
GraphCleaner: Detecting Mislabelled Samples in Popular Graph Learning
Benchmarks

Yuwen Li 1 Xiong Miao 2 Bryan Hooi 1 2

Abstract
Label errors have been found to be prevalent in
popular text, vision, and audio datasets, which
heavily influence the safe development and eval-
uation of machine learning algorithms. Despite
increasing efforts towards improving the quality
of generic data types, such as images and texts,
the problem of mislabel detection in graph data
remains underexplored. To bridge the gap, we
explore mislabelling issues in popular real-world
graph datasets and propose GRAPHCLEANER, a
post-hoc method to detect and correct these misla-
belled nodes in graph datasets. GRAPHCLEANER
combines the novel ideas of 1) Synthetic Mislabel
Dataset Generation, which seeks to generate real-
istic mislabels; and 2) Neighborhood-Aware Mis-
label Detection, where neighborhood dependency
is exploited in both labels and base classifier pre-
dictions. Empirical evaluations on 6 datasets and
6 experimental settings demonstrate that GRAPH-
CLEANER outperforms the closest baseline, with
an average improvement of 0.14 in F1 score, and
0.16 in MCC. On real-data case studies, GRAPH-
CLEANER detects real and previously unknown
mislabels in popular graph benchmarks: PubMed,
Cora, CiteSeer and OGB-arxiv; we find
that at least 6.91% of PubMed data is mislabelled
or ambiguous, and simply removing these mis-
labelled data can boost evaluation performance
from 86.71% to 89.11%1.

1. Introduction
Data is the primary input to any AI system, both for learn-
ing and evaluation. Hence, recognizing data quality as a

1School of Computing, National University of Singapore, Singa-
pore 2Institute of Data Science, National University of Singapore,
Singapore. Correspondence to: Yuwen Li <yuwenli@u.nus.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1Corrected datasets and code are available at
https://github.com/lywww/GraphCleaner/tree/master.

critically important factor for the success of AI systems,
data-centric AI has rapidly emerged in recent years. The
vision of data-centric AI is to ensure clean and high-quality
data in all phases of the project life-cycle and to develop
tools and processes for monitoring and improving data qual-
ity. In particular, in supervised learning contexts, correcting
label noise, including mislabelled and ambiguously labelled
data, is of high priority due to the key importance of labels
in the training and evaluation process.

Recent work (Northcutt et al., 2021b) has shown that label
errors are prevalent across machine learning benchmarks:
they find a label error rate of 3.4% on average, across 10
of the most popular natural language processing, computer
vision, and audio datasets. However, label errors remain
unexplored in the graph setting. Graphs are widely used
for representing entities and the relationships between them,
with numerous applications such as molecules, financial
networks, and social networks (Wu et al., 2020). In this
paper, we focus on the node classification setting, one of the
most common graph learning tasks, and aim to answer the
questions: are mislabels also common in this setting, and
can they be automatically detected and corrected?

Existing solutions for mislabel detection (Arazo et al., 2019;
Pleiss et al., 2020; Northcutt et al., 2021a; Zhu et al., 2021)
are designed for machine learning on generic data, such as
images, audio, and text, where instances are largely seen
as being independent of one another. However, this means
that when used in a graph setting, these methods do not
effectively exploit the close neighbor-dependence between
nodes and their neighbors, which is a key characteristic of
graph data. In contrast, a key idea of our approach is that
strong violations in the dependency patterns between a node
and its neighbors act as an important signal that the node is
more likely to be mislabelled.

Hence, in this work, we propose GRAPHCLEANER, a post-
hoc framework for detecting and correcting mislabelled
nodes on graph datasets. To do this, GRAPHCLEANER
introduces the novel ideas of 1) Synthetic Mislabel Dataset
Generation, where we first estimate a ‘mislabel transition
matrix’ describing patterns of how samples of different
classes tend to be mislabelled, then use this transition matrix
to synthesize realistically mislabelled samples in a class-

1

GraphCleaner

PubMed

Severe hypoglycemia in IDDM children

Abstract: The incidence of severe
hypoglycemia was determined in a 1-yr
prospective study of 350 insulin-dependent
diabetic (IDDM) children. There were no
significant differences in mean glycosylated
hemoglobin, age, and duration of disease
between the patients who had severe
hypoglycemia and those who did not...

Original label: Type 2 Diabetes
Corrected label: Type 1 Diabetes

Autoimmunity to two forms of glutamate
decarboxylase in insulin-dependent

diabetes mellitus

Abstract: insulin-dependent diabetes mellitus
(IDDM) is thought to result from the
autoimmune destruction of the insulin-
producing beta cells of the pancreas. Years
before IDDM symptoms appear, we can detect
autoantibodies to one or both forms of
glutamate decarboxylase (GAD65 and
GAD67), synthesized from their respective…

Original label: Type 2 Diabetes
Corrected label: Type 1 Diabetes

Beyond Independence: Conditions for
the Optimality of the Simple Bayesian

Classifier

Abstract: The simple Bayesian classifier
(SBC) is commonly thought to assume that
attributes are independent given the class, but
this is apparently contradicted by the
surprisingly good performance it exhibits in
many domains that contain clear attribute
dependences. No explanation for this has been
proposed so far. In this paper we show that…

Original label: Case-Based
Corrected label: Probabilistic Methods

MLC: A Machine Learning Library in C

Abstract: We present MLC ++ , a library of
C++ classes and tools for supervised Machine
Learning. While MLC ++ provides general
learning algorithms that can be used by end
users, the main objective is to provide
researchers and experts with a wide variety of
tools that can accelerate algorithm
development, increase software reliability...

Original label: Theory
Corrected label: Probabilistic Methods

Virtual Notepad: Handwriting in
Immersive VR

Abstract: We present Virtual Notepad, a
collection of interface tools that allows the user
to take notes, annotate documents and input
text using a pen, while still immersed in virtual
environments (VEs). Using a spatially-tracked,
pressure-sensitive graphics tablet, pen and
handwriting recognition software, Virtual
Notepad explores handwriting as a new…

Original label: Databases
Corrected label: Human-Computer Interaction

Software Tools

Abstract: Software is growing ever-more
complex and new software processes, methods
and products put greater demands on software
engineers than ever before. The support of
appropriate software tools is essential for
developers to maximize their ability to
effectively and efficiently deliver quality
software products. This article surveys…

Original label: Databases
Corrected label: Human-Computer Interaction

Devito (v3.1.0): an embedded domain-
specific language for finite differences

and geophysical exploration

Abstract: We introduce Devito, a new domain-
specific language for implementing high-
performance finite difference partial
differential equation solvers. The motivating
application is exploration seismology where
methods such as Full-Waveform Inversion and
Reverse-Time Migration are used to invert
terabytes of seismic data to create images …

Original label: Discrete Mathematics
Corrected label: Mathematical Software

Fault Trees from Data: Efficient
Learning with an Evolutionary

Algorithm

Abstract: Cyber-physical systems come with
increasingly complex architectures and failure
modes, which complicates the task of obtaining
accurate system reliability models. At the same
time, with the emergence of the (industrial)
Internet-of-Things, systems are more and more
often being monitored via advanced sensor
systems. These sensors produce large…

Original label: Formal Languages
Corrected label: Neural & Evolutionary

Cora

OGB-arxivCiteSeer

Figure 1. Examples of mislabelled samples detected by our approach in PubMed, Cora, CiteSeer, and OGB-arxiv respectively.
Below each case, we give the original label given in the dataset, along with the corrected label suggested by our algorithm. We verify that
all these cases are indeed mislabels, and highlight in blue the text that provides evidence for this. For PubMed, note that Insulin-Dependent
Diabetes Mellitus (or IDDM) is synonymous with Type 1 Diabetes.

dependent way. Next, these synthesized mislabelled samples
are used as negative samples to train our 2) Neighborhood-
Aware Mislabel Detector component, which is a binary
classifier taking as input both the observed labels and the
base classifier predictions, in a node’s neighborhood. In this
way, GRAPHCLEANER exploits neighbor-dependence in
graphs by learning to distinguish between the neighborhoods
of correctly labelled and mislabelled nodes.

To evaluate its real-world utility and understand the impli-
cations of label errors, we conduct detailed case studies.
On PubMed, we find that at least 6.91% of the data is
mislabelled or ambiguous, and simply removing these mis-
labelled data boosts evaluation performance from 86.71%
to 89.11%. This validates the importance of data quality for
performance and evaluation, and suggests that correcting
mislabels has scope for significant value. Then, as shown in
Figure 1, we apply our method to four widely used datasets
to detect mislabels. To show the labels suggested by our
algorithm are indeed correct, we verify in each case and
provide evidence as highlighted in blue. Automatically de-
tecting such samples can greatly speed up the efficiency of
human manual checking in finding and correcting mislabels,
and hence is our main goal in this work.

Our contributions can be summarized as follows:

• We propose GRAPHCLEANER to detect mislabels in
graph data, and prove the theoretical guarantees regard-
ing the mislabel score threshold. Unlike existing ap-
proaches, GRAPHCLEANER exploits graph’s neighbor-
dependence patterns, by introducing a neighborhood-
aware mislabel detector and the novel synthetic misla-
bel dataset generation for better training the detector.

• Extensive experiments on 6 graph datasets across 6
experimental settings show that GRAPHCLEANER con-
sistently outperforms state-of-the-art methods by an
average margin of 0.14 in F1 score, and 0.16 in MCC.

• Detailed case studies show real and previously un-
known mislabels in four datasets, verifying GRAPH-
CLEANER’s effectiveness in real-world applications.
At least 6.91% of PubMed data is found to be misla-
belled or ambiguous, with significant implications for
algorithm evaluation.

• We publicly release 2 improved variants of PubMed
dataset: PubMedCleaned and PubMedMulti for
more accurate evaluation.

2. Related Work
We first review related explorations in graph neural net-
works, learning with noisy labels and confidence calibration.

2

GraphCleaner

Base
Classifier

Predict
every
node

Randomly sample
nodes and corrupt their
labels based on

1. Synthetic Mislabel Dataset Generation 2. Train Neighborhood-Aware Mislabel Detector

[]
Mislabel
Transition
Matrix

K-hop neighborhood:

1-hop neighborhood:
label

prediction

2-hop neighborhood:
label

prediction

label prediction
agreement

Mislabel
Detector

Concatenation

Figure 2. The framework of GRAPHCLEANER. Different colors indicate different class labels. To train a mislabel detector, we first
estimate the mislabel transition matrix Q̂ from the predictions of a ’base classifier’, sample ϵ-ratio of nodes and flip their classes j to
another class i based on the probability of Q̂ỹ=i|y∗=j . Then for every node v, we measure the agreement between v and its neighborhood
within K hops. The detailed design for 1-hop neighborhood N (1)

v and 2-hop neighborhood N (2)
v is illustrated.

Then we summarize methods for mislabel detection.

Graph Neural Networks Graph neural networks (GNN)
have been a powerful tool for graph learning tasks. One line
of research similar to ours utilizes label information, such
as label propagation (Wang & Leskovec, 2020; Jia & Ben-
son, 2020) and integrating labels with features (Shi et al.,
2020). Another line is post-processing methods. Among
them, Wang et al. (2021) tackles the graph-based calibration
problem and Huang et al. (2020) proposes the C&S proce-
dure. Due to the goal of mislabel detection, our framework
differs, e.g., in its use of mislabel generation and neighbor-
dependence assumption.

Confidence Calibration In machine learning, reliable un-
certainty estimates are crucial for safe decision-making.
However, Guo et al. (2017) shows that modern neural
networks suffer from over-confidence issue, which Confi-
dence Calibration aims to address. A well-calibrated model
should align the output confidence score with the ground
truth accuracy (Lakshminarayanan et al., 2016). Popular
methods include temperature scaling (Guo et al., 2017),
Dirichlet calibration (Kull et al., 2019), and Gaussian pro-
cesses (Wenger et al., 2020), etc. Despite the shared inter-
est in making decision-making safe, calibration algorithms
adopt the model-centric view, while we focus on improving
data quality, and we do not expect a straightforward map-
ping between confidence score and ground truth accuracy.

Learning with Noisy Labels Training reliable models in
the presence of label noise (Natarajan et al., 2013; Algan &
Ulusoy, 2021) is a closely related topic to mislabel detection,
usually via modified training procedures (Hoang et al., 2019;
Dai et al., 2021). Some also explore neighborhood similar-
ity (Zhu et al., 2021b;a), or utilize synthetic mislabels (Xia

et al., 2019; Jiang et al., 2021). Our GRAPHCLEANER dif-
fers from them in its focus on non-i.i.d graph data, and how
it obtains and use transition probabilities. Please refer to
Appendix A for specific differences.

Mislabel Detection Existing solutions for mislabel detec-
tion are mostly designed for generic data and typically come
from three perspectives: training dynamics-based (Arazo
et al., 2019; Pleiss et al., 2020), joint distribution estimation
of noisy and true labels (Northcutt et al., 2021a), and neigh-
borhood similarity (Zhu et al., 2021). Our method draws
inspiration from Northcutt et al. (2021a) when estimating
the mislabel transition matrix, but focuses on the graph set-
ting and utilizes the neighborhood dependence property of
graphs to deliver a post-hoc, plug-and-play solution.

3. Proposed Framework
3.1. Problem Definition

We aim to detect mislabelled nodes in a graph G =
(V,X,A), with node set V containing n nodes, node feature
matrix X ∈ Rn×d and adjacency matrix A ∈ Rn×n. We
assume that G is undirected for simplicity, but our method
can generalize straightforwardly to directed graphs. The
unknown true label of node v is denoted by y∗v ∈ [c], where
[c] := {1, 2, · · · , c} is the class label set; the observed noisy
label is denoted by ỹv ∈ [c]. The node v is said to be misla-
belled if y∗v ̸= ỹv . The node set V is partitioned into training,
validation, and test sets, denoted by Vtrain, Vval, and Vtest.

Given a graph G, we aim to answer the following two fun-
damental questions:

• Identify: Which nodes are mislabelled?
• Correct: What are their unknown true labels y∗?

3

GraphCleaner

Post-hoc Setting Our work focuses on the post-hoc set-
ting, where we are given a pretrained base classifier
fθ(X,A), e.g., any graph neural network used as a node
classifier, which is trained on the training set Vtrain with the
observed noisy labels ỹ.

3.2. GRAPHCLEANER: Overview

In order to determine if a sample is mislabelled, we need a
good mislabel detector that is able to capture the behavior
of mislabels. We specify this detector as a neural network,
which leads to the question of how to construct a train-
ing dataset representative of the real world. Unlike other
problems, such as out-of-distribution detection, where the
outlier distribution is unknown, mislabel detection has the
advantage that the outlier distribution is well-defined and
can be easily simulated by flipping the labels. Motivated
by this, we tackle the mislabel detection task through two
steps: generating synthetic mislabel dataset and training
neighborhood-aware mislabel detector. The framework is
illustrated in Figure 2.

To obtain mislabelled data that captures the characteristics
of real mislabels, we first estimate the mislabel transition
matrix Q̂ using a base classifier. The mislabel transition
matrix is then utilized to generate the balanced corrupted
dataset. Next, the Mislabel Detector is trained on the cor-
rupted dataset by capturing neighborhood-aware features.

3.3. Synthetic Mislabel Dataset Generation

There is no ground truth about if a sample is mislabelled.
To train a mislabel detector, we first need to synthesize
mislabelled samples to obtain ground truth labels. Our
approach generates synthetic mislabels in a class-aware
way: the label noise is class-dependent, meaning that the
probability of mislabelling a node as class i is dependent on
the node’s actual class j. For example, an image of a little
tiger is more easily mislabelled as a cat than a dog. The
overall procedure is summarized in Algorithm 1.

Learning Mislabel Transition Matrix To generate class-
dependent label noise, we first learn a mislabel transition
matrix Q̂ to capture the probability of mislabelling one class
label to another class. Specifically, Q̂ỹ=i|y∗=j denotes the
probability of a sample with unknown true class j being
mislabelled with an observed class i.

We estimate the mislabel transition matrix using a pretrained
base classifier evaluated on validation set data, following
the same assumption outlined in Northcutt et al. (2021a).
The underlying assumption is that predictions given by the
base classifier with high confidence are very likely to match
the true labels. Therefore, we consider predictions with
confidence scores no less than a threshold (see Appendix 5
Equation 4) to be correct. Under this assumption, we count

the number of samples with true label j and observed noisy
label i as Cỹ=i,y∗=j . This joint distribution can then be
transformed into an estimate of the mislabel transition ma-
trix Q̂ỹ=i|y∗=j , by an application of Bayes’ theorem. We
refer you to Appendix 5 for more details and formal defini-
tions of this process.

Sampling Mislabels To generate a balanced training set
for training our mislabel detector, we uniformly sample half
of the nodes in the validation set to be synthetic mislabels.
We denote the set of sampled nodes as Vsynth ⊆ Vval.

Then, nodes in Vsynth will have their labels randomly flipped
according to the mislabel transition matrix: specifically,
the probability of changing a node’s given label from j to
a different label i is Q̂ỹ=i|y∗=j . Effectively, this process
simulates realistic label noise, using our best estimate of the
distribution of label noise in the original data. We denote the
resulting corrupted label matrix as Yc ∈ Rn×c, which is the
one-hot label matrix after nodes in Vsynth have been flipped
according to the above process. For further discussion, see
Appendix C.

Algorithm 1 Synthetic Mislabel Dataset Generation
Input: graph G=(V,X,A) with V=(Vtrain,Vval,Vtest),
base classifier fθ, sample ratio ϵ.
Output: corrupted graph Gc = (Vc,X,A) with nodes in
Vsynth having flipped labels
Notations: confident joint Cỹ,y∗ , threshold tc for class c,
noise transition matrix Q̂ỹ|y∗ .

1: Train fθ on Vtrain
2: Calculate tc = 1

|Xỹ=c|
∑

x∈Xỹ=c

p̂ (ỹ = c;x, θ), where p̂

is fθ’s predictions
3: for v in Vval do
4: yv ← fθ(v)
5: Pv ← fθ’s softmax prediction on v
6: if yv ̸= ỹv and Pv(yv) ≥ tyv

then
7: Cỹ=ỹv,y∗=yv

+= 1
8: end if
9: end for

10: Q̂ỹ,y∗ ← normalized Cỹ,y∗ ▷ joint distribution
11: Q̂ỹ|y∗ ← Q̂ỹ,y∗/Q̂y∗ ▷ conditional probability
12: Vsynth ← sampled data from Vval by ϵ
13: for v in Vsynth do
14: Flip v’s label according to the transition probability

distribution Q̂ỹ|y∗=ỹv

15: end for

3.4. Neighborhood-Aware Mislabel Detector

To better detect mislabelled data, we leverage a useful and
commonly-held assumption of neighbor-dependence: the
ground truth label of one node tends to agree with the labels

4

GraphCleaner

of its neighbors. That is, if a node strongly disagrees with
its neighborhood in terms of labels, the node has a relatively
high risk of being mislabelled. In addition, the base classi-
fier’s softmax predictions also carry important information
about the unknown true labels.

Motivated by these two factors, our mislabel detector intu-
itively focuses on the agreement between a sample’s label,
and the labels and base classifier predictions in its neighbor-
hood, to decide if the sample is mislabelled. The procedure
is summarized in Algorithm 2, and more details can be
found in Appendix D.

Algorithm 2 Neighborhood-Aware Mislabel Detector
Input: corrupted graph Gc = (Vc,X,A) with D as its di-
agonal degree matrix, softmax prediction matrix P, original
label matrix Y, corrupted label matrix Yc, number of hops
K.
Output: the trained mislabel detector
Notations: neighborhood agreement features Z

1: Ã← D−1/2AD−1/2

2: Z← AGR(Yc,P)
3: for k = 1→ K do
4: Sk ← zero(Ãk)
5: Y(k) ← Sk ·Y
6: P(k) ← Sk ·P
7: Z = Z⊕Y(k) ⊕P(k)

8: end for
9: Train the mislabel detector with Zval, Yvalc

10: Apply the mislabel detector on Ztest

Neighborhood Extraction We now describe how we ex-
tract the labels and base classifier predictions from the neigh-
borhood of each node. Define the normalized adjacency
matrix as Ã := D−1/2AD−1/2 where D is the diagonal
matrix of node degrees.

Definition 3.1. The k-hop propagation matrix is defined as

Sk := zero(Ãk) ∈ Rn×n, (1)

where the zero(·) operation indicates zeroing-out all the
diagonal entries of the matrix.

Multiplying any signal by Sk propagates it over k-hop neigh-
borhoods. The zero(·) operation is essential for avoiding
label leakage, where information about the target labels
influences the input to a classifier.

Then, to extract label information in each node’s k-hop
neighborhood, we start with the label matrix Y ∈ Rn×c,
and propagate it over k hops by computing Y(k) := Sk ·
Y ∈ Rn×c for any k. In order to extract the base classifier’s
predictions in such neighborhoods, we do the same propa-
gation steps on the softmax prediction matrix P ∈ Rn×c,

obtaining P(k) := Sk ·P ∈ Rn×c. Intuitively, Y and P are
smoothed by information in k-hop neighborhood, yielding
Y(k) and P(k), which have greater expression capability by
encoding neighborhood information.

Neighborhood Agreement Features Recall that Y con-
tains the original observed labels, while Yc contains the
corrupted labels where we flip the labels of nodes in Vsynth.
To better exploit neighbor-dependence, we employ an agree-
ment operator AGR : Rn×c × Rn×c 7→ Rn×c, which we
will use to measure the agreement between the (possibly
corrupted) node’s own label Yc, and three quantities from
the above Neighborhood Extraction process: 1) the model
predictions P; 2) the neighborhood-propagated predictions
P(k); and 3) the neighborhood-propagated labels Y(k), for
every hop k ∈ [K].

There are various ways to gauge such agreement and a
simple way is to take dot products ⊖ as the agreement
measure AGR. Accordingly, define the row-wise dot product,
denoted U⊖V for any same-sized matrices U and V, as the
column vector whose i-th entry is the dot product between
the i-th rows of U and V. In this way, we construct the input
feature matrix Z to our mislabel detector by concatenating
such agreement terms2:

Z=

Yc⊖P,Yc⊖P
(1)

, · · · ,Yc⊖P
(K)︸ ︷︷ ︸

K

,Yc⊖Y
(1)

, · · · ,Yc⊖Y
(K)︸ ︷︷ ︸

K



Mislabel Detector We train a Multi-Layer Perceptron
(MLP) model on the validation set as the mislabel detec-
tor, with input features Z, and output as a binary variable
indicating whether the node is a synthetic mislabelled node.
L1 loss L(x, y) = 1

N

∑n
i=1 |xi− yi| is adopted for training,

motivated by the finding in Hu et al. (2022) that L1 loss
has stronger robustness and smaller calibration error than
the commonly used cross entropy loss. Mislabel detection
is closely related to calibration, since both tasks expect the
softmax probability associated with the predicted class label
to reflect its ground truth correctness likelihood.

Inference For the target graph G = (V,X,A) with label
matrix Y, we construct the softmax matrix P using a base
classifier and do K-hop neighborhood propagation to obtain
P(k) and Y(k) for k ∈ [K]. Note that the corrupted label
matrix Yc is only needed at training time; at test time, the
observed label matrix Y is used in its place. For every
mislabelled node, its unknown true label y∗ is estimated
using the base classifier’s prediction ŷ∗ = argmaxi p(y =

2Using both original and corrupted label matrices (Y and Yc)
in generating the neighborhood agreement features is an important
design choice to ensure that synthetic mislabels only corrupt their
own features, not the features of other nodes; see Appendix D.

5

GraphCleaner

i | x). For the time complexity of our GRAPHCLEANER,
see Appendix E.

Remark Both our mislabel transition matrix and mislabel
detector are estimated on Vval. There are three advantages
in doing so. 1) Vval is more representative of Vtest, avoiding
overfitting on Vtrain; 2) We can easily adapt to distribution
shift away from the training distribution; 3) We only need a
small amount of data to train the mislabel detector, which
requires fewer parameters and improves efficiency.

3.5. Theoretical Guarantees

In order to assist users in selecting appropriate thresholds for
converting mislabel scores into binary mislabel predictions,
we propose an algorithm that is accompanied by theoret-
ical guarantees on false positive and false negative rates,
derived from the conformal prediction framework (Vovk
et al., 2005; Balasubramanian et al., 2014). That is, if we
choose the threshold based on the following propositions,
the probability of a false positive (i.e. mistakenly classify-
ing a correctly labelled sample as mislabelled) and a false
negative (i.e. mistakenly classifying a mislabelled sample
as correctly labelled) can be bounded by the user-defined
confidence level α.

Specifically, given a dataset {(x(i), y(i))}Ni=1 with misla-
belling rate p (i.e. the total number of mislabeled samples
is Np), we compute every sample’s corresponding mislabel
scores {s(i)}Ni=1 and sort them in non-decreasing order and
denote them as (s(1), . . . , s(N)). We can have following
theoretical guarantees:

Proposition 3.2 (False Positive Guarantee). For
any given confidence level α ∈ (1

N+1 , 1), de-
fine the threshold as λα := s(Bα), where
Bα = ⌈(N(1− p) + 1)(1− α) +Np⌉, with proba-
bility at least 1− α over the random choice of a correctly
labelled sample (x̃, ỹ), we have:

s̃ ≤ λα,

Proposition 3.3 (False Negative Guarantee). Define the
modified score function s′ := (1 − s) · 1{s>0.5}.
For any given confidence level α ∈ (1

N+1 , 1), de-
fine the threshold as λα := s′(Bα), where Bα =

⌈(Np+ 1)(1− α) +N(1− p)⌉, with probability at least
1−α over the random choice of a mislabelled sample (x̃, ỹ)
and with s̃′ as its modified score, we have:

s̃′ = (1− s̃) · 1{s̃>0.5} ≤ λα,

The detailed proof is in Appendix F.

Remark These two propositions show that by sorting the
mislabel scores in non-decreasing order and selecting a

threshold based on the user-specified confidence level α,
we can ensure that the probability of falsely classifying a
correctly labelled sample as mislabelled or a mislabelled
sample as correctly labelled is bounded by α. This allows
users to have confidence in the algorithm’s ability to ef-
fectively detect mislabelled samples for their specific use
case.

4. Experiments
In this section, we conduct experiments to answer the fol-
lowing research questions:

• RQ1 (Effectiveness): Does our method outperform
other state-of-the-art methods in detecting mislabels
across multiple settings, datasets, and base classifiers?

• RQ2 (Ablation and Robustness): How do different
components and hyperparameters of our method con-
tribute to the performance?

• RQ3 (Case Studies): Does our method detect real,
previously unknown mislabels in existing popular
graph learning datasets such as PubMed, Cora,
CiteSeer, and OGB-arxiv?

Due to space limitation, we refer experiments about hy-
perparameters and additional discussion on case studies to
Appendix H and I.

4.1. RQ1. Effectiveness

Experimental Setup There is no ground truth dataset for
the mislabel detection task. In order to derive datasets with
ground truth labels indicating whether a sample is misla-
belled, we follow the practice of related works (e.g., DYB,
AUM, CL) and randomly introduce mislabels at ϵ-fraction
of the nodes. Similarly to INCV (Chen et al., 2019), we
introduce two mislabel types in our experiment, symmetric
and asymmetric. In the symmetric setting, the probability of
shift from one class to another is equal. In the asymmetric
setting, we change class i to class (i+ 1) mod c.

We use three mislabel rates, ϵ = 0.1, 0.05, 0.025, for re-
alistic concern. Mislabel rates are typically very low in
real-world datasets. In Northcutt et al. (2021b), the aver-
aged test set mislabel rate is about 3.4%, and the highest
mislabel rate is 10.12% on ImageNet. Though many other
methods use larger mislabel rates, we choose 2.5%, 5% and
10% to mimic real-world settings. We refer to Appendix G
for more details about experimental setup.

Methods in Comparison We compare GRAPHCLEANER
with four other methods: AUM (Pleiss et al., 2020),
DYB (Arazo et al., 2019), CL (Northcutt et al., 2021a) and
a simple baseline that treats samples whose argmax predic-
tions differ from given labels as mislabels. To the best of
our knowledge, AUM, DYB and CL are the current state-

6

GraphCleaner

Table 1. Mislabel detection accuracy of our GRAPHCLEANER and other methods across 6 graph benchmarks and 6 noise settings. The
percentage in the first column indicates the mislabel ratio ϵ, while ‘sym’ and ‘asym’ refer to symmetric and asymmetric noise. The best
results are emphasized in bold, and * indicates a statistically significant (p < 0.01) difference between the best and the second best result
according to T-test. The last row gives the average improvement of GRAPHCLEANER’s result over the second best. If GRAPHCLEANER

is not the best, it is compared to the best method.

Method Cora CiteSeer PubMed Computers Photo OGB-arxiv
F1 MCC P@T F1 MCC P@T F1 MCC P@T F1 MCC P@T F1 MCC P@T F1 MCC P@T

10%
sym

baseline 0.269 0.361 0.158 0.287 0.289 0.195 0.505 0.465 0.441 0.211 0.325 0.118 0.213 0.322 0.120 0.047 0.138 0.024
DYB 0.455 0.467 0.321 0.297 0.270 0.167 0.197 0.045 0.179 0.755 0.745 0.843 0.777 0.770 0.884 0.500 0.496 0.705
AUM 0.235 0.199 0.620 0.202 0.121 0.424 0.183 0.046 0.678∗ 0.181 0.026 0.762 0.179 0.040 0.839 0.366 0.365 0.425
CL 0.560 0.513 0.570 0.432 0.386 0.459 0.447 0.388 0.483 0.657 0.619 0.692 0.776 0.755 0.733 0.303 0.292 0.383
Ours 0.790∗ 0.773∗ 0.803∗ 0.560∗ 0.535∗ 0.504∗ 0.616∗ 0.576∗ 0.627 0.844∗ 0.830∗ 0.840 0.902∗ 0.893∗ 0.897 0.760∗ 0.744∗ 0.809∗

10%
asym

baseline 0.141 0.219 0.078 0.153 0.170 0.094 0.366 0.324 0.296 0.006 0.046 0.003 0.000 -0.009 0.000 0.003 0.025 0.002
DYB 0.404 0.397 0.283 0.289 0.246 0.174 0.278 0.234 0.242 0.625 0.626 0.625 0.678 0.675 0.744 0.310 0.251 0.320
AUM 0.223 0.169 0.577 0.199 0.111 0.385 0.183 0.048 0.657∗ 0.182 0.033 0.726∗ 0.179 0.037 0.782 0.252 0.145 0.357
CL 0.556 0.511 0.542 0.419 0.365 0.431∗ 0.456 0.402 0.431 0.671 0.635 0.693 0.760 0.735 0.737 0.274 0.232 0.322
Ours 0.669∗ 0.633∗ 0.647∗ 0.475∗ 0.424∗ 0.398 0.565∗ 0.516∗ 0.545 0.778∗ 0.757∗ 0.692 0.832∗ 0.817∗ 0.797∗ 0.477∗ 0.415∗ 0.452∗

5%
sym

baseline 0.185 0.262 0.108 0.256 0.278 0.171 0.443 0.414 0.453 0.199 0.317 0.111 0.147 0.261 0.081 0.053 0.152 0.028
DYB 0.276 0.340 0.257 0.190 0.229 0.062 0.129 0.100 0.151 0.585 0.611 0.699 0.644 0.670 0.760 0.275 0.332 0.612
AUM 0.132 0.157 0.532 0.108 0.093 0.381 0.095 0.032 0.557 0.093 0.015 0.616 0.091 0.030 0.760 0.212 0.266 0.302
CL 0.477 0.456 0.506 0.324 0.340 0.273 0.310 0.303 0.320 0.572 0.560 0.628 0.736 0.723 0.743 0.165 0.198 0.264
Ours 0.661∗ 0.671∗ 0.719∗ 0.406∗ 0.425∗ 0.396 0.477 0.483∗ 0.551 0.724∗ 0.728∗ 0.754∗ 0.841∗ 0.843∗ 0.818∗ 0.596∗ 0.615∗ 0.747∗

5%
asym

baseline 0.157 0.235 0.089 0.232 0.257 0.152 0.252 0.213 0.251 0.000 0.000 0.000 0.000 -0.006 0.000 0.005 0.032 0.003
DYB 0.270 0.329 0.266 0.174 0.203 0.062 0.158 0.173 0.159 0.509 0.553 0.545 0.538 0.578 0.639 0.216 0.245 0.304
AUM 0.125 0.132 0.500 0.110 0.100 0.323 0.095 0.032 0.541∗ 0.129 0.066 0.599 0.091 0.028 0.742 0.095 0.004 0.266
CL 0.512 0.489 0.517 0.306 0.325 0.223 0.311 0.315 0.206 0.576 0.567 0.597 0.755 0.743 0.757 0.154 0.168 0.223
Ours 0.586∗ 0.590∗ 0.617∗ 0.364∗ 0.372∗ 0.350 0.454∗ 0.449∗ 0.486 0.695∗ 0.700∗ 0.608 0.762 0.758 0.733 0.457∗ 0.446∗ 0.435∗

2.5%
sym

baseline 0.264 0.327 0.167 0.223 0.215 0.191 0.393 0.392 0.463 0.163 0.272 0.091 0.122 0.210 0.068 0.051 0.143 0.026
DYB 0.133 0.220 0.162 0.090 0.147 0.000 0.086 0.140 0.204 0.321 0.404 0.382 0.349 0.440 0.441 0.137 0.221 0.440
AUM 0.061 0.103 0.448 0.054 0.078 0.250 0.048 0.021 0.596 0.046 0.012 0.489 0.044 0.018 0.747 0.114 0.189 0.203
CL 0.402 0.409 0.476 0.166 0.216 0.186 0.221 0.274 0.300 0.424 0.446 0.511 0.698 0.699 0.738 0.085 0.138 0.169
Ours 0.445∗ 0.492∗ 0.586∗ 0.237 0.303∗ 0.245 0.385 0.452∗ 0.562 0.555∗ 0.594∗ 0.658∗ 0.709 0.729 0.753 0.417∗ 0.484∗ 0.626∗

2.5%
asym

baseline 0.136 0.183 0.081 0.112 0.108 0.086 0.237 0.226 0.225 0.000 0.000 0.000 0.000 -0.004 0.000 0.005 0.032 0.003
DYB 0.139 0.234 0.167 0.070 0.099 0.000 0.083 0.125 0.125 0.328 0.421 0.377 0.320 0.409 0.344 0.127 0.197 0.250
AUM 0.063 0.104 0.424 0.053 0.073 0.218 0.063 0.049 0.583∗ 0.069 0.048 0.488 0.057 0.045 0.709 0.055 0.021 0.184
CL 0.411 0.418 0.438 0.162 0.207 0.145 0.225 0.289 0.208 0.428 0.456 0.471 0.698∗ 0.700∗ 0.712∗ 0.083 0.121 0.146
Ours 0.502∗ 0.566∗ 0.591∗ 0.214∗ 0.262∗ 0.173 0.334∗ 0.384∗ 0.417 0.572∗ 0.621∗ 0.558∗ 0.669 0.683 0.600 0.365∗ 0.412∗ 0.406∗

improvement +0.122 +0.155 +0.134 +0.065 +0.080 +0.001 +0.081 0.097 -0.071 +0.121 +0.128 +0.041 +0.049 +0.059 -0.007 +0.251 +0.229 +0.135

of-the-art approaches for mislabel detection on non-graph
data. We apply them to graphs by using a graph-based base
classifier. Moreover, we only compare with the label noise
modeling part of DYB as our goal is to detect mislabels.

Datasets and Evaluation Metrics We use 6 datasets,
namely, Cora, CiteSeer and PubMed (Yang et al.,
2016), Computers and Photo (Shchur et al., 2018),
OGB-arxiv (Hu et al., 2020) and 3 commonly used met-
rics: F1, Matthews Correlation Coefficient (MCC) and
P@T3 , where ‘T’ represents the number of artificially misla-
belled nodes, which varies in different experimental settings.

Findings Our GRAPHCLEANER outperforms other meth-
ods under almost all metrics across 6 datasets and 6 noise
settings, especially in F1 and MCC. We obtain an average
margin of 0.14 in F1 and 0.16 in MCC compared to the
second best method as shown in Table 1. Table 2 shows
that our GRAPHCLEANER generalizes well to different base
classifiers and consistently outperforms other methods.

3https://en.wikipedia.org/wiki/
Evaluation_measures_(information_retrieval)
#Precision_at_k

Table 2. Performance on two different base GNN classifiers: GIN
and GraphUNet (referred as ‘GUN’). We refer to Table 1 for the
full name of abbreviations. Experiments are done under the 10%
symmetric setting.

Method Cora Computers OGB-arxiv
F1 MCC P@T F1 MCC P@T F1 MCC P@T

GIN

baseline 0.161 0.083 0.144 0.176 0.194 0.108 0.045 0.140 0.023
DYB 0.199 0.104 0.142 0.441 0.438 0.603 0.374 0.364 0.548
AUM 0.209 0.147 0.449 0.408 0.409 0.644 0.267 0.237 0.441

CL 0.339 0.258 0.326 0.411 0.344 0.531 0.234 0.134 0.353
Ours 0.784 0.762 0.756 0.855 0.840 0.851 0.687 0.669 0.693

GUN

baseline 0.300 0.355 0.186 0.169 0.277 0.093 0.051 0.141 0.026
DYB 0.269 0.254 0.227 0.516 0.513 0.831 0.232 0.185 0.404
AUM 0.308 0.307 0.732 0.555 0.555 0.684 0.331 0.318 0.365

CL 0.520 0.471 0.546 0.555 0.514 0.607 0.258 0.230 0.358
Ours 0.804 0.788 0.845 0.846 0.832 0.831 0.691 0.668 0.645

4.2. RQ2. Ablation and Robustness

Ablation To show the effectiveness of each component,
we compare GRAPHCLEANER with three ablated variants:

• L only: only the agreement between a sample’s label
and the labels of its neighbors is used;

• P only: only the agreement between a sample’s label
and the softmax predictions of its neighbors is used;

• No CL: instead of following the mislabel transition
matrix, we randomly mislabel sampled nodes to some
other classes to generate synthetic mislabels.

7

https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Precision_at_k
https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Precision_at_k
https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Precision_at_k

GraphCleaner

Table 3. Ablation study. We refer to Section 4.2 for the description
of different variants: ‘No CL’, ‘L only’ and ‘P only’. Experiments
are conducted using GCN with 10% noise.

Method Cora Computers OGB-arxiv
F1 MCC P@T F1 MCC P@T F1 MCC P@T

sym

L only 0.798 0.780 0.801 0.840 0.826 0.845 0.750 0.733 0.808
P only 0.676 0.654 0.680 0.844 0.829 0.838 0.736 0.718 0.805
No CL 0.802 0.782 0.808 0.865 0.851 0.859 0.819 0.799 0.813

Ours 0.790 0.773 0.803 0.844 0.830 0.840 0.760 0.744 0.809

asym

L only 0.658 0.624 0.642 0.781 0.761 0.685 0.460 0.397 0.438
P only 0.544 0.508 0.554 0.759 0.740 0.661 0.481 0.420 0.455
No CL 0.635 0.596 0.621 0.474 0.449 0.382 0.295 0.288 0.203

Ours 0.669 0.633 0.647 0.778 0.757 0.692 0.477 0.415 0.452

Table 3 shows that our GRAPHCLEANER consistently out-
perform No CL version with a large margin in asymmetric
settings, and is slightly worse in symmetric settings. This
is unsurprising and reasonable considering that asymmetric
mislabelling noise follows a class-wise pattern that can be
dealt with more effectively using the mislabel transition ma-
trix, while symmetric setting follows a class-irrelevant noise
pattern. Overall, this suggests that our default framework
with mislabel transition matrix is more robust to different
environments, e.g. symmetric and asymmetric. Moreover,
when compared to L only and P only, our default GRAPH-
CLEANER always outperforms the inferior method, and in
most cases outperforms both, indicating that our method is
adaptive and can generalize better.

4.3. RQ3. Case Studies

Overview In this subsection, we aim to show that our
method is able to detect and correct real, previously un-
known mislabelled samples in a variety of popular real-
world graph datasets: PubMed, CiteSeer, Cora, and
OGB-arxiv. Then, to understand the implications of
these findings, we conduct a more detailed analysis on the
PubMed dataset, where some auxiliary information allows
us to loosely estimate the number and impact of mislabels.

Experimental Procedure We follow the same experimen-
tal settings in Section 4.1, except applied to the original
datasets without synthetic mislabels. For each dataset, we
extract the top 30 samples which our algorithm assigns the
highest mislabel scores, i.e., that it regards as most likely to
be mislabelled. We then manually inspect each of these top
30 samples from each dataset by accessing the original text
of each paper, to determine whether our algorithm is correct.
In particular, we manually categorize each sample into 5
possible categories: ‘clear mislabel’, ‘likely mislabel’, ‘am-
biguous’, ‘likely non-mislabel’, and ‘clear non-mislabel’.

Findings The results are shown in Figure 3. We have a
number of key findings:

• A substantial fraction of these samples are mislabelled:
averaged over the 4 datasets, 39% of the samples are

likely or clear mislabels. We do not expect this fraction
to be close to 100%, since the fraction of mislabels
overall is expected to be low (Northcutt et al., 2021b);
moreover, our base classifiers are not close to 100%
accurate. Still, the results indicate that our method can
greatly improve the efficiency of manual corrections,
by identifying likely mislabels for humans to check.

• There is a fairly large variation between datasets, with
the largest fraction of mislabels in PubMed. This may
be due to several factors: differences in the fraction
of mislabels in each dataset, different accuracy of the
base classifiers, and different levels of label ambiguity.

• In practice, there can also be value in identifying the
‘ambiguous’ or even ‘likely non-mislabel’ samples, as
such samples carry a significant amount of label noise.
Many such samples span multiple categories , where
algorithms for handling label noise could be employed.

PubMed Cora CiteSeer OGB-arxiv
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 D

et
ec

te
d

Sa
m

pl
es

Clear mislabel
Likely mislabel
Ambiguous
Likely non-mislabel
Clear non-mislabel

Figure 3. Fraction of each mislabel type among the top 30 detected
samples in each dataset: namely, PubMed, Cora, CiteSeer,
and OGB-arxiv.

4.3.1. MISLABEL RATE ESTIMATION ON PUBMED

Can we loosely estimate the total amount of label noise in
PubMed? What are the implications of this label noise?
How do they affect the evaluation performance? To answer
these questions, we focus on PubMed due to the presence
of some helpful auxiliary information.

By querying PubMed API, we find that 71 papers of
PubMed are assigned 0 labels (i.e., MeSH terms), 1256
papers are assigned 2 labels, and 39 papers are assigned 3
labels. However, the PubMed dataset was created by sim-
ply selecting the first label in alphabetical order rather than
the ‘most correct’ class. Consequently, this injects a form
of label noise or ambiguity to at least 6.91% of the entire
dataset. More details about the estimation can be found in
Appendix I. Note that this is only a lower bound for the
true amount of label noise, as it excludes mislabels from
annotations and other sources, such as those in Figure 1.

8

GraphCleaner

Implication of Label Noise What are the implications of
these 6.91% label noise samples? To study the effect, we
compare the accuracy of a simple GCN+mixup baseline be-
fore and after removing the above-mentioned noisy-labelled
samples in the test set. The accuracy improves from 86.71%
to 89.11%, showing that label noise has significant effects
on performance evaluation. This validates the importance
of data quality (e.g., label noise) for performance and evalu-
ation, and suggests that correcting mislabels has scope for
significant value.

In addition, recognizing the importance of correcting this la-
bel noise, we publicly release two new variants of PubMed
dataset: 1) PubMedCleaned, which removes4 these noisy-
labelled samples, and also corrects all detected mislabels; 2)
PubMedMulti, which keeps multi-labelled samples but
explicitly assigns them multiple labels, for users to develop
algorithms which can handle the multi-labelling scenario.

5. Conclusions
Data quality is crucial to the success of AI systems. Our
case studies, however, demonstrate that label noise is preva-
lent in popular graph datasets, and that performance on
PUBMED changes from 86.71% to 89.11% by simply re-
moving some label noise, highlighting the importance of
detecting and correcting mislabels. To address the issue, we
propose GRAPHCLEANER that utilizes the neighborhood-
dependence pattern of graphs to detect mislabelled nodes
in a graph. Extensive experiments on 6 datasets across 6
noise settings verify the effectiveness and robustness of our
method. The case studies further validate its practicality in
real-world applications.

The current study utilizes the neighborhood-dependence
property to detect mislabels and improve data quality. Be-
sides that, it would be interesting to explore what other
characteristics are associated with label and data quality.
Going beyond the current task, we believe this framework
is also promising for providing calibrated confidence and
misclassification detection on graph data.

Acknowledgements
This work was supported by NUS-NCS Joint Laboratory
(A-0008542-00-00).

4We would like to clarify that we do not actually remove de-
tected mislabels from the graph by deleting their nodes, or rec-
ommend doing so. Instead, we recommend keeping the nodes
themselves, but only removing their labels (or equivalently, remov-
ing their node index from the set of node indices constituting the
training or test sets, without removing them from the graph). Most
graph neural networks can be trained in a semi-supervised manner,
so we can easily avoid computing the loss on these mislabelled
nodes, while preserving the structure and feature information of
these nodes, e.g. to avoid bridge nodes from being removed.

References
Algan, G. and Ulusoy, I. Image classification with deep

learning in the presence of noisy labels: A survey.
Knowledge-Based Systems, 215:106771, 2021.

Arazo, E., Ortego, D., Albert, P., O’Connor, N., and
McGuinness, K. Unsupervised label noise modeling and
loss correction. In International conference on machine
learning, pp. 312–321. PMLR, 2019.

Balasubramanian, V., Ho, S.-S., and Vovk, V. Conformal
prediction for reliable machine learning: theory, adapta-
tions and applications. Newnes, 2014.

Chen, P., Liao, B. B., Chen, G., and Zhang, S. Understand-
ing and utilizing deep neural networks trained with noisy
labels. In International Conference on Machine Learning,
pp. 1062–1070. PMLR, 2019.

Dai, E., Aggarwal, C., and Wang, S. Nrgnn: Learning a
label noise resistant graph neural network on sparsely and
noisily labeled graphs. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data
Mining, pp. 227–236, 2021.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On cali-
bration of modern neural networks. In Precup, D. and Teh,
Y. W. (eds.), Proceedings of the 34th International Confer-
ence on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pp. 1321–1330. PMLR, 06–
11 Aug 2017. URL https://proceedings.mlr.
press/v70/guo17a.html.

Hoang, N., Choong, J. J., and Murata, T. Learning graph
neural networks with noisy labels. 2019.

Hu, T., Wang, J., Wang, W., and Li, Z. Understanding square
loss in training overparametrized neural network clas-
sifiers, 2022. URL https://openreview.net/
forum?id=N3KYKkSvciP.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020.

Huang, Q., He, H., Singh, A., Lim, S.-N., and Benson,
A. Combining label propagation and simple models out-
performs graph neural networks. In International Confer-
ence on Learning Representations, 2020.

Jia, J. and Benson, A. R. Residual correlation in graph
neural network regression. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’20, pp. 588–598,
New York, NY, USA, 2020. Association for Comput-
ing Machinery. ISBN 9781450379984. doi: 10.1145/

9

https://proceedings.mlr.press/v70/guo17a.html
https://proceedings.mlr.press/v70/guo17a.html
https://openreview.net/forum?id=N3KYKkSvciP
https://openreview.net/forum?id=N3KYKkSvciP

GraphCleaner

3394486.3403101. URL https://doi.org/10.
1145/3394486.3403101.

Jiang, Z., Zhou, K., Liu, Z., Li, L., Chen, R., Choi, S.-H.,
and Hu, X. An information fusion approach to learning
with instance-dependent label noise. In International
Conference on Learning Representations, 2021.

Kull, M., Perello Nieto, M., Kängsepp, M., Silva Filho,
T., Song, H., and Flach, P. Beyond temperature scaling:
Obtaining well-calibrated multi-class probabilities with
dirichlet calibration. Advances in neural information
processing systems, 32, 2019.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep
ensembles. 12 2016.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Natarajan, N., Dhillon, I. S., Ravikumar, P. K., and Tewari,
A. Learning with noisy labels. Advances in neural infor-
mation processing systems, 26, 2013.

Northcutt, C., Jiang, L., and Chuang, I. Confident learn-
ing: Estimating uncertainty in dataset labels. Journal of
Artificial Intelligence Research, 70:1373–1411, 2021a.

Northcutt, C. G., Athalye, A., and Mueller, J. Pervasive la-
bel errors in test sets destabilize machine learning bench-
marks. 2021b. doi: 10.48550/ARXIV.2103.14749. URL
https://arxiv.org/abs/2103.14749.

Pleiss, G., Zhang, T., Elenberg, E., and Weinberger, K. Q.
Identifying mislabeled data using the area under the mar-
gin ranking. Advances in Neural Information Processing
Systems, 33:17044–17056, 2020.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
S. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868, 2018.

Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W., and Sun,
Y. Masked label prediction: Unified message passing
model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020.

Vovk, V., Gammerman, A., and Shafer, G. Algorithmic
learning in a random world. Springer Science & Business
Media, 2005.

Wang, H. and Leskovec, J. Unifying graph convolutional
neural networks and label propagation. arXiv preprint
arXiv:2002.06755, 2020.

Wang, X., Liu, H., Shi, C., and Yang, C. Be confident!
towards trustworthy graph neural networks via confidence
calibration. Advances in Neural Information Processing
Systems, 34:23768–23779, 2021.

Wenger, J., Kjellström, H., and Triebel, R. Non-parametric
calibration for classification. In Chiappa, S. and Ca-
landra, R. (eds.), Proceedings of the Twenty Third In-
ternational Conference on Artificial Intelligence and
Statistics, volume 108 of Proceedings of Machine
Learning Research, pp. 178–190. PMLR, 26–28 Aug
2020. URL https://proceedings.mlr.press/
v108/wenger20a.html.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip,
S. Y. A comprehensive survey on graph neural networks.
IEEE transactions on neural networks and learning sys-
tems, 32(1):4–24, 2020.

Xia, X., Liu, T., Wang, N., Han, B., Gong, C., Niu, G., and
Sugiyama, M. Are anchor points really indispensable in
label-noise learning? Advances in Neural Information
Processing Systems, 32, 2019.

Xiong, M., Li, S., Feng, W., Deng, A., Zhang, J., and
Hooi, B. Birds of a feather trust together: Knowing
when to trust a classifier via adaptive neighborhood ag-
gregation. Transactions on Machine Learning Research,
2022. URL https://openreview.net/forum?
id=p5V8P2J61u.

Yang, Z., Cohen, W., and Salakhudinov, R. Revisiting
semi-supervised learning with graph embeddings. In
International conference on machine learning, pp. 40–48.
PMLR, 2016.

Zhu, Z., Dong, Z., and Liu, Y. Detecting Corrupted Labels
Without Training a Model to Predict. arXiv e-prints, art.
arXiv:2110.06283, October 2021.

Zhu, Z., Liu, T., and Liu, Y. A second-order approach to
learning with instance-dependent label noise. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10113–10123, 2021a.

Zhu, Z., Song, Y., and Liu, Y. Clusterability as an alter-
native to anchor points when learning with noisy labels.
In International Conference on Machine Learning, pp.
12912–12923. PMLR, 2021b.

10

https://doi.org/10.1145/3394486.3403101
https://doi.org/10.1145/3394486.3403101
https://arxiv.org/abs/2103.14749
https://proceedings.mlr.press/v108/wenger20a.html
https://proceedings.mlr.press/v108/wenger20a.html
https://openreview.net/forum?id=p5V8P2J61u
https://openreview.net/forum?id=p5V8P2J61u

GraphCleaner

A. Comparison to Learning with Noisy Labels
Methods

Our GRAPHCLEANER and some learning-with-noise meth-
ods all explore neighborhood similarity (Zhu et al., 2021b;a).
But they focus on i.i.d. image data, while we focus on non-
i.i.d. graph data, which differs from i.i.d settings, as our edge
relations are 1) of primary importance; and 2) can involve
more complex relations other than just similarity. Hence,
we presents a flexible approach that learns the patterns of
mislabels from data, primarily based on graph structure
information.

Synthetic mislabel generation based on transition probabili-
ties is applied in Xia et al. (2019); Jiang et al. (2021) to help
training model with noisy data. But their focus is on how to
estimate and predefine a noise transition matrix, while our
noise transition matrix is learned and utilized to generate
synthetic mislabels in a post-hoc way, which is more flexible
and can easily adapt to different data.

B. Learning Mislabel Transition Matrix
To generate class-dependent label noise, we learn a mislabel
transition matrix to capture the probability of mislabelling
one class to some other class.

Following the definition in Northcutt et al. (2021a), we
first calculate confident joint Cỹ,y∗ based on the model
predictions on validation set, which estimates the number
of samples with noisy label ỹ and actual true label y∗:

Cỹ,y∗ [i][j] :=
∣∣∣X̂ỹ=i,y∗=j

∣∣∣ , (2)

where X̂ỹ=i,y∗=j is the estimated set of samples with ob-
served noisy label i and unknown true label j. Its formal
definition is:

X̂ỹ=i,y∗=j :={x ∈ Xỹ=i : p̂ (ỹ = j;x, θ) ≥ tj ,

j = argmax
l∈[c]:p̂(ỹ=j;x,θ)≥tl

p̂ (ỹ = j;x, θ)}, (3)

where p̂ (ỹ = i;x, θ) is the predicted probability of label
ỹ = i for sample x and model parameters θ, and Xỹ=i is
the set of samples with observed noisy label i. The threshold
tj is the average self-confidence for class j:

tj =
1

|Xỹ=j |
∑

x∈Xỹ=j

p̂ (ỹ = j;x, θ) . (4)

As shown in the above formulas, samples in X̂ỹ=i,y∗=j

should satisfy three conditions. First, their observed noisy

label ỹ should be i. Second, their predicted probability of
belonging to class j should be higher than class j’s aver-
age self-confidence. Third, among all the classes whose
predicted probability is larger than their corresponding self-
confidence, class j’s predicted probability is the highest.

Now we can estimate the joint distribution of noisy label
and true label based on the confident joint:

Q̂ỹ=i,y∗=j =

Cỹ=i,y∗=j∑
j∈[c] Cỹ=i,y∗=j

· |Xỹ=i|∑
i∈[c],j∈[c]

(
Cỹ=i,y∗=j∑

j′∈[c] Cỹ=i,y∗=j′
· |Xỹ=i|

) .
(5)

Finally, the mislabel transition matrix can be calculated
following the conditional probability formula Q̂ỹ=i|y∗=j :=

Q̂ỹ=i,y∗=j/Q̂y∗=j .

C. Discussion on Sampling Mislabels
We assume that Vtrain, Vval, Vtest are all noisy, which means
mislabels exist in the raw dataset. But according to North-
cutt et al. (2021a), raw mislabels only account for a minor
proportion of a dataset. Some of the raw mislabels may be
chosen as synthesized mislabels. There is a slight chance
that the labels of these chosen raw mislabels will be flipped
to the correct ones. Nevertheless, the raw mislabels whose
labels remain wrong after Synthetic Mislabel Dataset Gener-
ation are still a very small portion, which serve as acceptable
noises contributing to the robustness of our mislabel detec-
tor.

D. Design of Neighborhood Agreement
Features

Using both the corrupted and original label matrices (Y and
Yc) is an important design choice to ensure that synthetic
mislabels only corrupt their own features, not the features
of other nodes.

Specifically, when we flip the label of a node v ∈ Vsynth, this
affects Yc but not Y or P; hence, the features at node v are
affected, but those at other nodes are not. This is important
as when training the mislabel detector, the fraction of syn-
thetic mislabels is high (due to our use of a balanced training
set), so we do not want to allow the mislabels at corrupted
nodes to mislead the training of the mislabel detector.

E. Time Complexity
In this section, we estimate the time complexity of our
GRAPHCLEANER. Given that there are m edges and s
epochs, it takes O(n+c2) to estimate the mislabel transition

11

GraphCleaner

matrix, O(mKc) to generate the neighborhood agreement
features, and O(nKs) to train the mislabel detector. Test
time complexity is just O(K) per test sample. Overall,
training time is linear and testing time is constant per test
sample, which is highly efficient.

F. Theoretical Guarantees
Overview In this section, we show how we can set misla-
bel score thresholds to obtain guarantees on the false pos-
itive and false negative probabilities, using the approach
of conformal prediction. Such guarantees can be valuable
in many practical settings, where are interested in having
guarantees on the reliability of our model’s decisions.

Conformal prediction (Vovk et al., 2005; Balasubramanian
et al., 2014) is a simple, distribution-free approach for ob-
taining confidence guarantees. Importantly, conformal pre-
diction does not require the assumption that the mislabel
scores are i.i.d., but only that they are exchangeable; i.e.,
their distribution does not change under any permutation of
the sample indices. This is especially suitable for the graph
setting, where the samples are in fact not i.i.d.: e.g., sam-
ples which are nearby along the graph tend to be correlated.
However, the data is still exchangeable, since permutations
to the indices do not affect the data distribution.

Comparison to prior work Conformal prediction (Vovk
et al., 2005) is typically applied to the standard setting where
all the samples are exchangeable. Most closely related to our
approach is Xiong et al. (2022), which extended this to the
mislabel detection setting, where a small number of samples
can be mislabelled. However, the approach in Xiong et al.
(2022) only allows for practical false positive guarantees,
so they do not prove false negative guarantees, while our
approach allows for both false positive and negative guaran-
tees due to our use of modified scores, which tightens the
bounds by exploiting the accuracy of the mislabel classifier.

Let {· · · } denote a set and (· · ·) denote an ordered tuple:
e.g., sorting a set {3, 1, 2} yields an ordered tuple (1, 2, 3).

Before focusing on the mislabel detection setting, we first
consider a more general setting where we are given a dataset
{(x(i), y(i))}Ni=1 with any set of scores {s(i)}Ni=1; we fur-
ther assume that the dataset comes from a mixture of two
distributions: specifically, NU of the the samples come from
some distribution U , i.e., (x, y) ∼ U , while the remaining
NV = N −NU samples come from the distribution V , i.e.,
(x, y) ∼ V . Let (s(i))Ni=1 denote the score of these samples
in non-decreasing order.

Theorem F.1 (Conformal Prediction for Mixtures). For any
given confidence level α ∈ (1

N+1 , 1), define the threshold

as

λα := s(Bα), where Bα = ⌈(NU + 1)(1− α) +NV ⌉ .

Now consider a newly drawn sample (e.g., from the test set):

(x̃, ỹ) ∼ U .

Then, with probability at least 1−α over the random choice
of (x̃, ỹ), we have:

s̃ ≤ λα,

where s̃ is the score of x̃.

Proof. Let (sU(i))
NU
i=1 denote the scores of the samples from

U in non-decreasing order. The probability that the score of
x̃ exceeds the threshold λα is:

P (s̃ > λα) = P
(
s̃ > s(Bα)

)
(6)

≤ P
(
s̃ > sU(Bα−NV)

)
(7)

≤ NU + 1− (Bα −NV)

NU + 1
(8)

=
N + 1−Bα

NU + 1
(9)

=
N + 1− ⌈(NU + 1)(1− α) +NV ⌉

NU + 1
(10)

≤ N + 1− (NU + 1)(1− α)−NV

NU + 1
(11)

=
NU + 1− (NU + 1)(1− α)

NU + 1
(12)

=
(NU + 1)(α)

NU + 1
(13)

= α (14)

Therefore, with probability at least 1 − α, the score s̃ lies
below the threshold, i.e.

P (s̃ ≤ λα) ≥ 1− α. (15)

Note that the step (8) comes from the fact that x̃ is exchange-
able with the other samples from U (Balasubramanian et al.,
2014).

Next, we show how Theorem F.1 can be used to obtain both
false positive and negative guarantees, for appropriately
selected thresholds.

Given a dataset {(x(i), y(i))}Ni=1, and let the mislabel scores
computed by our GRAPHCLEANER algorithm be {s(i)}Ni=1.
Let p be the fraction of these samples which are mislabelled.

12

GraphCleaner

Proposition F.2 (False Positive Guarantee). Letting λα :=
s(Bα), where Bα = ⌈(N(1− p) + 1)(1− α) +Np⌉,
with probability at least 1 − α over the random choice
of a new sample (x̃, ỹ) ∼ U , we have:

s̃ ≤ λα,

Proof. We apply Theorem F.1 to the score function s, with
U representing the distribution of correctly labelled samples,
and V representing the distribution of mislabelled samples.

Discussion This result allows us to set the threshold λα in
a principled way which provides guarantees on the probabil-
ity of a false positive (i.e. mistakenly classifying a correctly
labelled sample as mislabelled).

Proposition F.3 (False Negative Guarantee). Define
the modified score function s′ := (1 − s) ·
1{s>0.5}. Then letting λα := s′(Bα), where Bα =

⌈(Np+ 1)(1− α) +N(1− p)⌉, with probability at least
1− α over the random choice of a new sample (x̃, ỹ) ∼ V
and with s̃′ as its modified score, we have:

s̃′ = (1− s̃) · 1{s̃>0.5} ≤ λα,

Proof. In this case, we similarly apply Theorem F.1 to the
modified score function s′, but now with U representing the
distribution of mislabelled samples, and V representing the
distribution of correctly labelled samples.

Discussion One difference between s′ and s is that the
direction of s′ is reversed compared to s; this is minor and
just for ease of interpretation, by making higher scores typ-
ically more unlikely. The main difference between them
is that s′ is nonzero only when the mislabel classifier pre-
dicts the sample to be mislabelled. Using this modified
score makes sense since we are primarily interested in set-
ting an appropriate threshold for mislabelled samples, using
the distribution of mislabelled samples. Meanwhile, note
that it is impractical to achieve false negative bounds using
the original scores s, due to the large majority of correctly
labelled samples which would be expected to have low mis-
label scores. In contrast, s′ is able to map these samples
to 0 as long as they are correctly classified by the mislabel
classifier, allowing a tighter bound.

Remark To show the effectiveness of our theoretical guar-
antees, we calculate the actual false positive rate of our
GRAPHCLEANER’s predictions on OGB-arxiv and com-
pare it to the theoretical bounds in Figure 4.

2.5% 5% 10%

0.04

0.06

0.08

0.10
False Positive Guarantee

theoretical bounds
actual rate - sym
actual rate - asym

Figure 4. The plot of the theoretical and actual false positive rate
under both symmetric and asymmetric noise scenarios. The actual
rate is calculated based on the experiments on OGB-arxiv.

G. Experimental Setup
Experimental Setup In order to derive datasets with
ground truth labels indicating whether a sample is misla-
belled, we randomly introduce artificial noise to ϵ fraction of
the training, validation and test set. We then further assume
that the ‘actual’ mislabel ratio of the corrupted dataset is ϵ.
We follow the practice of INCV (Chen et al., 2019) to intro-
duce two mislabelling types in our experiment: symmetric
and asymmetric setting, where the probability of changing
one class to any other class is equal or different. In the
asymmetric setting, we simply change class i to class (i+1)
mod c. Specifically, if mislabel ratio ϵ is 0.1, then for ni

nodes belonging to class i, 0.9ni will remain class i, while
the rest 0.1ni will be mislabelled as class (i + 1) mod c.
Illustration for these two mislabelling types is in Figure 5.

Figure 5. Examples of symmetric (left) and asymmetric (right)
mislabelling types (taking 5 classes and mislabel ratio ϵ 0.1 as an
example).

We test three mislabel rates ϵ to show that our GRAPH-
CLEANER can tackle various mislabel severities, each with
two mislabel types to show that GRAPHCLEANER con-
sistently performs well under different mislabel patterns.
Specifically, ϵ is set as 0.1, 0.05, 0.025, because the max
test set error of different benchmarks reported in Northcutt
et al. (2021b) is 10.12%. We do admit that there can be
some unknown noisy nodes in Vtest. But it is safe to assume
that this unknown mislabel rate is minor. In experiments,
we compare all methods on the same manually corrupted

13

GraphCleaner

test set, which is fair.

Threshold Selection Our mislabel detector is a binary
classifier. Usually, 0.5 is used as the threshold for binary
classifiers’ output. But in our case, the training stage is
based on a balanced dataset, while the test stage is conducted
under an imbalanced setting, which is expected to have only
a few percent of mislabelled data. In consideration of this,
we adjust the threshold according to Bayes rule. Let Ps and
Pt denote the binary classifier’s predictions on training and
test set, then we can have the following equations:

Ps(y|x) =
Ps(x|y)Ps(y)

Ps(x)
,Pt(y|x) =

Pt(x|y)Pt(y)

Pt(x)
.

(16)

We assume that the only change between training and test set
is the class (mislabelled or not) distribution, then we have
Ps(x|y) = Pt(x|y). Dividing the above two equations and
plugging Ps(x|y) = Pt(x|y) in will yield:

Pt(y|x) = Ps(y|x) ·
Pt(y)

Ps(y)
· Ps(x)

Pt(x)
, (17)

where predictions on test set depend on training set data
distribution Ps(y|x), some class-dependent scaling factor
Pt(y)
Ps(y)

, and one constant value Ps(x)
Pt(x)

which only replies on

x. This indicates that we can adjust the threshold by Pt(y)
Ps(y)

,
an expected value of mislabel proportion. Since the average
label error reported in Northcutt et al. (2021b) is 3.4%, we
simply set the threshold as 0.97. All our experiments and
case studies use this threshold.

Dataset 6 datasets for node classificatoin are cho-
sen: Cora, CiteSeer and PubMed (Yang et al.,
2016), Computers and Photo (Shchur et al., 2018),
OGB-arxiv (Hu et al., 2020). Cora, CiteSeer,
PubMed and OGB-arxiv are citation networks where
nodes represent documents and edges represent citation
links. Computers and Photo are Amazon co-purchase
networks where nodes represent goods and edges represent
that two goods are frequently bought together.

H. Hyperparameters
The maximum neighborhood size K determines the range
of neighborhood we consider. To investigate the robustness
of GRAPHCLEANER to K, we vary K from 1 to 5 with
other parameters fixed.

Figure 6 shows that our GRAPHCLEANER is insensitive to
the hyperparameter K and even setting K = 1 yields decent
performance, suggesting that using the information of direct
neighbors is sufficient in most cases.

K K

Figure 6. Sensitivity of hyperparameter K. Experiments are per-
formed using GCN on OGB-arxiv with 10% noise.

I. Mislabel Case Studies
Supplement to Findings Different datasets have differ-
ent levels of label ambiguity: e.g., the classes in PubMed
are more objective and precisely defined than those in
OGB-arxiv.

Many ‘ambiguous’ and ‘likely non-mislabel’ samples span
multiple categories: e.g., a paper predicting financial indica-
tors using methods from natural language processing could
reasonably belong to the ‘finance’ or ‘language’ categories.

Limitations While most samples were straightforward to
categorize, we acknowledge that some manual judgments5

involved unavoidable subjectivity. Even so, our goals in
this section are mainly to understand broad overall trends
and differences, and our overall findings are relatively ro-
bust to small variations. Such subjectivity could be reduced
by employing a larger number of manual raters, but this
process is fairly labor-intensive. Crowdsourcing could be
employed, but is challenging as the task requires some ex-
pertise in order to read and categorize papers. Another
point is about the inference stage. The focus of our GRAPH-
CLEANER is not correcting mislabels. We check the accu-
racy of the inferred labels of clearly mislabelled samples
in Cora, CiteSeer and OGB-arxiv, getting results of
75%, 100% and 66.67%, which is acceptable but still has
room for improvement.

Mislabel Rate Estimation on PubMed Can we loosely
estimate the total amount of label noise in PubMed? How
do these samples affect the use of PubMed for evaluating
algorithm performance? We focus on PubMed due to the
presence of some auxiliary information that helps us to
answer these questions.

Since PubMed contains 19717 samples, estimating the num-
ber of mislabels via manual checking is clearly infeasible.

5For transparency, we include all manual judgments in our
attached code repository.

14

GraphCleaner

Fortunately, it is possible to exactly count the number of
samples with label noise of a different kind, as we will ex-
plain. Concretely, we use the PubMed API6, which allows
us to query the raw ‘keywords’, known as ‘MeSH terms’7 as-
sociated with each paper. The 3 labels used in the PubMed
dataset were assigned based on 3 MeSH terms: ‘Diabetes
Mellitus, Experimental’, ‘Diabetes Mellitus, Type 1’, and
‘Diabetes Mellitus, Type 2’. Thus, querying the PubMed
API tells us which papers are assigned with 2 or more of
these MeSH terms. For clarity, we refer to these samples
as ‘multi-labelled’. For such cases, it turns out that the
PubMed dataset was generated by discarding all but one
of such labels for each sample. We note that there is no
possibility that the single label kept is somehow indicative
of the ‘most correct’ class, since the label to be kept is sim-
ply chosen alphabetically. This is a form of label noise or
ambiguity, and the number of such samples can be counted
exactly via the PubMed API.

We find that 71 papers are assigned 0 labels (i.e., MeSH
terms), 18351 papers are assigned 1 label, 1256 papers
are assigned 2 labels, and 39 papers are assigned 3 labels.
The latter two categories are multi-labels, while the 0-label
papers occur due to updates in the MeSH terms assigned to
some papers over time. In summary, we have 1366 papers
with some form of label noise, or 6.91% of the entire dataset.
Note that this is only a lower bound for the true amount of
label noise, as it does not include mislabels such as those in
Figure 1.

Effect of Correcting Label Noise What are the impli-
cations of these 6.91% label noise samples? The top re-
ported leaderboard scores on PubMed8 are close to 90%
accuracy, suggesting that a significant fraction of the remain-
ing ‘missing accuracy’ could be attributed to label noise.
This supports a ‘data-centric’ view, which recognizes data
quality (e.g., label noise) as an important factor affecting
performance and evaluation, and suggests that correcting
mislabels has scope for significant value.

Finally, we study the effect of correcting label noise, by com-
paring the accuracy of a simple GCN+mixup baseline before
and after removing the above-mentioned noisy-labelled sam-
ples in the test set. The accuracy improves from 86.71% to
89.11%, suggesting that label noise has significant effects
on performance evaluation. Thus, recognizing the impor-
tance of correcting this label noise, we publicly release two
new variants of the PubMed dataset: 1) PubMedCleaned,
which removes these noisy-labelled samples, and also cor-
rects all mislabels we have detected; 2) PubMedMulti,
which keeps multi-labelled samples but explicitly assigns

6https://www.ncbi.nlm.nih.gov/home/develop/api/
7MeSH terms are a ‘vocabulary’ or ontology used in PubMed.
8https://paperswithcode.com/dataset/pubmed

them multiple labels, for users to develop algorithms which
can handle the multi-labelling scenario. Please refer to our
code link for these two new datasets and the manual judge-
ment files for case studies.

15

