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Abstract—We consider a class of restless multi-armed bandit
(RMAB) problems with unknown arm dynamics. At each time,
a player chooses an arm out of N arms to play, referred to as
an active arm, and receives a random reward from a finite set
of reward states. The reward state of the active arm transits
according to an unknown Markovian dynamic. The reward
state of passive arms (which are not chosen to play at time t)
evolves according to an arbitrary unknown random process. The
objective is an arm-selection policy that minimizes the regret,
defined as the reward loss with respect to a player that always
plays the most rewarding arm. This class of RMAB problems has
been studied recently in the context of communication networks
and financial investment applications. We develop a strategy that
selects arms to be played in a consecutive manner in which
the selection sequencing rules are adaptively updated controlled
by the current sample reward means, referred to as Adaptive
Sequencing Rules (ASR) algorithm. By designing judiciously the
adaptive sequencing rules of the chosen arms, we show that ASR
algorithm achieves a logarithmic regret order with time and a
finite-sample bound on the regret is established. Although existing
methods have shown a logarithmic regret order with time in
this RMAB setting, the theoretical analysis presents significant
improvement in the regret scaling with respect to the system
parameters under ASR. Extensive simulation results support the
theoretical study and demonstrate strong performance of the
algorithm as compared to existing methods.

I. INTRODUCTION

Restless Multi-Armed Bandit (RMAB) problems are gener-
alizations of the classic Multi-Armed Bandit (MAB) problem
[1]-[3]. Differing from the classic MAB, where the states of
passive arms remain frozen, in the RMAB setting, the state
of each arm (active or passive) can change. The RMAB prob-
lem under the Bayesian formulation with known Markovian
dynamics has been shown to be P-SPACE hard in general [4].

In this paper, we consider the following RMAB problem
with unknown arm dynamics. At each time, a player chooses
an arm out of N arms to play, referred to as an active arm.
Once playing an arm, a random reward is received from a finite
set of rewards. The reward state of the active arm transits
according to an unknown Markovian dynamics. The reward
state of passive arms (which are not chosen to play at time
t) might change as well and evolve according to an arbitrary
unknown random process.

This class of RMAB problems has been studied recently
in the context of communication networks, and financial
investment applications [5], [6]. For example, in the hierar-
chical opportunistic spectrum access model in cognitive radio
networks, a secondary user (unlicensed) is allowed to transmit
data over a channel among a set of available channels (i.e.,
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arms) when primary (licensed) users do not transmit. The
temporal spectrum usage of the primary user is modeled by
a Markovian dynamics, which leads to a Markovian reward
model. Thus, the secondary user aims at designing a good
channel selection policy without knowing the dynamics of
the primary users, with the goal of maximizing its long-term
rate (i.e., accumulated reward). Other related models have
studied channel selection under unknown fading dynamics and
financial investments (see [5], [6] and references therein).

A. Performance Measure of Learning in RMAB

Although optimal solutions have been obtained for some
special cases of RMAB models (see references in Section I-D),
solving RMAB problems directly is intractable in general [4].
Thus, a widely used performance measure of an algorithm
is the regret, defined as the reward loss with respect to a
player with a side information on the model. An algorithm
that achieves a sublinear scaling rate of the regret with
time approaches the performance of the player with the side
information as time increases. The essence of the problem is
thus to design an algorithm that learns the side information
effectively so as to achieve the best sublinear scaling of the
regret with time.

In this paper we use the definition of regret that was
introduced in [7] and used later in [5], [6] for a similar RMAB
model as considered here. Specifically, the regret is defined as
the reward loss of an algorithm with respect to a player that
knows the expected reward of all arms and always plays the
arm with the highest expected reward. It should be noted that
computing the optimal policy for RMABs is P-SPACE hard
even when the Markovian model is known [4]. Nevertheless,
always playing the arm with the highest expected reward is
known to be optimal in the classic MAB under i.i.d. or rested
Markovian rewards (up to an additional constant term [3]).
Thus, it is commonly used in RMAB with unknown dynamics
settings for measuring the algorithm performance in a tractable
manner.

B. Existing Random and Deterministic Approaches

We are facing an online learning problem with the well
known exploration versus exploitation dilemma. On the one
hand, a player should explore all arms in order to infer their
states. On the other hand, it should exploit the information
gathered so far to play the best arm. Due to the restless
nature of both active and passive arms and potential reward
loss due to transient effect as compared to steady state when
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switching arms, learning the Markovian reward statistics re-
quires that arms will be played in a consecutive manner for
a period of time (i.e., epoch). In [5], [6], regenerative cycle
algorithm (RCA), and deterministic sequencing of exploration
and exploitation (DSEE) algorithm, respectively, have been
proposed based on these insights. The RCA algorithm chooses
the active arms based on the upper confidence bound (UCB)
index [8] when entering each epoch, and a logarithmic regret
with time was shown. However, since RCA performs random
regenerative cycles until catching predefined states at each
epoch (i.e., hitting times) the scaling with the mean hitting
time M (which scales at least polynomially with the state
space) is of order O(M logt). The DSEE algorithm overcomes
this issue by using deterministic sequencing of exploration
and exploitation epochs. A logarithmic regret with time was
shown under DSEE. However, applying the deterministic
sequencing method by DSEE results in oversampling bad
arms to achieve the desired logarithmic regret, which scales

as O ((ﬁ + 2=2) log t), where N is the number of arms

and 0 < A < (fto(1) — ,ua<2))2 is a known lower bound on the
square difference between the highest reward mean ji4(1) and
the second highest reward mean (i, (2). Increasing the mean
hitting times (e.g., by increasing the state space, or decreasing
the probability of switching between states) decreases perfor-
mance under RCA. Increasing N when (11,(1) — o (2)) is small
as compared to the differences between i1y and the reward
means of other arms decreases performance under DSEE.

C. Main Results

1) Algorithm development: We propose a novel Adaptive
Sequencing Rules (ASR) algorithm for solving the RMAB
problem. The basic idea of ASR is to estimate online the
desired (unknown) exploration rate of each arm required for
efficient learning. Thus, by sampling each arm according to
the desired exploration rate, ASR avoids oversampling bad
arms as in DSEE, and at the same time it avoids using too
frequent regenerative cycles as in RCA. Interestingly, the size
of the exploitation epochs is deterministic and the size of the
exploration epochs is random under ASR. The sequencing
rules that decide when to enter each epoch are adaptive in
the sense that they are updated dynamically and controlled by
the current sample means in a closed-loop manner.

2) Theoretical performance analysis: We establish a finite-
sample upper bound on the regret under the proposed ASR
algorithm. Our analysis is valid for both model settings in
[5], and [6]. Thus, performance comparison between the
algorithms can be conducted analytically. Specifically, similar
to RCA [5] and DSEE [6], we show that the proposed ASR
algorithm achieves a logarithmic regret order with time as
well. The scaling with the mean hitting time under ASR,
however, is significantly better than the scaling under RCA
(O(M loglogt) under ASR as compared to O(M logt) un-
der RCA). The scaling with the number of arms and A
under ASR is significantly better than the scaling under

DSEE (O ((ﬁ + N —2)log t) under ASR as compared to

o) ((ﬁ + 2=2) log t) under DSEE).
3) Simulation results: We performed extensive simulation

experiments that support our theoretical results under various
parameter settings. Significant performance gain of ASR over
RCA and DSEE has been observed.

D. Related Work

RMAB problems have been studied in the literature under
both the non-Bayesian [5], [6], [9]-[11] and Bayesian [12]-
[20] settings. Under the non-Bayesian setting, special cases of
Markovian dynamics have been studied in [5], [9], [11]. Under
the Bayesian setting with known dynamics, the objective is
exact optimality in terms of the total expected reward over
time. The structure of the optimal policy for a general RMAB
remains open. There are a number of studies on special classes
of RMABEs. In particular, the optimality of the myopic policy
was shown under positively correlated two-state Markovian
arms [15]-[18] under the model where a player receives a
unit reward for each arm observed in a good state. In [19],
[21], the indexability of a special classes of RMAB have been
established. In [20], optimality conditions of a myopic policy
have been established for a family of regular reward functions.
In our previous work, we have derived optimality conditions of
a myopic policy under arm activation constraints in the context
of dynamic spectrum access [22]. Other related approaches
include game theoretic, and reinforcement learning algorithms
(see [23]-[27] and references therein).

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider N arms indexed by ¢ = 1,2,--- | N. The
i" arm is modeled as a discrete-time, irreducible and ape-
riodic Markov chain with finite state space S?. The maximal
cardinality among the set spacecs is defined by: |Spez| =
maxi<;<n{|S?|}. At each time, the player chooses one arm to
play. Each arm, when played, offers a certain positive reward
that defines the current state of the arm. Let s;(¢) denote
the state of arm ¢ at time ¢. The highest sum of rewards
among arms is defined by 7pae = maxi<i<N{Y ,cgi Si)-
Let P’ denote the transition probability matrix and 7; =
{mi(s)}seqi the stationary distribution of arm 4. The minimal
stationary distribution among all arms and states is defined by
Tomin = miny<;<nsesi mi(s). Let A; be the second largest
eigenvalue of P!, and let A\ = maxj<i<y A; be the
maximal one among all arms. Also let Mnin = 1 — Mnass
and let \; £ 1 — )\; be the eigenvalue gap. Let M  be the

.y
mean hitting time of state y starting at initial state x for arm

i, and let M} .. = max, yes, oty ML . We also define:
Apnar £ max (min Wi(s))_l Z s,
L ses’ (1)
L L Sormax

(3 = 2v2) A min

We assume that the arms are restless. Specifically, the
reward state of the active arm (say ¢) transits according
to the unknown Markovian rule P?, while the reward state
of passive arms (which are not chosen to play at time ¢)
evolves according to an arbitrary unknown random process.
The stationary reward mean p; is given by p; = > sm;(s).

s€St
Let o be a permutation of {1, ..., N} such that
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152 o) > fo(2) > 2 Ho(N)-

Let t'(n) denote the time index of the n play on arm i, and
T"(t) denote the total number of plays on arm ¢ by time ¢.
Thus, the total reward by time ¢ is given by:

s5i(t'(n)). )

For a policy ¢, we define the regret r®(t) as the difference
between the expected total reward that can be obtained by
playing the arm with the highest mean, and the expected total
reward obtained from using policy ¢ up to time t:

To(t) =ty — Eo[R(2)]. 3)

The objective is to minimize the growth rate of the regret with
time.

III. THE ADAPTIVE SEQUENCING RULES (ASR)
ALGORITHM

The basic idea of ASR is to sample each arm according to
its learning rate needed for a sufficiently accurate inference.
We show in the analysis that we must explore a bad arm
a(i), i = 2,3,...,N, at least D;logt times for being able
to distinguishing it from p* with a sufficiently high accuracy,
where

4L
D= ——. 4)
(1" = Ho(i))

The smaller the mean difference, the more samples we
must take for exploring bad arms. Since the reward means
{ug(i)}j\il, are unknown, however, we can estimate D; by
replacing ;) by its sample reward mean. Using the esti-
mate of D; (which is updated dynamically during time and
controlled by the sample means), we can design an adaptive
sequencing rule for sampling arm i that will converge to its
learning rate, required for obtaining a sufficiently accurate
inference as time increases. Whether we succeed to obtain a
logarithmic regret order depends on how fast the estimate of
D; converges to a value which is no smaller than D; (so we
take at least D; samples from bad arms in most of the times).
To guarantee the desired convergence speed, we judiciously
overestimate D; as detailed in Section III-D.

>

A. Playing arms consecutively during exploration and ex-
ploitation epochs:

As discussed in I-B, learning the Markovian reward statistics
requires that arms will be played in a consecutive manner
for a period of time. For instance, RCA selects arms based
on UCB and plays the arm a random period of time which
depends on hitting time events. On the other hand, DSEE
samples arms a deterministic periods of time that grow geo-
metrically with time. Interestingly, we show that by judiciously
combining these two sampling methods, while determining the
exploration frequency for each arm according to its adaptive
sequencing rule (described in Sec. III-D), we can achieve
tremendous improvement in both theoretical and simulation
performance as shown in Section IV.

Specifically, we divide the time horizon into exploration and
exploitation epochs, as illustrated in Fig. 1. An exploration

epoch is dedicated to play a certain arm determined by its
adaptive sequencing rule (described in Sections III-D, III-E).
Let n},(t) be the number of exploration epochs in which arm
1 was played up to time ¢. An exploitation epoch is dedicated
to play the arm with the highest sample mean, whenever
exploration is not being performed. Let n(t) be the number
of exploitation epochs up to time ¢. In Fig. 1, we illustrate the
exploration epochs for arm ¢ only, for the ease of illustration.
In general, an interleaving of exploration epochs for all arms
with exploitation epochs (for the best arm) is performed.

B. The structure of exploration epoch:

The exploration epochs for each arm are divided into two
sub-bloks: a random-size sub-block SB1, and a deterministic-
size sub-block SB2. Consider time ¢ (and we remove the
time index ¢ for convenience). Let v*(nf, — 1) be the last
reward state observed at the (nl, — 1) exploration epoch.
As illustrated in Fig. 1, once the player starts the (n&)"
exploration epoch, it first plays a random period of time
until observing v*(ni, — 1) (i.e., a random hitting time). This
random period of time is referred to as SB1. Then, the player
plays a deterministic period of time with length of 4™ . This
deterministic period of time is referred to as SB2. The player
stores the last reward state 7'(nl,) observed at the current
(n%,)!" exploration epoch, and so on. We define the set of
time indices during SB2 sub-blocks by V;

C. The structure of exploitation epoch:

Lets; be the sample reward mean of arm ¢ when entering the
(nr)t" exploitation epoch. Then, the player plays the arm with
the highest sample mean max;s; for a deterministic period
of time with length 2 - 472~1 (there are no arm switchings
inside epochs). We define the set of time indices in exploitation
epochs by W,;. Computing sample mean s; for each arm is
based on observations taken from ); and W,. Observations
from SB1 sub-blocks are removed to ensure consistency of
the estimators.

D. The Selection rule (choosing between epoch types):

At the beginning of each epoch, the player needs to decide
whether to enter an exploration epoch for one of the N arms,
or whether to enter an exploitation epoch for the arm with the
highest sample mean. Let 5;(¢) be the sample reward mean of
arm ¢, computed based on observations taken from V; only at
time ¢ (see discussion and detailed analysis in [28]). Let

~ 4L
Di(t) & — — ,
®) max {A, (max; 5;(t) — 5;(t))? — €}
where 0 < A < (ptg(1) — ’LLO-(Q))Q is a known lower bound on
the square difference (Ma(1) — ,ug(g))2, and € > 0 is a fixed

tuning parameter (a discussion on the implementation is given
in Sec. III-E). We also define:

o)

62 : szn
192(Fmas + 1)

The design of the selection rule is based on the following
insights. First, we need to make sure that the algorithm takes
at least D; logt samples from each bad arm (D; is given in
(4)) for computing a sufficiently accurate sample means ;.

= (6)
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Exploration arm i

Exploration arm i

Play best arm 2 + 4™ times r 1 Play best arm 2 » 4™ times r \
Exploitation ece (| @ o o Exploitation eoe e o o
[ L]
| 4.“ L3 | ‘,JL
T I : T T
5B1 SB2=play 4mo—1 5B1 SB2=play 4™
yi(ng — 2) yi(nb —1) yini —1) i)

Fig. 1. An illustration of the exploration and exploitation epochs under ASR. As explained in Sec. III-C, during exploitation epoch the player plays the same
arm that had the highest sample mean in the beginning of the epoch. As explained in Sec. III-B, an exploration epoch is divided into a random-size sub-block
SB1 and a deterministic (geometrically growing) size sub-block SB2. SB1 of an arm (say 4 as in the figure) is a random hitting time until catching the last
state «" that arm ¢ observed in the previous exploration epoch. Selecting which epoch to play is determined by the selection rule described in Sec. III-D.

Therefore, the algorithm replaces the unknown value D; by
D;(t). Dy(t) overestimates D; to obtain the desired property.
Second, since D;(t) is a random variable, we need to make
sure that the desired property holds with a sufficiently high
probability. I can be viewed as the minimal rate function of
the estimates among all arms and used to guarantee the desired
property. Consider a beginning of each epoch at time ¢, and
let V;(t) be the set of all time indices during SB2 sub-blocks
up to time ¢. Then, if there exists an arm (say 7) such that the
following condition holds:

Vi) < max{ﬁiu), 2} logt, @

1
then the player enters an exploration epoch for arm ¢ (ties
between arms are broken arbitrarily). Otherwise, it enters an
exploitation epoch. As a result, the selection rule for each arm
that governs the arm sequencing policy is adaptive in the sense
that it is updated dynamically with time and controlled by the
random sample mean in a closed loop manner.

E. High-level pseudocode and implementation of ASR:

In summary, the player performs the following algorithm:
1) (Initialization:) For all N arms, execute an exploration
epoch where a single observation is taken from each arm.

2) If condition (7) holds for some arm (say ), then execute an
exploration epoch for arm ¢ (as described in Sec. III-B) and
when finishing go to Step 2 again. Otherwise, go to Step 3.
3) Execute an exploitation epoch (as described in Sec. III-C).
When finishing, go to Step 2.

We next discuss technical implementation details when
executing ASR algorithm. (i) From a theoretical perspective,
ASR and DSEE requires the same knowledge on the system
parameters to guarantee the theoretical performance. RCA
requires the same parameters, excepts that A is not needed,
(ii) It is well known that there is often a gap between the
sufficient conditions required by theoretical analysis (often due
to union-bounding events in analysis) and practical conditions
for obtaining good performance. For example, in [6] the
authors simulated DSEE with exploration rate 10 - log ¢ while
the theoretical sufficient conditions were ~ 1,000 - logt. A
similar gap was observed in RCA. Indeed, this is the case in

ASR as well. While analysis requires to overestimate D; as in
(5), simulation results provide much better performance when
estimating D, directly by setting D;(t) + m
Thus, in practice A is not needed and the parameters can be
estimated on the fly. In Fig. 2, we simulated exactly the same
parameters that the authors pick and tuned in [6, Figure 4].
We indeed obtained the same curves for DSEE and RCA. We
then executed ASR without the knowledge of A and without
tuning € (set to zero). D;(t) was estimated on the fly. It can
be seen that ASR significantly outperforms both DSEE and
RCA. A more extensive empirical study that demonstrates the
efficiency of ASR can be found in [28].

90
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_.0"
70 -
60 o
.

= e
o 50 d' Proposed ASR Algorithm| -
2 , V DSEE Algorithm
4o J O RCA Algorithm

20 —:?I v v v v AV AV

0 . . . . . . . . .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time

Fig. 2. The regret (normalized by log t) for RMAB with 5 arms under ASR,
DSEE, and RCA as a function of time.

IV. THEORETICAL REGRET ANALYSIS

In the following theorem we establish a finite-sample bound
on the regret with time. The proof can be found in the extended
version of this paper [28].

Theorem 1: Assume that the proposed ASR algorithm
is implemented and the assumptions on the system model
described in Section II hold. Then, the regret at time ¢ is upper
bounded by:

r(t) < Cq -log,(t) + Cs - log(t)
N
+ Z (IU'O'(I) - /’La(z)) Af:naw : 10g4(10g(t)) + 0(1)7

=2

®)
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where
Cl = Anm,:c +3 ZiV:Q 7“0(;)7::6(” X
1 V22X VL
Z‘ log(2) + 10 fj S‘Sk‘ )
k=1,i sESy,
N .
Cy =430, [l (i) max { (po(1) = Ho(i) § »
4L n 4L/2¢ }
(Bo(1)—Ho()+V2e | (o) —Ho(i))?—2€

+lice (1) (Ho(1) — Howy) max {7, K}, o
where K is defined as the set of all indices ¢ € {2, ..., N} that
satisfy: (o(1) = Lo(i)* = 2€ > (1a(1) = Ho(2))®, and (i)
is the indicator function on the set K, i.e., 1x(i) = 1if i € K
and 1x(i) = 0 otherwise. K is the complementary set of K.

Theoretical comparison with RCA and DSEE: The theorem
shows that similar to RCA [10] and DSEE [6], the regret
under ASR has logarithmic order with time. The scaling with
the state space under ASR, however, is significantly better
than the scaling under RCA. Since RCA performs a random
regenerative cycles until catching predefined states in each
epoch, the scaling with the mean hitting time (which scales
polynomially with the state space) is O(3_, M;Lam logt). On
the other hand, ASR scales only with O(>, M?, .. loglogt).
The scaling with N and A under ASR is significantly bet-
ter than the scaling under DSEE. Specifically, DSEE scales
with O ((ﬁ + 8=2) Jog t), whereas ASR scales only with

O ((% + N —2)log t) since the adaptive sequencing rules
estimate the desired learning rate for each arm.

V. CONCLUSION

Inspired by recent developments of sequencing methods
of exploration and exploitation epochs, we develop a novel
algorithm that introduces the concept of adaptive sequencing
rules for arm selection in RMAB problems. The arm selection
rule is adaptive in the sense that it estimates the required
learning rate of each arm and updated dynamically with time,
controlled by the random sample mean in a closed loop
manner. Significant performance gain over RCA and DSEE
has been analyzed theoretically and numerically.
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