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Abstract

Most state-of-the-art techniques for Language
Models (LMs) today rely on transformer-based
architectures and their ubiquitous attention
mechanism. However, the exponential growth
in computational requirements with longer in-
put sequences confines Transformers to han-
dling short passages. Recent efforts have aimed
to address this limitation by introducing selec-
tive attention mechanisms, notably local and
global attention. While sparse attention mech-
anisms, akin to full attention in being Turing-
complete, have been theoretically established,
their practical impact on pre-training remains
unexplored. This study focuses on empirically
assessing the influence of global attention on
BERT pre-training.

The primary steps involve creating an extensive
corpus of structure-aware text through arXiv
data, alongside a text-only counterpart. We
carry out pre-training on these two datasets, in-
vestigate shifts in attention patterns, and assess
their implications for downstream tasks. Our
analysis underscores the significance of incor-
porating document structure into LM models,
demonstrating their capacity to excel in more
abstract tasks, such as document understand-
ing.

1 Introduction

Given a universal set of Vocabulary V), the primary
objective of a Language Model (LM) is to learn a
distribution for a sequence of words, denoted as
P(wy,ws,ws, ..., w,), where each w; belongs to
the set V. By building a model based on this word
distribution, we can calculate the probability of the
next word occurring in a given sequence, expressed
as P(wp|wy,ws, ..., w,—1). Typically, the word
with the highest probability is selected as the next
word, i.e., argmax, P(wy|wi,ws,...,w,_1).
Until recently, memory-aware deep learning meth-
ods like LSTM, BiLSTM, and other sequential
models were the go-to choices for learning the un-
derlying distribution of training data.

However, the landscape of Language Mod-
els has evolved with the introduction of the
Transformer-based architecture, as initially pro-
posed in (Vaswani et al., 2017). Recent state-of-
the-art (SOTA) techniques now rely exclusively on
Transformers, leveraging their ubiquitous attention
mechanism. In the case of attention-based Trans-
former models, each word learns a self-attention
score concerning every other word in the vocabu-
lary V, effectively capturing the relationships be-
tween words in a given corpus.

While these Transformer models have been
highly successful, a fundamental challenge lies in
their computational and memory demands. The
attention mechanism scales quadratically in terms
of both memory and computation. This limitation
makes applying attention to an entire document
both expensive and challenging, effectively restrict-
ing the application of Transformers to handling
only short passages. To mitigate this limitation,
researchers have proposed a sparse-attention mech-
anism (Beltagy et al., 2020a). Various methods
have emerged to implement this sparse-attention
mechanism (Ainslie et al., 2020), (Zaheer et al.,
2020b), with a common approach being the divi-
sion of attention into two categories: local and
global. In the case of local attention, tokens attend
to their nearby neighbors within a defined distance
k, whereas global tokens focus on a selective subset
of tokens (I < k) and are subsequently attended
to by all other tokens within an input sequence.
This division effectively curbs the computational
cost, leading to a linear increase in proportion to
the combined size of local and global attention.

Local attention is conceptualized as a sliding
window, where a token at position n attends to
its surrounding tokens within a window of size w.
This concept is rooted in human reading behav-
ior, where attention predominantly centers on the
paragraph or section being actively read. To encom-
pass the entire context, documents are traditionally



structured into chapters, sections, and subsections,
each identified by titles and subtitles.

Despite the documented superiority of sparse-
attention-based models over their dense attention
counterparts (Beltagy et al., 2020b), (Ainslie et al.,
2020), (Zaheer et al., 2020b), an area that has yet
to be thoroughly explored is the impact of global
tokens during the pre-training phase. Existing mod-
els are typically trained exclusively with local to-
kens within a window (Beltagy et al., 2020a), and
global tokens are brought into play only during
downstream tasks.

The present work seeks to address this gap in
knowledge by conducting an in-depth examination
of the impact of global tokens on the pre-training
of Language Models (LMs). A significant chal-
lenge in integrating global tokens into pre-training
lies in preparing a sufficiently large pre-training
corpus of text with properly identified global to-
kens. Drawing inspiration from PubLayNet (Zhong
et al., 2019) and DocBank (Li et al., 2020), we
overcome this challenge by generating structure-
aware documents from LaTeX files sourced from
arXiv (Ginsparg, 2011). Within this corpus, we em-
ploy LaTeX document structures to identify titles,
headings, and sub-headings, which are then incor-
porated as global tokens during the pre-training
process.

Moreover, the significance of incorporating doc-
ument structure into the pretraining phase of Lan-
guage Models cannot be overstated. While a vast
corpus of text data is essential for language models
to learn the intricacies of language, it often lacks
the structured semantic information that is crucial
for understanding the context and relationships
within a document. Document structure, includ-
ing titles, headings, sub-headings, and hierarchical
organization, inherently encodes a wealth of se-
mantic meaning. Titles provide a concise summary
of the document’s main topics, while headings and
sub-headings guide readers through the document’s
content, offering a roadmap for understanding the
document’s context and logical flow. By introduc-
ing this structured information into the pretraining
process, LMs have the potential to grasp not only
the nuances of language but also the underlying
organizational and semantic structure within docu-
ments, enhancing their capacity to tackle complex
tasks such as document understanding and abstract
summarization. The integration of structural aware-
ness aligns with the broader goal of enabling LMs

to bridge the gap between raw text data and mean-
ingful, context-aware language processing.

The subsequent sections of this paper provide
a detailed account of this approach and present
the outcomes of this comprehensive examination.
This research seeks to illuminate the impact and
potential benefits of integrating global tokens into
the pre-training phase of LMs, thus contributing
to the broader understanding of efficient and effec-
tive language modeling approaches. Further, the
method acts as a proxy for incorporating document
structure in pre-training. The change in pre-training
influences the attention pattern in a positive way, by
capturing stronger relations between keywords and
section headers. Our experiments show that em-
ploying this method for BERT helps significantly
in downstream tasks and provides evidence that
learning during pre-training can go beyond natural
language understanding (NLU).
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Figure 1: Illustration of our approach to empirically ana-
lyzing masked attention during the pre-training process

2 Related works

Kevin Clark et al. did an analysis of BERT’s atten-
tion (Clark et al., 2019) focusing on the analysis
of the attention mechanisms of pre-trained models.
Though our work provides the method, data, and
pre-trained models for the analysis, examining the
outputs of language models on carefully chosen
input sentences is out of the scope of our current
work. We keep the suggested analysis for future
work. Jesse Vig provides open-source tools (Vig,
2019) that can be used to visualize attention at
multiple scales, each of which provides a unique
perspective on the attention mechanism. They have
demonstrated the tool on BERT and GPT-2 mod-
els and present three example use cases: detecting
model bias, locating relevant attention heads, and
linking neurons to model behavior. Another line
of work (Adi et al., 2016; Giulianelli et al., 2018;
Zhang and Bowman, 2018) investigates the inter-
nal vector representations of the model often using
probing classifiers. Again the line of work is on



their linguistic abilities of models without explic-
itly being trained for the tasks. We keep it for our
future work.

The following works use document structure for
various tasks:

1. Longformer: Longformer (Beltagy et al.,
2020b) is another transformer-based model
that introduces a new attention mechanism
that scales linearly with sequence length, mak-
ing it easier to process long documents of
thousands of tokens or longer. The attention
mechanism combines local windowed atten-
tion with task-motivated global attention, al-
lowing for the building of contextual repre-
sentations of the entire context using multiple
layers of attention. During the pretraining of
Longformer, the non-availability of global at-
tention pertaining can hinder its ability to cap-
ture broader contextual relationships across
distant parts of a text. This sparse use of
global attention might lead to potential blind
spots, where the model may miss essential
contextual cues that could be pivotal for cer-
tain tasks.

2. HEGEL: HEGEL (Zhang et al., 2022) uses
Hypergraph Transformer which can take
longer context and utilizes it for long docu-
ment summarization. HEGEL addresses the
intricacies of high-order cross-sentence rela-
tions, offering a novel approach to update and
refine sentence representations through the
application of hypergraph transformer layers.
However, it is exclusive to text summarization
and does not help models understand inherent
document structure for other tasks.

3. HIBRIDS: HIBRIDS (Cao and Wang, 2022)
uses hierarchical biases to encode document
structure and then uses this to compute better
attention scores. The work introduces a new
task: hierarchical question-summary gener-
ation, aimed at summarizing salient content
within source documents into a hierarchy of
questions and summaries, with each follow-up
question seeking to delve into the content of
its parent question-summary pair. The model
is able to outperform similar models in the
quality of hierarchical structures and the ex-
tent of content coverage.

The works above provide compelling evidence
that document structure and semantic organization
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Figure 2: Example of the extraction and storage of
document structure in a text file

are valuable in natural language tasks. However,
these approaches primarily employ document struc-
ture during the fine-tuning process without the abil-
ity to adapt to it. Instead, they utilize it as a fixed
component. Our approach aims to bridge this gap
by introducing a novel method for pre-training
BERT-based models. This method enables the mod-
els to seamlessly integrate document structure into
their understanding of natural language, allowing
them to learn and adapt to document structures for
more contextually aware language processing.

3 Methodology

Our work tries to develop a way to learn the se-
mantic information of document structure in pre-
training by using sparse attention. For this purpose,
our goal is to analyze the impact of global tokens
on pre-training. The methodology for doing this
can be divided into the following parts

1. Pre-training corpus: We need a large corpus
of text data for pre-training that is representa-
tive of our target task. We should be able to
use the same corpus with and without global
tokens. We used the large corpus of latex files
available from https://arxiv.org/. We
prepare two parallel corpora, one that is the
default which has only text, and another cor-
pus that is structure-aware. These two data are
used for the two pertaining experiments. More
details about data preparation are in Section 4

2. Model architecture: From a list of sparse
attention models (Child et al., 2019; Beltagy
et al., 2020a; Zaheer et al., 2020a), for the
purpose of our work, we chose Longformer,
a modified Transformer with an attention
mechanism as a combination of a windowed
local-context self-attention and an end task-
motivated global attention that encodes induc-
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Figure 3: Example (cont.) of the extraction and storage
of document structure in a text file

tive bias about the task (Beltagy et al., 2020a).
Longformer has been shown to be effective
against many traditional dense attention-based
transformers on many NLP tasks with bet-
ter pre-training metrics yet simple to mod-
ify and use for our purpose. The model is a
modification of BERT, and is used for down-
stream tasks where there is an inherent need
for global attention for some tokens. STRUCT-
FORMER model uses Longformer architecture
and utilizes global attention for header tokens
in the pre-training process.

3. Pre-training: We use masked language mod-
eling (MLM) as our pre-training task. The
model tries to predict masked token values
based on the neighboring tokens. However,
here our contribution is to use the local win-
dow as is and special global tokens for the
headers which now also attend to the masked
and the neighboring tokens in the window.
This results in the model understanding lan-
guage as well as the document structure. It
is interesting to note that this method can be
extended to any BERT-based model since any
such model can be converted to a sparse atten-
tion transformer.

4. Attention Patterns: To test our claim that
global tokens during pre-training help lan-
guage models identify document structure, we
analyze the attentions of STRUCTFORMER
model. We then compare this against the
longformer model trained without global to-
kens. We observe that STRUCTFORMER
model shows significantly higher attention
scores between keywords and header tokens
as against vanilla longformer. The attention
patterns confirm that the model learns not just
natural language, but also the structure of doc-
uments by identifying the header tokens. A

special dataset is required for this result, for
which we need keywords around header to-
kens of documents. This dataset is another
contribution to our work.

5. Downstream task: We use our model for
SciREX (Scientific REpresentation eXtrac-
tion) downstream task (Jain et al., 2020)
which is a document-level IE dataset that en-
compasses multiple IE tasks, including salient
entity identification and document-level N-ary
relation identification from scientific articles.
The SciREX benchmark dataset can be used to
evaluate models for scientific representation
learning, majorly focusing on the automatic
extraction of structured representations from
scientific documents. The problem can be
broken down by first identifying named en-
tities, then clustering the named entities and
recognizing the salient mentions in the clus-
ters. Finally, the relation tuples are extracted,
and SciREX attempts to do all this using a sin-
gle model. Since SciREX data is also derived
from the arxiv, studying the effect of global
tokens becomes a lot easier and more relevant.
The only modification needed is to change
the pre-trained BERT with STRUCTFORMER
pre-trained model to finetune on SciREX.

The entire workflow of our controlled experi-
ment is visualized in Figure 1.

4 Dataset Generation

The necessity of pre-training arises from the sig-
nificant shift in context when introducing structure
into language modeling. Currently, no pre-existing
datasets suitable for language model (LM) pre-
training can adequately represent the structure of
input data. We took inspiration from DocBank (Li
et al., 2020), opting to utilize LaTeX documents
from arxiv (Ginsparg, 2011), as the structure of
these documents can be easily extracted from their
LaTeX codes.

For the purpose of structure extraction, we down-
loaded a total of 1,129,787 LaTeX documents
from https://arxiv.org/, covering the period
from 2000 to 2018. We combined all these doc-
uments into a single flattened file, after eliminat-
ing all comments, figures, tables, and equations.
The LaTeX codes were processed individually, first
extracting the title and abstract, followed by sec-
tions, subsections, subsubsections, and paragraphs.
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While performing this extraction, we ensured the
removal of all LaTeX syntax except for indications
of bold, italic, and underlined text. TexSoup, a
Python package designed for searching, navigating,
and modifying LaTeX code, was employed for the
extraction process.

During the extraction process, each word was
classified as a title word or a paragraph word. Once
these words were converted into tokens, their clas-
sification was preserved. This was achieved by
creating a tuple of the token and a special charac-
ter denoting whether it was a title token. Special
Pytorch data loaders (Zolnouri et al., 2020) were
created to parse these documents and provide each
token and optional token masks for the global token
experiment.

The extracted structure was stored in a text file
in a specific format. This format comprised a se-
quence of numerical meta-information followed by
the actual words of the node. Each word was ac-
companied by three Boolean values, representing
whether the word was bold, italic, or underlined.
Figure 2 and 3 illustrate the extraction process and
tokenization. These text files were subsequently
used for creating pickle files that form the dataset.

For every ten documents, a single pickle file
was generated, containing an iterative list of dic-
tionaries, with each dictionary representing a doc-
ument. These dictionaries contained three keys:
‘title’, ‘content’, and ‘sub-levels’. At the first level,
the ‘title’ key stores the document’s title, the con-
tent’ key stores the abstract, and the ‘sub-levels
key stores a list of dictionaries representing sec-
tions, subsections, subsubsections, and correspond-
ing paragraphs. This pattern was maintained till
the last level. Thus, we were able to generate a
structure-aware corpus suitable for pre-training the
model.

Various statistical analyses are performed on the
above-created text corpus. For example, min, max,
mean and standard deviations were calculated for
the number of tokens, number of headers, and num-
ber of tokens per header to help decide the sequence
length. This is depicted in Table 1.

5 Experiments

5.1 Structure-aware Pre-training

The Longformer model chosen for training was
Allen AI’s 4096_base (Beltagy et al., 2020a).

Table 1: Statistics on extracted document

Tokens | Headers | Tokens per header
Minimum 2 1 1

Maximum 4,553,287 498 40,592
Mean 15,266 14 106
SD 31,993 9 204

The documents were filtered such that each docu-
ment contained between 2, 000 to 12, 000 tokens to
avoid outliers. Finally, the model was pre-trained
on 100,000 documents. Both the baseline and
global token pre-training were run using this cor-
pus. When storing the documents, the header is
recursively identified and its content is stored in the
following tokens. This helps identify the various
headers in the document inducing a sense of the
structure of the document. This is exploited in the
pre-training as the tokens corresponding to these
headers are used as global tokens, by setting their
mask to 1, while the other tokens have a mask set
to 0. The local attention window size is set to 256
tokens. Another model with the same architecture
was trained with the global attention mask set to 0
for all tokens. This will give us two similar models
where the only difference is the structure-aware pre-
training. We chose Masked Language Modelling
(MLM) (Wettig et al., 2022) for the pre-training
task. Both the models were pre-trained on the en-
tire corpus of data for the MLM task for 9, 000 runs.
The local attention window was set to 256. The
models took 16 hours each for pre-training. The
results obtained on the bits-per-character (BPC)
metric for the two models is presented in Table 2.
The default pre- training’s BPC of 2.3 shows the
difficulty of the model in understanding the arxiv
corpus. As arxiv documents are written in latex
documents, in the final output many NLP grammar
rules will break such as abrupt sentence shifts be-
tween the titles and the first line in the paragraph
succeeding it. Whereas given the structural infor-
mation slightly reduces the BPC. This could be
because we were able to instruct the model on the
difference between titles and paragraphs which can
help learn attention better within the sliding win-
dow.

5.2 Attention Patterns and Visualization

To further explore the impacts of structure-aware
pretraining, we examined the attention patterns be-
tween our proposed model (referred to as Struct-



Masked Language Modelling Results
Model Test
Structure-Aware pre-training | 2.2136
Default pre-training 2.3051

Table 2: BPC on held-out arxiv test for the different
models

Former) and a standard vanilla model trained with-
out global tokens.
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Figure 4: Attention patterns of structure-aware pre-
training and vanilla pre-training between header and
keywords

To conduct this study, we curated a novel dataset
from scientific documents published on arxiv in
2023. These documents were never seen by the
models during training. The dataset consists of
section headings and a few subsequent sentences
from each section. We then manually annotated
keywords in these sentences which we deemed crit-
ical for preserving the context throughout the docu-
ment.

Our evaluation involved examining the attention
between the section headings and these key anno-
tated words in the sentences. We computed the
average attention score for these critical relation-
ships across both models. This investigation al-
lowed us to observe and compare the influence of
structural pretraining on how the models distribute
attention across the document. The results indicate
that STRUCTFORMER model shows an increase of
more than 20 % between key-words and header
tokens.

The attention patterns in the vanilla model were
relatively uniform, with the model apportioning
equal attention to all words within the context win-
dow. However, there was a notable bias towards the
most recent words, showcasing a typical recency

effect in language processing tasks.

Conversely, the attention patterns of the STRUCT-
FORMER model were markedly different. The
model demonstrated a variable distribution of atten-
tion, concentrating more on specific tokens perti-
nent to the prediction of the next word. Importantly,
the global tokens (representing titles and headings)
consistently received high attention scores, sig-
nifying that the model effectively harnessed the
structure-aware pre-training. This suggests that the
STRUCTFORMER model could create a more in-
formed understanding of the document’s overall
context, a vital aspect in various language under-
standing tasks. Figure 4 shows an example of an
attention pattern for the last transformer layer. "In-
troduction” is the header token and the rest of the
tokens are keywords in the local window. As can
be seen, the header token attends more to keywords
in structure-aware pre-training.

In essence, our exploration of attention patterns
corroborates the potential benefits of structure-
aware pre-training. Such a method alters the
model’s perception and processing of text, encour-
aging it to focus on global contextual cues and
understand the intrinsic structure of the document.
As a result, the model could exhibit improved per-
formance across a range of language understanding
tasks.

5.3 SciREX Fine tuning

The SciREX dataset was chosen to analyze the ef-
fects of structure-aware pre-training in documents.
SciREX (Jain et al., 2020) (Scientific REpresen-
tation eXtraction) is a benchmark dataset used to
evaluate models for scientific representation learn-
ing. Since the models were pre-trained on arxiv
which is also a scientific document dataset, the con-
textual information would be better utilized in a
SciREX-like dataset.
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Fine-tuning was done by modifying the SciREX
training pipeline. In place of BERT, a Longformer



End-to-end (predicted input)
StructFormer SciREX Baseline
Task Precision| Recall F1 Precision| Recall F1
Salient Clusters 0.2581 | 0.61271 | 0.3419 | 0.2230 | 0.6000 | 0.3070
Binary Relations 0.0550 | 0.5100 | 0.0890 | 0.0650 | 0.4110 | 0.0960
4-ary Relations 0.0019 | 0.2760 | 0.0037 | 0.0070 | 0.1730 | 0.0080

Table 3: Summary of the results of StructFormer on the SciREX end-to-end task against the baseline

End-to-end (predicted input)
StructFormer Vanilla Longformer
Task Precision| Recall | F1 Precision Recall | F1
Salient Clusters 0.2581 | 0.61271 | 0.3419 | 0.2371 | 0.5949 | 0.3182
Binary Relations 0.0550 | 0.5100 | 0.0890 | 0.0470 | 0.4906 | 0.0740
4-ary Relations 0.0019 | 0.276 0.0037 | 0.0013 | 0.2745 | 0.0025

Table 4: Comparative results between StructFormer Vanilla Longformer models on Scirex (predicted)

model was initialized and the pre-trained weights
were loaded. In this analysis, we will consider three
different types of models

* StructFormer: This is our proposed long-
former model which exploits the global token
to have structure awareness while pretraining
on a large corpus of scientific documents

* Vanilla Longformer: This LongFormer
model is pre-trained on the same corpus of
scientific documents and is a part of our abla-
tion study

* SciREX Baseline: This is the model proposed
by the authors of SciREX dataset to serve as
a baseline

Finally, we present our results on the SciREX
dataset task of our model against the other two
models. Firstly, in Table 3we compare the Struct-
Former model against the SciREX baseline for the
end-to-end predicted input.

As can be seen from the results in Table 3, Struct-
Former demonstrates a distinct improvement in
salient clustering compared to the SciREX base-
line. However, this improvement is not reflected in
good n-ary relation extraction scores. As explained
by the authors in the paper (Jain et al., 2020), this
is primarily due to the identification of numerous
outlier clusters by the end-to-end model, leading to
poor subsequent performance. Nevertheless, Struct-
Former outperforms in salient mention clustering
and all tasks leading up to it. It is important to note
that this improvement cannot be solely attributed to

contextual pre-training. One reason for this is that
the SciREX pipeline utilizes a co-reference model,
which is pre-trained and fine-tuned on a scientific
document corpus. Hence, the improvement can be
attributed to either structure-aware pre-training or
the Longformer architecture.

To discern which of the two factors has a greater
impact, we conducted an ablation study by pre-
training the Longformer model without global to-
kens, thereby losing the context of structure. The
results of this study are summarized in Table 4.

The results from Table 4 clearly demonstrate
that structure-aware pre-training significantly con-
tributes to the identification of salient clusters and
all the preceding steps in the pipeline. This is evi-
dent by the superior performance of the structure-
aware pre-training approach across all metrics
when compared to the regular model on the pre-
dicted input test set. Interestingly, the results of
Vanilla Longformer are not considerably different
from the SciREX baseline for salient clustering.
This ablation study highlights the role of structure-
aware pre-training in enabling the model to learn
attention patterns that enhance its performance on
the predicted input task, surpassing the baseline
performance in the SciREX task.

To address the issue of poor salient clusters, the
authors introduced gold clusters and only clusters
with more than a 50% overlap with these gold clus-
ters are considered. As a result of this threshold
and the fact that gold clusters are mostly disjoint,
the predicted clusters are mapped to a unique gold
cluster. Using these inputs, both the Longformer
models exhibit significantly improved performance



End-to-end (Gold input)
StructFormer SciREX Baseline
Task Precision| Recall F1 Precision| Recall F1
Salient Clusters 0.8381 | 0.6582 | 0.7195 | 0.7760 | 0.6140 | 0.6680
Binary Relations 0.6613 | 0.6630 | 0.6501 | 0.3720 | 0.3280 | 0.3340
4-ary Relations 0.6604 | 0.7042 | 0.6508 | 0.3100 | 0.2810 | 0.2680

Table 5: Summary of the results of StructFormer on the SciREX end-to-end task (with gold input) against the

baseline

End-to-end (Gold input)

StructFormer Vanilla Longformer
Task Precision| Recall | F1 Precision| Recall | F1
Salient Clusters 0.8381 | 0.6582 | 0.7195 | 0.8330 | 0.6572 | 0.7185
Binary Relations 0.6613 | 0.6630 | 0.6501 | 0.6795 | 0.6781 | 0.6681
4-ary Relations 0.6604 | 0.7042 | 0.6508 | 0.6702 | 0.7075 | 0.6654

Table 6: Comparative results between StructFormer and Vanilla Longformer models on Scirex (Gold input)

across all tasks, as shown in Table 5. Now, let’s an-
alyze these results, starting with the salient clusters
identified after gold filtering. As observed, there
is once again a substantial improvement over the
SciREX baseline, and this improvement directly
corresponds to the performance boost in the pre-
dicted input task. Furthermore, this improvement
is now also reflected in the n-ary relations task,
where we observe nearly double the scores in all
metrics. Notably, the ratio of metrics for salient
clustering between the structure-aware Longformer
and the SciREX baseline is maintained both before
and after gold filtering. However, the results in
Table 6 indicate that the proportional gain is not
maintained in the ablation study against Vanilla
Longformer after gold filtering, unlike the SCiREX
baseline. This ablation study reinforces the notion
that structure awareness in pre-training enables the
model to learn attention patterns that improve its
performance on the predicted input task. Moreover,
the observation that this gain is lost in the ablation
study after gold filtering suggests that structure
awareness has a similar effect to gold clustering.

6 Discussion and Conclusion

The results in the predicted input show that struc-
ture awareness positively boosts the performance of
the model salient mention clustering and all tasks
leading up to it. Moreover, this gain cannot be
attributed to contextual learning for two reasons

* SciREX also uses contextual learning before
salient mention clustering to train and finetune

the coreference model

* The Vanilla Longformer model is also trained
on the same dataset as our structure-aware
model, and its performance is similar to
SciREX baseline.

This, coupled with the fact that attention helps en-
code keyword information, proves that structure
awareness in pre-training helps the model under-
stand the context better for fine-tuning on down-
stream tasks. The analysis of attention in Struct-
Former and its differences from vanilla Longformer
helps us understand the reasons for its better perfor-
mance. Moreover, the fact that structure-awareness
in pre-training helps the model understand the struc-
ture in unseen documents presented as a corpus
means that StructFormer can be a better choice for
most document-related tasks. Our work clearly
highlights that structure-aware pre-training has a
positive impact on downstream tasks. We use the
global tokens in sparse attention models for pre-
training which has not been explored before and
demonstrate its advantages over vanilla pre-training
for information extraction tasks in long passage
documents.

7 Limitations

Our work provides the first evidence of using global
tokens as a substitute for document structure un-
derstanding in pre-training. However, we acknowl-
edge that our findings are preliminary and there
is much more to explore in this arena. We have



planned a more detailed investigation into atten-
tion patterns for future work. This future research
would involve a thorough analysis of the model’s
behavior and attention allocation mechanisms un-
der different contexts, providing a richer under-
standing of the impacts of structure-aware pre-
training. Further, we have pre-trained on only sci-
entific documents, and not on other structured data
sources like books. This could significantly help
the pre-training process as the model gets wider
structural information. Lastly, we have not ex-
tended our method to other structured data sources.

8 Ethics Statement

Our method relies on publically available archive
documents. There is a potential risk of this dataset
being biased which may lead to biases in down-
stream tasks. Since the dataset is scientific in na-
ture, this could also lead to a lack of diversity and
representation. Lastly, even though we use public
datasets, there are potential privacy risks associated
with the method.
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