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ABSTRACT

Parameter-efficient fine-tuning (PEFT) has emerged as a critical technique for
adapting large language models (LLMs) in federated learning (FL), enabling
resource-efficient model updates without compromising user privacy. However,
existing FL approaches predominantly rely on a single PEFT type shared across
all clients, limiting their ability to handle the substantial data heterogeneity. In
this work, we propose Hermes, a novel federated PEFT (FedPEFT) framework
that introduces the concept of Heterogeneous FedPEFT, where each client flexi-
bly combines multiple PEFT (e.g., LORA, Adapter, Prefix-tuning) to better fit lo-
cal data distributions. To address key challenges such as gradient conflicts, expert
underutilization, and biased aggregation arising from this heterogeneous design,
Hermes employs a structured sparse mixture-of-experts architecture with gradient-
aware gating, loss-free bias adjustment, and inverse-frequency aggregation strate-
gies. These techniques jointly ensure stable optimization and balanced contribu-
tion across clients. Extensive experiments on multiple NLP benchmarks demon-
strate that Hermes achieves superior personalization performance compared to
state-of-the-art homogeneous FedPEFT baselines, highlighting its potential as an
effective solution for federated LLM fine-tuning under non-IID settings.

1 INTRODUCTION

Recently, large language models (LLMs), such as GPT |Cong-Lem et al.| (2025)), PaLM |Chowdhery
et al. (2023 and LLaMA |Grattafiori et al.[(2024)), have attracted significant attention across a wide
range of domains. As LLMs become increasingly prevalent, adapting them to specific downstream
tasks has become essential. For example, LLMs can be customized to analyze local medical data
collected by different institutions in the medical scenario|Chen et al.| (2024c). However, the limited
availability of labeled data presents a major obstacle to the effective utilization of LLMs in such
scenarios. Moreover, compliance with privacy regulations (e.g., GDPR |Protection| (2018))) prohibits
institutions from sharing sensitive data, further restricting centralized training. Federated learning
(FL)|Chen et al.|(2024b); Li et al.|(2020) has emerged as a powerful paradigm that allows distributed
model training in numerous clients without exchanging sensitive local data. Despite this advantage,
applying LLMs in FL introduces substantial challenges.

Modern LLMs contain billions of parameters, making full fine-tuning in FL prohibitively expensive
in terms of computation and communication overhead Kuang et al.| (2024). To efficiently adapt
LLMs in FL, PEFT techniques, including LoRA [Hu et al.| (2022)), Adapter Houlsby et al.| (2019),
and Prefix-tuning [Li & Liang| (2021)), have emerged as practical tools. By updating only a small
subset of parameters while keeping the backbone model frozen, PEFT significantly reduces the
resource demands of LLM adaptation. This has led to a paradigm known as FedLLM [Sun et al.
(20244a), which integrates PEFT into FL to enable efficient federated LLM fine-tuning. However,
one of the key challenges of FedPEFT is data heterogeneity |Cho et al.| (2024); Wang et al.| (2024),
where the distribution of the data or the characteristics of the tasks are not identified and independent
(non-IID). Therefore, achieving strong personalization for each client is particularly difficult.

In the literature, existing work adopts a homogeneous FedPEFT paradigm, where all clients use the
same type of PEFT throughout federated training, as shown in Fig. [T[a). For example, [Bian et al.
(2025); Peng et al.|(2025)) incorporate local fine-tuning of the global PEFT or introduce regulariza-
tion between global and local PEFT. To further mitigate data heterogeneity, |Su et al.| (2024); |Singhal
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Figure 1: The architecture of (a) homogeneous FedPEFT using the same PEFT (e.g., LoRA) and (b)
heterogeneous FedPEFT combining multiple PEFT (e.g., LoRA, Adapter).(c) Accuracy (%) across
eight tasks, showing that no single PEFT consistently excels on all datasets.

et al. (2025); |Liu et al.| (2025) design dual or decoupled PEFT into shared and private components,
which maintain separate components for global knowledge aggregation and local personalization,
effectively reducing interference between generalized and client-specific representations. [Tran et al.
(2025)); |ICui et al.| (2024); Xie et al.| (2024); [Long et al.| (2024) adopt a model mixture strategy for
personalization, where clients maintain a global PEFT and a local PEFT simultaneously. However,
these approaches fundamentally rely on a single PEFT type per client, inherently limiting personal-
ization in non-IID federated environments. We simulate four FedPEFT to reveal this limitation, as
illustrated in Fig.[I[c). None of the methods performs consistently well across all datasets. For in-
stance, while Fed-LoRA achieves strong accuracy on SST-2 and MRPC, it underperforms on CoLA
and QQP. These findings highlight that enforcing the same PEFT architecture across heterogeneous
clients leads to suboptimal performance, as no single PEFT is universally optimal in an FL setting.

In contrast, we propose a promising paradigm, which we term heterogeneous FedPEFT, as illustrated
in Fig.[T(b). Rather than relying on a single, predetermined adaptation strategy, Heterogeneous Fed-
PEFT allows each client to combine multiple PEFT (e.g., LoRA, Adapter, and Prefix-tuning) to
better capture local data distribution. Theoretically, integrating multiple PEFT into a heterogeneous
FedPEFT framework could provide stronger personalization by selecting the most suitable PEFT
modules for each individual client or task. However, realizing this theoretical potential is non-
trivial. Naively combining multiple PEFT in federated learning introduces several issues. First,
gradient conflicts frequently arise, as different PEFT often optimize in inconsistent directions. This
interference destabilizes training and slows convergence. Second, utilization imbalance is common,
since clients naturally prefer certain PEFT aligned with their data, leaving others underused and
preventing effective learning. Third, federated aggregation becomes heterogeneous and biased, be-
cause clients contribute updates from different subsets of PEFT with varying scales and frequencies,
complicating server aggregation. These issues highlight that simple heterogeneous multiple PEFT
without principled coordination is insufficient and may even degrade performance compared to ho-
mogeneous baselines.

To address the above challenges, we propose Hermes, a novel FedPEFT framework that unifies mul-
tiple PEFT through a structured sparse mixture-of-experts design. Specifically, to mitigate gradient
conflicts across different PEFT, we design a sparse MoE architecture where PEFT are decoupled
into independent experts, and a sparse top-k gating mechanism selectively activates only a subset of
them. This expert independence and sparsity ensure that each PEFT contributes updates from dis-
tinct subspaces, effectively mitigating conflicts and improving training stability. To address PEFT
utilization imbalance, we propose a local updating balance strategy combining gradient-aware gat-
ing and loss-free dynamic bias adjustment. The gradient-aware gating mechanism jointly consid-
ers token representations and gradient alignment signals to guide expert selection more effectively,
while the dynamic bias adjustment adaptively recalibrates gating probabilities based on historical
activation frequencies to avoid utilization skew. Finally, to aggregate heterogeneous updates across
clients, we propose a global aggregation balance strategy that rescales each PEFT’s updates in-
versely proportional to their average activation rate before applying parameter averaging. This pre-
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vents frequently selected experts from dominating the aggregated parameters and ensures balanced
contributions from all PEFT. The contributions of this paper are summarized as follows.

* We introduce the concept of Heterogeneous FedPEFT, which enables clients to flexibly
combine multiple PEFT within federated LLM fine-tuning. We formally prove that our
framework achieves a better loss bound.

* We propose Hermes, a novel FedPEFT framework that integrates a sparse MoE architec-
ture with gradient-aware gating, loss-free dynamic bias adjustment, and inverse-frequency
aggregation to effectively coordinate heterogeneous PEFT.

* We conduct evaluations on benchmark datasets, demonstrating that Hermes consistently
achieves SOTA performance, surpassing existing FedPEFT.

2 RELATED WORK

Parameter Efficient Fine-Tuning. The PEFT strategies can be broadly classified into four cate-
gories. First, additive PEFT modifies the model architecture by injecting new trainable modules or
parameters. For example, adapters [Pfeiffer et al.[(2021)); Jie et al.| (2024); [Lei et al.[(2023)); [Edalati
et al.| (2025) are inserted following the FFN layer to enhance the computational efficiency. Prefix-
tuning |L1 & Liang|(2021);|Li et al.| (2023); [Zhang et al.| (2023) introduces learnable vectors that are
prepended to keys and values across all transformer layers. Second, selective PEFT makes a subset
of parameters trainable during fine-tuning [Fu et al.| (2023); Das et al.| (2023); [Liao et al.| (2023).
Third, reparameterized PEFT constructs a reparameterization of the original model parameters for
training, then equivalently transforms it back for inference, such as LoRA Hu et al.| (2022); Zhang
et al.| (2024b); Yang et al.|(2025); He et al.|(2025). Finally, hybrid PEFT combines advantages from
different PEFT methods to build a unified PEFT model. For instance, UniPELT Mao et al.| (2022)
integrates LoRA, prefix-tuning, and adapters into each transformer block. S4 |Chen et al.| (2023)
explores design spaces for several PEFT methods to uncover underlying design patterns.

Federated PEFT. PEFT techniques have been integrated into FL to minimize communication costs
and maximize efficiency|Zhang et al.|(2024a)); Bai et al.|(2024);|Sun et al.| (2024b); Wu et al.|(2024a);
Che et al.|(2023)); Xu et al.|(2024)). Recent works introduce personalization into federated LLM fine-
tuning via personalized PEFT modules |Yang et al.| (2023); Y1 et al.| (2023); |Guo et al.| (2023)); |Sun
et al|(2023), dual adapter integration |Long et al.| (2024); [Chen et al|(2024a); Xie et al.| (2024)) and
dual LoRA |Qi et al.| (2024); [Hao et al.[(2025). However, these approaches have limitations: many
methods |Yang et al.| (2023); Q1 et al.| (2024)) only support parameter heterogeneity within the same
model architecture, limiting personalization. Others |[Long et al.| (2024)); |Chen et al.| (2024a)) rely
on manually defined private architectures or hyperparameters, leading to suboptimal performance.
Recently, the MoE-based approach has been promising for personalized federated learning, as it per-
sonalizes models to specific data domains through expert collaboration |Guo et al.| (2021); Y1 et al.
(2024); Q1ao et al.[(2024). Some studies apply MoE to federated LLLM fine-tuning using lightweight
PEFT as experts to reduce resource consumption. Methods include mixture of prompt-based ex-
perts [Luo et al| (2025)), dual LoRA expert integration Wu et al.| (2024b)), and cluster-based LoRA
expert combination |Almansoori et al.| (2024). However, these approaches only support parameter
heterogeneity within the same model architecture.

3 PRELIMINARIES AND PROBLEM FORMULATION

3.1 PEFT APPROACHES

Adapter. Adapter Houlsby et al.| (2019) adds a trainable bottleneck layer after the feedforward
network in each Transformer layer of an LLM. Each adapter consists of a down-projection weight
Waown € R™? an up-projection weight W, € R and a non-linearity ¢(-), such as ReLU.
The adapter residual is defined as AEy, (h) = Wy - ©(Wiaown - h), where h € RY.

LoRA. LoRA [Hu et al.|(2022) only updates the parameters of some layers, e.g., self-attention. Con-
sider a layer in the network, LoRA freezes the pre-trained weight W, € R% *? and inserts a train-
able update in the form AFEy, (h) = (BA)z where A € R™*% B € R4*" and r < min(dy, ds).
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To ensure consistency with the pre-trained weight during the initial phase, B is initialized as a zero
matrix, while A is initialized with Gaussian noise N (0, 02).

Prefix-tuning. Prefix-tuning |Li & Liang| (2021) optimizes a small set of continuous task-specific
vectors, called prefixes, which are prepended to the input sequence at each Transformer layer. Con-
cretely, for a given layer, Prefix-tuning introduces trainable key-value pairs (K,,V,) € Ripxd,
where [, is the prefix length and d is the hidden size. During self-attention, the output is modi-
fied as AEy, (h) = Attn(Q, [K; K, [V;V,]) — Attn(Q, K, V), [K; K,] means concatenating the
original keys with the prefixes.

3.2 PROBLEM FORMULATION

We consider a typical FL setting with n clients, where each client ¢ holds a training dataset D;. Let
O represents the frozen parameters of the pre-trained LLM, and 6 denote a single PEFT module’s
parameters shared across all clients. f; (0) := Ey,..p, [¢ (x;|©,6)] is a loss evaluated on an instance
x; sampled from local data D; of client 7. A common homogenous objective of FL is to optimize a
single global PEFT module that minimizes the weighted average loss among all clients.

mlnlemlze;aifi(@’e)7 M

where the weights o; > 0 satisfy Z?:l «; = 1. A common choice is o; = = D] However,

izt |Dil”
i=1
the one-model-fits-all formulation in Eq. is inadequate under heterogeneous client data, since

different clients may benefit from different PEFT strategies.

To better handle heterogeneity, personalized FedPEFT allows each client to maintain multiple PEFT,
with potentially different choices and priorities. Specifically, we consider three widely used mod-
ules: Adapter (A), LoRA (L), and Prefix (P). Each client ¢ learns its own set of PEFT parameters.

minimize » a;(fi(0,0m,:), me{A L, P} (2)

where 64 ;, 01, 0p; are the parameters of Adapter, LoORA and Prefix-tuning for the client ¢.

The Eq. highlights that each client is equipped with multiple PEFT experts, and the choice of
which experts to activate and update can vary across clients depending on their data distributions
and tasks. The overall challenge is to design routing and aggregation mechanisms that support such
heterogeneous multi-PEFT personalization in a federated environment.

4 METHODOLOGY

4.1 OVERVIEW

Fig. 2|illustrates the overall architecture of Hermes, our proposed heterogeneous FedPEFT frame-
work. The framework consists of client-side modular fine-tuning with unified PEFT blocks and
server-side global aggregation with balance control.

On the client side, each Transformer block is augmented with three PEFT that form a unified PEFT
expert set. These PEFT operate in parallel on the hidden representations, generating candidate up-
dates Eng, (x) EaoL (2)> Eaop(z)- A lightweight router is then employed to determine which subset
of PEFT should be activated for a given input. The router integrates two complementary signals:
a gradient-aware score, which highlights PEFT with stronger learning signals, and a loss-free bias
adjustment, which prevents expert starvation. Based on these scores, the router selects the top-k
experts within each block to produce the final output via sparse aggregation. Only the parameters of
the selected experts are locally updated and uploaded, ensuring communication efficiency.

On the server side, Hermes collects the uploaded top-k PEFT from multiple clients. Since different
clients may upload different subsets of PEFT, a naive averaging would unfairly favor frequently
selected PEFT. To address this, we design a global balance aggregation mechanism. For each expert
type, the server aggregates parameters across clients with an inverse-frequency weighting scheme,
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Figure 2: An overview of Hermes.

which down-weights frequently selected experts and up-weights rare but informative ones. This
strategy mitigates aggregation imbalance and preserves diversity among experts. The aggregated
global experts are then synchronized and broadcast to all clients, providing them with an updated
and balanced pool of PEFT modules for the next training round.

4.2 CLIENT-SIDE MODULAR DESIGN
4.2.1 UNIFIED PEFT

To accommodate heterogeneous client distributions while maintaining a consistent interface for rout-

ing and aggregation, we unify multiple PEFT techniques under a common residual formulation.
Consider client ¢ and Transformer layer [. Let hé?se denote the base (LLM) representation leaving

layer [ that will be fed to layer [+ 1. We attach three PEFT to this layer, as introduced in Section[3.1}
Each module independently produces a residual transformation

hO = p L AED (hD) me {A L, P}, 3)

base Om,c

where AE(l  is the expert-specific residual function parameterized by 6,, .. Adapters apply bottle-

neck MLPs in the feed-forward sublayer, LoRA injects low-rank updates into attention projections,
and Prefix-tuning augments the key—value space of attention with learnable vectors.

4.2.2 ROUTER DESIGN

While unified PEFT provides a common residual representation for heterogeneous modules, an ef-
fective mechanism is still required to determine which experts should be activated and how their con-
tributions should be weighted. To this end, we design a dual-perspective router that integrates both
input semantics and learning dynamics. This router assigns non-negative weights (aﬁ)c, a(Ll)c, ag)c)
to the three experts at layer [ of client ¢, where the weights sum to one. ’

Feature view. The first perspective comes from the hidden representation itself. Given the input
h{=1) | the router computes a feature-based score vector via a lightweight gating network G Iz

s = Gp(h"Y), me{A,L,P}. (4)

These scores capture the affinity between the input features and each expert, reflecting how suitable
an expert is for the current token or batch. After normalization by a softmax function, they form the
feature-view probabilities.

Gradient view. The second perspective relies on the optimization dynamics. We measure the
learning utility of each expert by monitoring the magnitude of its gradient contribution. For client ¢
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and PEFT j, the gradient-view score is defined as
sﬁf{:? = Norm(HVem ,ECH)’ (®)]

where L. is the local training loss. This score reflects how much improvement in loss can be
achieved if the expert m is updated. To reduce oscillation, we maintain an exponential moving
average (EMA) of these values across training steps.

Loss-free bias adjustment. A common issue in expert routing is expert starvation, where a subset
of experts monopolizes selection while others are rarely updated. To address this, we introduce a

bias term bs,ll),c that is updated outside the gradient graph according to the selection frequency:

nl) — nszl),c

! l
b7(n),c « bgn),c +% - 0 (6)
where nﬁff,c is the number of tokens assigned to expert m in the current batch, 7(!) is the ideal
balanced count, and +; is a bias learning rate. This adjustment boosts underutilized experts and
discourages over-selected ones, without introducing an explicit loss penalty.

Final routing weights. The final score for each expert combines the two perspectives with a trade-
off coefficient v and adds the loss-free bias:

rd o =7sD +(1—7) s + b0, (7)

We then apply a top-k operator to select the most relevant experts, setting the weights of unselected
experts to zero. For the selected experts, the routing weights are normalized via a sparse softmax:

(1)
ag%c _ eXP(Tm,c) l , m € Sc(l)7 (8)

> nest exp(riie)

where Sc(l) is the set of top-k experts chosen for client c at layer /. The final hidden representation is
obtained as a weighted mixture of the expert-specific residuals.
A0 = 37 alh (hQ, + AED (nOD)). ©)

,c

mESg)

Here h,k(,?ge is the base representation, AEél) . (h=1)) is the residual of expert m defined in Sec-

tion Eq. (9) unifies the outputs of heterogeneous PEFT modules into a single representation
h(!) that is passed to the next Transformer layer.

4.3 SERVER-SIDE AGGREGATION

After local training and expert routing, each client uploads only the parameters of its selected top-
k PEFT modules. This selective communication substantially reduces bandwidth usage but also
introduces heterogeneity across clients, as different subsets of experts are uploaded in each round.

Expert aggregation. We treat each expert type at each Transformer layer as an independent aggre-

gation unit. Let Cy(,i) as the set of clients that uploaded expert m at this layer, the server aggregates
these parameters as

1
eﬁrlL),g = W Z w7(rll,),c 052(:? Zv(i) = Z wgib),ca (10)

™ cect) cect)

where wfql@),c is a weight assigned to client ¢’s contribution.

Inverse-frequency weighting. For the aggregation weights, a naive choice is to set w,(f;{c =1,

which reduces the scheme to FedAvg over the selected clients. However, such uniform averaging
is problematic in our setting: experts that are selected by many clients dominate the updates, while
rarely selected but potentially valuable experts may be marginalized. To address this, we propose an
inverse-frequency weighting scheme.

W — _ (11)
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Algorithm 1: Hermes

1: Server initialization. Initialize all PEFT parameters {9,(,ll)7g} forme{A,L,P},1=1,...,L
and broadcast to clients.
2: # Server Aggregation

3: For each layer [ and expert m, collect updates from clients cé?.

4: Aggregate global expert 97(,11),g using weighted average Eq. , with inverse-frequency scaling
Eq. (TI).
5: Broadcast all global experts {0,(7? g}me{Aa,L,p} to every client.
6: # Client Update
7: for each communicationround ¢t = 1,2,...,7 do
8: foreachclientc € {1,...,n} in parallel do
9: Receive global experts {0,(,? g}me{a,r,p} from server.
10: For each layer [, compute unified residuals h;l@) via Eq. .
11: Compute feature-view scores 5%7’? and gradient-view scores sgﬁ _f? via Eq. @—.
12: Update bias bﬁ,?,c according to Eq. lEi
13: Fuse into routing logits rﬁ,lgc (Eq. ), apply top-k selection, and normalize to obtain
weights OégrlL),c (Eq. lab
14: Aggregate selected experts to produce () via Eq. (@)
15: Local update. Optimize parameters 9526 of selected experts using local data.
16: Upload {eﬁ{c}me s, h&,ﬂ{c of selected experts to server, where h%),c is usage count.
17:  end for
18: end for

where hﬁfﬁ,c is the usage count of expert m on client ¢, and ¢ is a small constant for numerical stabil-
ity. This scaling reduces the relative weight of overused experts while amplifying the contribution
of underrepresented ones, thereby preventing mode collapse into a few dominant modules.

Global broadcast. Once the global parameters 9,(,?,g are obtained, the server broadcasts the entire

set of experts {9%{g}nle{ A,r,p} to all clients. This design ensures that even clients which did not
upload a particular expert in the current round receive its updated version.

4.4 CONVERGENCE GUARANTEES

We now state the convergence result of our heterogeneous FedPEFT framework. All technical as-
sumptions (A1-A6), supporting lemmas, and complete proofs are deferred to the Appendix. The
main theorem shows that our method achieves the same O(1/+/T) convergence rate as FedAveg,
with additional error terms that are explicitly controlled by routing and aggregation.

Theorem 4.1 (Convergence to stationary points). Ler F'(0) be a smooth, possibly non-convex ob-
Jective with L-Lipschitz continuous gradients. Assume unbiased stochastic gradients with variance
bounded by o, and suppose the router and aggregation satisfy Assumptions AI-AG6. If the learning
rate 1) and local step count E,, are chosen such that 0 < n < then after T' communication

rounds the averaged squared gradient norm satisfies

2
LE,’

T

1 — 00\ _ p* 2

=Y E[IVE@)?] < o(H2) + 0(%) + O+ -
t=1 ——— N—_—— —

optimization stochastic noise router and aggregation

Interpretation. As the number of communication rounds 7' grows, the optimization error decays
at the standard rate for smooth non-convex FL. The additional terms € and €,4; capture the bias
from Top-k routing and the variance from inverse-frequency aggregation, respectively. Both are
rigorously bounded in Appendix (Lemmas 4.3 and 4.4), ensuring that with proper design of router
bias and aggregation weights, these terms remain small and do not hinder convergence.
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Table 1: Federated GLUE under Dirichlet splits. Top: stronger non-IID (a=1.0); Bottom: near I1ID
(a=10). Metrics are acc except MRPC=F'1, CoLA=mcc, STS-B=spearman.

GLUE, RoBERTa-base GLUE, LLaMA-3.2-3B
SST-2 MRPC CoLA RTE QNLI STS-B MNLI QQP SST-2 CoLA QQP
a=1.0 (non-IID)

Method

FedFT 92.5 89.2 61.5 68.8 895 88.1 84.9 88.0 91.0 56.1 87.2
FedAdapter 91.8 87.6 60.5 679 894 87.6 84.5 86.9 90.6 554 86.4
FedLoRA 92.1 83.0 59.5 659 893 86.5 83.4 85.9 89.9 53.8 85.3
FedPrefix 90.5 84.3 55.5 56.1 85.1 83.5 79.7 83.2 88.9 50.2 83.1
FedUniPELT  89.8 81.9 559 59.8  86.1 83.6 80.1 82.9 89.2 53.1 85.7
Hermes 93.4 90.1 63.0 704 905 89.2 86.0 89.1 92.1 57.7 88.2
a=10 (near 1ID)

FedFT 93.6 90.3 62.6 699 90.6 89.2 86.0 89.1 923 58.3 88.4
FedAdapter 93.9 89.7 62.6 700 915 89.7 86.6 89.0 92.6 58.5 88.9
FedLoRA 94.2 85.1 616 680 914 88.6 85.5 88.0 92.1 57.2 87.8
FedPrefix 93.8 87.6 588 594 884 86.8 83.0 86.5 91.6 55.1 86.7
FedUniPELT  93.3 88.5 609  67.1 90.6 88.9 85.0 87.2 91.8 56.8 87.1
Hermes 95.0 91.8 646 720 921 90.9 87.6 90.7 93.5 60.1 89.2

5 EXPERIMENT

5.1 SETUP

Dataset. We evaluate our method on the General Language Understanding Evaluation (GLUE)
benchmark Wang et al.| (2018)), a widely adopted suite for measuring natural language understand-
ing. The benchmark encompasses four categories of tasks, namely linguistic acceptability (CoLA),
sentiment analysis (SST-2), similarity and paraphrase detection (MRPC, STS-B, QQP), and natural
language inference (MNLI, QNLI, RTE).

Non-IID partitioning. Following Lin et al. Lin et al.| (2022)), we generate heterogeneity by sampling
class-prior vectors from a Dirichlet distribution. Specifically, we draw D ~ Dir(«) and allocate data
Dy, to the k-th client according to D. The parameter « controls the non-IID level, and a smaller «
yields a stronger label distribution shift. Unless otherwise noted, we set o = 1.0 throughout.

Baselines. Under the FedAvg framework, we evaluate full fine-tuning (FedFT) and three representa-
tive PEFT: Adapter (Houlsby et al.,|2019) (FedAdapter), and LoRA (Hu et al., |2022) (FedLoRA),
Prefix-tuning (L1 & Liang} [2021)) (FedPrefix). In addition, since UniPELT (Mao et al., [2022)) uses
multiple PEFT techniques, we further implement its federated version (FedUniPELT) to ensure a
comprehensive comparison against our method. Our proposed Hermes extends this line by intro-
ducing a MoE-style unified PEFT with router-based top-k selection and usage-aware aggregation.

Implementation Details. For the backbone encoder, we adopt RoOBERTa-base (125M parameters)
for GLUE experiments and LLaMA-3.2-3B for large-scale ablations. Hermes unifies all three PEFT
modules as parallel experts in each Transformer block, coordinated by a gradient-aware router with
top-k expert selection (k = 2 by default). Clients perform F, = 10 local epochs per round, with
Adam optimizer, learning rate 2 x 10, batch size 32, and weight decay 10~*. Router temperature
7 = 0.1 and bias step size v, = 0.05 are used for loss-free balancing. On the server, we apply
inverse-frequency aggregation with ¢ = 1. The adapter bottleneck dimension is set to r = 16, the
LoRA rank is r = 8, and the prefix length is [, = 16 per layer.

5.2 PERFORMANCE

Exp-1: Main results. Table [2] summarizes the performance on GLUE under both stronger non-1ID
(a=1.0) and near IID (a=10). Hermes consistently outperforms all baselines. Single-PEFT meth-
ods exhibit task-dependent strengths but degrade substantially on harder datasets such as CoLA and
RTE. FedUniPELT, while combining multiple modules, suffers from gradient interference, yielding
only marginal gains. In contrast, Hermes consistently outperforms all baselines, with larger improve-
ments under non-IID (o = 1.0). The gains arise from its MoE-style routing and inverse-frequency
aggregation, which mitigate expert underutilization and prevent domination by frequent modules.
Furthermore, on LLaMA-3.2-3B, the trend remains, showing that the proposed mechanisms scale
effectively to larger backbones and heterogeneous federated environments.
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Table 2: The effectiveness of key components in Hermes (A = aggregation balance, K = top-k
router, G = gradient-aware gating, F = feature-view scores).

Ablation SST-2 MRPC CoLA RTE QNLI STS-B MNLI QQP

a=1.0 (non-IID, RoBERTa-base)
Hermes-w/o-A 927 89.9 62.75 69.9 90.1 88.7 85.5 88.8
Hermes-w/o-K  92.7 89.1 62.27 69.5 89.9 88.5 85.4 88.3

Hermes-w/o-G =~ 92.1 88.9 62.04 694 892 87.8 84.9 87.9
Hermes-w/o-F ~ 92.2 88.9 61.65 695 85.4 86.3 85.3 87.7
Hermes 93.4 90.1 63.0 704 905 89.2 86.0 89.1
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Figure 3: (a) The impact of varying the number of activated experts k. (b) The communication cost
each round. (c) The convergence comparison on SST-2 under non-IID split (v = 1.0).

Exp-2: Ablation of components. Table [2] reports ablation results under a=1.0. Removing any
key component leads to a performance drop, verifying their necessity. In particular, discarding the
feature-view scores (w/o-F) produces the most severe degradation, highlighting that semantic input
signals are crucial for expert selection. Similarly, removing the top-k router (w/o-K) or gradient-
aware gating (w/0-G) reduces effectiveness by impairing the routing quality, and omitting aggrega-
tion balance (w/0-A) introduces update dominance. The complete Hermes consistently achieves the
best results, confirming the complementarity of its design.

Exp-3: Impact of the number of activated PEFT. We further examine the effect of varying the
number of activated experts k in Fig. Activating a single expert (k=1) underutilizes model
capacity, while selecting three experts (k=3) introduces redundancy without additional benefits.
The best performance is observed at k=2, which strikes a favorable balance between expert diversity
and training stability. This result indicates that sparse but non-trivial expert activation is the most
effective setting for Hermes in federated PEFT.

Exp-4: Communication analysis. Figure reports the communication cost per round. Hermes
maintains a cost comparable to single-PEFT baselines since only the selected experts are uploaded.
FedUniPELT incurs much higher overhead because it synchronizes all modules regardless of their
contribution. This validates that sparse MoE-style activation not only improves accuracy but also
preserves communication efficiency, which is critical in federated training.

Exp-5: Convergence analysis Fig. [3(c)| presents convergence curves on SST-2 under the non-IID
(a=1.0). Hermes achieves both faster and smoother convergence compared to all baselines. Single-
PEFT methods converge more slowly and plateau at lower accuracy due to limited adaptation ca-
pacity. FedUniPELT initially progresses quickly but soon stagnates, reflecting gradient interference
between modules. In contrast, Hermes maintains steady improvement and reaches higher accuracy
within fewer rounds.

6 CONCLUSION

We introduce Hermes, a heterogeneous FedPEFT framework that unifies multiple PEFT modules
via a sparse mixture-of-experts design. By combining gradient-aware routing, loss-free bias adjust-
ment, and inverse-frequency aggregation, Hermes achieves superior personalization performance
compared to state-of-the-art homogeneous FedPEFT baselines.
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A THEORETICAL ANALYSIS

We study the convergence properties of our federated hybrid PEFT framework. We first formalize
the setup and assumptions, then establish stability, routing, selection bias, and aggregation vari-
ance lemmas, before presenting the main convergence theorem. Each lemma is not standalone: it
contributes directly to bounding specific error terms €g; Or €,4, that appear in the final theorem.

A.1 SETUP

Let the global objective be
F(0,0) =) acfe(,0), [e(0,0) =E( yp [y | 2;0,0)]
c=1

where © is the frozen backbone and 6 = {95}3}1’7% collects all PEFT parameters. Client ¢ holds
D, and updates a local copy 0. for E, steps before uploading selected experts to the server for
aggregation.

Unified PEFT formulation. At layer [, denote by A(!~1) the routed input and hé?se the frozen
backbone output. For each expert m € {A, L, P} and client ¢, we write the residual as

AER (hD), B = hg + AES (RO,

m,c base c
The Top-k router selects Sc(l) with weights w,(ql@)c summing to one, and the layer output is
D = Z w®  hWO,

,c''m
mesﬁ”
This unified residual view allows LoRA, Adapter, and Prefix-tuning to be analyzed within the same
theoretical framework, ensuring consistency in later error analysis.

A.2 ASSUMPTIONS

We adopt the following standard conditions:

Assumption Al (L-smoothness). For each client ¢, f.(©,0) is L-smooth in 6:
I9/.(0,6) - Vi (0.0)] < Lo — ¢

Assumption A2 (Stochastic gradients). For a minibatch B.,
Elge | ] = V£.(0,60),  Ellge = Vfe(0,0)]* < o>

Assumption A3 (Expert regularity). Each residual map AEéQ . is Lg-Lipschitz in input and
pE-Lipschitz in parameters, with Jacobian norm ||JT(,2) | < kg.

Assumption A4 (Router regularity & Top-£ sparsity). The router produces w,(,ll),C via a Lipschitz

function of (p(h{=1)), g,‘fl{c, bﬁ,?,c) with temperature T > 0, and exactly k non-zero entries per layer.
Let M) = | M| be the number of experts at layer .

Assumption A5 (Loss-free bias updates). Bias evolves as

A0 — p® Bk
W 0 P ) o Bk
bm,c — bm,c +% 0 , = MO

where 7y, is small enough for stochastic approximation stability.
Assumption A6 (Inverse-frequency aggregation). The server aggregates as
1 _
07(111),51 = ﬁ Z wT(YlL),C av(jL),c’ w7(rlz),c = (hgrlL),c + 6) a’ Zv(”rlL) = Z wv(”rlL),c’
Zm cecth) cecy

with o € [0,1] and € > 0. We typically set « = % but keep it symbolic for analysis. Here h%)’c
is the token-level usage count reported by clients. Across clients, we assume the local noises are
independent (or weakly correlated so that Cauchy-Schwarz yields the same functional bound up to
a constant).
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A.3 STABILITY OF UNIFIED PEFT MIXTURES

We first ensure that hybrid unified experts at the layer output are well-conditioned both forward and
backward.

Lemma 4.1 (Stability of unified PEFT). Suppose |AES) (h0~V)|| < Ry almost surely, and
>om me: , (l) ¢ > 0. Then

IR — hig

base

I<Be. V0.0 < pilu®],
where u) = 9¢/9hD.

Proof. By definition,
O _p®

base

S w@ AED (h07D),
mES(l) ’ o

Using convexity of the /5 norm and wm e>0,> wm o=

7 l l _
1R — P |l < Zwm AE (hID)] < waichE = Rp.

For the gradient bound, by the chain rule,
OAEY (ht-1)\ 7

@
u’.
89»%)@

Voa= (

EW
("mc

Assumption A3 gives H 500

< pE, hence

19,0 ¢ < pillu®]
O
Bridge to next step. Lemma 4.1 ensures bounded forward deviations and gradient norms, so Top-k

routing cannot amplify noise uncontrollably. This bound on backward sensitivity kg, pg is later
used to control selection bias in Lemma 4.3.

A.4 ROUTER TOP-k WITH LOSS-FREE BIAS

Lemma 4.2 (No-starvation and load tracking). Under Assumption A4-A5 with small enough ~y,
there exists p > 0 such that for all I, m, c

k
hm 1nf — ZE[pm )] > V0N 5(vp,7),

and

T
1
‘f ZE[H%),C(L‘)] - ﬁ(l)’ < €pa(,7) >0 asy — 0, 7= 0.
t=1

Proof. Fix (l,c) and write n!, for the realized per-batch token count routed to expert m at step ¢,
7 = n(1). The bias recursion is

n
bt+1 - b:n + Vit)

bfn + rYIS wm:(bta gt),

where v, (b%, £) = % and &* collects routing randomness. Let v, = pf + bt be the effective
logits (feature+gradient logits p!, plus bias), and St = TopK (r!) the selected set. Define 1., (b) =
E[t)m (b, £)], where the expectation is over the randomness of p and the Top-k draw given b.
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Monotonicity and unique equilibrium. Since increasing b,, increases 7, and thus the selection
probability of m, E[n,,(b)] is strictly increasing in b,, and Lipschitz in b for fixed temperature

7 > 0 (Assumption A4). Hence the mean field ODE b,,, = 9),,,(b) = 1 — E[n,,(b)] /7 has a unique
equilibrium b* satisfying E[n,,, (b*)] = 7 for all m.

Global asymptotic stability. Consider the Lyapunov function V' (b) = 3 3=, (E[n,, (b)] — 71) ? s
time derivative along the ODE trajectory is

V() = (Enm(b)] — 1) ViR, (b)) b = —i > (Blnm (b)) — ) VoE[nm (b)) TE[n()].

n
m m

Diagonal dominance holds because dE[n,,]/db,, > 0 and cross-partials are weak and bounded
due to the Top-k capacity constraint and Lipschitz router (Assumption A4). Therefore V(b)) <

—co Y (Elnm (b)] — ﬁ)2 for some cg > 0, implying global asymptotic stability at b*.

Stochastic approximation. Write the recursion as b'™! = b + 47 (1(bt) + M*+1), where M+ =
(bt €)—p(bt) is a martingale difference with bounded second moment (Assumption A4, bounded
logits and k). Under Robbins—Monro steps (Assumption A5), Kushner-Clark theory implies b* —
N, (b*) almost surely, i.e., convergence to a small neighborhood of b* whose radius vanishes as
sup, 73 — 0. Consequently,

E[ﬂm(bt)] —n| < Ebal('YbaT) — 0.
Furthermore, Top-k always selects exactly k experts, so the long-run marginal selection probability

for each expert is lower bounded by k/M " up to a perturbation due to finite temperature and
residual bias error; hence

k
l
hniloréf—g Elp () )}27(0_5(%;7')-
O

Bridge to next step. Lemma 4.2 ensures that every PEFT is selected with nontrivial probability and
load stays approximately balanced, so the bias introduced by Top-k routing remains bounded. This
guarantees diversity, which underpins the Lemma 4.3.

A.5 SELECTION BIAS FROM ToP-k

Lemma 4.3 (Selection bias bound). Ler w((iilse = softmax(r) /7) and let wt(u)k be the Top-k re-
normalized weights that keep the k largest coordinates in vV and set the rest to zero (followed by
normalization). Assume (i) HJ,(TZL) | < kg (Assumption A3), (ii) the expected number of indices that
differ between the supports of w[(,izlse and wt(ol;k is at most Ak((;l), and (iii) logits are [B,-Lipschitz in
their inputs. Then

HE[@\C] - vfc(‘g)H S Cl HEGZA]CQ) + 02 ﬁr T.
l

Proof. For a fixed layer I, define Aw®) = wl(ol) w((iglse The expected gradient of client ¢ decom-

poses as
E[g.] — Vf.(6 ZE[ ZAw(l) Vol |,

where Eg,l,,) is the per-expert loss contribution via AEéQ.

HVQES,? | < kgG (we absorb pg into k). Thus

|E[Ge] — Vfo(0 ZHEGEHAZU Dz

Lemma 4.1 and Assumption A3 give
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We now bound ||Aw®||;. Letp = wgglse. The Top-k projection that zeroes the M () — & small-

est entries of p and re-normalizes the remaining k gives an exact identity (simple algebra on the
simplex):
lwih —pli =2 Y p; = 2uil®(p),
3gs®

where S() is the index set of the k largest logits and tail(l)(p) is the softmax mass outside S).
Hence E[| Aw®||; = 2E[tail® (p)].

To upper bound the tail mass, note that (a) changing the support by at most Akgl) indices implies

at most Akﬁl) probabilities are moved from inside to outside (or vice versa); (b) for softmax with
temperature 7, local logit smoothness implies a uniform bound on the largest probability that can be

shifted across the k-th threshold. More specifically, let () be the logits and denote by TEQ) the k-th

order statistic. For any j ¢ S,
l
p; < xp((r(y) — Aumin)/7) < Oy e~ B/
j = > U s
exp(r()/7) + X iuy exp(r” /7)

®

where Ain = minj¢ S(z)(r((?) - ) and C; < 1 is a temperature-dependent constant. Under

Assumption A4, fluctuations of logits are /3,.-Lipschitz in inputs; averaging over batches gives an
effective bound Efexp(—Apin/7)] < C’B,7 (a standard softmax-smoothing surrogate). Therefore

Eltail® (p)] < Ak - E[Iélé%(xl) p|+E[ Y p] < card+cisr
7€ S but unchanged

<CrBoT :
vanishes as 7—0

Combining the last three displays yields
[E[Ge] — V£(0)]| < CrruG Y~ AKD + CaB,7.
l

O

Bridge to next step. Lemma 4.3 provides a quantitative upper bound on the gradient bias due to
sparse routing, which enters Theorem 4.1 as eg.

A.6 INVERSE-FREQUENCY AGGREGATION

Lemma 4.4 (Aggregation variance bound). Assume tr zﬁ,?,c <ai/ (hs,ll),c +¢). Then

2
1
trVar[0®) ] < % .
\9 (Z,(ﬁ))? Z (h%),c+€)1+2a

CGC;?

Proof. For fixed (I, m) abbreviate w, = wfv?c, 7 = Zﬁ?, 0. = Hﬁ,ll)c, 0, = 0(“*, &= 7(267 Y. =
E(l) By definition of the estimator,

Qq:ZZWCQC— ch +£c —9 + = chfc,

ceC ceC CGC

so the aggregation error equals 0, — 0, = (1/Z) )" w:&.. By independence across clients, the
covariance of a weighted sum is the weighted sum of covariances:

%chgc = % > Wit

ceC

Var[fy] = Var

Taking traces and using the linearity of tr,

tr Var[0 Z2 Z w; tr 3.
ceC
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Invoking the heteroscedastic variance model tr Y. < 02/ (he+e) together with the weight definition
= (he + €) 72 (here h, stands for ek C) we obtain

(he + )72 52— og 1
tr V. —5 —
rVarl,] < 72 Z hete 07 22 = (he +e)tt2e’

which is exactly the claimed bound once we restore the superscripts and subscripts (I, m). O
Bridge to next step. Lemma 4.4 shows how usage-aware weights suppress both high-variance low-

usage clients and dominance from high-usage ones. This aggregation-variance term €,y used in
Theorem 4.1.

A.7 CONVERGENCE OF FEDERATED TRAINING

Theorem 4.1 (Convergence to stationary points). Under Assumption A1-A6, choose step size
Mt < Nmax and local steps E,, such that Ly, < ¢ < 1. Then after T rounds,

T —_

1 B F(GO) _ F* o2

TE E[|VF(@)|?] < O<nTE,, > + O(n> + O+ €age)
t=1 N——

router + aggregation

optimization SG noise
where
€set = C16pG Ak + Co 8.7, from Lemma 4.3,
and
e, x max —avg E —, from Lemma 4.4.
88 Z(l) )1+2a
ec(” ete)

Proof. Let 0 be the global parameters after round ¢, and 6%* the local parameters at client c after
s € {0,..., E,} local steps within round ¢, starting from §:° = §*~!. One round of FedAvg-style
update produces

n Ep—1
ot _ pt—1 ~t,s t
0" =40 —nE ac E gcoo + ¢ ;
c=1 s=0 Y .
aggregation noise

where g is the (possibly biased) stochastic gradient at the local iterate 6%%, and (' captures the
zero-mean aggregation fluctuation.

Descent lemma. By L-smooth F,
_ _ _ _ _ L _ _
F(Qt) < F(Ht_l) + VF(et—l)T(et _ 91‘,—1) + §||0t o tgt_lHQ.

Substitute the update and take expectation over sampling, routing, and aggregation:

_ L772 2
E[F (@t gt 1 . E F gt 1 T~ ts 7EH ~t,s E t)12
) < B - Yo B[S Tl Eic
@8 bounded by Lemma 4.4
Bias/variance decomposition. Write gﬁ, V fe(05°) + o2%, where E[1L*] = 6%° captures selection

bias (Lemma 4.3), and E|.L* —
Then

2 < 02 captures stochastlc gradzent noise (Assumption A2).

~E[VF"§.] = -E[VF'Vf.] -E[VF'4,.].

Standard FedAvg arguments with L-smoothness control the local drift between 6%* and 0'~' by
O(Lns); summing s = 0, ..., E, — 1 yields a factor O(LnE,). Choosing LnE, < ¢ < 1 ensures
a net descent. Aggregating over clients and steps gives

Fyelivem <o "G vo(%) o (F T T ) +o)

t=1
where the last term uses Lemma 4.4 to bound aggregation variance accumulated across rounds.

Finally, Lemma 4.3 yields ||05°|| < C1xpG Y, Akﬁl) + Co 8,7, which produces the € contribu-
tion after averaging over ¢. This completes the proof. O
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Discussion. Theorem 4.1 states that our method achieves the nonconvex FedAvg-style conver-
gence rate up to two explicit and interpretable terms: ¢ quantifies the bias induced by sparse
routing (vanishing as the mask stabilizes and 7 | 0), while €4, quantifies the variance from het-
erogeneous, usage-dependent aggregation (tightened by o = % via Lemma 4.4). Together with
Lemma 4.2, these guarantees prevent expert starvation, cap long-run routing bias, and stabilize

global aggregation.
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