
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Q⋆AGENT: OPTIMIZING LANGUAGE AGENTS WITH Q-
GUIDED EXPLORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Language agents have become a promising solution to complex interactive tasks.
One of the key ingredients to the success of language agents is the reward model
on the trajectory of the agentic workflow, which provides valuable guidance during
training or inference. However, due to the lack of annotations of intermediate inter-
actions, most existing works use an outcome reward model to optimize policies
across entire trajectories. This may lead to sub-optimal policies and hinder the
overall performance. To address this, we propose Q⋆Agent, leveraging an esti-
mated Q value to generate intermediate annotations for open language agents. By
introducing a reasoning tree and performing process reward modeling, Q⋆Agent
provides effective intermediate guidance for each step. This guidance aims to
automatically annotate data in a step-wise manner. Besides, we propose a Q-guided
explorationgeneration strategy that can significantly boost model performance by
providing process guidance during inference. Notably, even with almost half the
annotated data, Q⋆Agent retains strong performance, demonstrating its efficiency
in handling limited supervision. We also empirically demonstrate that Q⋆Agent
can lead to more accurate decision making through qualitative analysis.

1 INTRODUCTION

Open-source language models rely on supervised fine-tuning (SFT) to accomplish complex agent
tasks (Chen et al., 2023; Yin et al., 2024). However, the substantial human annotations required for
collecting training data present a significant bottleneck, limiting both performance and scalability.
This challenge is particularly pronounced in agent tasks (Yao et al., 2022; Shridhar et al., 2021; Wang
et al., 2022), where data scarcity is a critical issue due to the inherent complexity and diversity of the
tasks. Collecting high-quality training data for such tasks often involves intricate, context-specific
interactions, which demand expert knowledge and extensive effort. To overcome this challenge,
self-improvement techniques have emerged as a promising area of research (Wang et al., 2024a; Singh
et al., 2023; Hosseini et al., 2024; Zhang et al., 2024), enabling models to learn from self-generated
data without extensive human intervention. A central question in this paradigm is how to better and
more efficiently explore useful trajectories that can enhance the model’s capabilities.

An essential component in self-improvement methods is the reward model, which evaluates the
quality of self-explored data. Many existing works derive a single outcome reward based on ground
truth (Zelikman et al., 2022; Yuan et al., 2023; Singh et al., 2023) or feedback provided by the
environment (Song et al., 2024) at the end of trajectories. While this approach is straightforward,
it falls short in handling complex tasks, since an outcome reward model cannot accurately score
each step within a long trajectory in intricate scenarios. Also, a trajectory achieving a high final
outcome reward does not necessarily indicate that every action taken was optimal; the agent may have
completed the task successfully, but some actions could have been inefficient or suboptimal (Uesato
et al., 2022).

Therefore, a good process reward model is necessary to provide step-wise evaluations of the agent’s
actions. Such a model enables the agent to fully understand and learn from the intermediate stages
of complex tasks, ultimately improving performance and generalization. The key challenge lies in
developing an effective process reward model for self-improvement without relying on extensive
human annotations for the step-wise reward. There has been a thread of work focusing on process
reward modeling (Uesato et al., 2022; Lightman et al., 2023; Wang et al., 2023; Chen et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

1. Behavior Cloning

2. Self-Generation & Tree Construction

Environment

Reasoning Tree

SFT Dataset

Q-guided Trajectories

QNet

LLM Agent

u
a2

0

s3

a4 a5

a1

s2

s4 s5

s1

a3

0.5 0.9

0.90

u: task

s: state

a: action

q: Q-value

(s1,a1,q1)

(s2,a2,q2)
...

3. Extract Q-value & Train QNet

4. Q-guided Generation

a1 a2 a3

QNet

0.9 0.1 0.8

a1

...

Q-guided Self-trainingQ-guided Inference

SFT Dataset

Q-guided Trajectories

SFT

Figure 1: Q⋆Agent pipeline overview. We revise the original "exploration" teminology in the figure
to "generation" to avoid misunderstanding. Q⋆Agent involves mainly four stages: 1) Supervised
Fine-Tuning on expert data. 2) Leverage SFT agent to explore the environment and construct a
reasoning tree for each task. After construction, estimate the Q-value of each tree node based on
Equation 4. 3) Train QNet on the estimated Q-values. 4) Use the trained QNet to provide guidance
during every exploration step.
However, these methods rely on either costly human-annotation or computationally heavy random
rollouts, rendering them inefficient for self-improvement of language model agents.

To address this issue, we propose Q⋆Agent, a novel approach to provide process guidance with
estimated Q value for open language agents. This process reward can be applied to not only boosting
self-improvement techniques but also providing direct guidance during inference. As illustrated in
Figure 1, we first utilize behavioral cloning to train a base language agent and then do exploration
in construct a tree structure to collectcollecting a large number of trajectories. With the collected
reasoning tree, we use Bellman equation (Bellman & Dreyfus, 2015) to obtain the supervision with
state, action, and Q value. Then use the supervision to train a QNet to estimate Q value (Watkins &
Dayan, 1992) given any state and action on the reasoning trees. After that, we leverage the trained
QNet to collect high quality trajectories in the agent environment. Based on the trained QNet, we
propose Q-guided explorationgeneration to conduct greedy planning in a step-wise manner. We
further use the large language models to augment the context to improve the diversity, and design
several tree pruning strategies to reduce the redundancy of large searching space.

To summarize, our contribution can be divided into three folds:

1) Process Reward Modeling with Q-Value Estimation: We introduce Q⋆Agent, a novel strat-
egy which leverages estimated Q-values to generate intermediate annotations for language agents,
providing effective step-wise guidance for self-improvement.

2) Q-Guided ExplorationGeneration Strategy: We propose a Q-guided explorationgeneration tech-
nique that significantly enhances agent performance by delivering effective process-based guidance
during inference, improving decision-making at each step.

3) Efficient Performance with Limited Supervision: We mainly evaluate Q⋆Agent on web naviga-
tion tasks, where Q⋆Agent Our method demonstrates strong performance even when using nearly
half the amount of annotated data, highlighting the efficiency and robustness of Q⋆Agent in scenarios
with limited supervision.

2 RELATED WORK

2.1 LARGE LANGUAGE MODEL AGENT

Large language models have shown impressive performance in complex interactive tasks, such as
web navigation (Yao et al., 2022), scientific reasoning (Wang et al., 2022; 2024b), and action planning

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

in embodied environments (Shridhar et al., 2021). ReAct (Yao et al., 2023) developed a prompting
method to shape language models as agents that can reason and act. While several works (Shen
et al., 2024; Song et al., 2023) improve agent performance with closed-source LLM controllers, the
open-source LLM agents still offer unique advantages like accessibility and customization. FireAct
(Chen et al., 2023) and LUMOS (Yin et al., 2024) leverage high-quality data generated by experts
and employ teacher-forcing to improve the performance of open-source agents. In line with this, our
Q⋆Agent is also based on open-source LLMs.

2.2 SELF-IMPROVEMENT OF LLM AGENTS

Training model on self-generated data is a promising approach as it circumvents the high cost of
collecting expert data. A large number of works (Dou et al., 2024; Zelikman et al., 2022; Yuan et al.,
2023; Singh et al., 2023) follow the paradigm of reinforced self-training (Gulcehre et al., 2023),
which filters positive self-generated data and performs model training on those filtered positive data.
Some other works (Song et al., 2024; Setlur et al., 2024) utilize both positive and negative data to
construct preference pairs and update the policy using direct preference optimization (Rafailov et al.,
2024). Most of these works rely on the outcome rewards to distinguish between positive and negative
trajectories. However, our Q⋆Agent can provide process reward signals for intermediate states and
actions of a trajectory. Most recently, Wang et al. (2024a) and Zhai et al. (2024) uses step-level
guidance for agent inference through training a step-level value model. Putta et al. (2024) applies a
hybrid process reward modeling for web navigation tasks by combining Monte Carlo Tree Search
(MCTS) rewards with scores generated by large language models to form process rewards. Our
method differs from Wang et al. (2024a) and Zhai et al. (2024) in engaging behavioral cloning stage,
and differs from Putta et al. (2024) because we do not rely on an external LLM to provide rewards.

2.3 PROCESS REWARD MODELING FOR LLM

Existing works have explored various strategies and reasoning policies for process reward modeling.
Uesato et al. (2022) and Lightman et al. (2023) utilize human-annotated step-level correctness to train
a reward model. while Math-Shepherd (Wang et al., 2023) infers per-step rewards through random
rollouts. TS-LLM (Feng et al., 2023) employs an MCTS-based policy and infers per-step rewards
using the TD-λ. (Sutton, 1988) method. V-STaR (Hosseini et al., 2024) and Self-Rewarding (Yuan
et al., 2024) leverage the Chain-of-Thought (CoT) reasoning policy, generating final outcome rewards
either through multi-iteration LLMs or LLMs’ own judgment. ReST-MCTS* (Zhang et al., 2024)
uses Monte Carlo tree search (MCTS) with re-inforced self-training to enhance the diversity and
performance on general reasoning tasks like maths, science and code. Our approach, focuses more on
the agent tasks which require dense interaction with the environment. Also, distinct from these, our
method models process rewards using Q-learning. By inferring per-step process rewards through the
bellman equation, we effectively capture and optimize the intermediate reasoning steps, enhancing
self-improvement capabilities in multi-step reasoning tasks.

3 PRELIMINARIES

In this section, we introduce key foundational concepts relevant to Q⋆Agent. We begin by discussing
Q-learning, which serves as the inspiration for Q⋆Agent by extracting Q-values from the reasoning
tree. Following that, we will cover the self-improvement techniques which our Q⋆Agent aims to
provide guidance for.

3.1 Q-LEARNING: LONG-TERM VALUE IN DECISION MAKING

Q-learning (Watkins & Dayan, 1992) is a traditional model-free reinforcement learning algorithm,
where agents learn a Q-function Q(st, at) representing the expected future rewards by taking action
at in state st at step t. In Q-learning, Q-function is updated iteratively by

Q(st, at)← Q(st, at) + α

[
Rt + γmax

a∈A
Q(st+1, a)−Q(st, at)

]
, (1)

where α is the learning rate, γ is the discount factor, A is the action space and Rt represents the
intermediate reward at step t. Combining both immediate rewards from the current action and future

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 1 General Q⋆Agent Pipeline

1: Input: Dexpert = {(ui, a
i
t, o

i
t)

T
t=1}Ni=1, Policy model πθ, QNet Qϕ ▷ Initialization

2: Stage 1: Behavior Cloning
3: Train πθ on Dexpert minimizing loss 3
4: Stage 2: Explore and Construct reasoning trees
5: for i = 1 to N do ▷ Explore the task ui

6: Explore on task ui and construct a reasoning tree Ti with a root node Ui

7: Update Q-values recursively from Ui using Equation 4
8: Collect Q-values from {Ti}Ni=1 as dataset DQ

9: Stage 3: QNet Training
10: Train QNet Qϕ on dataset DQ

11: Step 4: Q-guided ExplorationGeneration
12: Use QNet Qϕ to score state-actions at each step ▷ Flexible to conduct self-improvement

potential rewards from subsequent actions, Q-value can be interpreted as the expected long-term
value of taking a specific action in a given state, followed by the optimal policy thereafter. The
Bellman Optimality Equation (Bellman & Dreyfus, 2015) of Q-function can be written as

Q⋆(st, at) = Rt + γmax
a∈A

Q⋆(st+1, a). (2)

In complex interactive tasks, the agent needs to account not only for immediate rewards but also for
the potential long-term effects of its current decisions. This is where the Q-value becomes essential.
However, directly adapting RL algorithms to language agents can be sample-inefficient (Jin et al.,
2018). This is because the action space in language agent tasks is typically a vast vocabulary, which
may lead to an explosion of potential action sequences to be explored. To address this challenge, our
approach successfully adapts Q-value extraction to language agent tasks by introducing a reasoning
tree, which we will introduce in the next section.

3.2 SELF-IMPROVEMENT

Self-improvement is referred to techniques where models leverage self-generated data to improve
themselves. Self-training (Altun et al., 2005) is one of the self-improvement techniques that train the
model on selected self-generated data. It commonly consists of two stages: grow and improve Gul-
cehre et al. (2023). In the first grow stage, an augmented dataset Dg will be created by sampling a
set of sequences from the current policy model πθ. The newly generated sequences will be scored by
a reward function. Only those sequenced whose score is better than a pre-defined threshold will be
retained in D′

g. Then in the second improve stage, the current policy model πθ will be trained on
the selected dataset D′

g .

In addition to training-based methods, self-generated data can be leveraged to provide direct inference
guidance. In complex agent tasks, inference-time guidance becomes particularly important due to
the high cost of collecting expert-annotated data. In our work, we evaluate whether Q⋆Agent can
enhance the performance of self-improvement techniques through two setups: the first focuses on
providing direct guidance during inference, while the second involves Q-guided self-training. In the
latter experimental setup, the self-training data is generated under the guidance of QNet. We will
provide further details in the following section.

4 METHODOLOGY

In this section, we will follow the order of Q⋆Agent training pipeline and introduce each critical
component step by step. The overall pipeline is stated in Figure 1 and Algorithm 1. First, we
will describe the initial stage of behavior cloning. Then, we will explain how the reasoning tree is
constructed during the second explore stage and how we utilize it to extract Q-values. Finally, we
will detail how the Q-network (QNet) is employed to guide the agent’s generation process and to
boost self-improvement techniques.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Reasoning Tree
Task 𝒖

I’d like to buy a pair of black pants for a cocktail party.

𝐚𝟏: Search [Black causal pants]

s𝟏: [𝒖]

s𝟐: [𝒖, 𝒂𝟏, 𝒐𝟏]

𝐚𝟐: Click [Item B]

𝐫𝟐: 𝟎

𝒓𝟏: 𝟎

𝒐T:Task is completed!

𝐫𝑻: 𝟎. 𝟑
𝒐T: Task is not completed!

𝐫𝑻: 𝟎

Stop

expansion

s𝟏: [𝒖]

𝐚𝟏: Search [black pants]

𝒓𝟏: 𝟎

s𝟐: [𝒖, 𝒂𝟏, 𝒐𝟏]

𝐚𝟐: Click [Item A]

𝐫𝟐: 𝟎

𝒐T:Task is completed!

𝐫𝑻:𝟎. 𝟗

Keep

expansion

s𝟐: [𝒖, 𝒂𝟏, 𝒐𝟏]

𝐚𝟐: Click [Item C]

𝐫𝟐: 𝟎

Figure 2: Note: Updated figure aligned with WebShop. Illustrative example of constructing a
reasoning tree. Grey nodes represent the branches with a zero outcome reward. Once the leaf node
with a zero outcome reward is detected, a Stop expansion signal will be sent back to the first
unexpanded node on the branch. Green nodes are on branches where zero outcome reward is not
detected and can keep expanding.

4.1 BEHAVIORAL CLONING

Behavior cloning provides a strong initial foundation for language agents by supervised fine-tuning on
expert trajectories. Formally, the first stage of Q⋆Agent is to supervised fine-tune our language agent,
denoted as the policy π, on a set of annotated samples Dexpert. We use ReAct (Yao et al., 2023)-style
data for supervised fine-tuning, which additionally generates Chain-of-Thought (CoT) (Wei et al.,
2022) reasoning paths before executing each action. We will use a to denote the complete ReAct-style
response generated by π for simplicity.

Formally, given a dataset Dexpert = {(ui, a
i
t, o

i
t)

T
t=1}Ni=1, where ui represents the task description,

T is the trajectory length, N is the number of trajectories in expert dataset, oit is the environment
observation after taking action ait at step t, we optimize the policy π by minimizing the cross-entropy
loss negative log-likelihood loss:

L(θ) = −
∑
i

∑
t

log πθ(a
i
t | ui, a

i
<t, o

i
<t), (3)

where θ denotes the parameters of the policy model πθ(at|u, ht), which outputs the probability of
action a given task description u and historical interactions ht = {a<t, o<t}.

4.2 CONSTRUCTING A REASONING TREE

The supervised fine-tuned agents can explore the environment and collect a large amount of tra-
jectories. However, due to the extremely large action space of language agents, directly sampling
trajectories without any guidance may lead to low explorationgeneration efficiency. To address
this issue, we propose to construct a reasoning tree during self-explorationgeneration to enhance
explorationgeneration to enhance search efficiency.

4.2.1 TREE STRUCTURE

For a trajectory, we take the task description as the root node and formalize it into a branch, where
each step’s state, action, and related information form a node. For all trajectories of a task, they can
be seen as different branches originating from the same root node.

Specifically, a TreeNode N in a Reasoning Tree is defined as follows:

State (st): Represents the accumulated historical context from the initiation of the process up to the
current time step t, encapsulating all preceding reasoning paths and actions. Formally, the state at
time t is given by

st = {u, a1, o1, . . . , at−1, ot−1},
including the initial task description u and interactive history at step t.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Action (at): denotes the specific operation performed at the current node, which affects the subsequent
state. The action is selected by the policy language agent π and is conditioned on the current state
and reasoning path.

Reward (rt): the immediate feedback received from environment after performing action at. In
most language agent tasks, the immediate rewards from environments are set to zero or very sparse.
For example, WebShop (Yao et al., 2022) only provides a final reward from 0 to 1 at the end of
trajectories.

Children (C): is represented by a list containing nodes explored at the next step.

Q-value (q): represents the expected total future reward achievable starting from the current state st,
taking action at. The Q-values are updated once a reasoning tree is constructed. We will introduce
how we extract Q-values in the following section.

4.2.2 TREE CONSTRUCTION

With each step in a trajectory formalized as a TreeNode, the entire trajectory is a branch within a
reasoning tree. To explicitly construct a reasoning tree that captures potential explorationgenerations
from the root node (i.e., the initial task), exploring new trajectories can be viewed as expanding new
branches from the existing TreeNodes. For any non-leaf tree node, effective explorationgeneration
can be achieved by: 1) directly exploring and adding new child nodes that differ from the existing
ones. 2) For each branch that reaches a leaf node, we assess its quality based on the final reward.
If the branch yields a zero reward, we stop explorationgeneration on that branch’s nodes, thereby
reducing ineffective explorationgeneration.

Tree Pruning. In practice, we have found that the average depths of tree searching for agent tasks
are large. Building a reasoning tree and expanding every potential tree nodes may lead to heavy
cost to the trajectory explorationgeneration. To address this, we propose several strategies to reduce
the computational burden during tree construction. We employ pre-pruning techniques to lower the
explorationgeneration costs when constructing a reasoning tree for each task. First, we limit the
expansion of tree nodes to the early stages of a trajectory (e.g., the first three to five steps, depending
on the environment’s complexity, with details provided in Appendix A.1).

Next, when a branch leads to a zero-outcome reward at its leaf node, we propagate a Stop
expansion signal from the leaf node back to the earliest unexpanded intermediate node on
that branch. This helps prioritize the explorationgeneration of optimal trajectories given a lim-
ited explorationgeneration budget. This construction process is illustrated in Figure 2. With a set of
reasoning trees, we aim to gather effective step-wise signals for training an effective process reward
model. Since most language agent tasks only return an outcome reward at the end of the trajectory,
which is stored at the leaf nodes of the reasoning tree, we need to develop methods to leverage these
outcome rewards to generate effective intermediate signals.

Extracting Q-values. After constructing a reasoning tree, with the final outcome rewards stored in
leaf node rewards, we estimate the Q-values for each intermediate nodes leveraging

Q(st, at) = rt + γ max
at+1∼Ct

[Q(st+1, at+1)], (4)

where γ is the discount factor, st+1 is the new state after action at, Ct is the children set containing
nodes explored at the next step, and the expectation is over actions at+1 drawn from the policy π.
We provide the pseudocode of tree construction and Q-value estimation on the reasoning trees in
Appendix A.4.

4.3 QNET TRAINING

Inspired by the value function representing the expected long-term value in Q-learning (Watkins &
Dayan, 1992), we extract Q-values for each nodes on reasoning trees using Equation 4. For each node
N = (s, a, q, ..) in the collected reasoning trees, we can extract a supervised dataset DQ = {(s, a, q)}
to train Q-network (QNet). The model architecture of QNet is introduced in Appendix A.2

Training Objective: Given each reasoning tree with n nodes: Tree = (N1, N2, . . . , Nn), we train
the QNet Qϕ by minimizing the Mean Squared Error (MSE) loss between the predicted Q-values q̂t

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: Performance overview of all methods. The table is divided into three sections: the first
presents the results of closed-source agents, the second includes training-based methods, and the
third shows inference algorithm results. Our results are averaged rewards on the test set with 200
instructions. In each section, the best result is highlighted in bold, while the second-best result is
underlined.

Method WebShop
GPT-4 63.2
GPT-3.5-Turbo 62.4
Reflexion (Shinn et al., 2023)1 64.2
LATS (Zhou et al., 2024)1 75.9

Llama-2-7B-Chat 17.9
Llama-2-7B-Chat + SFT 63.1
Llama-2-7B-Chat + RFT 63.6
Llama-2-7B-Chat+Q⋆Agent-ST 66.4
Llama-2-7B-Chat + PPO 64.2
Llama-2-7B-Chat + ETO 67.4
Llama-2-7B-Chat + Best-of-N 65.3
Llama-2-7B-Chat + Best-of-N-aug 68.4
Llama-2-7B-Chat + Q⋆Agent-I 65.5
Llama-2-7B-Chat + Q⋆Agent-I-aug 72.6

and the provided Q-value q at each time step:

L(ϕ) = 1

n

n∑
t=1

(q̂t − qt)
2
. (5)

By minimizing this loss, we encourage the QNet to produce consistent Q-value estimations across the
sequence that align with the target Q-value q. This training objective emphasizes accurate Q-value
predictions at each token, reinforcing the model’s ability to assess the long-term value of actions
throughout the trajectory.

4.4 Q-GUIDED EXPLORATIONGENERATION

The effectiveness of a good process reward model can be represented by whether it can lead to
better agent self-improvement. Therefore, we conduct Q-guided explorationgeneration for self-
improvement to evaluate the effectiveness of Q⋆Agent. Q-guided explorationgeneration enables
agents to generate each step under the guidance of QNet. At each step, agents sample several actions
and the one with the highest Q-value is executed by the agent. We provide a more detailed algorithm
of Q-guided explorationgeneration in Appendix A.3.

Perturbation augmented explorationgeneration. To augment the samples actions at each step, we
also introduce augmenting action diversity with perturbation during this stage, which is realized by
prompting LLM to paraphrase the task description. This utilization of perturbation enables us to
inject more variability into the prompts that guide action selection, substantially enriching the range
and relevance of possible actions. Such enhanced prompts help prepare the model to handle more
diverse and unforeseen situations effectively. We provide our implementation details and examples in
Appendix A.5.

In this section, we introduce Q⋆Agent, a strategy that leverages Q-value estimation for process reward
modeling, providing step-wise guidance for language agents. Additionally, we propose a Q-guided
explorationgeneration strategy that enhances the agent’s decision-making by using Q-values to drive
more effective explorationgeneration during inference.

5 EXPERIMENT

1These results are adopted from Zhou et al. (2024).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

In this section, we aim to evaluate the effectiveness of Q⋆Agent for solving complex agent tasks in the
following aspects: 1) Whether Q⋆Agent can aid better self-improvement by providing inference-time
guidance or by selecting better data for self-training; 2) Qualitative analysis on the Q-guided agent
generation to see whether Q⋆Agent can provide effective guidance for each step; 3) Ablation study
on different variants of process rewards extracted from reasoning trees.

5.1 SETUP

Dataset. We assess the ability of Q⋆Agent on WebShop (Yao et al., 2022), a realistic web navigation
benchmark, where an agent is required to explore various types of web pages, perform different
actions, and ultimately locate, customize, and purchase an item given a text instruction detailing
a product. Following the setup of ETO (Song et al., 2024), we use a training data consisting of
1938 trajectories for behavior cloning and 200 instructions for testing. The evaluation metric is the
reward averaged on 200 instructions in the test set. During sampling process, the environment will
give termination signal after certain action “Click” or achieve the maximum steps set in advance.
Specifically, we set the maximum as 5 for WebShop during self-generation and Q-guided generation.

Backbone. In our work, we mainly use Llama-2-7B-Chat as base policy model and QNet backbone.
The detailed hyper-parameters for training and model architectures can be found in Appendix A.1.

To fully assess the effectiveness of Q⋆Agent, we develop several variants for Q⋆Agent, denoted as
Q⋆Agent-I, Q⋆Agent-aug and Q⋆Agent-ST respectively. 1) Q⋆Agent-I: Q⋆Agent can provide direct
step-wise guidance for action generation during inference. We can refer to this variant of Q⋆Agent
as Q⋆Agent-I. 2) Q⋆Agent-I-aug: Based on Q⋆Agent-I, we use GPT-3.5-Turbo to do perturbation
introduced in Section 4.4 to augment task descriptions during Q-guided explorationgeneration, which
is denoted as Q⋆Agent-I-aug. 3) Q⋆Agent-ST: This Q⋆Agent leverages QNet to select data for
self-training by combining SFT data with self-generated data where multiple actions are sampled at
each step and the one with the highest Q-value is selected.

Baselines. 1) SFT (Chen et al., 2023) is the base agent after supervised fine-tuning on the expert
data. 2) RFT (Rejection sampling Fine-Tuning) (Yuan et al., 2023) is a self-improvement baseline
which is trained on the merged data consisting of successful trajectories sampled and expert data.
3) ETO (Song et al., 2024) is a self-improvement baseline which updates policy via constructing
trajectory-level preference pairs and conducting DPO. 4) PPO (Proximal Policy Optimization) (Schul-
man et al., 2017): a reinforcement learning baseline which directly trains the base agents to optimize
the final rewards. 5) Best-of-N samples N trajectories for each task and selects the one with highest
outcome reward. For fairer comparison among inference algorithms, we also develop a variant
of Best-of-N which also adopts perturbation introduced in Section 4.4 denoted as Best-of-N-aug
for a fair comparison with Q⋆Agent-I-aug. N is set to 6 in Table 1 and Table 2. N is set to 10 in
Table 1 and 6 in Table 2. All inference algorithms in the tables are under the same search budget. 6)
Closed-source agents including GPT-3.5-Turbo and GPT-4 with ReAct prompting (Yao et al., 2023),
and other methods depending on the emergent properties of self-reflection and planning from large
proprietary models, such as Reflexion (Shinn et al., 2023) and LATS (Zhou et al., 2024).

5.2 SELF-IMPROVEMENT PERFORMANCE

In this section, we compare the performance of our Q⋆Agent for self-improvement with all the
baselines. Results are summarized in Table 1. We evaluate all algorithms using one-shot evaluation.
From Table 1, we can observe that Q⋆Agent-I-aug achieves the highest score among all the training-
based and inference-based algorithms, with comparable performance to the best agent depending on
proprietary models.

5.2.1 SELF-TRAINING

Table 2 Table 1 is organized into three sections: the first section presents the results of closed-source
agents, the second covers training-based approaches, including self-training methods (RFT and
Q⋆Agent-ST), reinforcement learning (RL), and DPO-based optimization, and the third section
highlights inference algorithms. Q⋆Agent-ST achieves the second-best result among the training-
based methods and the best result among the self-training methods.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

150000 200000 250000 300000 350000 400000
Completion Tokens

64

66

68

70

72
P

er
fo

rm
an

ce

63.9

64.9
65.2 65.2

66.4

67.9 67.7
68.4

65.1 65.3 65.5 65.5

64.6

70.3
70.9

72.6
Best-of-N
Best-of-N-aug
Q*Agent-I
Q*Agent-I-aug

(a) Comparison on inference performance.

Averaged reward Q value Reward
62

63

64

65

66

67

68

65.4

66.4

64.7

(b) Comparison of different process rewards.

Figure 3: Left: Inference algorithms comparison with varying completion tokens. Right: Process
rewards comparison. Q value is adopted in Q⋆Agent. The evaluation metrics in two figures are
both averaged rewards on test instructions.

Table 2: PerformanceAverage reward comparison on WebShop with 1000 annotated trajectories for
behavior cloning. The best result is bolded, and the second-best result is underlined.

Method WebShop WebShop-1000
Llama-2-7B-Chat + SFT 63.1 21.7
Llama-2-7B-Chat + RFT 63.6 61.4
Llama-2-7B-Chat + ETO 67.4 66.7

Llama-2-7B-Chat + Best-of-N 64.9 24.5
Llama-2-7B-Chat + Best-of-N-aug 67.9 47.1
Llama-2-7B-Chat + Q⋆Agent-I 65.3 68.2
Llama-2-7B-Chat + Q⋆Agent-I-aug 70.3 67.3

Comparing Q⋆Agent-ST and RFT, we find that Q⋆Agent-ST demonstrates better performance. The
key difference between the two methods lies in how the self-training data is selected: Q⋆Agent-
ST uses Q-guided explorationgeneration to choose data in a step-wise manner, while RFT selects
successful trajectories based on the environment’s final outcome reward. Therefore, the improved per-
formance of Q⋆Agent-ST may be led by better data selection through Q-guided explorationgeneration.
Additionally, a concurrent work by Zhai et al. (2024) also conducted experiments on WebShop fol-
lowing a similar ETO setup and SFT dataset. They used Llama-3.1-8b-instruct as their base agent
and achieved a final reward of 60.

5.2.2 INFERENCE-TIME PERFORMANCE

We compare all the inference baselines under different search budgets. As shown in the Figure 3a,
increasing the number of completed / generated tokens (the number of explored trajectories) will
improve the performance in all inference methods. We can observe that Q⋆Agent-I-aug achieves the
best performance under almost all the search budgets. Another notable observation is that compared
with Best-of-N-aug under 400k tokens, Q⋆Agent-I-aug outperforms the highest score of Best-of-
N-aug(68.4) under 400k tokens with only about half of search budgets(70.3) under 240k tokens.
Also, as the completed tokens approach 360K, other approaches begin to flatten, while Q⋆Agent still
improves from 360K tokens to 400K tokens. This indicates that our approach is a more effective way
to scale up the compute to inference-time self-improvement.

5.3 FEWER ANNOTATIONS

In many real-world applications, collecting large amounts of expert-annotated data is both time-
consuming and costly. To evaluate the effectiveness of our approach under such constraints, we

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Task 𝒖
I need a long clip-in hair extension which is natural looking, and price lower than 30.00 dollars

𝒂𝟏: Thought: I need to find a long clip-in hair extension that looks
natural and is under 30. I'll start by searching for "long clip-in hair
extension natural looking" to see what options are available.
Action: search[long clip-in hair extension natural looking]

𝒂𝟐: Thought: I need to find a long clip-in hair extension that looks
natural and is under 30. I'll start by searching for "long clip in hair
extension" to see what options are available.
Action: search[long clip in hair extension]

𝒂𝟑: Thought: I need to find a long clip-in hair extension that looks
natural and is under $30. I'll start by searching for "long clip in
hair extension" to see what options are available.
Action: search[long clip in hair extension]

𝒒𝟏: 0.76

𝒒𝟐: 0.69

𝒒𝟑: 0.69

Figure 4: A case study on WebShop.

designed this setup with fewer annotations to test its robustness in this section. We extract 1000 trajec-
tories as a subset from the original 1938 trajectories. Under this setup, all baselines can only conduct
behavior cloning with access to the SFT dataset of 1k trajectories. After that, baselines like RFT,
ETO and Q⋆Agent which involve explorationgeneration can explore on 1938 tasks. The performance
comparison is listed in Table 2. We can observe that Q*Agent-I-aug outperforms other methods on
both the full WebShop dataset and the WebShop-1000 subset. This highlights the robustness of our
method, especially in scenarios with scarce expert data. While other methods like RFT and SFT
show a significant drop in performance, Q*Agent-I-aug remains effective, proving the advantage of
Q-guided explorationgeneration for data selection even in annotation-limited environments.

5.4 QUALITATIVE ANALYSIS ON GENERATED RESPONSES

In addition to quantitative experiments, we also aim to assess whether the Q-value can correctly
evaluate the quality of intermediate actions. Therefore, we visualized a case in the WebShop
environment, where the first step of the trajectory typically involves the agent searching relevant
keywords into a webpage based on the instructions. As shown in Figure 4, the original task specifies
three attributes for the item, each highlighted in a different color. Below, the agent samples three
actions. The last two actions capture only one attribute during the search, while a1 captures two
attributes. As expected, the Q-value for a1 should be higher. QNet scores these three actions, and
indeed, action 1 receives the highest Q-value, aligning with our direct observations.

5.5 ABLATION STUDY OF PROCESS REWARD MODELING

Since process reward modeling is an important module in our framework, we ablate on how different
choices of process reward can affect the performance. We mainly experiment with three approaches
of constructing process rewards for each intermediate nodes on the reasoning trees: Q value(ours)
is to estimate Q-value for each state-action pair (i.e. each tree node except for root node) using
Equation 4; Averaged reward computes the averaged children rewards; Reward directly treats
the final outcome reward as the process reward for each step. We train three different process reward
models guiding trajectory generation for self-training. Self-training results are in Figure 3b. From
Figure 3b, we can observe that Q value utilized by our Q⋆Agent yields the best performance, while
the one using Averaged reward is slightly better than the one directly using Reward, indicating
the effectiveness of using Q value to model process reward.

6 CONCLUSION

In this paper, we introduce Q⋆Agent, a novel approach that enhances the self-improvement capabilities
of open-source language models by integrating Q value-based process guidance. By modeling the Q
value at each intermediate step during planning, our method offers step-wise feedback that surpasses
the limitations of outcome-based reward models, particularly in complex, long-horizon tasks.

Through extensive experiments, we have demonstrated that Q⋆Agent significantly improves the
model’s ability to generate high-quality trajectories, ultimately leading to better performance in both
self-improvement and inference tasks. Moreover, our method demonstrates strong performance even

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

in scenarios with limited annotated data, highlighting the efficiency and robustness of our Q⋆Agent.
This work paves the way for more efficient and scalable self-improvement techniques in language
models, enabling them to tackle complex tasks with reduced reliance on human annotations.

REFERENCES

Yasemin Altun, David McAllester, and Mikhail Belkin. Maximum margin semi-supervised learning
for structured variables. Advances in neural information processing systems, 18, 2005.

Richard E Bellman and Stuart E Dreyfus. Applied dynamic programming, volume 2050. Princeton
university press, 2015.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao.
Fireact: Toward language agent fine-tuning. arXiv preprint arXiv:2310.05915, 2023.

Zhaorun Chen, Zhuokai Zhao, Zhihong Zhu, Ruiqi Zhang, Xiang Li, Bhiksha Raj, and Huaxiu Yao.
AutoPRM: Automating procedural supervision for multi-step reasoning via controllable question
decomposition. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 1346–1362, Mexico City, Mexico,
June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.73. URL
https://aclanthology.org/2024.naacl-long.73.

Zi-Yi Dou, Cheng-Fu Yang, Xueqing Wu, Kai-Wei Chang, and Nanyun Peng. Reflection-reinforced
self-training for language agents. arXiv preprint arXiv:2406.01495, 2024.

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen, Weinan Zhang, and Jun Wang. Alphazero-like tree-
search can guide large language model decoding and training. arXiv preprint arXiv:2309.17179,
2023.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. Reinforced self-training (rest) for language modeling,
2023. URL https://arxiv.org/abs/2308.08998.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-star: Training verifiers for self-taught reasoners. arXiv preprint arXiv:2402.06457,
2024.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably
efficient? In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/
2018/file/d3b1fb02964aa64e257f9f26a31f72cf-Paper.pdf.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. arXiv
preprint arXiv:2408.07199, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. Rl on
incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold. arXiv preprint
arXiv:2406.14532, 2024.

11

https://aclanthology.org/2024.naacl-long.73
https://arxiv.org/abs/2308.08998
https://proceedings.neurips.cc/paper_files/paper/2018/file/d3b1fb02964aa64e257f9f26a31f72cf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d3b1fb02964aa64e257f9f26a31f72cf-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt:
Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Re-
flexion: language agents with verbal reinforcement learning. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=vAElhFcKW6.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Cote, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. {ALFW}orld: Aligning text and embodied environments for interactive learning. In
International Conference on Learning Representations, 2021.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Peter J Liu, James
Harrison, Jaehoon Lee, Kelvin Xu, Aaron Parisi, et al. Beyond human data: Scaling self-training
for problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu, Han Qian, Mingbo Song, Hailiang Huang,
Cheng Li, Ke Wang, Rong Yao, et al. Restgpt: Connecting large language models with real-world
restful apis. arXiv preprint arXiv:2306.06624, 2023.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
Exploration-based trajectory optimization of LLM agents. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 7584–7600, Bangkok, Thailand, Au-
gust 2024. Association for Computational Linguistics. URL https://aclanthology.org/
2024.acl-long.409.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3:
9–44, 1988.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback, 2022.

Chaojie Wang, Yanchen Deng, Zhiyi Lv, Shuicheng Yan, and An Bo. Q*: Improving multi-step
reasoning for llms with deliberative planning. arXiv preprint arXiv:2406.14283, 2024a.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang
Sui. Math-shepherd: A label-free step-by-step verifier for llms in mathematical reasoning. arXiv
preprint arXiv:2312.08935, 2023.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and Prithviraj Ammanabrolu. ScienceWorld: Is
your agent smarter than a 5th grader? In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.),
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
11279–11298, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.emnlp-main.775. URL https://aclanthology.org/
2022.emnlp-main.775.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level scien-
tific problem-solving abilities of large language models. In Forty-first International Conference on
Machine Learning, 2024b. URL https://openreview.net/forum?id=bq1JEgioLr.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable real-
world web interaction with grounded language agents. Advances in Neural Information Processing
Systems, 35:20744–20757, 2022.

12

https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://aclanthology.org/2024.acl-long.409
https://aclanthology.org/2024.acl-long.409
https://aclanthology.org/2022.emnlp-main.775
https://aclanthology.org/2022.emnlp-main.775
https://openreview.net/forum?id=bq1JEgioLr

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khyathi Chandu, Kai-Wei Chang, Yejin Choi,
and Bill Yuchen Lin. Agent lumos: Unified and modular training for open-source language
agents. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
12380–12403, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.acl-long.670.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models. arXiv preprint arXiv:2308.01825, 2023.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STar: Bootstrapping reasoning with
reasoning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022.

Yuanzhao Zhai, Tingkai Yang, Kele Xu, Feng Dawei, Cheng Yang, Bo Ding, and Huaimin
Wang. Enhancing decision-making for llm agents via step-level q-value models. arXiv preprint
arXiv:2409.09345, 2024.

Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm self-training
via process reward guided tree search. arXiv preprint arXiv:2406.03816, 2024.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning, acting, and planning in language models. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=njwv9BsGHF.

13

https://aclanthology.org/2024.acl-long.670
https://openreview.net/forum?id=njwv9BsGHF
https://openreview.net/forum?id=njwv9BsGHF

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A APPENDIX

A.1 EXPERIMENTAL DETAILS

A.1.1 DATASETS

We follow the setup of ETO (Song et al., 2024) to use the classical WebShop for agent training and
evaluation. WebShop is an online shopping environment. The available action types for agents
include search[keywords] and click[value]. The agent is instructed to complete the task with
ReActYao et al. (2023)-style response. The instruction is specified in Figure 5

A.1.2 HYPER-PARAMETERS

We summarize the hyper-parameters used across both all stages of Q⋆Agent in this section. The
hyper-parameters leveraged in behavior cloning and self-training is in Table 3. Training QNet shares
all the same hyperparameters, except that the number of training epochs is set to 2.

A.2 QNET

Model Architecture: Our QNet is designed by sharing the backbone of the Large Language Model
(LLM) and appending a value head to predict Q-values. Specifically, we utilize a pre-trained LLM,
denoted as LLMθ, which serves as the foundational model for encoding input sequences. The value
head is a Multi-Layer Perceptron (MLP) that takes the hidden states from the LLM and outputs scalar
Q-value predictions.

Formally, given an input sequence of tokens x = (x1, x2, . . . , xn), the LLM produces hidden states
h = (h1, h2, . . . , hn):

h = LLMθ(x), (6)

where ht ∈ Rd represents the hidden state at time step t, and d is the hidden size of the LLM.

The value head MLPϕ processes each hidden state ht to predict the corresponding Q-value q̂t:

q̂t = MLPϕ(ht), (7)

where q̂t ∈ R is the predicted Q-value at time step t, and ϕ denotes the parameters of the MLP.

The MLP consists of multiple layers with ReLU activations, culminating in a linear layer that
outputs a scalar Q-value. This design allows the model to capture complex patterns in the hidden
representations and map them to accurate Q-value estimates.

Training Objective: Given an explored trajectory x = (x1, x2, . . . , xn) with an associated target
Q-value q, we train the QNet by minimizing the Mean Squared Error (MSE) loss between the
predicted Q-values q̂t and the provided Q-value q at each time step:

L(θ, ϕ) = 1

n

n∑
t=1

(q̂t − q)
2
. (8)

By minimizing this loss, we encourage the QNet to produce consistent Q-value estimations across the
sequence that align with the target Q-value q. This training objective emphasizes accurate Q-value
predictions at each token, reinforcing the model’s ability to assess the long-term value of actions
throughout the trajectory.

Implementation Details: In practice, we implement the value head as an MLP with two hidden
layers of size 1024 and ReLU activation functions:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

MLPϕ(ht) = Linear3(ReLU(Linear2(ReLU(Linear1(ht))))), (9)

where Linear1 : Rd → R1024, (10)

Linear2 : R1024 → R1024, (11)

Linear3 : R1024 → R. (12)

The entire model, including the LLM and the value head, operates in bfloat16 precision to optimize
memory usage without sacrificing performance. The LLM backbone remains frozen or fine-tuned
depending on the specific experimental setup, allowing us to leverage pre-trained language represen-
tations while focusing on learning accurate Q-value predictions through the value head.

By integrating the value head with the LLM, our QNet effectively combines language understanding
with reinforcement learning principles, enabling the agent to make informed decisions based on both
linguistic context and estimated future rewards.

A.3 Q-GUIDED EXPLORATIONGENERATION

In this section, we present the pseudocode of Q-guided explorationgeneration in Algorithm 2, which
is a critical component of our framework.

A.4 PSEUDOCODE OF REASONING TREE CONSTRUCTION AND Q-VALUE DISTILLATION.

In this section, we provide the pseudocode of constructing a reasoning tree in stage 2 in Algorithm 3
and and how we distill the Q-value from a reasoning tree in Algorithm 4.

A.5 PERTURBATION AUGMENTED GENERATION

Algorithm 2 Q-guided Exploration

1: Input: A LLM agent πθ, a given task description u, an action set At containing M candidates at
step t, a trained QNet Qϕ, sampled trajectory number N , max trajectory length L

2: traj_candidates = []
3: for i = 1 to N do
4: Initialize state si ← [u]
5: for t = 1 to L do
6: Collect a set of action candidates At ←Sample a ∼ πθ(a | si) for M times
7: at ← argmaxa∼At

Qϕ(si, a) ▷ Select the best action with max Q-value
8: Take action at, and receive new observation ot from environment
9: si ← si + [at, ot] ▷ Update state with executed action and new observation

10: if si is the final state then
11: break ▷ Exit loop if stop condition is met
12: traj_candidates.append(si)
13: Select the best trajectory s with best final reward s.reward from traj_candidates

We use GPT-3.5-turbo to perturb the task descriptions using the prompt " Paraphrase the text: task
description ". We also provide an illustrative example on a WebShop task in Figure 6.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Algorithm 3 Constructing a Reasoning Tree

1: Input: A LLM agent πθ, a given task description u, a trajectory τ0 from the training set Dexpert

on task u, max exploration depth D, max exploration width W
2: Initialize a root node U with state s← u, depth t← 0, reward r ← 0, action← null, children

set C ← {}
3: Initialize the reasoning tree T with U
4: The expansion node queue E ← [u]
5: while E is not empty do
6: Get a node N ← E.pop with state N.s, action N.a, reward N.r, children set C at step N.t
7: if the number of children in N.C < W and N.t <= D then
8: Sample a new trajectory τ based on state N.s
9: Get a new branch b constructed on τ and merge b in node N.C

10: if τ achieves a non-zero final reward then
11: Push all the nodes on b with N.t <= depth t <= D into E

12: Construct a branch b with τ0 and merge in U.C
13: Push all the nodes on b with depth t and t <= D into E
14: Repeat Function in Line 5-12
15: return the reason tree T

Algorithm 4 Q-value Estimation

1: Input: A reasoning tree T with a root node U , discount factor γ
2: procedure UPDATE_Q_VALUES(N)
3: if N.C = ∅ then ▷ Check if N is a leaf node
4: return ▷ Leaf nodes do not update
5: for node Nchild in N.C do
6: UPDATE_Q_VALUES(Nchild) ▷ Recursively update child nodes first
7: N.q = N.r + γmaxNchild∼N.C(Nchild.q) ▷ Update Q-value after all children are updated
8: UPDATE_Q_VALUES(U) ▷ Start the update process from the root
9: Qmin = minN∈T (N.q)

10: Qmax = maxN∈T (N.q)
11: for node N in T do
12: N.q = N.q−Qmin

Qmax−Qmin
▷ Apply min-max normalization

return the reasoning tree T with estimated Q-value of each node

Table 3: Training hyperparameters used in Behavior Cloning and Self-Training.

Hyperparameter Value
Batch size 64

Number of training epochs 3
Weight decay 0.0
Warmup ratio 0.03
Learning rate 1e-5

LR scheduler type Cosine
Logging steps 5

Model max length 4096
Discount factor γ 0.9

Maximum expansion depth D on WebShop 3
Action candidate set size M at each step in Q⋆Agent-ST 3
Action candidate set size M at each step in Q⋆Agent-I 2

Action candidate set size M at each step in Q⋆Agent-I-aug 2
Sampled trajectory number N for each task in Q⋆Agent-ST 1

Exploration temperature 0.7

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

You are web shopping.
I will give you instructions about what to do.
You have to follow the instructions.
Every round I will give you an observation and a
list of available actions, you have to respond an
action based on the state and instruction.
You can use search action if search is available.
You can click one of the buttons in clickables.
An action should be of the following structure:
search[keywords]
click[value]
If the action is not valid, perform nothing.
Keywords in search are up to you, but the value
in click must be a value in the list of available
actions.
Remember that your keywords in search should
be carefully designed.
Your response should use the following format:
Thought: I think ...
Action: click[something]

WebShop Instruction

Figure 5: The instruction prompt provided to language agent on WebShop.

Paraphrase the task: I need a long lasting 6.76 fl
oz bottle of l'eau d'issey, and price lower than
100.00 dollars

I'm looking for a 6.76 fl oz bottle of L'eau D'Issey
that lasts a long time and costs less than $100.

I need a durable 6.76 ounce bottle of L'eau
D'Issey, with a price under $100.

I am searching for a long-lasting 6.76 fluid ounce
L'eau D'Issey perfume for less than 100 dollars.

Perturbation

Figure 6: An illustrative example on task perturbation.

17

	Introduction
	Related Work
	Large Language Model Agent
	Self-improvement of LLM agents
	Process Reward Modeling for LLM

	Preliminaries
	Q-learning: Long-term Value in Decision Making
	Self-improvement

	Methodology
	Behavioral Cloning
	Constructing a Reasoning Tree
	Tree Structure
	Tree Construction

	QNet Training
	Q-guided explorationgeneration

	Experiment
	Setup
	Self-improvement performance
	self-training
	Inference-time performance

	Fewer Annotations
	Qualitative analysis on generated responses
	Ablation study of Process Reward Modeling

	Conclusion
	Appendix
	Experimental details
	Datasets
	Hyper-parameters

	QNet
	Q-guided explorationgeneration
	Pseudocode of reasoning tree construction and Q-value distillation.
	Perturbation augmented generation

