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Abstract
Most state-of-the-art techniques for Language001
Models (LMs) today rely on transformer-based002
architectures and their ubiquitous attention003
mechanism. However, the exponential growth004
in computational requirements with longer in-005
put sequences confines Transformers to han-006
dling short passages. Recent efforts have aimed007
to address this limitation by introducing selec-008
tive attention mechanisms, notably local and009
global attention. While sparse attention mech-010
anisms, akin to full attention in being Turing-011
complete, have been theoretically established,012
their practical impact on pre-training remains013
unexplored. This study focuses on empirically014
assessing the influence of global attention on015
BERT pre-training.016

The primary steps involve creating an extensive017
corpus of structure-aware text through arXiv018
data, alongside a text-only counterpart. We019
carry out pre-training on these two datasets, in-020
vestigate shifts in attention patterns, and assess021
their implications for downstream tasks. Our022
analysis underscores the significance of incor-023
porating document structure into LM models,024
demonstrating their capacity to excel in more025
abstract tasks, such as document understand-026
ing.027

1 Introduction028

Given a universal set of Vocabulary V , the primary029

objective of a Language Model (LM) is to learn a030

distribution for a sequence of words, denoted as031

P (w1, w2, w3, . . . , wn), where each wi belongs to032

the set V . By building a model based on this word033

distribution, we can calculate the probability of the034

next word occurring in a given sequence, expressed035

as P (wn|w1, w3, . . . , wn−1). Typically, the word036

with the highest probability is selected as the next037

word, i.e., argmaxn P (wn|w1, w3, . . . , wn−1).038

Until recently, memory-aware deep learning meth-039

ods like LSTM, BiLSTM, and other sequential040

models were the go-to choices for learning the un-041

derlying distribution of training data.042

However, the landscape of Language Mod- 043

els has evolved with the introduction of the 044

Transformer-based architecture, as initially pro- 045

posed in (Vaswani et al., 2017). Recent state-of- 046

the-art (SOTA) techniques now rely exclusively on 047

Transformers, leveraging their ubiquitous attention 048

mechanism. In the case of attention-based Trans- 049

former models, each word learns a self-attention 050

score concerning every other word in the vocabu- 051

lary V , effectively capturing the relationships be- 052

tween words in a given corpus. 053

While these Transformer models have been 054

highly successful, a fundamental challenge lies in 055

their computational and memory demands. The 056

attention mechanism scales quadratically in terms 057

of both memory and computation. This limitation 058

makes applying attention to an entire document 059

both expensive and challenging, effectively restrict- 060

ing the application of Transformers to handling 061

only short passages. To mitigate this limitation, 062

researchers have proposed a sparse-attention mech- 063

anism (Beltagy et al., 2020a). Various methods 064

have emerged to implement this sparse-attention 065

mechanism (Ainslie et al., 2020), (Zaheer et al., 066

2020b), with a common approach being the divi- 067

sion of attention into two categories: local and 068

global. In the case of local attention, tokens attend 069

to their nearby neighbors within a defined distance 070

k, whereas global tokens focus on a selective subset 071

of tokens (l ≪ k) and are subsequently attended 072

to by all other tokens within an input sequence. 073

This division effectively curbs the computational 074

cost, leading to a linear increase in proportion to 075

the combined size of local and global attention. 076

Local attention is conceptualized as a sliding 077

window, where a token at position n attends to 078

its surrounding tokens within a window of size w. 079

This concept is rooted in human reading behav- 080

ior, where attention predominantly centers on the 081

paragraph or section being actively read. To encom- 082

pass the entire context, documents are traditionally 083
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structured into chapters, sections, and subsections,084

each identified by titles and subtitles.085

Despite the documented superiority of sparse-086

attention-based models over their dense attention087

counterparts (Beltagy et al., 2020b), (Ainslie et al.,088

2020), (Zaheer et al., 2020b), an area that has yet089

to be thoroughly explored is the impact of global090

tokens during the pre-training phase. Existing mod-091

els are typically trained exclusively with local to-092

kens within a window (Beltagy et al., 2020a), and093

global tokens are brought into play only during094

downstream tasks.095

The present work seeks to address this gap in096

knowledge by conducting an in-depth examination097

of the impact of global tokens on the pre-training098

of Language Models (LMs). A significant chal-099

lenge in integrating global tokens into pre-training100

lies in preparing a sufficiently large pre-training101

corpus of text with properly identified global to-102

kens. Drawing inspiration from PubLayNet (Zhong103

et al., 2019) and DocBank (Li et al., 2020), we104

overcome this challenge by generating structure-105

aware documents from LaTeX files sourced from106

arXiv (Ginsparg, 2011). Within this corpus, we em-107

ploy LaTeX document structures to identify titles,108

headings, and sub-headings, which are then incor-109

porated as global tokens during the pre-training110

process.111

Moreover, the significance of incorporating doc-112

ument structure into the pretraining phase of Lan-113

guage Models cannot be overstated. While a vast114

corpus of text data is essential for language models115

to learn the intricacies of language, it often lacks116

the structured semantic information that is crucial117

for understanding the context and relationships118

within a document. Document structure, includ-119

ing titles, headings, sub-headings, and hierarchical120

organization, inherently encodes a wealth of se-121

mantic meaning. Titles provide a concise summary122

of the document’s main topics, while headings and123

sub-headings guide readers through the document’s124

content, offering a roadmap for understanding the125

document’s context and logical flow. By introduc-126

ing this structured information into the pretraining127

process, LMs have the potential to grasp not only128

the nuances of language but also the underlying129

organizational and semantic structure within docu-130

ments, enhancing their capacity to tackle complex131

tasks such as document understanding and abstract132

summarization. The integration of structural aware-133

ness aligns with the broader goal of enabling LMs134

to bridge the gap between raw text data and mean- 135

ingful, context-aware language processing. 136

The subsequent sections of this paper provide 137

a detailed account of this approach and present 138

the outcomes of this comprehensive examination. 139

This research seeks to illuminate the impact and 140

potential benefits of integrating global tokens into 141

the pre-training phase of LMs, thus contributing 142

to the broader understanding of efficient and effec- 143

tive language modeling approaches. Further, the 144

method acts as a proxy for incorporating document 145

structure in pre-training. The change in pre-training 146

influences the attention pattern in a positive way, by 147

capturing stronger relations between keywords and 148

section headers. Our experiments show that em- 149

ploying this method for BERT helps significantly 150

in downstream tasks and provides evidence that 151

learning during pre-training can go beyond natural 152

language understanding (NLU). 153

Longformerarvix
dataset

only text

structure-aware text

Scirex

(Downstream Task)

Analysis on the role
of Attention in

Pretraining

structure-aware pretraining

default pretraining

Figure 1: Illustration of our approach to empirically ana-
lyzing masked attention during the pre-training process

2 Related works 154

Kevin Clark et al. did an analysis of BERT’s atten- 155

tion (Clark et al., 2019) focusing on the analysis 156

of the attention mechanisms of pre-trained models. 157

Though our work provides the method, data, and 158

pre-trained models for the analysis, examining the 159

outputs of language models on carefully chosen 160

input sentences is out of the scope of our current 161

work. We keep the suggested analysis for future 162

work. Jesse Vig provides open-source tools (Vig, 163

2019) that can be used to visualize attention at 164

multiple scales, each of which provides a unique 165

perspective on the attention mechanism. They have 166

demonstrated the tool on BERT and GPT-2 mod- 167

els and present three example use cases: detecting 168

model bias, locating relevant attention heads, and 169

linking neurons to model behavior. Another line 170

of work (Adi et al., 2016; Giulianelli et al., 2018; 171

Zhang and Bowman, 2018) investigates the inter- 172

nal vector representations of the model often using 173

probing classifiers. Again the line of work is on 174

2



their linguistic abilities of models without explic-175

itly being trained for the tasks. We keep it for our176

future work.177

The following works use document structure for178

various tasks:179

1. Longformer: Longformer (Beltagy et al.,180

2020b) is another transformer-based model181

that introduces a new attention mechanism182

that scales linearly with sequence length, mak-183

ing it easier to process long documents of184

thousands of tokens or longer. The attention185

mechanism combines local windowed atten-186

tion with task-motivated global attention, al-187

lowing for the building of contextual repre-188

sentations of the entire context using multiple189

layers of attention. During the pretraining of190

Longformer, the non-availability of global at-191

tention pertaining can hinder its ability to cap-192

ture broader contextual relationships across193

distant parts of a text. This sparse use of194

global attention might lead to potential blind195

spots, where the model may miss essential196

contextual cues that could be pivotal for cer-197

tain tasks.198

2. HEGEL: HEGEL (Zhang et al., 2022) uses199

Hypergraph Transformer which can take200

longer context and utilizes it for long docu-201

ment summarization. HEGEL addresses the202

intricacies of high-order cross-sentence rela-203

tions, offering a novel approach to update and204

refine sentence representations through the205

application of hypergraph transformer layers.206

However, it is exclusive to text summarization207

and does not help models understand inherent208

document structure for other tasks.209

3. HIBRIDS: HIBRIDS (Cao and Wang, 2022)210

uses hierarchical biases to encode document211

structure and then uses this to compute better212

attention scores. The work introduces a new213

task: hierarchical question-summary gener-214

ation, aimed at summarizing salient content215

within source documents into a hierarchy of216

questions and summaries, with each follow-up217

question seeking to delve into the content of218

its parent question-summary pair. The model219

is able to outperform similar models in the220

quality of hierarchical structures and the ex-221

tent of content coverage.222

The works above provide compelling evidence223

that document structure and semantic organization224

Figure 2: Example of the extraction and storage of
document structure in a text file

are valuable in natural language tasks. However, 225

these approaches primarily employ document struc- 226

ture during the fine-tuning process without the abil- 227

ity to adapt to it. Instead, they utilize it as a fixed 228

component. Our approach aims to bridge this gap 229

by introducing a novel method for pre-training 230

BERT-based models. This method enables the mod- 231

els to seamlessly integrate document structure into 232

their understanding of natural language, allowing 233

them to learn and adapt to document structures for 234

more contextually aware language processing. 235

3 Methodology 236

Our work tries to develop a way to learn the se- 237

mantic information of document structure in pre- 238

training by using sparse attention. For this purpose, 239

our goal is to analyze the impact of global tokens 240

on pre-training. The methodology for doing this 241

can be divided into the following parts 242

1. Pre-training corpus: We need a large corpus 243

of text data for pre-training that is representa- 244

tive of our target task. We should be able to 245

use the same corpus with and without global 246

tokens. We used the large corpus of latex files 247

available from https://arxiv.org/. We 248

prepare two parallel corpora, one that is the 249

default which has only text, and another cor- 250

pus that is structure-aware. These two data are 251

used for the two pertaining experiments. More 252

details about data preparation are in Section 4 253

254

2. Model architecture: From a list of sparse 255

attention models (Child et al., 2019; Beltagy 256

et al., 2020a; Zaheer et al., 2020a), for the 257

purpose of our work, we chose Longformer, 258

a modified Transformer with an attention 259

mechanism as a combination of a windowed 260

local-context self-attention and an end task- 261

motivated global attention that encodes induc- 262
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Figure 3: Example (cont.) of the extraction and storage
of document structure in a text file

tive bias about the task (Beltagy et al., 2020a).263

Longformer has been shown to be effective264

against many traditional dense attention-based265

transformers on many NLP tasks with bet-266

ter pre-training metrics yet simple to mod-267

ify and use for our purpose. The model is a268

modification of BERT, and is used for down-269

stream tasks where there is an inherent need270

for global attention for some tokens. STRUCT-271

FORMER model uses Longformer architecture272

and utilizes global attention for header tokens273

in the pre-training process.274

3. Pre-training: We use masked language mod-275

eling (MLM) as our pre-training task. The276

model tries to predict masked token values277

based on the neighboring tokens. However,278

here our contribution is to use the local win-279

dow as is and special global tokens for the280

headers which now also attend to the masked281

and the neighboring tokens in the window.282

This results in the model understanding lan-283

guage as well as the document structure. It284

is interesting to note that this method can be285

extended to any BERT-based model since any286

such model can be converted to a sparse atten-287

tion transformer.288

4. Attention Patterns: To test our claim that289

global tokens during pre-training help lan-290

guage models identify document structure, we291

analyze the attentions of STRUCTFORMER292

model. We then compare this against the293

longformer model trained without global to-294

kens. We observe that STRUCTFORMER295

model shows significantly higher attention296

scores between keywords and header tokens297

as against vanilla longformer. The attention298

patterns confirm that the model learns not just299

natural language, but also the structure of doc-300

uments by identifying the header tokens. A301

special dataset is required for this result, for 302

which we need keywords around header to- 303

kens of documents. This dataset is another 304

contribution to our work. 305

5. Downstream task: We use our model for 306

SciREX (Scientific REpresentation eXtrac- 307

tion) downstream task (Jain et al., 2020) 308

which is a document-level IE dataset that en- 309

compasses multiple IE tasks, including salient 310

entity identification and document-level N-ary 311

relation identification from scientific articles. 312

The SciREX benchmark dataset can be used to 313

evaluate models for scientific representation 314

learning, majorly focusing on the automatic 315

extraction of structured representations from 316

scientific documents. The problem can be 317

broken down by first identifying named en- 318

tities, then clustering the named entities and 319

recognizing the salient mentions in the clus- 320

ters. Finally, the relation tuples are extracted, 321

and SciREX attempts to do all this using a sin- 322

gle model. Since SciREX data is also derived 323

from the arxiv, studying the effect of global 324

tokens becomes a lot easier and more relevant. 325

The only modification needed is to change 326

the pre-trained BERT with STRUCTFORMER 327

pre-trained model to finetune on SciREX. 328

The entire workflow of our controlled experi- 329

ment is visualized in Figure 1. 330

4 Dataset Generation 331

The necessity of pre-training arises from the sig- 332

nificant shift in context when introducing structure 333

into language modeling. Currently, no pre-existing 334

datasets suitable for language model (LM) pre- 335

training can adequately represent the structure of 336

input data. We took inspiration from DocBank (Li 337

et al., 2020), opting to utilize LaTeX documents 338

from arxiv (Ginsparg, 2011), as the structure of 339

these documents can be easily extracted from their 340

LaTeX codes. 341

For the purpose of structure extraction, we down- 342

loaded a total of 1, 129, 787 LaTeX documents 343

from https://arxiv.org/, covering the period 344

from 2000 to 2018. We combined all these doc- 345

uments into a single flattened file, after eliminat- 346

ing all comments, figures, tables, and equations. 347

The LaTeX codes were processed individually, first 348

extracting the title and abstract, followed by sec- 349

tions, subsections, subsubsections, and paragraphs. 350
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While performing this extraction, we ensured the351

removal of all LaTeX syntax except for indications352

of bold, italic, and underlined text. TexSoup, a353

Python package designed for searching, navigating,354

and modifying LaTeX code, was employed for the355

extraction process.356

During the extraction process, each word was357

classified as a title word or a paragraph word. Once358

these words were converted into tokens, their clas-359

sification was preserved. This was achieved by360

creating a tuple of the token and a special charac-361

ter denoting whether it was a title token. Special362

Pytorch data loaders (Zolnouri et al., 2020) were363

created to parse these documents and provide each364

token and optional token masks for the global token365

experiment.366

The extracted structure was stored in a text file367

in a specific format. This format comprised a se-368

quence of numerical meta-information followed by369

the actual words of the node. Each word was ac-370

companied by three Boolean values, representing371

whether the word was bold, italic, or underlined.372

Figure 2 and 3 illustrate the extraction process and373

tokenization. These text files were subsequently374

used for creating pickle files that form the dataset.375

For every ten documents, a single pickle file376

was generated, containing an iterative list of dic-377

tionaries, with each dictionary representing a doc-378

ument. These dictionaries contained three keys:379

‘title’, ‘content’, and ‘sub-levels’. At the first level,380

the ‘title’ key stores the document’s title, the con-381

tent’ key stores the abstract, and the ‘sub-levels382

key stores a list of dictionaries representing sec-383

tions, subsections, subsubsections, and correspond-384

ing paragraphs. This pattern was maintained till385

the last level. Thus, we were able to generate a386

structure-aware corpus suitable for pre-training the387

model.388

Various statistical analyses are performed on the389

above-created text corpus. For example, min, max,390

mean and standard deviations were calculated for391

the number of tokens, number of headers, and num-392

ber of tokens per header to help decide the sequence393

length. This is depicted in Table 1.394

395

5 Experiments396

5.1 Structure-aware Pre-training397

The Longformer model chosen for training was398

Allen AI’s 4096_base (Beltagy et al., 2020a).399

Table 1: Statistics on extracted document

Tokens Headers Tokens per header
Minimum 2 1 1
Maximum 4,553,287 498 40,592

Mean 15,266 14 106
SD 31,993 9 204

The documents were filtered such that each docu- 400

ment contained between 2, 000 to 12, 000 tokens to 401

avoid outliers. Finally, the model was pre-trained 402

on 100, 000 documents. Both the baseline and 403

global token pre-training were run using this cor- 404

pus. When storing the documents, the header is 405

recursively identified and its content is stored in the 406

following tokens. This helps identify the various 407

headers in the document inducing a sense of the 408

structure of the document. This is exploited in the 409

pre-training as the tokens corresponding to these 410

headers are used as global tokens, by setting their 411

mask to 1, while the other tokens have a mask set 412

to 0. The local attention window size is set to 256 413

tokens. Another model with the same architecture 414

was trained with the global attention mask set to 0 415

for all tokens. This will give us two similar models 416

where the only difference is the structure-aware pre- 417

training. We chose Masked Language Modelling 418

(MLM) (Wettig et al., 2022) for the pre-training 419

task. Both the models were pre-trained on the en- 420

tire corpus of data for the MLM task for 9, 000 runs. 421

The local attention window was set to 256. The 422

models took 16 hours each for pre-training. The 423

results obtained on the bits-per-character (BPC) 424

metric for the two models is presented in Table 2. 425

The default pre- training’s BPC of 2.3 shows the 426

difficulty of the model in understanding the arxiv 427

corpus. As arxiv documents are written in latex 428

documents, in the final output many NLP grammar 429

rules will break such as abrupt sentence shifts be- 430

tween the titles and the first line in the paragraph 431

succeeding it. Whereas given the structural infor- 432

mation slightly reduces the BPC. This could be 433

because we were able to instruct the model on the 434

difference between titles and paragraphs which can 435

help learn attention better within the sliding win- 436

dow. 437

5.2 Attention Patterns and Visualization 438

To further explore the impacts of structure-aware 439

pretraining, we examined the attention patterns be- 440

tween our proposed model (referred to as Struct- 441
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Masked Language Modelling Results
Model Test
Structure-Aware pre-training 2.2136
Default pre-training 2.3051

Table 2: BPC on held-out arxiv test for the different
models

Former) and a standard vanilla model trained with-442

out global tokens.443

Figure 4: Attention patterns of structure-aware pre-
training and vanilla pre-training between header and
keywords

To conduct this study, we curated a novel dataset444

from scientific documents published on arxiv in445

2023. These documents were never seen by the446

models during training. The dataset consists of447

section headings and a few subsequent sentences448

from each section. We then manually annotated449

keywords in these sentences which we deemed crit-450

ical for preserving the context throughout the docu-451

ment.452

Our evaluation involved examining the attention453

between the section headings and these key anno-454

tated words in the sentences. We computed the455

average attention score for these critical relation-456

ships across both models. This investigation al-457

lowed us to observe and compare the influence of458

structural pretraining on how the models distribute459

attention across the document. The results indicate460

that STRUCTFORMER model shows an increase of461

more than 20 % between key-words and header462

tokens.463

The attention patterns in the vanilla model were464

relatively uniform, with the model apportioning465

equal attention to all words within the context win-466

dow. However, there was a notable bias towards the467

most recent words, showcasing a typical recency468

effect in language processing tasks. 469

Conversely, the attention patterns of the STRUCT- 470

FORMER model were markedly different. The 471

model demonstrated a variable distribution of atten- 472

tion, concentrating more on specific tokens perti- 473

nent to the prediction of the next word. Importantly, 474

the global tokens (representing titles and headings) 475

consistently received high attention scores, sig- 476

nifying that the model effectively harnessed the 477

structure-aware pre-training. This suggests that the 478

STRUCTFORMER model could create a more in- 479

formed understanding of the document’s overall 480

context, a vital aspect in various language under- 481

standing tasks. Figure 4 shows an example of an 482

attention pattern for the last transformer layer. "In- 483

troduction" is the header token and the rest of the 484

tokens are keywords in the local window. As can 485

be seen, the header token attends more to keywords 486

in structure-aware pre-training. 487

In essence, our exploration of attention patterns 488

corroborates the potential benefits of structure- 489

aware pre-training. Such a method alters the 490

model’s perception and processing of text, encour- 491

aging it to focus on global contextual cues and 492

understand the intrinsic structure of the document. 493

As a result, the model could exhibit improved per- 494

formance across a range of language understanding 495

tasks. 496

5.3 SciREX Fine tuning 497

The SciREX dataset was chosen to analyze the ef- 498

fects of structure-aware pre-training in documents. 499

SciREX (Jain et al., 2020) (Scientific REpresen- 500

tation eXtraction) is a benchmark dataset used to 501

evaluate models for scientific representation learn- 502

ing. Since the models were pre-trained on arxiv 503

which is also a scientific document dataset, the con- 504

textual information would be better utilized in a 505

SciREX-like dataset. 506

Figure 5: SciREX pipeline with structure-aware corpus
pre-trained longformer

Fine-tuning was done by modifying the SciREX 507

training pipeline. In place of BERT, a Longformer 508
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End-to-end (predicted input)
StructFormer SciREX Baseline

Task Precision Recall F1 Precision Recall F1
Salient Clusters 0.2581 0.61271 0.3419 0.2230 0.6000 0.3070
Binary Relations 0.0550 0.5100 0.0890 0.0650 0.4110 0.0960
4-ary Relations 0.0019 0.2760 0.0037 0.0070 0.1730 0.0080

Table 3: Summary of the results of StructFormer on the SciREX end-to-end task against the baseline

End-to-end (predicted input)
StructFormer Vanilla Longformer

Task Precision Recall F1 Precision Recall F1
Salient Clusters 0.2581 0.61271 0.3419 0.2371 0.5949 0.3182
Binary Relations 0.0550 0.5100 0.0890 0.0470 0.4906 0.0740
4-ary Relations 0.0019 0.276 0.0037 0.0013 0.2745 0.0025

Table 4: Comparative results between StructFormer Vanilla Longformer models on Scirex (predicted)

model was initialized and the pre-trained weights509

were loaded. In this analysis, we will consider three510

different types of models511

• StructFormer: This is our proposed long-512

former model which exploits the global token513

to have structure awareness while pretraining514

on a large corpus of scientific documents515

• Vanilla Longformer: This LongFormer516

model is pre-trained on the same corpus of517

scientific documents and is a part of our abla-518

tion study519

• SciREX Baseline: This is the model proposed520

by the authors of SciREX dataset to serve as521

a baseline522

Finally, we present our results on the SciREX523

dataset task of our model against the other two524

models. Firstly, in Table 3we compare the Struct-525

Former model against the SciREX baseline for the526

end-to-end predicted input.527

As can be seen from the results in Table 3, Struct-528

Former demonstrates a distinct improvement in529

salient clustering compared to the SciREX base-530

line. However, this improvement is not reflected in531

good n-ary relation extraction scores. As explained532

by the authors in the paper (Jain et al., 2020), this533

is primarily due to the identification of numerous534

outlier clusters by the end-to-end model, leading to535

poor subsequent performance. Nevertheless, Struct-536

Former outperforms in salient mention clustering537

and all tasks leading up to it. It is important to note538

that this improvement cannot be solely attributed to539

contextual pre-training. One reason for this is that 540

the SciREX pipeline utilizes a co-reference model, 541

which is pre-trained and fine-tuned on a scientific 542

document corpus. Hence, the improvement can be 543

attributed to either structure-aware pre-training or 544

the Longformer architecture. 545

To discern which of the two factors has a greater 546

impact, we conducted an ablation study by pre- 547

training the Longformer model without global to- 548

kens, thereby losing the context of structure. The 549

results of this study are summarized in Table 4. 550

The results from Table 4 clearly demonstrate 551

that structure-aware pre-training significantly con- 552

tributes to the identification of salient clusters and 553

all the preceding steps in the pipeline. This is evi- 554

dent by the superior performance of the structure- 555

aware pre-training approach across all metrics 556

when compared to the regular model on the pre- 557

dicted input test set. Interestingly, the results of 558

Vanilla Longformer are not considerably different 559

from the SciREX baseline for salient clustering. 560

This ablation study highlights the role of structure- 561

aware pre-training in enabling the model to learn 562

attention patterns that enhance its performance on 563

the predicted input task, surpassing the baseline 564

performance in the SciREX task. 565

To address the issue of poor salient clusters, the 566

authors introduced gold clusters and only clusters 567

with more than a 50% overlap with these gold clus- 568

ters are considered. As a result of this threshold 569

and the fact that gold clusters are mostly disjoint, 570

the predicted clusters are mapped to a unique gold 571

cluster. Using these inputs, both the Longformer 572

models exhibit significantly improved performance 573
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End-to-end (Gold input)
StructFormer SciREX Baseline

Task Precision Recall F1 Precision Recall F1
Salient Clusters 0.8381 0.6582 0.7195 0.7760 0.6140 0.6680
Binary Relations 0.6613 0.6630 0.6501 0.3720 0.3280 0.3340
4-ary Relations 0.6604 0.7042 0.6508 0.3100 0.2810 0.2680

Table 5: Summary of the results of StructFormer on the SciREX end-to-end task (with gold input) against the
baseline

End-to-end (Gold input)
StructFormer Vanilla Longformer

Task Precision Recall F1 Precision Recall F1
Salient Clusters 0.8381 0.6582 0.7195 0.8330 0.6572 0.7185
Binary Relations 0.6613 0.6630 0.6501 0.6795 0.6781 0.6681
4-ary Relations 0.6604 0.7042 0.6508 0.6702 0.7075 0.6654

Table 6: Comparative results between StructFormer and Vanilla Longformer models on Scirex (Gold input)

across all tasks, as shown in Table 5. Now, let’s an-574

alyze these results, starting with the salient clusters575

identified after gold filtering. As observed, there576

is once again a substantial improvement over the577

SciREX baseline, and this improvement directly578

corresponds to the performance boost in the pre-579

dicted input task. Furthermore, this improvement580

is now also reflected in the n-ary relations task,581

where we observe nearly double the scores in all582

metrics. Notably, the ratio of metrics for salient583

clustering between the structure-aware Longformer584

and the SciREX baseline is maintained both before585

and after gold filtering. However, the results in586

Table 6 indicate that the proportional gain is not587

maintained in the ablation study against Vanilla588

Longformer after gold filtering, unlike the SciREX589

baseline. This ablation study reinforces the notion590

that structure awareness in pre-training enables the591

model to learn attention patterns that improve its592

performance on the predicted input task. Moreover,593

the observation that this gain is lost in the ablation594

study after gold filtering suggests that structure595

awareness has a similar effect to gold clustering.596

6 Discussion and Conclusion597

The results in the predicted input show that struc-598

ture awareness positively boosts the performance of599

the model salient mention clustering and all tasks600

leading up to it. Moreover, this gain cannot be601

attributed to contextual learning for two reasons602

• SciREX also uses contextual learning before603

salient mention clustering to train and finetune604

the coreference model 605

• The Vanilla Longformer model is also trained 606

on the same dataset as our structure-aware 607

model, and its performance is similar to 608

SciREX baseline. 609

This, coupled with the fact that attention helps en- 610

code keyword information, proves that structure 611

awareness in pre-training helps the model under- 612

stand the context better for fine-tuning on down- 613

stream tasks. The analysis of attention in Struct- 614

Former and its differences from vanilla Longformer 615

helps us understand the reasons for its better perfor- 616

mance. Moreover, the fact that structure-awareness 617

in pre-training helps the model understand the struc- 618

ture in unseen documents presented as a corpus 619

means that StructFormer can be a better choice for 620

most document-related tasks. Our work clearly 621

highlights that structure-aware pre-training has a 622

positive impact on downstream tasks. We use the 623

global tokens in sparse attention models for pre- 624

training which has not been explored before and 625

demonstrate its advantages over vanilla pre-training 626

for information extraction tasks in long passage 627

documents. 628

7 Limitations 629

Our work provides the first evidence of using global 630

tokens as a substitute for document structure un- 631

derstanding in pre-training. However, we acknowl- 632

edge that our findings are preliminary and there 633

is much more to explore in this arena. We have 634
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planned a more detailed investigation into atten-635

tion patterns for future work. This future research636

would involve a thorough analysis of the model’s637

behavior and attention allocation mechanisms un-638

der different contexts, providing a richer under-639

standing of the impacts of structure-aware pre-640

training. Further, we have pre-trained on only sci-641

entific documents, and not on other structured data642

sources like books. This could significantly help643

the pre-training process as the model gets wider644

structural information. Lastly, we have not ex-645

tended our method to other structured data sources.646

8 Ethics Statement647

Our method relies on publically available archive648

documents. There is a potential risk of this dataset649

being biased which may lead to biases in down-650

stream tasks. Since the dataset is scientific in na-651

ture, this could also lead to a lack of diversity and652

representation. Lastly, even though we use public653

datasets, there are potential privacy risks associated654

with the method.655
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