on curated and long-tail scores: In the final step, we prioritize data by
first sorting based on the curated scores and then by the long-tail scores. This dual sorting strat-
egy helps with removing poor-quality outliers while ensuring a diverse, high-quality dataset.
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We illustrate the pipeline in Figure 1. The complete pseudo-code is available in Algorithm 1.

4.1 CURATED QUALITY SCORE

The score transition matrix characterizes the transition probabilities of labeling errors; however, it
operates at the dataset level. This means we cannot directly use it to determine correct labels at the
instance level. Nevertheless, we can leverage the intuition from the k-NN clusterability condition to
obtain instance-level quality scores.

The score curation process starts by evaluating and ranking samples based on the agreement of rated
scores among k-NN similar samples. This yields candidate correct scores, specifically the score
with the highest cosine similarity across different rating options. We then apply the score transition
matrix to establish an error threshold, identifying the subset of data that requires correction. Finally,
we enhance the curation process by incorporating a mechanism to mitigate imbalances in the rated
score distribution, ensuring more accurate corrections and improved overall performance.

k-NN agreement score We adopt the cosine similarity measure to evaluate each instance:

SIMILARITYSCORE (v1,v2) =
v>
1 v2

‖v1‖2 ‖v2‖2
,

where v1 and v2 represent general vectors, which could either be an embedding features xn or
one-hot encoding rated score vector ỹn. To calculate the score agreement using Eq. (1), one can
directly input the one-hot encoding of the original sample score ỹn and the soft k-NN score of the
n-th sample ỹk-NN

n , which can be calculated by counting the score agreement among the k neighbor
examples when the k-NN clusterability hypothesis holds.

Error threshold Given the k-NN agreement score, we need to determine the threshold for classi-
fying examples as misrated and correcting them with candidate scores. Recall that in Section 3.2, we
derive the score transition matrix T and ground-truth score distribution p by solving the LP formed
from Eq. (1). The threshold for identifying misrated samples can then be estimated using Bayes’
rule with T and p:

THRESHOLD : Ñi ≈ Ni × P(y 6= i | ỹ = i) = Ni ×
(
1− P(ỹ = i | y = i) · P(y = i)

P(ỹ = i)

)
where Ni is the sample size for i-th rated score, P(ỹ = i | y = i) is the score transition probability
from T and P(y = i) denote the ground-truth score probability from p. The rated score probability
P(ỹ = i) is estimated by counting the frequency of the original scores.

Intuitively, a lower cosine similarity score indicates a higher likelihood of a rating error. Therefore,
the lowest-ranking Ñi samples are deemed misrated and should be corrected using the candidate
scores suggested by the k-NN agreement, specifically those with the highest cosine similarity among
the different rating options.

Mitigating imbalances in LLM-based scores The rated score distribution is often not uniform
across all scores, as illustrated in Figure 2. Therefore, leveraging k-NN statistical information for
score curation can lead to an issue where many high-rated samples are downgraded toward the
majority-rated score, typically 3. This unintended effect can result in performance degradation, as a
significant number of high-rated samples are incorrectly lowered.

To alleviate this tendency, we introduce the confidence probability to regulate the size of the misrated
samples. This is defined as P(ŷn = j) := P(ŷn = j) × pn where ŷn represents the curated score
of sample n, P(ŷn = j) is the average probability of assigning sample n to the j-th score, and
pn denotes the average likelihood of identifying the sample n as misrated over multiple epochs.
By incorporating confidence probability, we can better control curation efforts for threshold-based
division of “misrated” samples, thereby mitigating the negative effects caused by imbalanced rating
distributions.

4.2 LONG-TAIL DIVERSITY SCORE

Ensuring diversity in data samples is critical, particularly when selecting a high-quality subset for
instruction fine-tuning (Wang et al., 2023). Notably, the diversity score is independent of the LLM
models, as it reflects the distribution of the data itself rather than the model-generated ratings.

6
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Table 3: Performance comparison on OpenLLM leaderboard using the data pool listed in Table 2.
By default, the selected data size is 10K. Base model: LLaMA-3.1-8B. We highlight the best result
in boldface and the second-best with underline.

Model MMLU TruthfulQA GSM BBH TydiQA Average
(factuality) (truthfulness) (reasoning) (reasoning) (multilinguality)

VANILLA BASE MODEL 64.1 33.5 56.5 55.4 23.3 46.6
COMPLETION LENGTH 64.2 41.4 62.5 60.7 23.0 50.4
PERPLEXITY 63.1 40.4 55.5 60.2 62.1 56.3
k-NN-10 62.4 44.3 57.0 59.1 63.8 57.3
RANDOM SELECTION 63.4 39.1 62.2 61.3 61.1 57.4
LESS 63.0 39.0 57.5 63.1 67.2 58.0
FULL DATA (300K) 63.5 42.0 61.0 59.1 62.8 57.7

Rating model: LLaMA-3.1-8B-Instruct
ALPAGASUS 63.1 42.4 59.5 60.9 64.8 58.1
DEITA 64.1 35.3 60.0 60.8 63.0 56.6
OURS W/O CURATION 63.4 50.2 61.5 59.3 61.7 59.2
OURS 63.8 45.4 62.5 61.2 67.9 60.2

Rating model: GPT-4o-mini
ALPAGASUS 63.4 42.6 66.0 59.1 59.4 58.1
DEITA 64.5 50.1 60.0 60.3 63.7 59.7
OURS W/O CURATION 63.3 51.5 62.0 59.7 64.3 60.2
OURS 64.0 50.3 67.5 59.0 66.1 61.4

Rating model: Mistral-7B-Instruct-v0.3
ALPAGASUS 63.2 45.8 62.0 60.5 62.2 58.7
DEITA 63.9 50.3 61.0 60.4 62.8 59.7
OURS W/O CURATION 63.0 48.2 67.0 59.2 65.9 60.7
OURS 63.3 53.9 62.0 61.1 65.1 61.1

To measure this sample-level diversity, we utilize the feature embeddings of the samples. Specif-
ically, we compute the average cosine similarity between a sample embedding and its k-Nearest
Neighbors, defining this as the diversity-aware long-tail score. Intuitively, a higher long-tail score
indicates greater diversity among the samples. In Figure 4, we illustrate two examples: one with a
high diversity score (blue), where neighbors are far from the sample, and another with a low diversity
score (red), where neighbors are clustered closely around the sample.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Figure 4: Examples with high and low long-
tail scores.

Base models In this paper, we select three popu-
lar and well-known open-source LLMs as our base
models, including LLaMA-2-7B (Touvron et al.,
2023), LLaMA-3.1-8B (Dubey et al., 2024) and
Mistral-7B-v0.3 (Jiang et al., 2023). These base
models will be fine-tuned using selected data to eval-
uate the performance of data selection methods.

Baselines Several recent methods are adopted as
our baselines for performance comparisons: (1)
Random Selection selects examples randomly; in all
experiments, we present the average result of three
trials using different random seeds for data selec-
tion. (2) Completion Length uses the length of the
whole conversation as a metric to estimate the data
quality (Zhao et al., 2024). Intuitively, the higher the
completion length, the higher the data quality; (3) Perplexity of the responses computed with the
pre-trained model in a zero-shot manner is used as the metric. We collect the perplexity scores from
LLaMA-3.1-8B-Instruct model. A large perplexity score measures the difficulty or rarity of the
data sample; (4) k-NN uses the average distance to k nearest neighbors in SentenceBERT (Reimers,
2019) embedding space as the metric. Generally, a greater distance indicates that the data sample
is rarer; (5) AlpaGasus (Chen et al., 2023) utilizes ChatGPT to rate data samples and solely select

7
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Table 4: Performance comparison between LIMA and DS2 under various rating models. We use the
initial letter to denote the rating model, e.g., Ours(L) refers to our method with LLaMA-generated
scores (Ours (LLaMA)). Rating models: LLaMA-3.1-8B-Instruct, GPT-4o-mini, and Mistral-7B-
Instruct-v0.3. Base models: LLaMA-3.1-8B and Mistral-7B-v0.3. The selected data size is 1k. We
highlight the best result in boldface and the second-best with underline.

LLaMA-3.1-8B Mistral-7B-v0.3
LIMA OURS(L) OURS(G) OURS(M) LIMA OURS(L) OURS(G) OURS(M)

MMLU 64.0 63.2 64.1 63.9 60.0 59.8 59.5 59.8
TruthfulQA 32.1 4.4 29.1 14.3 33.3 30.7 34.0 33.3
GSM 59.5 59.0 62.0 56.0 42.5 43.0 42.0 41.5
BBH 57.2 56.7 58.5 59.9 52.1 52.6 52.3 52.5
TyDiQA 38.3 63.2 60.5 61.9 51.7 56.7 57.6 56.0

Average 50.2 49.3 54.8 51.2 47.9 48.6 49.1 48.6

high-rated samples; (6) DEITA (Liu et al., 2023a) jointly uses ChatGPT to rate data samples based
on complexity and quality. Considering the substantial increase in dataset size–six times larger–
resulting from Evol Instruct (Xu et al., 2023a) and the associated costs, we take our scores as an
alternative. For enhancing diversity, it iteratively selects data samples by setting a threshold to the
embedding distance to filter out outliers; (7) LESS (Xia et al., 2024) rates data samples according to
the influence score calculated from the gradient of the data sample and a specific validation dataset.
(8) Full Data utilizes the entire data pool to finetune the pre-trained models.

(a) Vicuna_Bench (b) MT_Bench

Figure 5: Performance of models fintuned on DS2 (1k samples, machine-curated) v.s. LIMA (1k
samples, human-curated). We use the initial letter to denote the rating model, e.g., Ours (L) refers
to our method with LLaMA-generated scores (Ours (LLaMA)).

5.2 OPENLLM LEADERBOARD EVALUATION RESULTS

We adopt five OpenLLM Leaderboard tasks as our benchmark for evaluation, including MMLU
(Hendrycks et al., 2020), TruthfulQA (Lin et al., 2021), GSM (Cobbe et al., 2021), BBH (Suzgun
et al., 2022), TydiQA (Clark et al., 2020). For MMLU, TruthfulQA, GSM, and BBH datasets, we
use Exact Match (EM) as the criteria. For TydiQA dataset, we consider using the 1-shot F1 score.

3.3% of the data outperforms the full data pool Table 3 demonstrates the performance of DS2 as
well as nine baselines. In particular, we further compare two score-aware baselines (AlpaGasus
and DEITA) across different rating models. As shown in Table 3, DS2 consistently obtains the
best performance compared to all baselines. Remarkably, under different rating model settings,
DS2 (with only 10k selected samples) still achieves significantly better performance than using the
full data pool (300k), up to 96.7% data reduction. More experimental results on various base models
are provided in the Appendix (Tables 11 and 12). Besides, to emphasize the superiority of DS2,
additional experiments are conducted in Appendix G.6, replicating the same settings as AlpaGasus.
A noteworthy finding is that DS2significantly outperforms AlpaGasus with an improvement of 15%
in average performance, even when DS2employs the weaker rating model GPT-4o-mini, in contrast
to AlpaGasus’s rating model, GPT-4.

Weaker models rating w. score curation ≈ GPT-4o’s rating Intuitively, without score curation,
we observe in Tables 3 that different rating models can affect overall performance for all score-
aware methods including ours. The experimental results match their detected score errors. For
instance, as shown in Figure 3, the LLaMA-3.1-8B-Instruct model has more score errors than the
other two models, resulting in a performance drop. Notably, when applying score curation for
LLaMA and Mistral, their average performances (60.2 for LLaMA and 61.1 for Mistral) match or
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(a) Vicuna_Bench (b) MT_Bench

Figure 6: Performance of models fintuned on DS2 (10k samples, machine-curated) v.s. LIMA (1k
samples, human-curated). We use the initial letter to denote the rating model, e.g., Ours (L) refers
to our method with LLaMA-generated scores (Ours (LLaMA)).

Figure 7: Data scaling efforts of baselines across various rating models. Base model: LLaMA-3.1-
8B. The Y-axis is the performance of OpenLLM leaderboard. The X-axis means the # samples used.

even surpass GPT’s average performance without curation (60.2). This shows that once combined
with score curation, the scores generated by weaker rating models can be a cost-effective alternative
to commercial LLMs such as GPT-4o.

Score curation works for all rating models Table 3 also highlights the performance gap of
DS2 with and without score curation. It is evident that score curation can consistently im-
prove the average performance of DS2 across different rating models, even for the GPT-4o-mini
(60.2 → 61.4). Additional results on various base models, provided in the Appendix (Table 16),
consistently support this claim.

5.3 HUMAN ALIGNMENT V.S. MACHINE ALIGNMENT

DS2 can be an alternative to LIMA To assess the overall quality of the dataset generated by
DS2, we finetune two base models using human-annotated dataset LIMA (1k samples) (Zhou et al.,
2024). To match this data size, we generate a 1k-sample dataset using DS2. We then compare the
performance of models fine-tuned on 1k version selected datasets with those models fine-tuned on
LIMA. In particular, Table 4 demonstrates the openLLM leaderboard performance for LIMA and
ours across various rating models.

Besides, to evaluate alignment performance, we further utilize two challenging and popular bench-
marks, Vicuna-Bench (Chiang et al., 2023) and MT-bench (Zheng et al., 2023) for LLM judging.
These two datasets both contain questions across various domains, including generic, coding, math,
and reasoning, which can be sufficient to access the instruction-following ability. We employ GPT-
4o-mini as the judge model to compare the corresponding models’ responses with the judge template
as referenced in (Zheng et al., 2023). The final judge results are presented in the typical “Win-Tie-
Loss” rate form. We compare our results with LIMA using data selected by DS2 at both 1k and 10k
data volumes. Figure 5 demonstrates that DS2 can totally match or even outperform the LIMA in
the 1k setting. In the 10k sample size setting, as shown in Figure 6, DS2 can obtain even greater per-
formance improvements over LIMA. Therefore, it is evident that DS2 can serve as a cost-effective
alternative to human annotations.
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Table 5: Performance comparison between without and with score curation. Rating Model: GPT-
4o-mini. Results are presented as (without curation / with curation). Base models: LLaMA-3.1-8B
and Mistral-7B-v0.3.

LLaMA-3.1-8B Mistral-7B-v0.3
ALPAGASUS DEITA OURS ALPAGASUS DEITA OURS

MMLU 63.4 / 64.1 64.5 / 64.6 63.3 / 64.0 60.5 / 60.0 60.1 / 59.9 60.1 / 59.9
TruthfulQA 42.6 / 48.2 50.1 / 45.5 51.5 / 50.3 36.7 / 39.8 35.6 / 41.1 35.9 / 37.9
GSM 66.0 / 61.5 60.0 / 64.0 62.0 / 67.5 41.0 / 41.5 40.5 / 42.5 48.5 / 47.5
BBH 59.1 / 58.9 60.3 / 61.8 59.7 / 59.0 55.1 / 53.6 55.1 / 55.3 54.2 / 55.6
TydiQA 59.4 / 64.8 63.7 / 67.1 64.3 / 66.1 57.3 / 56.5 56.0 / 56.4 58.9 / 59.3

Average 58.1 / 59.5 59.7 / 60.6 60.2 / 61.4 50.1 / 50.3 49.5 / 51.0 51.5 / 52.0

6 ABALTION STUDY

6.1 REVISITING DATA SCALING LAWS

We conduct experiments under subsets with different data volumes to investigate the data scal-
ing efforts. Compared to several representative baselines, Figure 7 illustrates that our method can
consistently obtain the best data selection performance across different data budgets. From this per-
spective, while data quality matters, redundant samples are uninformative and unnecessary or even
detrimental to model performance due to overfitting. Furthermore, we also compare the average
performance with and without score curation. One interesting phenomenon is that while the non-
curated method achieves good performance more quickly, the curated method ultimately performs
better. This reason is due to some high-rated samples, especially those rated 5, being marked down
during score curation, reducing the number of top-rated samples, as shown in Appendix (Figure 11).

6.2 EXPLORING THE IMPACT OF SCORE CURATION Table 6: Maximum performance
gap across various rating models.
Base model: LLaMA-3.1-8B.

Performance gap ↓
Data scale Without / With

2.5k 2.40 / 1.0
5k 3.83 / 1.20

10k 1.76 / 0.90
20k 1.73 / 0.20
40k 1.44 / 1.63

Average 1.60 / 0.70

Score curation is beneficial for score-aware baselines Ta-
ble 5 further presents the experimental results of the other
score-aware baselines (AlpaGasus and Deita) using the curated
scores. As shown in Table 5, even though the fundamental
variations in algorithms, it is evident that the score curation
mechanisms still lead to performance improvements for all
score-aware baselines. The full results using different rating
models are presented in the Appendix (Table 16).

Score curation improves rating robustness Furthermore,
we explore the impact of score curation using different rat-
ing models. We compare the average performance results of
DS2 between without and with score curation in Table 6. For convenience, Table 6 also demon-
strates the maximum performance gap across three rating models under different data sizes in the
right table. Notably, it is evident that with score curation, the average performance across rating
models is more stable and shows improvement.

7 CONCLUSION

In this paper, we challenge traditional data scaling laws in instruction tuning by introducing DS2,
a novel data selection pipeline that curates LLM-rated quality scores to improve data efficiency.
Through the systematic exploration of error patterns in LLM-rated data quality scores, we developed
a score curation mechanism to correct inaccuracies and enhance the effectiveness of selected data.
Empirically, DS2– using only 3.3% of the original data – outperforms training on the full dataset
(300k samples) and even exceeds the performance of the human-aligned dataset “LIMA” with the
same sample size (1k samples). This demonstrates that smaller, high-quality datasets can achieve
superior results by avoiding performance drops caused by low-rated or redundant data, revising the
traditional scaling laws that suggest more data is always better. By curating LLM-driven rating
scores, DS2 not only improves data efficiency, but also offers a cost-effective alternative to large-
scale datasets and human annotations. Our results highlight the importance of data quality over
quantity in instruction tuning and show how score curation can mitigate LLM biases, leading to
improved model alignment and downstream performance. In conclusion, this work underscores the
need to rethink data scaling laws in light of more efficient, curated data selection methods.
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Ethical Statement In this work, we address the ethical concerns related to the automation of data
curation using large language models (LLMs). While our approach reduces reliance on extensive
human annotation, we recognize that automating data curation could propagate biases inherent in
the LLMs used for scoring, potentially amplifying societal biases and inaccuracies. To mitigate
this, we incorporated a diversity-aware component into the DS2 pipeline to promote the selection
of diverse data samples and correct known errors in the scoring process. Throughout this research,
we prioritized transparency, ensuring that the methodologies used in curating the datasets are fully
disclosed. We also acknowledge the environmental impact of training large models and have actively
worked to minimize computational costs by demonstrating that smaller, curated datasets can perform
better than larger, redundant datasets. We affirm our commitment to further exploring the ethical
implications of automated data curation in future work.

Reproducibility Statement We are committed to ensuring the reproducibility of our research. To
this end, we will provide detailed descriptions of our methodology, including the DS2 pipeline and
the score transition matrix used to model error patterns in LLM-based scoring. All hyperparameters,
model architectures, and training protocols will be made available in the supplementary material and
through a public repository. In addition, the curated datasets, along with the code for implementing
the diversity-aware selection mechanism, will be open-sourced to enable independent verification
and replication of our results. Furthermore, we have taken steps to ensure that all experiments are
performed in a consistent and reproducible manner, and we will document any potential sources of
variability or limitations that may affect reproducibility.
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APPENDIX

ORGANIZATION OF THE APPENDIX

• Section A illustrates the limitations of this work.
• Section B provides more details of prompt-based LLM rating systems including more details of

the data pool and prompt template.
• Section C presents a warm-up binary example to illustrate how to derive the score transition

matrix, and the algorithm details of our proposed data selection pipeline DS2. In Appendix C.3,
we analyze the k-NN clusterability hypothesis in detail. Besides, several 2-NN samples are also
provided to evaluate the k-NN clusterability hypothesis.

• Section D explore the impact of embedding models.
• Section E further explores the impact of score curation on examples by analyzing the rated score

distribution, subset distribution as well as the score transition matrix.
• Section F demonstrates training and evaluation details.
• Section G provides more experimental results, including more OpenLLM leaderboard evaluation,

LLM judge evaluation, exploring the curation impact on score-aware methods, comparison with
LIMA, new combined baseline which concatenating high-rated examples across rating models.

• Section H analyzes the computational complexity and runtime.
• Section I explore the impact of diversity score used for data selection.
• Section J presents several wrongly-rated examples.

A LIMITATIONS

While the proposed method demonstrates competitive performance compared to other baselines, we
acknowledge that there are still potential limitations:

• Sample-independent assumption. The sample-independent assumption is critical for deriving
the transition matrix T and the true score probability distribution p. However, this assumption
may be somewhat strong and could inevitably introduce certain data-specific errors. Exploring
weaker assumptions, such as group-dependent approaches, could be a valuable direction for future
research.

• k-NN clusterability. The k-NN clusterability definition implies that similar embedding vectors
should correspond to the same rating score or class, a characteristic commonly leveraged in im-
age classification tasks. However, in text-related tasks, highly similar text can convey opposite
semantic meanings due to subtle differences, such as a single word change. To address this chal-
lenge, powerful embedding models are essential to accurately distinguish these subtle differences
and effectively capture the underlying semantic meaning.

• Model scale. Our experiments are primarily conducted on pre-trained models at the 7B/8B scale.
It remains uncertain how well the method would perform on larger-scale pre-trained models.

• Rating models. Due to cost considerations, we use the more affordable GPT-4o-mini to generate
GPT-level scores. It is unclear whether the score curation mechanism works for more powerful
GPT models (e.g., GPT-4 or GPT-o1).

B PROMPT-BASED LLM RATING SYSTEMS

B.1 DATA POOL

The data pool used in this work consists of four proceed datasets, which originate either from human
annotations or generated by powerful LLMs. More details about these datasets are provided in
Table 7. In particular, these datasets vary in the format, quality, prompt length, and target tasks,
demonstrating the diversity of our basic data pool. For convenience, we standardize the format of
these datasets by using the “Tulu” template format introduced by Wang et al. (2023). The “Tulu”
template consists of two main tags <|User|> and <|Assistant|>, reflecting the respective role of the
user and the assistant.
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Table 7: Details of training datasets used in this work. WizardLM and Flan_v2 are sampled to 100K
to match the dataset size. We report the average number of conservation turns (N̄rounds), average
length of prompts (L̄prompt), average length of response (L̄response).

Datasets Sourced from # Data size Data quality N̄rounds L̄prompt L̄response

FLAN V2 Human-generated instruction 100K Normal 1.0 304.1 27.7
OPEN-ASSISTANT 1 human-generated instruction 33K Both 1.6 32.3 189.1
WIZARDLM ChatGPT-generated instruction 100K High 1.0 122.3 352.5
DOLLY Human-generated instruction 15K Normal 1.0 99.5 79.3
STANFORD ALPACA Generated w/ Davinci-003 52K Normal 1.0 23.5 56.4

B.2 QUALITY-BASED PROMPT TEMPLATE

The prompt template used in this work across various rating models is presented as follows. Our
prompt template mainly accesses the data quality based on three criteria including rarity, complexity,
and informativeness. For clarity and convenience, we adopt a JSON format to better capture the
evaluation scores, following the LLaMA-3.1 template2, as shown in Table B.2,.

Prompt Template for LLM Rating

<System Prompt>: As a data quality estimator, your task is to assess the quality of the
data sample based on the criteria: Rarity, Complexity, and Informativeness. Please rate
the sample on a scale from 1 to 10 for each criterion, and return an overall rating on
a scale from 1 to 10, where a higher score indicates a higher level of quality. Ensure
that the ratings are not overly concentrated around a specific score. If multiple samples
have similar qualities, consider spreading the scores more evenly to reflect subtle differences.

<User Prompt>: Now, please carefully evaluate the following data sample and return the
integral evaluation scores using the JSON format:

{"Rarity": <number, 1-10>,
"Complexity": <number, 1-10>,
"Informativeness": <number, 1-10>,
"Overall rating": <number, 1-10>}

Instruction: [Instruction]
Input: [Input]
Response: [Response]

Rated score rescaling Initially, to capture the subtle differences between data samples, we first
prompt the LLMs to rate them on a continuous integer scale {1, 2, · · · , 10}. Intuitively, a lower
score indicates that the data sample is of lower quality. To simplify the score distribution, we first
merge the lower scores in {1, 2, 3, 4} and the higher scores in {9, 10}, resulting in a new scale of
{4, 5, · · · , 9}. For ease of convenience, we then shift this scale down to {0, 1, · · · , 5}. Note that
we focus primarily on high-rated samples in LLM ratings, so merging low-rated examples would
not affect the overall performance and is more convenient for analyzing score errors in Section
3.2. Directly rating samples on a small scale of {0, 1, · · · , 5} seems more convenient but fails to
capture the subtle difference between samples, especially among higher-rated samples. Meanwhile,
this commonly leads to the issue where most of the samples are rated as 3. Starting with a larger
scale and then narrowing it down allows LLMs to distinguish subtle quality differences in mid-rated
samples better, improving performance.

C DATA SELECTION PIPELINE DS2

C.1 WARM-UP OF DERIVING SCORE TRANSITION MATRIX: A BINARY EXAMPLE

For a gentle start, let us consider a binary case (K = 2) with two types of scores {0, 1}. Here, y
represents the ground-truth score, while ỹ denotes the observed noisy score. We define the error
rates (transition probabilities) as e01 := T (0, 1) := P(ỹ = 1 | y = 0) and e10 := T (1, 0) := P(ỹ =
0 | y = 1). According to the k-NN clusterability definition, similar embeddings are expected to

2https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_1/
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belong to the same category. Specifically, we focus on 2-NN clusterability in this work, meaning
that the scores for the three samples within a 2-NN cluster should be identical, i.e., y1 = y2 =
y3 = y. Several target samples as well as their 2-NN samples are provided in Table 10. Note
that the probabilities of the ground-truth score pi = P(y = i),∀i ∈ [K] also remain unknown. To
estimate the exact values of the error rates e01 and e10, the high-level idea is to leverage higher-order
consensus among k-NN cluster’s scores, as outlined below.

• First-order Concensuses: We have

P(ỹ1 = k) :=
∑
i∈[K]

P(ỹ1 = k | y1 = i),∀k ∈ [K]

Then, we can obtain two first-order equations:

P(ỹ1 = 0) := p0(1− e01) + (1− p0)e10

P(ỹ1 = 1) := (1− p0)(1− e10) + p0e01

• Second-order Concensuses: We have

P(ỹ1 = k, ỹ2 = k′)
(a)
=

∑
i∈[K]

P(ỹ1 = k, ỹ2 = k′ | y1 = i, y2 = i)P(y1 = i)

(b)
=

∑
i∈[K]

P(ỹ1 = k | y1 = i)P(ỹ2 = k′ | y2 = i)P(y1 = i),∀k, k′ ∈ [K]

where equality (a) holds due to the 2-NN clusterability and equality (b) holds because of the
conditional independence between ỹ1 and ỹ2 based on their ground-truth score. Four second-
order equations can be derived, e.g.,

P(ỹ1 = 0, ỹ2 = 0) := p0(1− e01)
2 + (1− p0)e

2
10,

P(ỹ1 = 1, ỹ2 = 1) := (1− p0)(1− e10)
2 + p0e

2
01

• Third-order Concensuses: We have

P(ỹ1 = k, ỹ2 = k′, ỹ3 = k
′′
) :=

∑
i∈[K]

P(ỹ1 = k, ỹ2 = k′, ỹ3 = k
′′
| y1 = i, y2 = i, y3 = i)P(y1 = i)

Similarly, from different combinations of ỹ1, ỹ2, ỹ3, we have eight third-order equations, e.g.,

P(ỹ1 = 1, ỹ2 = 1, ỹ3 = 1) := (1− p0)(1− e10)
3 + p0e

3
01

Given the known score probability information P(ỹ1 = k), P(ỹ1 = k, ỹ2 = k′) and P(ỹ1 =

k, ỹ2 = k′, ỹ3 = k
′′
), we can utilize the above equations to derive the unknown ground truth score

probability p0 and error rates e01, e10. From these error rates, the transition matrix T can then be
determined. For the entire dataset, we summarize the score probability information across all 2-NN
clusters to derive the score transition matrix.

C.2 ALGORITHM DETAILS

We provide the algorithm details of our proposed data selection pipeline in Algorithm 1.

C.3 KNN CLUSTERABILITY HYPOTHESIS ANALYSIS

Acknowledge that the k-NN clusterability hypothesis may be violated in practice. However, the
consensus vectors rely on the average probabilities across all 2-NN clusters, allowing statistical in-
formation from the remaining samples to mitigate corruption caused by a small number of violations.
As a result, our method can tolerate a proportion of k-NN violations. Intuitively, prior work (Zhu
et al., 2021) has demonstrated that even in image classification tasks, where 20% of data samples
violate the k-NN clusterability hypothesis, its method still outperforms other baselines. Empirically,
our experimental results support this claim. Furthermore, due to the unavailability of ground-truth
scores, it is infeasible to conduct experiments to explicitly detect such violations.
Therefore, we evaluate k-NN clusterability by examining the distribution of average score gaps,
which measures the score difference within one k-NN cluster. The average score gap for a target
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Algorithm 1 Proposed Data Selection Pipeline DS2

1: Input: Dataset D, EmbeddingModel, RawScores, TargetSizeM
2: Output: Selected subset D∗

3: procedure MODELING SCORE TRANSITION MATRIX(Dataset, EmbeddingModel)
4: Step-1: Encode sample tuple and estimate score transition matrix
5: features x← ENCODING(Dataset, EmbeddingModel)
6: ConsensusInfo← k-NN STATISTICS INFO(RawScores)
7: T_Est← ESTIMATETRANSITIONMATRIX(ConsensusInfo) . Consensuses Equation
8: end procedure

9: procedure SCORE CURATION MECHANISM(Dataset, EmbeddingModel)
10: Step-2: Identify and curate misrated samples
11: CosSimilarityScores← SIMILARITYSCORE(k-NNScores, RawScores)
12: ErrorThreshold←THRESHOLD(DataSize, T_Est) . Bayesian Rules
13: MisratedSamples← SCORES RANKING(CosSimilarityScores, ErrorThreshold)
14: ConfidenceProbs← IMBALANCERESCALING(MisratedSamples)
15: CuratedScores← SCORECURATION(MisratedSamples, ConfidenceProbs)
16: end procedure

17: procedure LONG-TAIL SCORING(Dataset, EmbeddingModel)
18: Step-3: Calculate the long-tail scores of examples based on k-NN distance
19: for each sample’s feature xn in D do
20: LongTailScores← SIMILARITYSCORE(feature xn, features x) . k-NN Based
21: end for
22: end procedure

23: procedure DATA SELECTION(Dataset, EmbeddingModel)
24: Step-4: Leverage curated scores and long-tail scores to derive the selected subset D∗.
25: Di← GROUPING(CuratedScores) . i represents the score for each group
26: for score i in {5, 4, · · · , 0} do . Prioritize high-rated samples
27: Sort Di by LongTailScores in descending order
28: D∗

i ← SELECTTOP(Di) . Select Top M − |D∗| samples
29: D∗←D∗ ∪ D∗

i

30: if |D∗| equals to M then
31: break
32: end if
33: end for
34: Return D∗

35: end procedure

sample is defined as the mean absolute difference between the target sample’s score and the scores
of its k nearest neighbors, i.e.,

Average score gap = Mean(|target samples score - kNN sample’s score|).

In our work, we focus on 2-NN clusterability and frame our analysis within this context. Specifi-
cally, for each 2-NN cluster, we consider a target sample and its two nearest neighbors. For example,
given a 2-NN cluster with the score tuple: (target sample: 1, kNN sample 1: 2, kNN sample 2: 3),
the score gap is calculated as: Average score gap = |1−2|+|1−3|

2 = 1.5.
Table 8 summarizes the statistical distribution of score gaps across all 2-NN clusters. For a clearer
visualization of score gap proportions before and after score curation, we futher provide Figure 8.

From Table 8, we observe that without score curation, GPT has a higher proportion of samples
in the 0.0–1.0 score gap range (81.0%) compared to Mistral (70.2%) and LLaMA (58.3%). This
reveals that more powerful rating models, such as GPT, tend to exhibit smaller average score gaps,
which aligns more closely with the concept of k-NN clusterability and contributes to improved
performance.
Moreover, when comparing the settings with and without score curation, we observe that all three
rating models show an increased proportion of samples in the 0.0–1.0 score gap range after score
curation. Table 9 summarizes this comparison, including the corresponding average performance on
LLM Leaderboard tasks.
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Table 8: Average score gap statistical information of all 2-NN clusters from our data pool.

Curation Model Score Gap (0.0–1.0) (%) Score Gap 1.5 (%) Score Gap 2.0 (%) Score Gap >2.0 (%)
w/o Curation GPT 81.0 12.0 4.9 2.1
w/o Curation LLaMA 58.3 18.0 12.2 11.5
w/o Curation Mistral 70.2 16.5 8.1 5.4
w/ Curation GPT 82.5 10.9 4.5 1.7
w/ Curation LLaMA 78.8 9.4 7.3 4.1
w/ Curation Mistral 80.5 10.8 5.6 4.3

Table 9: The proportion of samples in the 0.0–1.0 score gap range both with and without score
curation for each rating model. For comparison, the corresponding average performance on LLM
Leaderboard tasks is included in parentheses.

Rating Model Score Gap w/o Curation (Avg. Performance) Score Gap w/ Curation (Avg. Performance)
GPT 81.0% (60.2) 82.5% (61.4)
LLaMA 58.3% (59.2) 78.8% (60.2)
Mistral 70.2% (60.7) 80.5% (61.1)

Therefore, these results demonstrate the validity of the proposed k-NN clusterability definition.

Figure 8: Average score gap statistical information of 2-NN clusters from our data pool. The average
score gap for each target sample is defined as the average absolute score difference between the target
sample and its 2-NN samples.

In this paper, the k-NN clusterability definition is very crucial, which is based on the assumption
that embeddings capture semantic and contextual similarity for textual data, which often correlates
with quality and correctness. In this section, we will delve deeper into the underlying intuition.
Similar to image classification tasks, these high-dimensional representations map semantically simi-
lar texts to nearby points in the vector space while positioning dissimilar texts farther apart, enabling
clustering that aligns with classification categories. However, there may be a potential concern that
samples with subtle token-level differences can yield different scores due to variations in correctness
(the key factor). In fact, our scoring approach considers not just correctness but also overall quality
metrics such as rarity and informativeness, as outlined in our prompt template. This helps mitigate
the influence of correctness alone on the final score. Additionally, we evaluate quality on a granular
scale (e.g., {0, 1, · · · , 10}, later compressed to {0, 1, · · · , 5}) to reduce potential score discrepan-
cies further. We provide randomly selected examples along with their 2-NN samples to demonstrate
the validity of k-NN clusterability in our data pool, shown in Table 10. Moreover, we constructed
specific examples where the raw LLM scores and the calculated embedding cosine similarity scores
consistently align, confirming the correctness of the kNN clusterability definition.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 10: Random selected target samples and their two nearest neighbors (2-NN) from our data pool. These
examples are provided to evaluate the KNN clusterability, checking that similar embedding vectors correspond
to the same category. The LLM rating score is from GPT-4o-mini, not the ground truth score. The ground truth
score should be judged manually based on individual evaluation.

Target sample 1st nearest sample 2nd nearest sample
<|Human|>: Pick any color from
the rainbow.
<|Assistant|>: Purple.
LLM rating score: 1

<|Human|>: Pick any color from
the rainbow.
<|Assistant|>: Blue
LLM rating score: 0

<|Human|>: List the colors of the
rainbow
<|Assistant|>: Red, orange, yellow,
green, blue, indigo, and purple
LLM rating score: 1

<|Human|>: You need to complete
the following task: Calculate 15%
of the following number: 100
<|Assistant|>: 15% of 100 is 15.
LLM rating score: 1

<|Human|>: Calculate 50% of 300.
<|Assistant|>: 50% of 300 is 150.
LLM rating score: 3

<|Human|>: Calculate 15% of 500.
<|Assistant|>: 75
LLM rating score: 3

<|Human|>: what is the color of
mars?
<|Assistant|>: Rusty Red
LLM rating score: 2

<|Human|>: what is the color of
mars?
<|Assistant|>: Mars is called the
Red Planet because of its reddish
color.
LLM rating score: 5

<|Human|>: Create a multiple
choice question in which the
answer is Mars.
<|Assistant|>: Which planet is
known as the "Red Planet"?
A) Venus B) Jupiter C) Mars D)
Uranus. Answer: C) Mars
LLM rating score: 1

<|Human|>: What is the
hexadecimal representation of the
decimal number 74?
<|Assistant|>: 4A
LLM rating score: 1

<|Human|>: Write a response that
appropriately completes the
request. Convert the number 18 to
hexadecimal.
<|Assistant|>: The hexadecimal
representation of the number 18 is
0x12.
LLM rating score: 0

<|Human|>: Convert this
hexadecimal value 0xAF to its
equivalent decimal number
<|Assistant|>: 175
LLM rating score: 1

<|Human|>: Use the word
"scrumptious" in a sentence.
<|Assistant|>: The dinner was
cooked to perfection and was
absolutely scrumptious.
LLM rating score: 2

<|Human|>: Delete two words
from the following sentence to
make it a valid sentence:
I ate the most delicious dinner ever.
<|Assistant|>: I ate most delicious
ever.
LLM rating score: 2

<|Human|>: Task: Edit the
following sentence to make it more
concise: "The food that we ate for
the party was absolutely delicious."
<|Assistant|>: The food for the
party was delicious.
LLM rating score: 2

<|Human|>: List 3 applications of
artificial intelligence.
<|Assistant|>: Some applications
of Artificial Intelligence include
natural language processing, facial
recognition, and self-driving cars.
LLM rating score: 4

<|Human|>: Name 3 applications
for artificial intelligence.
<|Assistant|>: Three applications
for artificial intelligence are natural
language processing, computer
vision, and facial recognition.
LLM rating score: 3

<|Human|>: Name three artificial
intelligence applications.
<|Assistant|>: Three artificial
intelligence applications are: facial
recognition software, natural
language processing, and driverless
cars.
LLM rating score: 1

<|Human|>: Is there a negative or
positive tone to this product
review? Title: Worthless
Review: This manual has little that
applies to any Caddy and what may
be in there is hard to locate. I
found more on the internet than in
this manual!
<|Assistant|>: Negative
LLM rating score: 3

<|Human|>: Is there a negative or
positive tone to this product
review? Title: Did not use product.
Review: I did not use the product
because it had too many negative
features to it. I do not know the
process for returning items. I
would like to return this item!
<|Assistant|>: Negative
LLM rating score: 4

<|Human|>: Is there a negative or
positive tone to this product
review? Title: Terrible. review:
this product is already displaying
problems, which probably mean
that i will be returning it soon for a
replacement.
<|Assistant|>: Negative
LLM rating score: 2

<|Human|>: Is there a negative or
positive tone to this product
review? Title: Medium is a little
small. Review: Great thumb picks
with solid feel. These seem to run
on the small side and fit my thumb
"snugly" but fortunately not too
tight.
<|Assistant|>: Positive
LLM rating score: 1

<|Human|>: Is there a negative or
positive tone to this product
review? Title: Comfortable
Review: Would be a five but I was
lucky to order a size bigger then
usual and they fit ok! Could even
be a little bigger but really
comfortable!!
<|Assistant|>: Positive
LLM rating score: 1

<|Human|>: Q: Is there a negative
or positive tone to this product
review? Title: A short cut
Review: Great knives!!!! Work
great and are absolutely beautiful.
Own most of this line, and looking
for more.
<|Assistant|>: Positive
LLM rating score: 2
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Figure 9: Average embedding distances across 2-NN clusters from our data pool. The embedding
model is BAAI/bge-large-en.

D EXPLORING THE IMPACT OF EMBEDDING MODELS

By default, we use the newly released open-source model BGE as the embedding model throughout
this paper. To explore the impact of embedding models, we adopt a popular alternative SetenceBERT
(Reimers, 2019) to encode data samples. The score transition matrix across various rating models
in the SetenceBERT embedding space is provided in Figure 10. Compared to Figure 3 in the BGE
embedding space, we can observe that the impact of embedding space is limited, the choice of
embedding model does not significantly affect the error patterns produced by LLMs.

Figure 10: Score transition matrices across different rating models in the SentenceBERT embed-
ding space.

E EXPLORING THE IMPACT OF SCORE CURATION ON EXAMPLES

E.1 IMPACT OF SCORE CURATION ON DISTRIBUTION

Rated score distribution between without and with curation Here, we compare the rated score
distribution between without and with score curation, as shown in Figure 11. We observe a decrease
in the number of high-rated examples, while the number of samples with a rating of 3 has increased
significantly. The rationale behind this is that our score curation mechanism is based on k-NN
statistical information. As a result, given the imbalanced distribution of rated scores, samples with
a rating of 5 are rare and are inevitably drawn toward the majority rating of 3. Therefore, the results
in Figure 11 also highlight the importance of confidence probability proposed in Section 4.

Subset distribution of selected examples Recall that the data pool is constructed by five subsets.
Here, we summarize the statistical information of 10K samples generated by DS2, focusing on the
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Figure 11: Comparison of rated score distribution between without and with score curation.

proportion of subsets. We can observe that 60%-70% of selected examples are from Wizardlm. The
observation corresponds to the differences in data quality across five subsets summarized in Table 7.

Figure 12: Subset distribution proportion within 10K samples generated by DS2.

E.2 IMPACT OF SCORE CURATION ON SCORE ERRORS

Instead of the impact of score curation on final performance, we are also interested in the impact of
score curation on the detected score transition matrix. Figure 13 illustrates the error pattern of differ-
ent rating models after applying score curation. In comparison to the results without applying score
curation illustrated in Figure 3, the improvements are remarkable. Our score curation mechanism
can significantly reduce the probability of incorrect score transition in the matrices.

Figure 13: Comparison of score transition matrices across different rating models after applying
score curation.
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F SETUP DETAILS

Training details In our experiments, we fine-tune 7B and 8B models using four or eight NVIDIA
Tesla A100 GPUs. Following the experimental setup (Wang et al., 2023), for all experiments based
on 7B/8B models, we consistently apply Lora (Hu et al., 2021) with a rank-size of 64 and a scaling
factor of 16. Then, we set the overall batch size to 128, the learning rate at 1e-4, the training epochs
to 5, the dropout rate to 0.1, and a warm ratio of 0.03. The default maximum input length is 2048
tokens for all models.

Evaluation details In this paper, we select five tasks to conduct experiments for evaluation, con-
sisting of MMLU, BBH, GSM, TydiQA, and TruthfulQA. The hyperparameter settings mainly fol-
low recent work (Wang et al., 2023)’s. For ease of reproduction, we present some brief details
here.

• MMLU (Hendrycks et al., 2020): Following the setup of MMLU, we conduct all evaluations in
the 0-shot setting without chain-of-thoughts (CoT).

• GSM (Cobbe et al., 2021): We evaluate fine-tuned models on a randomly selected subset with
200 samples from the original test set (1319 samples). In particular, we apply 8-shot in-context
examples to simulate the CoT setting for reasoning.

• BBH (Suzgun et al., 2022): Given the official prompts provided in (Suzgun et al., 2022), we also
apply 3-shot settings without CoT to make generations. Besides, we select 40 examples from
each BBH sub-task.

• TruthfulQA (Lin et al., 2021): We prompt the fine-tuned models to generate answers for 818
TruthfulQA questions using the default QA prompt template with 6 in-context examples. Follow-
ing the setting of (Wang et al., 2023), We apply two LLaMA-2-7B-based models for judging the
generated responses’ truthfulness3 and informativeness4. Judge models will help to evaluate the
truthful and informative rate of responses, respectively. We use 8-bit quantization to allow for
efficient generation. Following (Lin et al., 2021), we finally take the Informative-Truthful Rate as
our metric, which is calculated by the numerical product of the Informative and the Truthful Rate.

• TydiQA (Clark et al., 2020): This dataset is used to evaluate the model performance in answering
multilingual questions across nine different languages. For each language, we select 100 exam-
ples. To help the models become familiar with the answer format, one in-context example is
provided during testing. We report the average F1 score across various languages in this paper.

G MORE EXPERIMENT RESULTS

G.1 OPENLLM LEADERBOARD EVALUATION RESULTS

We conduct additional experiments to evaluate the performance of the OpenLLM leaderboard across
different baselines, utilizing various base models such as Mistral-7B-v0.3 and LLaMA-2-7B-hf. Ta-
bles 11 and 12 present the results of the OpenLLM leaderboard using Mistral-7B-v0.3 and LLaMA-
2-7B-hf as the base model, respectively. Both tables consistently demonstrate the effectiveness and
superiority of our proposed pipeline DS2, following the previous claims provided in Secion 5.

G.2 LLM JUDGE EVALUATION

To evaluate alignment performance across baselines, we utilize Vicuna-Bench to access the
instruction-following ability (Chiang et al., 2023). Vicuna-Bench contains questions across nine
domains, including generic, coding, math, and counterfactual. The judge model is GPT-4o-mini.
Similarly, we present the final judge result in the typical "Win-Tie-Loss" rate form. For conve-
nience, the judge prompt template as referenced in (Zheng et al., 2023) can be found in Table 14.

We compare all baselines, including our method against the full data baseline on Vicuna_Bench, as
shown in Table 15. In particular, we conduct evaluations on two base models LLaMA-3.1-8B and
Mistral-7B-v0.3. For score-aware baselines (AlpaGasus and Deita), we also compare them
under three rating model settings. Notably, our method with curation outperforms almost all other
baselines. What’s more, in most cases, we can observe that the score curation step improves model
performance by reducing the loss rate without compromising the original win rate.

3https://huggingface.co/allenai/truthfulqa-truth-judge-llama2-7B
4https://huggingface.co/allenai/truthfulqa-info-judge-llama2-7B
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Table 11: Performance comparison on OpenLLM leaderboard. By default, the selected data size is
10K. Base model: Mistral-7B-v0.3. We highlight the best result in boldface and the second-
best with underline.

Models MMLU TruthfulQA GSM BBH TydiQA Average
(factuality) (truthfulness) (reasoning) (reasoning) (multilinguality)

VANILLA BASE MODEL 59.7 30.2 38.0 49.6 54.9 46.5
COMPLETION LENGTH 58.9 34.4 42.5 53.1 59.6 49.7
PERPLEXITY 59.8 40.3 36.0 48.9 57.4 48.5
k-NN-10 58.3 41.7 43.5 54.1 53.4 50.2
RANDOM SELECTION 59.4 36.7 41.8 54.2 54.0 49.3
LESS 59.5 34.8 42.0 54.5 57.5 49.7
FULL DATA (300K) 60.0 43.5 43.5 52.5 53.4 50.6

Rating model: LLaMA-3.1-8B-Instruct
ALPAGASUS 59.9 36.4 39.0 52.6 56.3 48.8
DEITA 60.0 37.1 43.5 54.0 57.7 50.5
OURS W/O CURATION 60.0 37.2 45.0 53.5 54.5 50.0
OURS 59.7 37.8 48.5 54.4 55.2 51.1

Rating model: GPT-4o-mini
ALPAGASUS 60.5 36.7 41.0 55.1 57.3 50.1
DEITA 60.1 35.6 40.5 55.1 56.0 49.5
OURS W/O CURATION 60.1 35.9 48.5 54.2 58.9 51.5
OURS 59.9 37.9 47.5 55.6 59.3 52.0

Rating model: Mistral-7B-Instruct-v0.3
ALPAGASUS 59.5 35.6 46.0 55.7 52.1 49.8
DEITA 59.9 40.0 43.5 56.9 53.1 50.7
OURS W/O CURATION 59.5 37.9 46.5 55.8 57.2 51.4
OURS 59.5 40.3 48.5 53.0 55.9 51.4

Table 12: Performance comparison on OpenLLM leaderboard. By default, the selected data size is
10K. Base model: LLaMA-2-7B-hf. We highlight the best result in boldface and the second-best
with underline.

Model MMLU TruthfulQA GSM BBH TydiQA Average
(factuality) (truthfulness) (reasoning) (reasoning) (multilinguality)

VANILLA LLAMA-2-7B 41.9 28.4 6.0 38.3 35.7 30.1
COMPLETION LENGTH 42.4 36.4 1.5 36.8 33.9 30.2
PERPLEXITY 45.0 41.5 12.0 31.7 39.5 33.9
k-NN-10 38.2 40.8 15.0 36.0 43.8 34.8
RANDOM SELECTION 44.7 41.8 14.0 37.9 40.8 35.8
LESS 44.3 38.2 18.0 35.2 46.3 36.4
FULL DATA (300K) 50.1 36.2 16.5 40.5 46.7 38.0

Rating model: llama-3.1-8B-Instruct
ALPAGASUS 45.1 41.2 18.0 35.6 39.8 35.9
DEITA 43.6 36.4 14.5 33.9 39.7 33.6
OURS W/O CURATION 45.4 39.7 15.0 35.5 42.1 35.5
OURS 44.9 44.9 14.0 38.3 44.8 37.4

Rating model: GPT-4o-mini
ALPAGASUS 45.3 41.0 14.5 37.0 45.3 36.6
DEITA 45.2 44.7 13.5 35.6 43.4 36.5
OURS W/O CURATION 42.0 39.5 15.0 38.1 46.1 36.1
OURS 40.2 43.8 13.5 38.9 46.5 36.6

Rating model: Mistral-7B-Instruct-v0.3
ALPAGASUS 42.3 41.9 16.0 34.1 41.6 35.2
DEITA 43.6 41.1 19.0 35.7 42.9 36.5
OURS W/O CURATION 46.0 48.6 15.0 35.2 43.7 37.7
OURS 40.8 50.9 15.0 37.9 45.5 38.0

G.3 EXPLORING THE CURATION IMPACT ON OTHER SCORE-AWARE METHODS

Here, we present the curation impact on other score-aware methods, especially for Alpagasus and
Deita under different rating model settings. The full experimental results can be found in Table 16.
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Table 13: Performance comparison on OpenLLM leaderboard evaluation datasets. By default, the
selected data size is 10K. Base model: LLaMA-3-70B. We highlight the best result in boldface
and the second-best with underline.

Models MMLU TruthfulQA GSM BBH TydiQA Average
(factuality) (truthfulness) (reasoning) (reasoning) (multilinguality)

VANILLA BASE MODEL 64.1 27.1 2.5 76.9 10.9 36.3
COMPLETION LENGTH 67.1 4.0 85.0 80.0 32.7 53.8
PERPLEXITY 67.1 5.5 82.5 79.4 31.9 53.3
k-NN-10 66.1 33.9 79.5 81.2 34.5 59.0
RANDOM SELECTION 66.9 4.9 82.5 79.4 30.3 52.8
LESS 66.6 6.6 83.5 81.0 34.1 54.4
FULL DATA (300K) 68.2 41.2 81.5 80.2 30.3 61.2

Rating model: LLaMA-3.1-8B-Instruct
ALPAGASUS 66.4 10.6 85.0 78.7 31.4 54.4
DEITA 66.6 9.3 87.0 80.0 31.4 54.9
OURS W/O CURATION 66.2 12.0 84.0 79.2 33.8 55.0
OURS 66.3 11.1 84.5 81.5 32.0 55.1

Rating model: GPT-4o-mini
ALPAGASUS 66.7 0 85.5 81.3 30.9 52.9
DEITA 66.1 3.9 85.0 81.4 32.9 53.9
OURS W/O CURATION 66.7 3.7 88.0 79.2 33.2 54.2
OURS 66.6 4.7 87.0 80.9 34.3 54.7

Rating model: Mistral-7B-Instruct-v0.3
ALPAGASUS 66.8 0 87.0 80.3 31.6 53.1
DEITA 67.5 4.3 85.0 82.1 33.5 54.5
OURS W/O CURATION 66.2 14.8 84.5 79.0 33.6 55.6
OURS 67.1 12.1 85.5 81.1 36.1 56.4

Table 14: The prompt template used for GPT-4o judge evaluation from (Zheng et al., 2023)

LLM Judge Prompt Template
System Prompt:
You are a helpful and precise assistant for checking the quality of the answer.

User Prompt:
[Question]
[Assistant 1]: Assistant 1’s Answer
[Assistant 2]: Assistant 2’s Answer

We would like to request your feedback on the performance of two AI assistants in response to the
user question displayed above. Please rate the helpfulness, relevance, accuracy, level of details of
their responses. Each assistant receives an overall score on a scale of 1 to 10, where a higher score
indicates better overall performance. Please first output a single line containing only two values
indicating the scores for Assistant 1 and 2, respectively. The two scores are separated by a space. In
the subsequent line, please provide a comprehensive explanation of your evaluation, avoiding any
potential bias and ensuring that the order in which the responses were presented does not affect
your judgment.

G.4 COMPARISON WITH HIGH-QUALITY HUMAN-ANNOTATED EXAMPLES: LIMA

In this section, we also utilize the original LIMA test set (300 samples) to compare the performance
between LIMA (human annotation) and DS2 (machine annotations). Similarly, we finetune two base
models (LLaMA-3.1-8B and Mistral-7B-v0.3) on 1k LIMA samples. The finetuned models are then
directly compared with finetuned models using DS2 selected examples at both 1k and 10k sample
sizes. The experimental results for 1k and 10k settings are shown in Figure 14 and 15, respectively.
While DS2 performs worse than LIMA in the 1k sample setting, it totally surpasses LIMA in the
10k setting, consistently demonstrating the superiority of DS2. This lower performance at the 1k
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Table 15: Performance comparison with full data baseline on Vicuna_Bench. Base models:
LLaMA-3.1-8B and Mistral-7B-v0.3. LLM judge model: GPT-4o-mini. W̃in represents
the adjusted win rate, which equals the win rate plus half of the tie rate. We highlight the best result
in boldface and the second-best with underline.

LLaMA-3.1-8B Mistral-7B-v0.3

Model Win(%) Loss(%) Tie(%) W̃in(%) Win(%) Loss(%) Tie(%) W̃in(%)

COMPLETION LENGTH 55.5 32.5 12.0 61.5 61.3 25.0 13.8 68.1
PERPLEXITY 35.6 51.3 13.1 42.2 45.0 38.8 16.3 53.1
k-NN-10 51.3 29.4 19.4 60.9 51.3 32.5 16.3 59.4
RANDOM SELECTION 33.1 45.0 21.9 44.1 46.3 35.0 18.8 55.6
LESS 35.0 51.3 13.8 41.9 36.3 48.8 15.0 43.8

Rating model: LLaMA-3.1-8B-Instruct
ALPAGASUS 50.6 28.8 20.6 60.9 57.5 27.5 15.0 65.0
DEITA 40.6 45.0 14.4 47.8 46.3 36.3 17.5 55.0
OURS W/O CURATION 56.3 30.0 13.8 63.1 55.0 30.0 15.0 62.5
OURS 53.8 27.5 18.8 63.1 63.8 22.5 13.8 70.6

Rating model: GPT-4o-mini
ALPAGASUS 67.5 18.8 13.8 74.4 73.8 10.3 15.9 81.7
DEITA 54.6 32.1 13.3 61.3 63.1 26.3 10.6 68.4
OURS W/O CURATION 70.4 19.6 10.0 75.4 67.5 22.5 10.0 72.5
OURS 63.8 20.0 16.3 71.9 65.0 20.0 15.0 72.5

Rating model: Mistral-7B-Instruct-v0.3
ALPAGASUS 48.8 22.5 28.8 63.1 55.0 28.8 16.3 63.1
DEITA 46.3 36.3 17.5 55.0 45.0 41.9 13.1 51.6
OURS W/O CURATION 51.7 33.8 14.6 58.9 61.9 25.0 13.1 68.4
OURS 51.3 31.3 17.5 60.0 62.5 20.0 17.5 71.3

Figure 14: Performance of models fintuned on DS2 (1k samples, machine-curated) v.s. LIMA
(1k samples, human-curated). Evaluation set: LIMA (300 samples). We use the initial letter to de-
note the rating model, e.g., Ours (L) refers to our method with LLaMA-generated scores (Ours
(LLaMA)).

setting is expected, as LIMA has a natural advantage in a limited sample size scenario due to the IID
nature of its training and test sets.

G.5 EXPLORING THE IMPACT OF CONCATENATING HIGH-RATED EXAMPLES ACROSS
RATING MODELS

Combined Baseline In this section, we are also interested in the performance of concatenating
samples from three rating models. We combined all high-rated samples with a score of 5, resulting
in a subset of 8K samples. To reach a total of 10K samples, we added 2K samples from the data pool
that were both rated 4 by all rating models. Compared to the results shown in Table 3 and Table 11,
one can observe that the combined baseline still fails to achieve strong performance.
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Table 16: Performance comparison between without and with score curation across all score-aware
methods. Results are presented as (without curation / with curation). The selected base models are
LLaMA-3.1-8B and Mistral-7B-v0.3.

Rating Model: LLaMA-3.1-8B-Instruct
LLaMA-3.1-8B Mistral-7B-v0.3

ALPAGASUS DEITA OURS ALPAGASUS DEITA OURS

MMLU 63.1 / 63.8 64.1 / 64.6 63.4 / 63.8 59.9 / 59.4 60.0 / 59.8 60.0 / 59.7
TruthfulQA 42.4 / 36.1 35.3 / 46.3 50.2 / 45.4 36.4 / 41.7 37.1 / 39.8 37.2 / 37.8
GSM 59.5 / 65.5 60.0 / 64.0 61.5 / 62.5 39.0 / 40.0 43.5 / 43.0 45.0 / 48.5
BBH 60.9 / 63.1 60.8 / 58.3 59.3 / 61.2 52.6 / 53.5 54.0 / 52.4 53.5 / 54.4
TydiQA 64.8 / 62.7 63.0 / 61.3 61.7 / 67.9 56.3 / 52.3 57.7 / 58.0 54.5 / 55.2

Average 58.1 / 58.2 56.6 / 58.9 59.2 / 60.2 48.8 / 49.4 50.5 / 50.6 50.0 / 51.1

Rating Model: GPT-4o-mini
LLaMA-3.1-8B Mistral-7B-v0.3

ALPAGASUS DEITA OURS ALPAGASUS DEITA OURS

MMLU 63.4 / 64.1 64.5 / 64.6 63.3 / 64.0 60.5 / 60.0 60.1 / 59.9 60.1 / 59.9
TruthfulQA 42.6 / 48.2 50.1 / 45.5 51.5 / 50.3 36.7 / 39.8 35.6 / 41.1 35.9 / 37.9
GSM 66.0 / 61.5 60.0 / 64.0 62.0 / 67.5 41.0 / 41.5 40.5 / 42.5 48.5 / 47.5
BBH 59.1 / 58.9 60.3 / 61.8 59.7 / 59.0 55.1 / 53.6 55.1 / 55.3 54.2 / 55.6
TydiQA 59.4 / 64.8 63.7 / 67.1 64.3 / 66.1 57.3 / 56.5 56.0 / 56.4 58.9 / 59.3

Average 58.1 / 59.5 59.7 / 60.6 60.2 / 61.4 50.1 / 50.3 49.5 / 51.0 51.5 / 52.0

Rating Model: Mistral-7B-Instruct-v0.3
LLaMA-3.1-8B Mistral-7B-v0.3

ALPAGASUS DEITA OURS ALPAGASUS DEITA OURS

MMLU 63.2 / 64.2 63.9 / 63.5 63.0 / 63.3 59.5 / 59.6 59.9 / 59.5 59.5 / 59.5
TruthfulQA 45.8 / 40.0 50.3 / 51.3 48.2 / 53.9 35.6 / 38.9 40.0 / 38.7 37.9 / 40.3
GSM 62.0 / 60.5 61.0 / 61.0 67.0 / 62.0 46.0 / 46.5 43.5 / 44.0 46.5 / 48.5
BBH 60.5 / 63.5 60.4 / 59.5 59.2 / 61.1 55.7 / 55.6 56.9 / 54.1 55.8 / 53.0
TydiQA 62.2 / 63.5 62.8 / 64.6 65.9 / 65.1 52.1 / 56.6 53.1 / 55.1 57.2 / 55.9

Average 58.7 / 58.3 59.7 / 60.0 60.7 / 61.1 49.8 / 51.4 50.7 / 50.3 51.4 / 51.4

Figure 15: Performance of models fintuned on DS2 (10k samples, machine-curated) v.s. LIMA
(1k samples, human-curated). Evaluation set: LIMA (300 samples). We use the initial letter to de-
note the rating model, e.g., Ours (L) refers to our method with LLaMA-generated scores (Ours
(LLaMA)).

G.6 APPLES-TO-APPLES PERFORMANCE COMPARISON WITH ALPAGASUS

Note that the raw scores used in this work for AlpaGasus Chen et al. (2023) are generated with our
prompt template. Our prompt template largely follows the format and criteria of Alpagasus (as the
first one rating prompt template), maintaining alignment with established standards. A significant
improvement in our approach is the use of JSON format to return evaluation scores, allowing us to
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Table 17: Performance of COMBINED baseline on OpenLLM Leaderboard.

Combined baseline
LLaMA-3.1-8B Mistral-7B-v0.3

MMLU 64.2 59.6
TruthfulQA 41.7 37.1
GSM 62.5 43.5
BBH 61.9 51.0
TydiQA 60.8 53.1

Average 58.2 48.9

capture the scores accurately. This JSON formatting approach is inspired by the official LLama-3.1
chat template, as detailed in LLama-3.1 model documentation. We conduct experiments to com-
pare our method with AlpaGasus under the same 4-bit quantization and LoRA settings, adhering
closely to the same experimental configurations. The AlpaGasus-2-7B-QLoRA model origi-
nates from a related repository highlighted in the official AlpaGasus repository, with LLaMA-2-7B
as the base model. The rating scores used in our method are generated from GPT-4o-mini, which
is much weaker than GPT-4 used in AlpaGasus. Table 18 demonstrates that DS2totally outperforms
AlpaGasus even using a weaker rating model GPT-4o-mini.

Table 18: Apples-to-apples performance comparison on various tasks. Base model: LLaMA-2-7B.
The data pool is Alpaca dataset. The selected data size is 9k, consistent with AlpaGasus. The best
results are highlighted in boldface.

Model MMLU TruthfulQA GSM BBH TyDiQA Average
VALLLIA-LLAMA-2-7B 41.9 28.4 6.0 38.3 35.7 30.1
ALPAGASUS-2-7B-QLORA 37.8 39.0 3.0 36.1 35.9 30.4
OURS (DS2, 9K ALPACA SAMPLES) 44.1 40.2 10.5 37.2 40.6 34.5

H COMPUTATIONAL COMPLEXITY

Table 19 summarizes the storage and GPU running time of our method as well as three representative
baselines. The wall-clock running time is measured on a Microsoft Azure 8*A100 (80GB) GPUs
cluster. Note that our score curation mechanism relies primarily on linear programming (LP), which
runs exclusively on the CPU. As shown in the table, LLM rating systems are advantageous over the
gradient-based method LESS in terms of both storage and runtime. Notably, compared to AlpaGasus
and DEITA, our method avoids any significant computation costs on the GPU.

Table 19: Comparison of storage and running time.

Storage Running Time Base Model Free Validation Set
Rating/Gradient Diversity Score CPU-only Curation Data Selection

LESS 20GB 66H - - <1mins No Required
AlpaGasus <10MB 6H - - <1mins Yes Not Required

DEITA <10MB 6H 10 mins - <1mins Yes Not Required
Ours <10MB 6H - 15 mins <1mins Yes Not Required

I EXPLORING THE IMPACT OF DIVERSITY SCORE

The importance of diversity on LLM data selection has been extensively explored by previous work
Wang et al. (2023); Liu et al. (2023a); Wang et al. (2022). Note that our data pool is composed of
five distinct subsets, each characterized by varying levels of complexity and diversity. The statistical
analysis of diversity scores across subsets, as illustrated in Figure 16, confirms this. To evaluate the
versatility of diversity score, we further conduct additional contrast experiments here. In particu-
lar, we solely rank the samples of subsets based on the diversity score. Then, we select the Top-k
and Bottom-k samples independently to construct datasets for LLM instruction finetuning, where
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Figure 16: Subset diversity score distribution. The diversity score distribution across subsets demon-
strates that the complexity and diversity are differnt.

k =10000. The corresponding performance results are presented in the following table. For cost
considerations, we employ LLaMA-3.2-3B as the base model. The experimental settings are con-
sistent with those outlined in our paper. From the table, it is evident that the diversity score is not
universally effective across all datasets. To achieve better results, it should be complemented with
other specific metrics, such as LLM rating scores.

Table 20: Performance comparison across different datasets. The base model is LLaMA-3.2-3B.
Bottom-k (Top-k) refers to the samples with the lowest (highest) diversity scores, where k is fixed
at 10,000.

Metric Flan_v2 Wizardlm Alpaca
Bottom-k Top-k Bottom-k Top-k Bottom-k Top-k

MMLU 55.6 54.8 56.7 56.6 56.5 55.1
BBH 44.9 45.0 45.8 47.7 46.3 47.1
GSM8K 24.5 29.5 30.5 28.5 28.5 26.0
TruthfulQA(MC2) 38.6 41.7 46.6 48.1 40.2 40.6
Tydiqa 55.9 60.5 37.7 31.2 48.4 39.5
Average 43.9 46.3 43.5 42.4 44.0 41.7

J MIS-RATED EXAMPLES

Here, we provide more wrongly-rated examples detected by our algorithms. For convenience, we
highlight the raw (original) rated score and the curated score of each example.

Wrongly-rated example from LLaMA-3.1-8B-Instruct. Raw rated score: 5; Curated score:1

<User>: Here is some data about a restaurant: name = The Eagle, eatType = coffee shop,
food = Fast food, customer rating = 3 out of 5, area = riverside, familyFriendly = yes, near
= Burger King. Write a sentence that includes the above data about a restaurant
<Assistant>: The Eagle is a kid-friendly coffee shop that is located on the riverside near
Burger King. The Eagle serves fast food and is moderate in pricing. Customers rate the
coffee shop 3 out of 5.
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Wrongly-rated example from LLaMA-3.1-8B-Instruct. Raw score: 5; Curated score:1

<User>: Based on the premise "i think it would too", can we conclude the hypothesis "I also
think it would. " is true (see options)? Pick from: (i) yes; (ii) it is not possible to tell; (iii)
no;
<Assistant>: (i).

Wrongly-rated example from GPT-4o-mini. Raw score: 5; Curated score:0

<User>:Premise: Island society has seen more change in the last twenty years than in the
previous thousand. Hypothesis: Island society has been changing rapidly because of boats
with powerful motors. Is the hypothesis entailed by the premise? Select from: 1. yes. 2. it
is not possible to tell. 3. no. And the answer is:
<Assistant>: 2.

Wrongly-rated example from GPT-4o-mini. Intial score: 5; Curated score:1

<User>: De façon plus précise, si acc scc c et c représentent la consommation totale des
agents avec et sans contraintes de crédit, respectivement, léquation de consommation globale
devient c = c c c acc acc. Which language is this?
<Assistant>: French.

Wrongly-rated example from GPT-4o-mini. Raw score: 5; Curated score:2

<User>: Ask a question about Queen Victoria.
<Assistant>: Who did Victoria dislike so much she banned him from her presence once she
became Queen?

Wrongly-rated example from Mistral. Raw score: 5; Curated score:1

<User>: Add punctuation: Yahweh sent Jerubbaal and Bedan and Jephthah and Samuel and
delivered you out of the hand of your enemies on every side and you lived in safety
<Assistant>: Yahweh sent Jerubbaal, and Bedan, and Jephthah, and Samuel, and delivered
you out of the hand of your enemies on every side; and you lived in safety.

Wrongly-rated example from Mistral. Raw score: 5; Curated score:1

<User>: Die Hausordnung ist Bestandteil der allgemeinen Geschäftsbedingungen. Translate
this to English?
<Assistant>: The house rules of the Hotel are an integral part of the General Rules and
Conditions.

Wrongly-rated example from Mistral. Raw score: 5; Curated score:1

<User>: Generate a sentence that describes the following data: Alan Frew, occupation,
Public speaking; Alan Frew, birthPlace, United Kingdom; Alan Frew, origin, Canada; Alan
Frew, background, "solo singer"; Alan Frew, origin, Newmarket, Ontario. Sentence:
<Assistant>: Andrew Frew was a solo singer who makes his living public speaking. Alan
Frew was born in the UK but has Canadian origins coming from Newmarket, Ontario.

J.1 ORIGINAL HIGH-RATED EXAMPLES VS. ORIGINAL LOW-RATED EXAMPLES

Here are several examples to illustrate the data quality between high-rated and low-rated exam-
ples from different datasets, including Flan_v2, Open-Assistant1, Stanford Alpaca, Dolly and Wiz-
ardLM.
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Table 21: Comparison of low-rated and high-rated samples from Flan_v2 dataset

Low-rated Flan_v2 sample High-rated Flan_v2 sample
<|Human|>: Triple: Alimentum eatType
restaurant; Alimentum food Indian; Alimentum
priceRange moderate; Alimentum area riverside;
Alimentum familyFriendly no. What is a
sentence that describes this triple?
<|Assistant|>: "Alimentum is an Indian
restaurant located the the riverside area. It is
moderately priced, but not kid friendly."

<|Human|>: I walked in here during an all day
rain-a-thon in Pittsburgh (so rare, right?) on a
Saturday. It was pretty busy, but all of the hustle
and bustle was contained to the upstairs, which
looked like a cool loft area. It wasn’t loud either.
The first thing I noticed is how high the ceiling
was and I loved that. The art on the walls was a
delight to look at too. I ordered something vegan
with tofu (I’m not vegan by any means, but
wanted to try it), and I got it delivered to me on a
plate with two small toasted pieces of bread,
lettuce, slices or bell pepper, and warmed tofu.
There was something else on the bread that I
don’t remember, but I was really surprised by
how delicious and satisfying this was. I am a fan.
For my drink I got an iced vanilla latte and I have
to say it’s the best vanilla latte I’ve had around
town. I ended up having two more throughout my
time there...I just inhaled them. Seriously..so
good. I came back on Sunday and had an iced
mocha, which was just as good. This is my new
favorite place for real!
Choose: was this review given positively or
negatively?
<|Assistant|>: positive
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Table 22: Comparison of low-rated and high-rated samples from Open-Assistant 1 dataset

Low-rated Open-Assistant 1 sample High-rated Open-Assistant 1 sample
<|Human|>: que actividades se supone que son
comunes en una persona de 20 años?
<|Assistant|>: Las actividades más comunes
entre personas de 20 años usualmente son
estudiar, debido a la alta demanda de tareas en la
universidad, así como, salir a divertirse, tomar
alcohol eventualmente, o salir de fiesta, así
mismo, se puede incluir hacer deporte, y jugar
videojuegos.
<|Human|>: Las actividades que se supone que
son comunes en una persona de 20 años varían
dependiendo de muchos factores, como la
cultura, el entorno, la educación y los intereses
personales. Sin embargo, aquí hay algunas
actividades que pueden ser comunes para muchas
personas de 20 años:

• Estudiar o trabajar: Muchas personas de
20 años se encuentran en una etapa de
transición entre la educación y el mundo
laboral, por lo que pueden estar
estudiando o trabajando en sus primeras
carreras o empleos.

• Establecer relaciones: Las personas de
20 años a menudo están explorando su
vida amorosa y estableciendo relaciones
íntimas.

• Viajar: Muchas personas de 20 años
aprovechan esta etapa para viajar y
explorar el mundo.

• Desarrollar habilidades y pasatiempos:
Las personas de 20 años pueden estar
explorando nuevas habilidades y
pasatiempos, y tratando de encontrar
aquellos que son significativos para
ellos.

• Participar en actividades comunitarias:
Las personas de 20 años a menudo se
involucran en actividades comunitarias,
como voluntariado, grupos de interés o
política.

<|Assistant|>: Entiendo que me estabas poniendo
a prueba. Tomaré en cuenta esas actividades para
mis próximas respuestas.

<|Human|>: Hazme una clave dicotómica de los
animales invertebrados.
<|Assistant|>: ąPor supuesto! Aquí tienes una
clave dicotómica para clasificar los animales
invertebrados:

• £Tiene un exoesqueleto duro y
articulado? -> Ir al paso 2

• £No tiene exoesqueleto duro y
articulado? -> Ir al paso 3

• £Tiene patas articuladas y segmentadas?
-> Es un artrópodo

• £No tiene patas articuladas y
segmentadas? -> Ir al paso 3

• £Tiene tentáculos y una estructura de
cuerpo en forma de campana? -> Es un
cnidario

• £No tiene tentáculos y una estructura de
cuerpo en forma de campana? -> Ir al
paso 4

• £Tiene un cuerpo blando y una concha
univalva o bivalva? -> Es un molusco

• £No tiene un cuerpo blando y una
concha univalva o bivalva? -> Ir al paso
5

• £Tiene una simetría radial y estructuras
como brazos o patas para moverse y
capturar alimentos? -> Es un
equinodermo

• £No tiene una simetría radial y
estructuras como brazos o patas para
moverse y capturar alimentos? -> Ir al
paso 6

• £Tiene una estructura de cuerpo
segmentada y sin patas articuladas? ->
Es un anélido

• £No tiene una estructura de cuerpo
segmentada y sin patas articuladas? -> Ir
al paso 7

• £Tiene un cuerpo alargado y
segmentado con tentáculos alrededor de
la cabeza? -> Es un gusano platelminto

• £No tiene un cuerpo alargado y
segmentado con tentáculos alrededor de
la cabeza? -> Es un invertebrado no
clasificado en las categorías anteriores.
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Table 23: Comparison of low-rated and high-rated samples from WizardLM dataset

Low-rated WizardLM sample High-rated WizardLM sample
<|Human|>: Instruction: As an intermediate
English learner at B1 level, I have been trying to
familiarize myself with certain words like
"captivity", "chew out" and "cuddly". Would you
kindly ask me a question using any of these three
terms, to help me better comprehend the usage
and context of these words?
<|Assistant|>:
Response: Certainly! Here are three questions
using each of the terms you mentioned:

1. Have you ever visited a zoo where
animals are kept in captivity?

2. Has your boss ever chewed you out for
making a mistake at work?

3. Do you prefer to have a pet that is
cuddly and affectionate, or one that is
independent and aloof?

<|Human|>: Instruction: As an archaeologist
exploring the depths of an uncharted jungle, you
come across a temple that appears to be a blend
of Mayan and Roman architecture. The
engravings on the walls and artifacts found within
the temple suggest that the civilization that built
it was a fusion of both cultures. Your task is to
piece together the history and culture of this
ancient civilization and unravel the mystery of
how and why it came to be. Were these two
cultures united in peace or war? Did they form a
new civilization or remain separate? Let’s
excavate the truth behind this enigma.
<|Assistant|>:
Response: As you begin your exploration of the
temple, you come across a set of glyphs on one of
the walls that seem to represent both Mayan and
Roman symbols. You take note of them and
continue your journey deeper into the temple.
Inside, you find a variety of artifacts that suggest
a fusion of both cultures, including pottery,
weapons, and clothing....

....Further exploration reveals that this civilization
was not a separate entity, but rather a part of a
larger network of civilizations that spanned the
continent. The Mayan and Roman cultures in this
region worked alongside other cultures, such as
the Aztecs and the Incas, to form a vast and
complex system of trade and cultural exchange.

In the end, you realize that this ancient
civilization was a testament to the power of
cooperation and cultural exchange. The Mayan
and Roman peoples came together in peace,
combining their knowledge and skills to create
something new and beautiful. Their legacy lives
on in the unique artifacts and engravings that
remain in the temple, waiting to be discovered
and appreciated by future generations.
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Table 24: Comparison of low-rated and high-rated samples in Dolly dataset

Low-rated Dolly sample High-rated Dolly sample
<|Human|>: Instruction: Below is an instruction
that describes a task, paired with an input that
provides further context. Write a response that
appropriately completes the request.
Instruction: When was the 8088 processor
released?
Input: The 8086 (also called iAPX 86) is a
16-bit microprocessor chip designed by Intel
between early 1976 and June 8, 1978, when it
was released. The Intel 8088, released July 1,
1979, is a slightly modified chip with an external
8-bit data bus (allowing the use of cheaper and
fewer supporting ICs),[note 1] and is notable as
the processor used in the original IBM PC design.
<|Assistant|>:
Response: The Intel 8088 processor was released
July 1, 1979.

<|Human|>: Instruction: Below is an instruction
that describes a task, paired with an input that
provides further context. Write a response that
appropriately completes the request.
Instruction: Who is the best surfer in the world?
Input: Robert Kelly Slater (born February 11,
1972) is an American professional surfer, best
known for being crowned World Surf League
champion a record 11 times. Slater is widely
regarded as the greatest professional surfer of all
time, and holds 56 Championship Tour victories.
Slater is also the oldest surfer still active on the
World Surf League, winning his 8th Billabong
Pipeline Masters title at age 49.
<|Assistant|>:
Response: Kelly Slater

Low-rated Alpaca sample High-rated Alpaca sample
<|Human|>: Instruction: Given a set of numbers,
find the maximum value.
Input: Set: {10, 3, 25, 6, 16}
<|Assistant|>:
Response: The maximum value is 25.

<|Human|>: Instruction: Create a list of best
practices that should be followed in this field.
Field: Healthcare information technology
<|Assistant|>:
Response: The following best practices should
be followed in the healthcare information
technology field:

1. Adopt a risk-based approach to
cybersecurity, utilizing measures such as
multi-factor authentication, encryption,
and vulnerability assessments.

2. Develop clear guidelines and policies
governing the use of technology.

3. Develop protocols to ensure the secure
sharing of patient data.

4. Implement robust data processing and
storage systems that adhere to industry
regulations.

5. Train healthcare staff in both the
technical and non-technical aspects of
IT use.

6. Utilize professional IT staff for any
maintenance or development tasks.

7. Regularly test and monitor IT systems
for potential vulnerabilities.
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