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Abstract—We consider a class of restless multi-armed bandit
(RMAB) problems with unknown arm dynamics. At each time,
a player chooses an arm out of N arms to play, referred to as
an active arm, and receives a random reward from a finite set
of reward states. The reward state of the active arm transits
according to an unknown Markovian dynamic. The reward
state of passive arms (which are not chosen to play at time t)
evolves according to an arbitrary unknown random process. The
objective is an arm-selection policy that minimizes the regret,
defined as the reward loss with respect to a player that always
plays the most rewarding arm. This class of RMAB problems has
been studied recently in the context of communication networks
and financial investment applications. We develop a strategy that
selects arms to be played in a consecutive manner in which
the selection sequencing rules are adaptively updated controlled
by the current sample reward means, referred to as Adaptive
Sequencing Rules (ASR) algorithm. By designing judiciously the
adaptive sequencing rules of the chosen arms, we show that ASR
algorithm achieves a logarithmic regret order with time and a
finite-sample bound on the regret is established. Although existing
methods have shown a logarithmic regret order with time in
this RMAB setting, the theoretical analysis presents significant
improvement in the regret scaling with respect to the system
parameters under ASR. Extensive simulation results support the
theoretical study and demonstrate strong performance of the
algorithm as compared to existing methods.

I. INTRODUCTION

Restless Multi-Armed Bandit (RMAB) problems are gener-

alizations of the classic Multi-Armed Bandit (MAB) problem

[1]–[3]. Differing from the classic MAB, where the states of

passive arms remain frozen, in the RMAB setting, the state

of each arm (active or passive) can change. The RMAB prob-

lem under the Bayesian formulation with known Markovian

dynamics has been shown to be P-SPACE hard in general [4].
In this paper, we consider the following RMAB problem

with unknown arm dynamics. At each time, a player chooses

an arm out of N arms to play, referred to as an active arm.

Once playing an arm, a random reward is received from a finite

set of rewards. The reward state of the active arm transits

according to an unknown Markovian dynamics. The reward

state of passive arms (which are not chosen to play at time

t) might change as well and evolve according to an arbitrary

unknown random process.

This class of RMAB problems has been studied recently

in the context of communication networks, and financial

investment applications [5], [6]. For example, in the hierar-

chical opportunistic spectrum access model in cognitive radio

networks, a secondary user (unlicensed) is allowed to transmit

data over a channel among a set of available channels (i.e.,

arms) when primary (licensed) users do not transmit. The

temporal spectrum usage of the primary user is modeled by

a Markovian dynamics, which leads to a Markovian reward

model. Thus, the secondary user aims at designing a good

channel selection policy without knowing the dynamics of

the primary users, with the goal of maximizing its long-term

rate (i.e., accumulated reward). Other related models have

studied channel selection under unknown fading dynamics and

financial investments (see [5], [6] and references therein).

A. Performance Measure of Learning in RMAB

Although optimal solutions have been obtained for some

special cases of RMAB models (see references in Section I-D),

solving RMAB problems directly is intractable in general [4].

Thus, a widely used performance measure of an algorithm

is the regret, defined as the reward loss with respect to a

player with a side information on the model. An algorithm

that achieves a sublinear scaling rate of the regret with

time approaches the performance of the player with the side

information as time increases. The essence of the problem is

thus to design an algorithm that learns the side information

effectively so as to achieve the best sublinear scaling of the

regret with time.

In this paper we use the definition of regret that was

introduced in [7] and used later in [5], [6] for a similar RMAB

model as considered here. Specifically, the regret is defined as

the reward loss of an algorithm with respect to a player that

knows the expected reward of all arms and always plays the

arm with the highest expected reward. It should be noted that

computing the optimal policy for RMABs is P-SPACE hard

even when the Markovian model is known [4]. Nevertheless,

always playing the arm with the highest expected reward is

known to be optimal in the classic MAB under i.i.d. or rested

Markovian rewards (up to an additional constant term [3]).

Thus, it is commonly used in RMAB with unknown dynamics

settings for measuring the algorithm performance in a tractable

manner.

B. Existing Random and Deterministic Approaches

We are facing an online learning problem with the well

known exploration versus exploitation dilemma. On the one

hand, a player should explore all arms in order to infer their

states. On the other hand, it should exploit the information

gathered so far to play the best arm. Due to the restless

nature of both active and passive arms and potential reward

loss due to transient effect as compared to steady state when
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switching arms, learning the Markovian reward statistics re-

quires that arms will be played in a consecutive manner for

a period of time (i.e., epoch). In [5], [6], regenerative cycle

algorithm (RCA), and deterministic sequencing of exploration

and exploitation (DSEE) algorithm, respectively, have been

proposed based on these insights. The RCA algorithm chooses

the active arms based on the upper confidence bound (UCB)

index [8] when entering each epoch, and a logarithmic regret

with time was shown. However, since RCA performs random

regenerative cycles until catching predefined states at each

epoch (i.e., hitting times) the scaling with the mean hitting

time M (which scales at least polynomially with the state

space) is of order O(M log t). The DSEE algorithm overcomes

this issue by using deterministic sequencing of exploration

and exploitation epochs. A logarithmic regret with time was

shown under DSEE. However, applying the deterministic

sequencing method by DSEE results in oversampling bad

arms to achieve the desired logarithmic regret, which scales

as O
(
( 1√

∆
+ N−2

∆ ) log t
)

, where N is the number of arms

and 0 < ∆ < (µσ(1)−µσ(2))
2 is a known lower bound on the

square difference between the highest reward mean µσ(1) and

the second highest reward mean µσ(2). Increasing the mean

hitting times (e.g., by increasing the state space, or decreasing

the probability of switching between states) decreases perfor-

mance under RCA. Increasing N when (µσ(1)−µσ(2)) is small

as compared to the differences between µσ(1) and the reward

means of other arms decreases performance under DSEE.

C. Main Results

1) Algorithm development: We propose a novel Adaptive

Sequencing Rules (ASR) algorithm for solving the RMAB

problem. The basic idea of ASR is to estimate online the

desired (unknown) exploration rate of each arm required for

efficient learning. Thus, by sampling each arm according to

the desired exploration rate, ASR avoids oversampling bad

arms as in DSEE, and at the same time it avoids using too

frequent regenerative cycles as in RCA. Interestingly, the size

of the exploitation epochs is deterministic and the size of the

exploration epochs is random under ASR. The sequencing

rules that decide when to enter each epoch are adaptive in

the sense that they are updated dynamically and controlled by

the current sample means in a closed-loop manner.

2) Theoretical performance analysis: We establish a finite-

sample upper bound on the regret under the proposed ASR

algorithm. Our analysis is valid for both model settings in

[5], and [6]. Thus, performance comparison between the

algorithms can be conducted analytically. Specifically, similar

to RCA [5] and DSEE [6], we show that the proposed ASR

algorithm achieves a logarithmic regret order with time as

well. The scaling with the mean hitting time under ASR,

however, is significantly better than the scaling under RCA

(O(M log log t) under ASR as compared to O(M log t) un-

der RCA). The scaling with the number of arms and ∆
under ASR is significantly better than the scaling under

DSEE (O
(
( 1√

∆
+N − 2) log t

)
under ASR as compared to

O
(
( 1√

∆
+ N−2

∆ ) log t
)

under DSEE).

3) Simulation results: We performed extensive simulation

experiments that support our theoretical results under various

parameter settings. Significant performance gain of ASR over

RCA and DSEE has been observed.

D. Related Work

RMAB problems have been studied in the literature under

both the non-Bayesian [5], [6], [9]–[11] and Bayesian [12]–

[20] settings. Under the non-Bayesian setting, special cases of

Markovian dynamics have been studied in [5], [9], [11]. Under

the Bayesian setting with known dynamics, the objective is

exact optimality in terms of the total expected reward over

time. The structure of the optimal policy for a general RMAB

remains open. There are a number of studies on special classes

of RMABs. In particular, the optimality of the myopic policy

was shown under positively correlated two-state Markovian

arms [15]–[18] under the model where a player receives a

unit reward for each arm observed in a good state. In [19],

[21], the indexability of a special classes of RMAB have been

established. In [20], optimality conditions of a myopic policy

have been established for a family of regular reward functions.

In our previous work, we have derived optimality conditions of

a myopic policy under arm activation constraints in the context

of dynamic spectrum access [22]. Other related approaches

include game theoretic, and reinforcement learning algorithms

(see [23]–[27] and references therein).

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider N arms indexed by i = 1, 2, · · · , N . The

ith arm is modeled as a discrete-time, irreducible and ape-

riodic Markov chain with finite state space Si. The maximal

cardinality among the set spacecs is defined by: |Smax| !

max1≤i≤N{|Si|}. At each time, the player chooses one arm to

play. Each arm, when played, offers a certain positive reward

that defines the current state of the arm. Let si(t) denote

the state of arm i at time t. The highest sum of rewards

among arms is defined by rmax ! max1≤i≤N{∑s∈Si si}.

Let P i denote the transition probability matrix and #πi =
{πi(s)}s∈Si the stationary distribution of arm i. The minimal

stationary distribution among all arms and states is defined by

πmin ! min1≤i≤N,s∈Si πi(s). Let λi be the second largest

eigenvalue of P i, and let λmax ! max1≤i≤N λi be the

maximal one among all arms. Also let λmin ! 1 − λmax,

and let λi ! 1 − λi be the eigenvalue gap. Let M i
x,y be the

mean hitting time of state y starting at initial state x for arm

i, and let M i
max = maxx,y∈Si,x%=y M

i
x,y. We also define:

Amax ! max
i

(min
s∈Si

πi(s))
−1

∑

s∈Si

s,

L !
30r2max

(3− 2
√
2)λmin

.

(1)

We assume that the arms are restless. Specifically, the

reward state of the active arm (say i) transits according

to the unknown Markovian rule P i, while the reward state

of passive arms (which are not chosen to play at time t)
evolves according to an arbitrary unknown random process.

The stationary reward mean µi is given by µi =
∑

s∈Si

sπi(s).

Let σ be a permutation of {1, ..., N} such that
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µ∗ ! µσ(1) ≥ µσ(2) ≥ · · · ≥ µσ(N).

Let ti(n) denote the time index of the nth play on arm i, and

T i(t) denote the total number of plays on arm i by time t.
Thus, the total reward by time t is given by:

R(t) =
N∑

i=1

T i(t)∑

n=1

si(t
i(n)). (2)

For a policy φ, we define the regret rφ(t) as the difference

between the expected total reward that can be obtained by

playing the arm with the highest mean, and the expected total

reward obtained from using policy φ up to time t:

rφ(t) = tµσ(1) − Eφ[R(t)]. (3)

The objective is to minimize the growth rate of the regret with

time.

III. THE ADAPTIVE SEQUENCING RULES (ASR)

ALGORITHM

The basic idea of ASR is to sample each arm according to

its learning rate needed for a sufficiently accurate inference.

We show in the analysis that we must explore a bad arm

σ(i), i = 2, 3, ..., N , at least Di log t times for being able

to distinguishing it from µ∗ with a sufficiently high accuracy,

where

Di !
4L

(µ∗ − µσ(i))2
. (4)

The smaller the mean difference, the more samples we

must take for exploring bad arms. Since the reward means{
µσ(i)

}N

i=1
, are unknown, however, we can estimate Di by

replacing µσ(i) by its sample reward mean. Using the esti-

mate of Di (which is updated dynamically during time and

controlled by the sample means), we can design an adaptive

sequencing rule for sampling arm i that will converge to its

learning rate, required for obtaining a sufficiently accurate

inference as time increases. Whether we succeed to obtain a

logarithmic regret order depends on how fast the estimate of

Di converges to a value which is no smaller than Di (so we

take at least Di samples from bad arms in most of the times).

To guarantee the desired convergence speed, we judiciously

overestimate Di as detailed in Section III-D.

A. Playing arms consecutively during exploration and ex-

ploitation epochs:

As discussed in I-B, learning the Markovian reward statistics

requires that arms will be played in a consecutive manner

for a period of time. For instance, RCA selects arms based

on UCB and plays the arm a random period of time which

depends on hitting time events. On the other hand, DSEE

samples arms a deterministic periods of time that grow geo-

metrically with time. Interestingly, we show that by judiciously

combining these two sampling methods, while determining the

exploration frequency for each arm according to its adaptive

sequencing rule (described in Sec. III-D), we can achieve

tremendous improvement in both theoretical and simulation

performance as shown in Section IV.

Specifically, we divide the time horizon into exploration and

exploitation epochs, as illustrated in Fig. 1. An exploration

epoch is dedicated to play a certain arm determined by its

adaptive sequencing rule (described in Sections III-D, III-E).

Let ni
O(t) be the number of exploration epochs in which arm

i was played up to time t. An exploitation epoch is dedicated

to play the arm with the highest sample mean, whenever

exploration is not being performed. Let nI(t) be the number

of exploitation epochs up to time t. In Fig. 1, we illustrate the

exploration epochs for arm i only, for the ease of illustration.

In general, an interleaving of exploration epochs for all arms

with exploitation epochs (for the best arm) is performed.

B. The structure of exploration epoch:

The exploration epochs for each arm are divided into two

sub-bloks: a random-size sub-block SB1, and a deterministic-

size sub-block SB2. Consider time t (and we remove the

time index t for convenience). Let γi(ni
O − 1) be the last

reward state observed at the (ni
O − 1)th exploration epoch.

As illustrated in Fig. 1, once the player starts the (ni
O)

th

exploration epoch, it first plays a random period of time

until observing γi(ni
O − 1) (i.e., a random hitting time). This

random period of time is referred to as SB1. Then, the player

plays a deterministic period of time with length of 4n
i
O . This

deterministic period of time is referred to as SB2. The player

stores the last reward state γi(ni
O) observed at the current

(ni
O)

th exploration epoch, and so on. We define the set of

time indices during SB2 sub-blocks by Vi

C. The structure of exploitation epoch:

Let si be the sample reward mean of arm i when entering the

(nI)
th exploitation epoch. Then, the player plays the arm with

the highest sample mean maxi si for a deterministic period

of time with length 2 · 4nI−1 (there are no arm switchings

inside epochs). We define the set of time indices in exploitation

epochs by Wi. Computing sample mean si for each arm is

based on observations taken from Vi and Wi. Observations

from SB1 sub-blocks are removed to ensure consistency of

the estimators.

D. The Selection rule (choosing between epoch types):

At the beginning of each epoch, the player needs to decide

whether to enter an exploration epoch for one of the N arms,

or whether to enter an exploitation epoch for the arm with the

highest sample mean. Let s̃i(t) be the sample reward mean of

arm i, computed based on observations taken from Vi only at

time t (see discussion and detailed analysis in [28]). Let

D̂i(t) !
4L

max {∆, (maxj s̃j(t)− s̃i(t))2 − ǫ} , (5)

where 0 < ∆ < (µσ(1) − µσ(2))
2 is a known lower bound on

the square difference (µσ(1) − µσ(2))
2, and ǫ > 0 is a fixed

tuning parameter (a discussion on the implementation is given

in Sec. III-E). We also define:

I !
ǫ2 · λmin

192(rmax + 1)2
. (6)

The design of the selection rule is based on the following

insights. First, we need to make sure that the algorithm takes

at least Di log t samples from each bad arm (Di is given in

(4)) for computing a sufficiently accurate sample means si.
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Fig. 1. An illustration of the exploration and exploitation epochs under ASR. As explained in Sec. III-C, during exploitation epoch the player plays the same
arm that had the highest sample mean in the beginning of the epoch. As explained in Sec. III-B, an exploration epoch is divided into a random-size sub-block
SB1 and a deterministic (geometrically growing) size sub-block SB2. SB1 of an arm (say i as in the figure) is a random hitting time until catching the last
state γi that arm i observed in the previous exploration epoch. Selecting which epoch to play is determined by the selection rule described in Sec. III-D.

Therefore, the algorithm replaces the unknown value Di by

D̂i(t). D̂i(t) overestimates Di to obtain the desired property.

Second, since D̂i(t) is a random variable, we need to make

sure that the desired property holds with a sufficiently high

probability. I can be viewed as the minimal rate function of

the estimates among all arms and used to guarantee the desired

property. Consider a beginning of each epoch at time t, and

let Vi(t) be the set of all time indices during SB2 sub-blocks

up to time t. Then, if there exists an arm (say i) such that the

following condition holds:

|Vi(t)| ≤ max

{
D̂i(t),

2

I

}
· log t, (7)

then the player enters an exploration epoch for arm i (ties

between arms are broken arbitrarily). Otherwise, it enters an

exploitation epoch. As a result, the selection rule for each arm

that governs the arm sequencing policy is adaptive in the sense

that it is updated dynamically with time and controlled by the

random sample mean in a closed loop manner.

E. High-level pseudocode and implementation of ASR:

In summary, the player performs the following algorithm:

1) (Initialization:) For all N arms, execute an exploration

epoch where a single observation is taken from each arm.

2) If condition (7) holds for some arm (say i), then execute an

exploration epoch for arm i (as described in Sec. III-B) and

when finishing go to Step 2 again. Otherwise, go to Step 3.

3) Execute an exploitation epoch (as described in Sec. III-C).

When finishing, go to Step 2.

We next discuss technical implementation details when

executing ASR algorithm. (i) From a theoretical perspective,

ASR and DSEE requires the same knowledge on the system

parameters to guarantee the theoretical performance. RCA

requires the same parameters, excepts that ∆ is not needed;

(ii) It is well known that there is often a gap between the

sufficient conditions required by theoretical analysis (often due

to union-bounding events in analysis) and practical conditions

for obtaining good performance. For example, in [6] the

authors simulated DSEE with exploration rate 10 · log t while

the theoretical sufficient conditions were ≈ 1, 000 · log t. A

similar gap was observed in RCA. Indeed, this is the case in

ASR as well. While analysis requires to overestimate Di as in

(5), simulation results provide much better performance when

estimating Di directly by setting D̂i(t) ← 4L
(maxj s̃j(t)−s̃i(t))2

.

Thus, in practice ∆ is not needed and the parameters can be

estimated on the fly. In Fig. 2, we simulated exactly the same

parameters that the authors pick and tuned in [6, Figure 4].

We indeed obtained the same curves for DSEE and RCA. We

then executed ASR without the knowledge of ∆ and without

tuning ǫ (set to zero). D̂i(t) was estimated on the fly. It can

be seen that ASR significantly outperforms both DSEE and

RCA. A more extensive empirical study that demonstrates the

efficiency of ASR can be found in [28].
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Fig. 2. The regret (normalized by log t) for RMAB with 5 arms under ASR,
DSEE, and RCA as a function of time.

IV. THEORETICAL REGRET ANALYSIS

In the following theorem we establish a finite-sample bound

on the regret with time. The proof can be found in the extended

version of this paper [28].
Theorem 1: Assume that the proposed ASR algorithm

is implemented and the assumptions on the system model

described in Section II hold. Then, the regret at time t is upper

bounded by:

r(t) ≤ C1 · log4(t) + C2 · log(t)

+
N∑

i=2

(
µσ(1) − µσ(i)

)
M i

max · log4(log(t)) +O(1),
(8)
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where

C1 = Amax + 3
∑N

i=2
µσ(1)−µσ(i)

πmin
×

∑
k=1,i

(
1

log(2) +
√
2λk

√
L

10
∑

s∈Sk

s
|Sk|

)
,

C2 = 4
∑N

i=2

[
1K(i)max

{
(µσ(1) − µσ(i))

2
I
,

4L
(µσ(1)−µσ(i))+

√
2ǫ

+ 4L·
√
2ǫ

(µσ(1)−µσ(i))2−2ǫ

}

+1KC (i)
(
µσ(1) − µσ(i)

)
max

{
2
I
, 4L

∆

}]
,
(9)

where K is defined as the set of all indices i ∈ {2, ..., N} that

satisfy: (µσ(1) − µσ(i))
2 − 2ǫ > (µσ(1) − µσ(2))

2, and 1K(i)
is the indicator function on the set K, i.e., 1K(i) = 1 if i ∈ K
and 1K(i) = 0 otherwise. KC is the complementary set of K.

Theoretical comparison with RCA and DSEE: The theorem

shows that similar to RCA [10] and DSEE [6], the regret

under ASR has logarithmic order with time. The scaling with

the state space under ASR, however, is significantly better

than the scaling under RCA. Since RCA performs a random

regenerative cycles until catching predefined states in each

epoch, the scaling with the mean hitting time (which scales

polynomially with the state space) is O(
∑

i M
i
max log t). On

the other hand, ASR scales only with O(
∑

i M
i
max log log t).

The scaling with N and ∆ under ASR is significantly bet-

ter than the scaling under DSEE. Specifically, DSEE scales

with O
(
( 1√

∆
+ N−2

∆ ) log t
)

, whereas ASR scales only with

O
(
( 1√

∆
+N − 2) log t

)
since the adaptive sequencing rules

estimate the desired learning rate for each arm.

V. CONCLUSION

Inspired by recent developments of sequencing methods

of exploration and exploitation epochs, we develop a novel

algorithm that introduces the concept of adaptive sequencing

rules for arm selection in RMAB problems. The arm selection

rule is adaptive in the sense that it estimates the required

learning rate of each arm and updated dynamically with time,

controlled by the random sample mean in a closed loop

manner. Significant performance gain over RCA and DSEE

has been analyzed theoretically and numerically.
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