
A*+BFHS: A Hybrid Heuristic Search Algorithm

Zhaoxing Bu, Richard E. Korf
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095
{zbu, korf}@cs.ucla.edu

Abstract

We present a new algorithm A*+BFHS for solving problems
where A* and IDA* fail due to memory limitations and/or
the existence of many short cycles. A*+BFHS is based on A*
and breadth-first heuristic search (BFHS). A*+BFHS com-
bines advantages from both algorithms, namely A*’s node
ordering, BFHS’s memory savings, and both algorithms’ du-
plicate detection. On easy problems, A*+BFHS behaves the
same as A*. On hard problems, it is slower than A* but saves
a large amount of memory. Compared to BFIDA*, A*+BFHS
reduces the search time and/or memory requirement by sev-
eral times on a variety of planning domains.

Introduction and Overview
A* (Hart, Nilsson, and Raphael 1968) is a classic heuristic
search algorithm that is used by many state-of-the-art op-
timal track planners (Katz et al. 2018; Franco et al. 2017,
2018; Martinez et al. 2018). One advantage of A* is du-
plicate detection. A* uses a Closed list and an Open list to
prune duplicate nodes. A state is a unique configuration of
the problem while a node is a data structure that represents a
state reached by a particular path. Duplicate nodes represent
the same state arrived at via different paths.

The second advantage of A* is node ordering. A* always
picks an Open node whose f -value is minimum among all
Open nodes to expand next, which guarantees an optimal
solution returned by A* when using an admissible heuris-
tic. When using a consistent heuristic, A* expands all nodes
whose f -value is less than the optimal solution cost (C∗).
However, tie-breaking among nodes of equal f -value sig-
nificantly affects the set of expanded nodes whose f -value
equals C∗. It is common practice to choose an Open node
whose h-value is minimum among all Open nodes with the
same f -value, as this strategy usually leads to fewer nodes
expanded. A survey of tie-breaking strategies in A* can be
found in (Asai and Fukunaga 2016).

A*’s main drawback is its exponential space requirement
as it stores in memory all nodes generated during the search.
For example, A* can fill up 8 GB of memory in a few min-
utes on common heuristic search and planning domains. To
solve hard problems where A* fails due to memory limita-
tions, researchers have proposed various algorithms, usually
by forgoing A*’s duplicate detection or node ordering. For
example, Iterative-Deepening-A* (IDA*, Korf 1985) only

has a linear memory requirement, at the price of no duplicate
detection and a depth-first order within each search bound.
However, IDA* may generate too many duplicate nodes on
domains containing lots of short cycles, such as Towers of
Hanoi and many planning domains, limiting its application.

This paper introduces a new algorithm for solving hard
problems with many short cycles, where IDA* is not effec-
tive. First, we review previously developed algorithms. Sec-
ond, we present our algorithm A*+BFHS, which is based on
A* and Breadth-First Heuristic Search (Zhou and Hansen
2004). Third, we present experimental results on 32 hard in-
stances from 18 International Planning Competition (IPC)
domains. On those problems, A*+BFHS is slower than
A* but requires significantly less memory. Compared to
BFIDA*, which is an algorithm that requires less memory
than A*, A*+BFHS reduces the search time and/or memory
requirement by several times, and sometimes by an order of
magnitude, on a variety of domains.

Previous Work
IDA* with a transposition table (IDA*+TT, Sen and Bagchi
1989; Reinefeld and Marsland 1994) uses a transposition ta-
ble to detect duplicate nodes. However, IDA*+TT is outper-
formed by other algorithms on both heuristic search (Bu and
Korf 2019) and planning domains (Zhou and Hansen 2004).

A*+IDA* (Bu and Korf 2019) combines A* and IDA*,
and is the state-of-the-art algorithm on the 24-Puzzle. It first
runs A* until memory is almost full, then runs IDA* below
each frontier node without duplicate detection. By sorting
the frontier nodes with the same f -value in increasing order
of h-values, A*+IDA* can significantly reduce the number
of nodes generated in its last iteration. Compared to IDA*,
we reported a reduction by a factor of 400 in the total num-
ber of nodes generated in the last iteration on all 50 24-
Puzzle test cases in (Korf and Felner 2002). Similar to IDA*,
A*+IDA* does not work well on domains with many short
cycles, however, as in many planning domains.

Frontier search (Korf et al. 2005) is a family of heuris-
tic search algorithms that work well on domains with many
short cycles. Rather than storing all nodes generated, it
stores only nodes that are at or near the search frontier, in-
cluding all Open nodes and only one or two layers of Closed
nodes. As a result, when a goal node is expanded, only the
optimal cost is known. To reconstruct the solution path, fron-



tier search keeps a middle layer of Closed nodes in mem-
ory. For example, we can save the Closed nodes at depth
h(start)/2 as the middle layer. Each node generated below
this middle layer has a pointer to its ancestor in the middle
layer. After discovering the optimal cost, a node in the mid-
dle layer that is on an optimal path is identified. Then the
same algorithm can be applied recursively to compute the
solution path from the start node to the middle node, and
from the middle node to the goal node. In general, however,
frontier search cannot prune all duplicates in directed graphs
(Korf et al. 2005; Zhou and Hansen 2004).

Divide-and-Conquer Frontier-A* (DCFA*, Korf and
Zhang 2000) is a best-first frontier search based on A*. To
reconstruct the solution path, DCFA* keeps a middle layer
of Closed nodes that are roughly halfway along the solution
path. DCFA* detects duplicates and maintains A*’s node or-
dering, but its memory savings compared to A* is limited on
domains where the Open list is larger than the Closed list.

Breadth-First Heuristic Search (BFHS, Zhou and Hansen
2004) is a frontier search algorithm for unit-cost domains.
BFHS also detects duplicates but uses a breadth-first node
ordering instead of A*’s best-first ordering. At first, assume
the optimal cost C∗ is known in advance. BFHS runs a
breadth-first search (BFS) from the start node and prunes
every generated node whose f -value exceeds C∗. To save
memory, BFHS only keeps a few layers of nodes in memory.
On undirected graphs, if we store the operators used to gen-
erate each node, and do not regenerate the parents of a node
via the inverses of those operators, frontier search only needs
to store two layers of nodes, the currently expanding layer
and their child nodes (Korf et al. 2005). On directed graphs,
one previous layer besides the above-mentioned two lay-
ers is usually stored to detect duplicates (Zhou and Hansen
2004). To reconstruct the solution path, Zhou and Hansen
(2004) recommend saving the layer at the 3/4 point of the
solution length as the middle layer instead of the layer at
the halfway point, which usually requires more memory. As
shown in (Zhou and Hansen 2004), on a domain where the
Open list of A* is larger than the Closed list, BFHS usually
ends up storing fewer nodes than DCFA*.

In general, C∗ is not known in advance. Breadth-First
Iterative-Deepening-A* (BFIDA*, Zhou and Hansen 2004)
overcomes this issue by running multiple iterations of
BFHS, each with a different f -bound, starting with the
heuristic value of the start node. Similar to IDA*, the last it-
eration of BFIDA* is often significantly larger than previous
iterations, so most search time is spent on the last iteration
on many domains.

Compared to A*, BFHS and BFIDA* save significant
memory but generate more nodes. The main drawback of
BFHS and BFIDA* is that their node ordering is almost the
worst among different node ordering schemes. BFHS and
BFIDA*’s breadth-first ordering means they have to expand
all nodes stored at one depth before expanding any nodes in
the next depth. As a result, they have to expand almost all
nodes whose f -value equals C∗, excepting only some nodes
at the same depth as the goal node, while A* may only ex-
pand a small fraction of such nodes due to its node ordering.

Forward Perimeter Search (FPS, Schütt, Döbbelin, and

6S

7A

7D

8H 8I

8E

8B 7C

8F 7G

8J 8K

Figure 1: An example of A*+BFHS’s search frontier. Num-
bers are f -values. Closed nodes are gray.

Reinefeld 2013) builds a perimeter around the start node via
BFS, then runs BFIDA* below each perimeter node. The au-
thors only test FPS on the 24-Puzzle and 17-Pancake prob-
lem, and did not report any running times.

A*+BFHS
Algorithm Description
We propose a hybrid algorithm we call A*+BFHS to solve
hard problems with many short cycles. A*+BFHS first runs
A* until a storage threshold is reached, then runs a series
of BFHS iterations on sets of frontier nodes, which are the
Open nodes at the end of the A* phase.

The BFHS phase can be viewed as a doubly nested loop.
Each iteration of the outer loop, which we define as an it-
eration of the BFHS phase, corresponds to a different cost
bound for BFHS. The first cost bound is set to the small-
est f -value among all frontier nodes. In each iteration of the
BFHS phase, we first partition the frontier nodes whose f -
value equals the cost bound into different sets according to
their depths. Then the inner loop makes one call to BFHS
on each set of frontier nodes, in decreasing order of their
depths. This is done by initializing the BFS queue of each
call to BFHS with all the nodes in the set. This inner loop
continues until a solution is found or all calls to BFHS with
the current bound fail to find a solution. After each call to
BFHS on a set of frontier nodes, we increase the f -value
of all nodes in the set to the minimum f -value of the nodes
generated but not expanded in the previous call to BFHS.

Figure 1 presents an example of the Open and Closed
nodes at the end of the A* phase. Node S is the start node.
All edge costs are 1 and the number in each node is its f -
value. Closed nodes are gray. The Open nodes B, E, F, H, I,
J, K are the frontier nodes for the BFHS phase. A*+BFHS
first makes a call to BFHS with a cost bound of 8 on all
frontier nodes at depth 3, namely nodes H, I, J, K. If no so-
lution is found, A*+BFHS updates the f -values of all these
nodes to the minimum f -value of the nodes generated but
not expanded in that call to BFHS. A*+BFHS then makes a
second call to BFHS with bound 8, starting with all frontier
nodes at depth 2, namely nodes E and F. If no solution is
found, A*+BFHS updates the f -values of these nodes, then
makes a third call to BFHS with bound 8, starting with the
frontier node B at depth 1. Suppose that no solution is found
with bound 8, the updated f -values for nodes E, F, H, I, J, K
are 9, and the updated f -value for node B is 10. A*+BFHS



then starts a new iteration of BFHS with a cost bound of 9,
making two calls to BFHS on nodes at depth 3 and 2 respec-
tively. If the solution is found in the first call to BFHS with
bound 9, BFHS will not be called again on nodes E and F.

A*+BFHS is complete and admissible when using an
admissible heuristic. A*+BFHS potentially makes calls to
BFHS on all frontier nodes. When an optimal solution exists,
one node on this optimal path will serve as one of the start
nodes for one of the calls to BFHS. Such a node is guaran-
teed to exist by A*’s completeness and admissibility. Then
when the cost bound for the calls to BFHS equals C∗, the
optimal solution will be found, guaranteed by BFHS’s com-
pleteness and admissibility.

A state can be regenerated in separate calls to BFHS in the
same iteration. To reduce such duplicates, we can decrease
the number of calls to BFHS in each iteration by making
each call to BFHS on a combined set of frontier nodes at
adjacent depths. For the example in Figure 1, we can make
one call to BFHS on the frontier nodes at depths 2 and 3
together instead of two separate calls to BFHS, by putting
the frontier nodes at depth 3 after the frontier nodes at depth
2 in the initial BFS queue.

In practice, we can specify a maximum number of calls
to BFHS per iteration. Then in each iteration, we divide the
number of depths of the frontier nodes by the number of
calls to BFHS to get the number of depths for each call to
BFHS. For example, if the depths of the frontier nodes range
from 7 to 12 and we are limited to three calls to BFHS per
iteration, each call to BFHS will start with frontier nodes at
two depths. We used this strategy in our experiments.

For each node generated in the BFHS phase, we check if it
was generated in the A* phase. If so, we immediately prune
the node if its current g-value in the BFHS phase is greater
than or equal to its stored g-value in the A* phase.

The primary purpose of the A* phase is to build a frontier
set, so that A*+BFHS can terminate early in its last iteration.
In the A* phase we have to reserve some memory for the
BFHS phase. In our experiments, we first generated pattern
databases or the merge-and-shrink heuristic, then allocated
1/10 of the remaining memory of 8 GB for the A* phase.

Comparisons to BFIDA* and FPS
A*+BFHS’s BFHS phase also uses the iterative deepening
concept of BFIDA*, but there are two key differences. First,
in each iteration, BFIDA* always makes one call to BFHS
on the start node, while we call BFHS multiple times, each
on a different set of frontier nodes. Second, in each iteration,
we order the frontier nodes based on their depth, and run
BFHS on the deepest frontier nodes first.

These differences lead to one drawback and two advan-
tages. The drawback is that A*+BFHS may generate more
nodes than BFIDA*, as the same state can be regenerated in
separate calls to BFHS in the same iteration.

The first advantage is that A*+BFHS may terminate early
in its last iteration. If A*+BFHS generates a goal node in
the last iteration below a relatively deep frontier node, no
frontier nodes above that depth will be expanded. Therefore,
A*+BFHS may generate only a small number of nodes in its
last iteration. In contrast, BFIDA* has to expand almost all

nodes whose f -value is less than or equal to C∗ in its last
iteration. As a result, A*+BFHS can be faster than BFIDA*.

The second advantage is that A*+BFHS’s memory us-
age, which is the maximum number of nodes stored during
the entire search, may be smaller than that of BFIDA* for
two reasons. First, the partition of frontier nodes and sepa-
rate calls to BFHS within the same iteration can reduce the
maximum number of nodes stored in the BFHS phase. Sec-
ond, BFIDA* stores the most nodes in its last iteration while
A*+BFHS may store only a small number of nodes in the
last iteration due to early termination. Thus, A*+BFHS may
store the most nodes in the penultimate iteration instead.

FPS looks similar to A*+BFHS, but there are several fun-
damental differences. First, FPS builds the perimeter using
a breadth-first approach while A*+BFHS builds the frontier
via a best-first approach. FPS can also dynamically extend
the perimeter but this approach does not always speed up the
search (Schütt, Döbbelin, and Reinefeld 2013). Second, in
each iteration of FPS’s BFIDA* phase, FPS makes one call
to BFHS on each perimeter node. In contrast, in A*+BFHS
each call to BFHS is on a set of frontier nodes. Third, FPS
sorts the perimeter nodes at the same f -value using a max-
tree-first or longest-path-first policy, while A*+BFHS sorts
the frontier nodes at the same f -value in decreasing order
of their depth. Fourth, FPS needs two separate searches for
solution reconstruction while A*+BFHS only needs one.

Solution Reconstruction
Each node generated in A*+BFHS’s BFHS phase has a
pointer to its ancestral frontier node. When a goal node is
generated, the solution path from the start node to the an-
cestral frontier node is stored in the A* phase and only one
more search is needed to reconstruct the solution path from
the ancestral frontier node to the goal node. This subproblem
is much easier than the original problem and we can use the
same heuristic function as for the original problem. There-
fore, we just use A* to solve this subproblem. In addition,
since we know the optimal cost of this subproblem, we can
prune any node whose f -value exceeds this cost.

In BFIDA*, we have to solve two subproblems to re-
cover the solution path from the start node to the middle
node and from the middle node to the goal node. Zhou and
Hansen (2004) called BFHS recursively to solve these two
subproblems. However, pattern database heuristics (PDB,
Culberson and Schaeffer 1998) only store heuristic values
to the goal state, and not between arbitrary pairs of states,
which complicates finding a path to a middle node. Simi-
lar to A*+BFHS, we use A* to solve the second subprob-
lem. For the first subproblem, we use A* to compute the
path from the start node to the middle node using the same
heuristic function as for the original problem, which mea-
sures the distance to the goal node, not the middle node. To
save memory, we prune any node whose g-value is greater
than or equal to the depth of the middle node, and any node
whose f -value exceeds the optimal cost of the original prob-
lem. Since a deeper middle layer leads to more nodes stored
in this approach, we saved the layer at the 1/4 point of the
solution length as the middle layer instead of the 3/4 point.
In this way, we do not need to build a new heuristic function



for the middle node. In our experiments, the search time for
solution reconstruction in BFIDA* is usually less than 1%
of the total search time.

Experimental Results and Analysis
We implemented BFIDA* and A*+BFHS in the planner Fast
Downward 20.06 (Helmert 2006), using the existing code
for node expansion and heuristic value lookups. A*+BFHS’s
A* phase reused the existing A* code. A* stores all nodes in
one hash map. We used the same hash map implementation
with the following difference. In each call to BFHS in both
BFIDA* and A*+BFHS, we saved three layers of nodes for
duplicate detection and we created one hash map for each
layer of nodes. We did this because storing all nodes in one
hash map in BFHS involves a lot of overhead, and is more
complicated. Schütt, Döbbelin, and Reinefeld (2013) did not
test FPS on planning domains and we do not know the op-
timal perimeter radius and sorting strategy for each domain,
so we did not implement FPS in Fast Downward.

We solved about 550 problem instances from 32 unit-
cost domains. We present the results of A*, BFIDA*, and
A*+BFHS on the 32 hardest instances. All remaining in-
stances were easily solved by A*. We tested two A*+BFHS
versions. A*+BFHS (∞) starts each call to BFHS on fron-
tier nodes at one depth. A*+BFHS (4) makes each call to
BFHS on frontier nodes at multiple depths with at most four
calls to BFHS in each iteration. All tests were run on a 3.33
GHz Intel Xeon X5680 CPU with 236 GB of RAM. We used
the landmark-cut heuristic (LM-cut, Helmert and Domshlak
2009) for the satellite domain, the merge-and-shrink heuris-
tic (M&S) with the recommended configuration (Sievers,
Wehrle, and Helmert 2014, 2016; Sievers 2018) for the tpp
and hiking14 domains, and the iPDB heuristic with the de-
fault configuration (Haslum et al. 2007; Sievers, Ortlieb, and
Helmert 2012) for all other domains.

We present the results in Tables 1, 2, and 3. Tables 1 and 2
contain the 26 hardest instances solved by A*. Table 3 con-
tains the remaining 6 instances where A* terminated early
without finding a solution due to the limitation of the hash
map size in Fast Downward 20.06. The instances in Tables
1 and 2 are sorted by the A* running times and the instances
in Table 3 are sorted by the BFIDA* running times.

All three tables have the same columns. The first column
gives the domain name, the instance ID, the optimal solution
cost C∗, and the heuristic function used. The second column
lists the different algorithms. We ran each algorithm until it
found an optimal cost and returned the optimal path. The
third column gives the maximum number of nodes stored by
each algorithm. For A*, this is the number of nodes stored at
the end of the search. For BFIDA*, this is the largest sum of
the number of nodes stored in all three layers of the search,
plus the nodes stored in the 1/4 layer for solution recon-
struction. For A*+BFHS, this is the largest number of nodes
stored in the BFHS phase plus the number of nodes stored
in the A* phase. An underline means the specific algorithm
needed more than 8 GB of memory to solve the problem.
The fourth column is the total number of nodes generated,
including the nodes generated during solution reconstruc-
tion. The fifth column is the number of nodes generated in all

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8
x = 1

A* peak stored # / A*+BFHS peak stored #

A
*

tim
e
/

A
*+

B
FH

S
tim

e

A*+BFHS (4) A*+BFHS (∞)

Figure 2: A* vs. A*+BFHS in time and memory.

but the last iteration. For A*, this is the number of nodes gen-
erated before expanding an Open node whose f -value is C∗.
For A*+BFHS, this number includes the nodes generated in
its A* phase. The sixth column is the number of nodes gener-
ated in the last iteration. For A*, this is the number of nodes
generated while expanding the Open nodes whose f -value
equals C∗. The last column is the running time in seconds,
including the time for solution reconstruction but excluding
the time spent on precomputing the heuristic function, which
is the same for all algorithms. For each instance, the smallest
maximum number of stored nodes and shortest running time
are indicated in boldface. For the A* data in Table 3, we re-
port the numbers of nodes and running times just before A*
terminated, with a > symbol to indicate such numbers.

We further compare the time and memory between A*
and A*+BFHS in Figure 2, and between BFIDA* and
A*+BFHS in Figure 3, where the x-axis is A*/BFIDA*’s
peak stored nodes over A*+BFHS’s and the y-axis is
A*/BFIDA*’s running time over A*+BFHS’s. Figure 2 con-
tains the 26 instances solved by A* and Figure 3 contains all
32 instances. The red circles and green triangles correspond
to A*+BFHS (4) and A*+BFHS (∞) respectively. The data
points above the y = 1 line or to the right of the x = 1
line represent instances where A*+BFHS outperformed the
comparison algorithm in terms of time or memory.

A*+BFHS vs. A*
A* was the fastest on all problem instances that it solved,
but also used the most memory. Among the 32 hardest prob-
lem instances we present, A* required more than 8 GB of
memory on 22 instances and could not find a solution on
6 of those after running out of the hash map used by Fast
Downward 20.06. On some of these instances, A* used 30
GB to 40 GB of memory before it terminated. This means
A* cannot solve these 22 instances under the current IPC
memory requirement, which is 8 GB. A*+BFHS required
several times, sometimes an order of magnitude, less mem-



0 2 4 6

0

5

10

15

y = 1

x = 1

BFIDA* peak stored # / A*+BFHS peak stored #

B
FI

D
A

*
tim

e
/

A
*+

B
FH

S
tim

e
A*+BFHS (4) A*+BFHS (∞)

Figure 3: BFIDA* vs. A*+BFHS in time and memory.

ory than A*. As a result, A*+BFHS only used more than 8
GB of memory on one instance. An interesting comparison
is the space and time trade-off. For example, on parking14,
A*+BFHS increased the running time by less than 100%
while saving more than an order of magnitude in memory.

A*+BFHS vs. BFIDA*
In summary, on easy problems that A*+BFHS can solve in
its A* phase, A*+BFHS behaves the same as A*, and is al-
ways faster than BFIDA*. We solved around 500 such prob-
lems, which are not included here due to space limitations.
On the 32 hardest problems we present, A*+BFHS is faster
than BFIDA* on 27 instances and at least twice as fast on 16
of those. Furthermore, A*+BFHS requires less memory than
BFIDA* on 25 of the 32 instances and saves more than half
the memory on 14 of those. In addition, these time and mem-
ory reductions exist on both the relatively easy and hard ones
of the 32 instances presented, demonstrating that A*+BFHS
is in general better than BFIDA* on very hard problems as
well as easy problems. In the following paragraphs, we com-
pare A*+BFHS with BFIDA* in four aspects: duplicate de-
tection, node ordering, memory, and running times.

The relative numbers of nodes generated in the previous
iterations reflect the power of duplicate detection. Compared
to BFIDA*, A*+BFHS (4) generated a similar number of
nodes in the previous iterations on most instances. Hiking14
2-3-6 is the only instance where A*+BFHS (4) generated
at least twice as many nodes in the previous iterations as
BFIDA*. However, A*+BFHS (∞) generated 2 to 7 times as
many nodes in the previous iterations as BFIDA* on 11 in-
stances. This contrast shows that, compared to BFIDA*, sig-
nificantly more duplicate nodes can be generated by making
each call to BFHS on frontier nodes at only one depth. How-
ever, most of those duplicate nodes can be avoided by mak-
ing each call to BFHS on frontier nodes at multiple depths.

A*+BFHS can generate fewer duplicate nodes than
BFIDA* due to fewer BFHS iterations and making each call

to BFHS on a set of frontier nodes. A*+BFHS reduced the
number of nodes in previous iterations by around 50% on
freecell 06 and snake18 17, and a factor of 4 on snake18 08.
To our surprise, we found that on snake18 08, the number
of nodes generated in the penultimate iteration of BFIDA*
was twice as many as the sum of the nodes generated in
A*+BFHS’s A* phase and the penultimate iteration of the
BFHS phase. This means a lot of duplicate nodes were gen-
erated in BFIDA*. Snake18 generates a directed graph, in
which case frontier search cannot detect all duplicate nodes
(Korf et al. 2005; Zhou and Hansen 2004).

Compared to BFIDA*, A*+BFHS reduced the number
of nodes in the last iteration significantly, and usually by
several orders of magnitude, on 28 of the 32 instances.
This large reduction proves that when ordering the frontier
nodes by deepest-first, A*+BFHS can terminate early in its
last iteration. On the three blocks instances and depot 11,
A*+BFHS did not terminate early in its last iteration because
the ancestral frontier node of the goal had a relatively low
g-value. In fact, A* generated the most nodes in its last iter-
ation on the three blocks instances, which shows that node
ordering is also difficult for A* on those instances. In con-
trast, A* generated very few nodes in its last iteration on
depot 11, suggesting that A*+BFHS may terminate early in
its last iteration given more memory for its A* phase.

A*+BFHS’s A* phase usually stored from 10 to 20 mil-
lion nodes, with the exception of the snake18 domain where
40 to 50 million nodes were stored. Comparing the maxi-
mum number of stored nodes, A*+BFHS (∞) required less
memory than BFIDA* on 25 instances and less than half the
memory on 14 of those. For A*+BFHS (4), these two num-
bers are 23 and 11 respectively. In contrast, termes18 05
is the only instance where the maximum number of stored
nodes of A*+BFHS was at least twice that of BFIDA*.

Comparing the two versions of A*+BFHS, A*+BFHS (4)
was usually faster, sometimes significantly, due to the reduc-
tion in duplicate nodes. Compared to BFIDA*, A*+BFHS
(4) was slightly slower on four instances and 80% slower
on one instance. On the other 27 instances, A*+BFHS was
faster than BFIDA*, and at least twice as fast on 16 of those.
The large speedups usually were on the instances where
BFIDA* generated the most nodes in its last iteration. The
best result was on the logistics00 domain, where an order of
magnitude speedup was achieved. This is because BFIDA*
performed very poorly on this domain due to its breadth-first
node ordering. Comparing A*+BFHS (∞) with BFIDA*,
A*+BFHS (∞) was slower on 11 instances and at least twice
as slow on three of those, but also at least twice as fast on 12
instances. The main reason for the slower cases is the pres-
ence of many duplicate nodes generated in certain domains.

Calling BFHS on Nodes at Multiple Depths
Comparing the two A*+BFHS versions, each has its pros
and cons. A*+BFHS (4) always generated fewer duplicate
nodes. Comparing the number of nodes generated in the pre-
vious iterations, A*+BFHS (∞) generated at least twice as
many nodes on 7 instances. A*+BFHS (∞) generated signif-
icantly fewer nodes in the last iteration than A*+BFHS (4)
on 22 instances. However, the number of nodes generated in



Instance Algorithm Peak stored Total nodes Prev. iterations Last iteration Time (s)
depot A* 70,504,763 344,658,749 344,639,234 19,515 233

14 BFIDA* 17,042,841 1,390,466,785 582,348,193 795,336,992 1,708
C∗=29 A*+BFHS (∞) 21,023,657 556,674,817 540,764,124 15,909,899 596
iPDB A*+BFHS (4) 22,882,537 446,204,987 432,278,188 13,926,005 475

termes18 A* 80,012,545 211,514,579 211,514,568 11 245
05 BFIDA* 9,370,587 3,757,844,868 3,413,500,020 221,186,298 4,796

C∗=132 A*+BFHS (∞) 30,874,300 10,702,979,649 10,701,959,808 911,786 15,415
iPDB A*+BFHS (4) 30,076,170 2,271,661,960 2,270,262,609 1,291,296 3,319

freecell A* 53,080,996 243,947,771 243,244,703 703,068 250
06 BFIDA* 38,054,162 1,220,132,074 732,920,409 485,268,534 1,883

C∗=34 A*+BFHS (∞) 30,481,377 327,209,951 312,812,283 14,388,579 441
iPDB A*+BFHS (4) 35,120,076 403,465,250 302,581,091 100,875,070 561

logistics00 A* 57,689,357 107,083,712 106,929,666 154,046 255
14-1 BFIDA* 15,441,813 3,137,204,256 106,929,666 3,020,315,591 10,381

C∗=71 A*+BFHS (∞) 19,472,255 354,438,805 354,058,774 368,595 1,160
iPDB A*+BFHS (4) 20,169,648 227,903,318 110,674,320 117,217,562 752

driverlog A* 144,065,288 420,609,830 420,609,777 53 344
12 BFIDA* 35,034,406 1,718,350,515 678,644,177 1,030,180,074 1,676

C∗=35 A*+BFHS (∞) 24,712,720 1,020,438,794 1,020,410,754 27,959 944
iPDB A*+BFHS (4) 30,270,816 643,723,984 641,790,459 1,933,444 631

freecell A* 107,183,015 531,379,136 531,378,858 278 522
07 BFIDA* 77,196,602 4,152,881,254 2,897,339,576 1,143,762,584 6,416

C∗=41 A*+BFHS (∞) 54,171,433 3,095,608,289 2,370,094,738 725,267,629 4,775
iPDB A*+BFHS (4) 58,058,327 2,430,947,097 1,896,369,611 534,331,564 3,769
depot A* 172,447,963 764,608,339 764,607,971 368 550

11 BFIDA* 27,192,174 3,037,154,042 1,260,718,486 1,755,157,316 3,544
C∗=46 A*+BFHS (∞) 37,977,775 6,268,318,349 3,092,746,859 3,175,552,575 7,314
iPDB A*+BFHS (4) 46,923,423 3,319,995,622 1,262,429,685 2,057,547,022 4,078
tpp A* 187,011,066 610,996,630 610,995,018 1,612 562
11 BFIDA* 93,759,836 4,290,825,940 754,905,369 3,525,135,895 7,214

C∗=51 A*+BFHS (∞) 30,856,159 5,504,314,294 5,504,268,064 46,111 9,550
M&S A*+BFHS (4) 33,368,912 1,419,143,562 1,285,410,734 133,732,709 2,426

mystery 14 A* 139,924,686 652,569,481 650,036,341 2,533,140 578
C∗=11 BFIDA* 135,963,227 6,213,135,253 727,753,687 5,430,082,105 7,628
iPDB A*+BFHS (∞/4) 20,302,860 730,971,724 676,473,465 54,497,630 839

tidybot11 A* 69,953,936 171,363,621 170,286,720 1,076,901 662
17 BFIDA* 42,080,838 776,084,110 486,518,217 281,131,278 3,684

C∗=40 A*+BFHS (∞) 33,969,968 661,386,777 467,282,853 194,103,710 3,223
iPDB A*+BFHS (4) 37,090,062 547,745,706 397,125,094 150,620,398 2,694

logistics00 A* 82,161,805 167,974,727 163,970,672 4,004,055 663
15-1 BFIDA* 13,638,319 2,847,571,079 163,970,672 2,660,698,165 19,062

C∗=67 A*+BFHS (∞) 18,827,830 730,154,067 722,390,335 7,763,336 4,897
iPDB A*+BFHS (4) 18,827,830 251,960,077 198,537,096 53,422,585 1,627

pipesworld- A* 123,553,926 284,884,903 284,880,335 4,568 727
notankage 19 BFIDA* 86,818,434 1,227,115,669 634,454,295 576,633,809 4,140

C∗=24 A*+BFHS (∞) 42,192,503 619,095,459 619,013,855 81,147 2,072
iPDB A*+BFHS (4) 44,706,153 574,957,328 570,451,612 4,505,259 1,942

parking14 A* 351,976,816 828,472,606 828,472,562 44 971
16 9-01 BFIDA* 183,832,715 4,846,132,188 1,023,897,982 3,821,980,237 6,236
C∗=24 A*+BFHS (∞) 30,675,587 1,191,570,432 1,191,514,776 55,283 1,468
iPDB A*+BFHS (4) 51,147,740 1,013,776,888 1,011,227,268 2,549,247 1,290

visitall11 A* 407,182,291 795,670,561 795,669,929 632 1,045
08-half BFIDA* 172,474,497 3,159,596,842 1,332,828,069 1,824,866,109 4,220
C∗=43 A*+BFHS (∞) 34,406,966 1,639,641,152 1,639,585,228 55,798 2,233
iPDB A*+BFHS (4) 64,671,078 1,346,690,454 1,312,333,974 34,356,354 1,902

Table 1: Instances sorted by A* running times. An underline means more than 8 GB of memory was needed. Smallest memory
and shortest times are in boldface.



Instance Algorithm Peak stored Total nodes Prev. iterations Last iteration Time (s)
tidybot11 A* 115,965,857 246,756,618 246,756,201 417 1,086

16 BFIDA* 86,095,996 1,090,011,154 652,777,121 431,816,881 5,512
C∗=40 A*+BFHS (∞) 41,342,908 583,309,116 570,082,820 13,225,950 2,923
iPDB A*+BFHS (4) 57,026,598 598,365,499 519,723,294 78,641,859 3,080

snake18 A* 94,699,640 129,288,606 129,273,608 14,998 1,131
08 BFIDA* 44,231,998 1,852,488,086 1,517,078,892 325,204,785 14,877

C∗=58 A*+BFHS (∞) 44,081,853 391,010,354 390,681,641 328,706 3,445
iPDB A*+BFHS (4) 51,166,308 356,988,514 348,015,242 8,973,265 3,192

hiking14 A* 287,192,625 3,299,939,168 3,299,937,850 1,318 1,297
2-2-8 BFIDA* 42,570,885 11,376,337,161 5,757,334,602 5,582,502,874 10,847
C∗=42 A*+BFHS (∞) 44,454,322 16,233,911,987 12,346,881,620 3,886,689,991 14,897
M&S A*+BFHS (4) 53,148,260 9,850,751,126 6,310,295,933 3,540,114,817 9,696

pipesworld- A* 292,998,092 907,283,307 907,283,301 6 1,364
tankage 14 BFIDA* 158,262,429 5,354,342,623 3,680,871,467 1,661,344,123 10,609
C∗=38 A*+BFHS (∞) 84,077,693 5,768,933,724 5,763,927,002 5,002,176 11,622
iPDB A*+BFHS (4) 103,288,306 3,300,541,977 3,220,772,288 79,765,143 6,896
blocks A* 555,864,249 1,185,065,570 205,172,261 979,893,309 1,540
13-1 BFIDA* 99,782,317 1,742,819,669 463,603,038 1,224,383,750 2,142

C∗=44 A*+BFHS (∞) 54,601,577 2,261,321,708 425,991,501 1,827,341,160 2,817
iPDB A*+BFHS (4) 79,572,108 1,817,197,763 401,559,990 1,407,648,726 2,317

parking14 A* 606,117,759 1,430,911,954 1,430,746,610 165,344 1,714
16 9-03 BFIDA* 291,822,896 8,077,642,530 1,796,305,162 6,280,923,558 10,059
C∗=24 A*+BFHS (∞) 48,304,204 2,519,414,336 2,328,368,930 191,043,484 3,124
iPDB A*+BFHS (4) 63,455,874 2,151,415,198 1,992,188,756 159,224,520 2,679

tidybot11 A* 175,574,760 372,772,055 372,771,560 495 1,730
18 BFIDA* 114,747,861 1,718,896,347 1,093,273,564 613,928,542 8,810

C∗=44 A*+BFHS (∞) 40,540,308 1,045,166,148 1,028,635,660 16,529,544 5,410
iPDB A*+BFHS (4) 65,784,369 1,204,942,101 931,501,196 273,439,961 6,365
blocks A* 704,938,102 1,568,547,017 342,339,737 1,226,207,280 1,990
13-0 BFIDA* 137,821,868 2,421,546,636 775,076,076 1,628,338,675 2,977

C∗=42 A*+BFHS (∞) 81,918,224 3,498,922,607 774,231,514 2,710,189,950 4,483
iPDB A*+BFHS (4) 126,629,640 2,615,897,101 698,028,054 1,903,367,904 3,378

hiking14 A* 368,433,117 6,711,042,999 6,710,971,209 71,790 2,480
2-3-6 BFIDA* 124,686,777 38,476,138,468 29,175,130,389 8,123,329,545 42,379
C∗=28 A*+BFHS (∞) 146,623,619 107,138,328,055 106,429,883,507 682,558,443 120,494
M&S A*+BFHS (4) 148,357,537 68,496,320,172 65,779,382,852 2,691,051,215 76,603

pipesworld- A* 442,232,520 1,028,882,844 1,028,880,896 1,948 2,693
notankage 20 BFIDA* 301,349,348 4,454,789,871 2,384,958,671 2,032,377,777 15,245

C∗=28 A*+BFHS (∞) 133,708,317 3,325,668,014 3,267,529,384 58,132,775 11,499
iPDB A*+BFHS (4) 148,029,967 2,988,248,448 2,728,140,813 260,097,006 10,629

snake18 A* 265,033,991 367,639,596 365,927,487 1,712,109 3,967
17 BFIDA* 60,041,363 2,162,411,969 1,464,995,207 639,565,966 20,418

C∗=62 A*+BFHS (∞) 56,839,243 877,934,374 871,327,013 6,607,339 8,785
iPDB A*+BFHS (4) 73,365,792 855,342,127 776,892,002 78,450,103 8,916

satellite A* 107,395,076 463,747,690 463,744,251 3,439 11,834
08 BFIDA* 20,846,202 3,656,980,017 520,525,131 3,125,446,334 398,884

C∗=26 A*+BFHS (∞) 18,870,254 552,221,751 551,990,933 230,549 54,551
LM-cut A*+BFHS (4) 19,763,323 546,211,783 479,810,475 66,401,039 56,296

Table 2: Instances sorted by A* running times. An underline means more than 8 GB of memory was needed. Smallest memory
and shortest times are in boldface.

the last iteration of A*+BFHS is usually only a small por-
tion of the total nodes generated, so the large difference in
the last iteration is not very important. A*+BFHS (4) stored
a larger maximum number of nodes than A*+BFHS (∞)
on almost all instances. However, the difference was usually
small and never more than a factor of two. For the running
time, the difference was usually less than 50%. Compared to

A*+BFHS (∞), A*+BFHS (4) was faster by a factor of 3 on
logistics00 15-1, 2.5 on rovers 09 and 11, 4.6 on termes18
05, 3.9 on tpp 11, and never more than 30% slower.

In general, making each call to BFHS on frontier nodes
at multiple depths increases both the memory usage and the
number of nodes generated in the last iteration, but reduces
the number of duplicate nodes and hence is often faster. Con-



Instance Algorithm Peak stored Total nodes Prev. iterations Last iteration Time (s)
blocks A* (unfinished) >814,951,324 >1,562,632,802 256,247,910 >1,306,384,892 >2,284
15-0 BFIDA* 113,471,990 2,408,362,561 579,842,889 1,827,125,272 3,058

C∗=40 A*+BFHS (∞) 68,070,197 3,861,465,924 550,007,126 3,291,490,500 4,889
iPDB A*+BFHS (4) 106,482,059 2,656,641,036 492,390,560 2,144,282,178 3,514

storage A* (unfinished) >799,907,374 >1,741,590,894 >1,741,590,894 >2,358
17 BFIDA* 397,798,456 13,297,651,168 4,430,334,119 8,825,291,425 19,086

C∗=26 A*+BFHS (∞) 118,138,352 13,403,671,261 13,364,290,422 39,380,047 18,914
iPDB A*+BFHS (4) 133,800,503 7,895,157,984 6,819,827,727 1,075,329,465 11,354

driverlog A* (unfinished) >786,467,847 >2,028,764,217 >2,028,764,217 >1,853
15 BFIDA* 453,643,579 24,705,660,389 6,388,627,692 18,280,039,412 24,297

C∗=32 A*+BFHS (∞) 88,449,751 16,928,608,100 16,913,831,869 14,773,242 15,311
iPDB A*+BFHS (4) 123,602,679 9,160,294,407 8,974,814,158 185,477,260 8,447
rovers A* (unfinished) >801,124,989 >4,427,878,559 >4,427,878,559 >2,776

09 BFIDA* 235,386,020 20,666,689,222 7,239,737,785 13,401,874,237 25,336
C∗=31 A*+BFHS (∞) 96,100,365 34,236,064,765 34,235,937,332 123,597 42,290
iPDB A*+BFHS (4) 99,498,513 12,845,107,625 12,752,327,728 92,776,061 16,770
rovers A* (unfinished) >766,016,316 >3,690,650,688 >3,690,650,688 >2,378

11 BFIDA* 274,612,697 18,975,576,425 6,574,504,656 12,391,406,745 26,022
C∗=30 A*+BFHS (∞) 112,783,085 32,143,105,562 32,139,546,138 3,549,575 43,538
iPDB A*+BFHS (4) 113,594,902 12,342,784,453 11,789,007,437 553,767,167 16,661

parking14 A* (unfinished) >770,874,998 >1,681,926,228 >1,681,926,228 >2,306
16 9-04 BFIDA* 1,045,614,854 27,924,183,007 6,292,017,194 21,628,727,845 37,701
C∗=26 A*+BFHS (∞) 156,758,802 9,778,837,190 9,777,264,498 1,570,687 12,304
iPDB A*+BFHS (4) 181,535,647 7,588,132,706 7,586,728,152 1,402,549 9,813

Table 3: Instances where A* terminated without solving the problem (marked by >) so are sorted by BFIDA* running times.
An underline means more than 8 GB of memory was needed. Smallest memory and shortest times are in boldface.

sidering the memory and time trade-off, given a new prob-
lem, we recommend making each call to BFHS on frontier
nodes at multiple depths. So far, we have only tested limiting
BFHS to four calls in each iteration. Determining the opti-
mal number of calls to BFHS is a subject for future work.

Heuristic Functions and Running Times
For each node generated, A* first does duplicate checking
then looks up its heuristic value if needed. Thus for each
state, A* only computes its heuristic value once, no matter
how many times this state is generated. However, the situa-
tion is different in BFHS. Even in a single call to BFHS, a
state’s heuristic value may be calculated multiple times. For
example, if a state’s f -value is greater than the cost bound of
BFHS, then this state is never stored in this call to BFHS and
its heuristic value has to be computed every time it is gener-
ated. In addition, A* has only one hash map but our BFHS
implementation has one hash map for each layer of nodes.
Consequently, for each node generated, A* does only one
hash map lookup while BFHS may have multiple lookups.

Due to the above differences, the number of nodes gener-
ated per second of BFIDA* and A*+BFHS was smaller than
that of A*. For the iPDB and M&S heuristics, this differ-
ence was usually less than a factor of two. For the LM-cut
heuristic, A* was faster by a factor of four in terms of nodes
generated per second on the satellite domain. This is because
computing a node’s LM-cut heuristic is much more expen-
sive than iPDB and M&S heuristics. This contrast shows that
the choice of heuristic function also plays an important role
in comparing the running times of different algorithms.

Future Work

Future work includes the following. First, test A*+BFHS on
more unit-cost domains. Second, investigate what is the best
memory threshold for the A* phase. Third, determine the op-
timal number of calls to BFHS in each iteration. Fourth, find
other ways to partition the frontier nodes besides the cur-
rent depth-based approach. If a set of frontier nodes is too
large, we may split it into multiple smaller sets and make
one call to BFHS on each such smaller set. This approach
may reduce the maximum number of stored nodes but may
generate more duplicate nodes. In addition, when we make
each call to BFHS on frontier nodes at multiple depths, we
may consider the number of frontier nodes at each depth so
each call to BFHS is on a different number of depths instead
of a fixed number. Fifth, find out how to apply A*+BFHS
to domains with non-unit operator costs. For such domains,
BFHS’s BFS can be replaced by uniform-cost search or Di-
jkstra’s algorithm (Dijkstra 1959). In this case, we can store
nodes with multiple costs in each layer (Zhou and Hansen
2006). Sixth, use external memory such as magnetic disk
or flash memory in A*+BFHS to solve very hard problems.
For example, instead of allocating 1/10 of RAM for the A*
phase, we can first run A* until RAM is almost full, then
store both Open and Closed nodes in external memory and
remove them from RAM. Then in the BFHS phase, we load
back the set of frontier nodes for each call to BFHS from
external memory. This A*+BFHS version would never per-
form worse than A*, since it is identical to A* until memory
is exhausted, at which point the BHFS phase would begin.



Conclusions
We introduce a hybrid heuristic search algorithm A*+BFHS
for solving hard problems that cannot be solved by A* due to
memory limitations, or IDA* due to the existence of many
short cycles. A*+BFHS first runs A* until a user-specified
storage threshold is reached, then runs multiple iterations of
BFHS on the frontier nodes, which are the Open nodes at
the end of the A* phase. Each iteration has a unique cost
bound and contains multiple calls to BFHS. Each call to
BFHS within the same iteration has the same cost bound but
a different set of frontier nodes to start with. Within an itera-
tion, frontier nodes are sorted deepest-first so that A*+BFHS
can terminate early in its last iteration.

On the around 500 easy problems solved, A*+BFHS be-
haves the same as A*, and is always faster than BFIDA*. On
the 32 hard instances presented, A*+BFHS is slower than
A* but uses significantly less memory. A*+BFHS is faster
than BFIDA* on 27 of those 32 instances and at least twice
as fast on 16 of those. Furthermore, A*+BFHS requires less
memory than BFIDA* on 25 of those 32 instances and saves
more than half the memory on 14 of those. Another contribu-
tion of this paper is a comprehensive testing of BFIDA* on
many planning domains, which is lacking in the literature.

References
Asai, M.; and Fukunaga, A. 2016. Tiebreaking strategies for
A* search: How to explore the final frontier. 673—-679.
Bu, Z.; and Korf, R. E. 2019. A*+IDA*: a simple hy-
brid search algorithm. In Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence, 1206–
1212. AAAI Press.
Culberson, J. C.; and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3): 318–334.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische mathematik 1(1): 269–271.
Franco, S.; Lelis, L. H.; Barley, M.; Edelkamp, S.; Martines,
M.; and Moraru, I. 2018. The Complementary2 planner in
the IPC 2018. IPC-9 planner abstracts 28–31.
Franco, S.; Torralba, A.; Lelis, L. H.; and Barley, M. 2017.
On creating complementary pattern databases. In Proceed-
ings of the 26th International Joint Conference on Artificial
Intelligence, 4302–4309.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal
basis for the heuristic determination of minimum cost paths.
IEEE transactions on Systems Science and Cybernetics 4(2):
100–107.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; Koenig, S.;
et al. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In AAAI, vol-
ume 7, 1007–1012.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26: 191–246.
Helmert, M.; and Domshlak, C. 2009. Landmarks, criti-
cal paths and abstractions: what’s the difference anyway?
Proceedings of the International Conference on Automated
Planning and Scheduling 19(1): 162––169.

Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S. 2018.
Delfi: Online planner selection for cost-optimal planning.
IPC-9 planner abstracts 57–64.
Korf, R. E. 1985. Depth-first iterative-deepening: An op-
timal admissible tree search. Artificial intelligence 27(1):
97–109.
Korf, R. E.; and Felner, A. 2002. Disjoint pattern database
heuristics. Artificial intelligence 134(1): 9–22.
Korf, R. E.; and Zhang, W. 2000. Divide-and-conquer
frontier search applied to optimal sequence alignment. In
AAAI/IAAI, 910–916.
Korf, R. E.; Zhang, W.; Thayer, I.; and Hohwald, H. 2005.
Frontier search. Journal of the ACM (JACM) 52(5): 715–
748.
Martinez, M.; Moraru, I.; Edelkamp, S.; and Franco, S.
2018. Planning-PDBs planner in the IPC 2018. IPC-9 plan-
ner abstracts 63–66.
Reinefeld, A.; and Marsland, T. A. 1994. Enhanced
iterative-deepening search. IEEE Transactions on Pattern
Analysis and Machine Intelligence 16(7): 701–710.
Schütt, T.; Döbbelin, R.; and Reinefeld, A. 2013. Forward
perimeter search with controlled use of memory. In Pro-
ceedings of the Twenty-Third international joint conference
on Artificial Intelligence, 659–665. AAAI Press.
Sen, A. K.; and Bagchi, A. 1989. Fast Recursive Formu-
lations for Best-First Search That Allow Controlled Use of
Memory. In IJCAI, 297–302.
Sievers, S. 2018. Merge-and-shrink heuristics for classical
planning: Efficient implementation and partial abstractions.
In Eleventh Annual Symposium on Combinatorial Search,
90–98.
Sievers, S.; Ortlieb, M.; and Helmert, M. 2012. Efficient
implementation of pattern database heuristics for classical
planning. In Fifth Annual Symposium on Combinatorial
Search, 105–111.
Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Generalized
label reduction for merge-and-shrink heuristics. In Proceed-
ings of the Twenty-Eighth AAAI Conference on Artificial In-
telligence, 2358—-2366.
Sievers, S.; Wehrle, M.; and Helmert, M. 2016. An analy-
sis of merge strategies for merge-and-shrink heuristics. In
Proceedings of the Twenty-Sixth International Conference
on International Conference on Automated Planning and
Scheduling, 294—-298.
Zhou, R.; and Hansen, E. A. 2004. Breadth-first heuristic
search. In Proceedings of the 14th International Confer-
ence on Automated Planning and Scheduling (ICAPS-04),
92–100.
Zhou, R.; and Hansen, E. A. 2006. Breadth-first heuristic
search. Artificial Intelligence 170(4): 385–408.


