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ABSTRACT

Conditional average treatment effect (CATE) estimation is the de facto gold stan-
dard for targeting a treatment to a heterogeneous population. The method esti-
mates treatment effects up to an error ϵ > 0 in each of M different strata of the
population, targeting individuals in decreasing order of estimated treatment effect
until the budget runs out. In general, this method requires O(M/ϵ2) samples. This
is best possible if the goal is to estimate all treatment effects up to an ϵ error. In this
work, we show how to achieve the same total treatment effect as CATE with only
O(M/ϵ) samples for natural distributions of treatment effects. The key insight is
that coarse estimates suffice for near-optimal treatment allocations. In addition,
we show that budget flexibility can further reduce the sample complexity of allo-
cation. Finally, we evaluate our algorithm on various real-world RCT datasets. In
all cases, it finds nearly optimal treatment allocations with surprisingly few sam-
ples. Our work highlights the fundamental distinction between treatment effect
estimation and treatment allocation: the latter requires far fewer samples.

1 INTRODUCTION

Different groups in a population—be it schools, counties, or age brackets—often respond differently
to a treatment (Gail & Simon, 1985; Heckman & Robb, 1985; Imbens & Angrist, 1994; Banerjee &
Duflo, 2009). This empirical fact has motivated a significant body of work on estimating conditional
average treatment effects (CATE), see, e.g., Imbens & Rubin (2015); Athey & Imbens (2016); Athey
et al. (2019); Künzel et al. (2019).

A key application of CATE estimation is in welfare-maximizing treament allocation: assigning
a limited number of treatments to those groups who benefit most from treatment. The optimal
treatment allocation selects groups in descending order of treatment effect until the budget depletes.
In practice, however, treatment effects first have to be estimated from data, such as the responses
from a randomized controlled trial (RCT) on the population. The standard method estimates the
treatment effect in each group and allocates in descending order of estimated treatment effects.
Good CATE estimates therefore seem to be the necessary first step of treatment allocation. Indeed,
estimating a single average treatment effect in one group up to error ϵ > 0 boils down to mean
estimation and requires Θ(1/ϵ2) samples. This sample size requirement holds robustly for almost
all problem instances with few exceptions. By extension, given M non-overlapping groups, CATE
estimation requires Θ(M/ϵ2) samples—as does finding a (1− ϵ)-optimal treatment allocation. And
so it appears that the two problems are essentially equivalent, at least in the worst-case.

In contrast, we show that for typical instances, we can find a (1 − ϵ)-optimal allocation with only
O(M/ϵ) samples. Hence, for M = O(1), treatment allocation typically requires quadratically fewer
samples than treatment effect estimation. Whereas estimation has a robust quadratic lower bound,
we show that the quadratic lower bound for allocation is brittle: It’s easy to circumvent in theory
with natural assumptions and it doesn’t arise in any of the real-world datasets we examine. Our
results follow from a simple but powerful win-win situation: If the treatment effect in a group is
well above or well below the optimal cut-off, we can figure that out with very few samples. Groups
close to the threshold, on the other hand, have similar treatment effects. Therefore, we don’t lose
much if we mix them up. The only bad case arises when all units cluster around the threshold,
not too close and not too far. We turn this intuitive observation into a precise instance-dependent
upper bound on the sample complexity of near-optimal treatment allocation. The formal argument
is delicate, since we don’t know the optimal threshold and we can only work from coarse estimates.
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In a nutshell, our theory predicts that near-optimal allocation almost always has a linear—not
quadratic—dependence on 1/ϵ. We thoroughly verify this prediction in five real-world RCT
datasets. In all cases, we can find near-optimal allocations with even fewer samples than our up-
per bound suggests. Fundamentally, our work highlights the stark difference between allocation and
estimation: Nearly optimal allocations do not require highly accurate estimates.

1.1 OUR CONTRIBUTIONS

Consider a partition of the population into M groups and a budget K ∈ {1, . . . ,M} that allows
to treat K out of M groups, such as schools, hospitals, or different age brackets. We refer to a
group as a unit to indicate that for the purpose of treatment allocation we don’t distinguish between
individuals within a unit—we either treat all or none of the individuals within a unit. We assume
that the cost of treating each unit is the same. Our goal is to identify the K units that would most
benefit from receiving a specific treatment. Let τ(u) ∈ [0, 1] denote the average effect of treatment
in unit u ∈ {1, . . . ,M}. A treatment allocation U ⊆ [M ] is any subset of K = |U| units. The value
achieved by an allocation U is the total sum

∑
u∈U τ(u) of treatment effects. An optimal allocation

selects the K units with the highest τ(u) values, breaking ties arbitrarily, achieving value V ∗.

In this paper, we study the sample complexity of finding a near-optimal allocation. We say that
an allocation is (1 − ϵ)-optimal if it achieves a value V that satisfies V/V ∗ ≥ 1 − ϵ. For bounded
treatment effects, standard arguments show that we can always find a (1−ϵ)-optimal allocation from
O(M/ϵ2) samples. Moreover, there is a problem instance that requires Ω(M/ϵ2) many samples.
While these well-known bounds settle the worst-case sample complexity, our work shows that the
typical sample complexity of treatment allocation is far lower. What matters for out theoretical
results is the shape of the distribution of treatment effects. For all reasonably smooth distributions—
those that don’t put excessive mass on small intervals—we prove that O(M/ϵ) many samples suffice
to get a (1− ϵ)-optimal allocation.

Theorem 1 (Informal). If the distribution of treatment effect values τ(u) is “smooth”, we can obtain
a (1− ϵ)-optimal allocation for any budget K ≤ M with O(M/ϵ) many samples.

The key insight behind the theorem is that we only need to estimate the treatment effect values τ(u)
up to accuracy ρ = Θ(

√
ϵ), rather than ϵ, in order to obtain a near-optimal allocation. Intuitively,

the problem of finding an optimal allocation boils down to the problem of deciding, for each unit
u, whether τ(u) is above or below the cut-off τK , where τK is the smallest treatment effect of any
unit in an optimal allocation. For the units that have τ(u) value far from τK , we can determine so
by estimating τ(u) to low accuracy. For the units that are close to the threshold τK , mistakenly
selecting one unit for another does not change the value of the allocation much. We show that an
accuracy level of ρ = Θ(

√
ϵ) strikes the best balance between having the lowest possible level of

accuracy while not losing too much value in the allocation. For this balance to hold, we need the
number of units around the threshold τK to be reasonable.

We formalize this required notion of “smoothness” through our definition of ρ-regularity, which
requires that any interval of length at least ρ contain at most O(ρM) units, that is, a multiple of what
we would expect under the uniform distribution. Thus, ρ-regularity is a weak measure of closeness to
the uniform distribution. Many natural distribution families, such as Gaussians or Beta distributions,
are ρ-regular for a reasonable constant. The most regular distribution is the uniform distribution
itself. Here, our analysis provides the biggest improvements. We prove that even in this case CATE
estimation remains hard, requiring Ω(M/ϵ2) samples. This formally proves a quadratic separation
between treatment allocation and CATE estimation. In particular, CATE estimation remains hard
even after imposing ρ-regularity.

Empirical evaluation. We consider data from five different randomized control trials (RCTs).
For each dataset, we evaluate how many samples are needed to obtain a near-optimal allocation.
To do so, we treat the treatment effects estimated from the full RCT dataset as the ground truth.
We then subsample the dataset to various sample sizes and compute the allocation value realized
by our algorithm. As shown in Figure 1, in all cases we find near-optimal allocations with fewer
samples than our theoretical upper bound predicts. This suggests that real-world treatment effect
distributions meet the assumptions of our theory. As a robustness check, we replicate the results
across various different partitions of the populations and for varying budget sizes.
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(a) STAR, schools.
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(b) TUP, baseline poverty.
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(c) NSW, baseline earnings.
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(d) Acupuncture, age.
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(e) Post-op, BMI.

Figure 1: In all cases, we realize a close-to-optimal allocation with very few samples (blue), much
less than the worst-case of O(M/ϵ2) (red) and even less than our theoretical bound O(M/ϵ) (green).

Discussion and limitations. There’s an immediate practical takeaway relevant to future policy
decisions about targeting welfare-promoting interventions. The standard sample size calculations for
CATE estimation are excessively pessimistic for the purpose of treatment allocation. Indeed, we can
find nearly optimal allocations from coarse treatment effect estimates. Perhaps counterintuitively,
an RCT that is severely underpowered for CATE estimation can still yield excellent allocations. As
a rule of thumb, M/ϵ samples suffice for a (1− ϵ)-optimal allocation.

While our smoothness requirement is typically met in practice, it may not always hold. We address
this limitation in two ways. First, we expose an exact instance-dependent optimality condition (Sec-
tion 4.2) that can be computed from coarse estimates as well. Thus, a policy maker can certify from
few samples that a solution is near-optimal or—if it isn’t—invest in additional samples. Alterna-
tively, we consider strategies for the policy maker to mitigate cases where there are too many units
around the optimal threshold τK without additional samples. Specifically, we study the strategies
of underspending and overspending on the original budget K in order to obtain a (1 − ϵ)-optimal
allocation with O(M/ϵ) many samples. We show that, in practice, in the few cases where a close-
to-optimal allocation is not realized, we can find a very close threshold τK′ at which we do realize
it with only O(M/ϵ) many samples. To summarize, our work strongly separates the sample com-
plexity treatment effect estimation from that of treatment allocation. The latter requires far fewer
samples than the former. This stark separation has the potential to inform future policy decisions.

1.2 RELATED WORK

Perdomo et al. (2023) and Shirali et al. (2024) inspired our work by showing that effective resource
allocation need not require accurate predictions. These works bring into focus a critical examina-
tion of prediction in resource allocation (Barabas et al., 2018; Perdomo, 2023; Shirali et al., 2025;
Fischer-Abaigar et al., 2025; Mashiat et al., 2025). Our results extend this line of work with a
fundamental observation: Extremely coarse treatment effect estimates can still yield near-optimal
allocations. Perhaps closest to our work, Shirali et al. (2024) contrast unit-level allocations with
individual-level targeting, showing that a measure of inter-unit inequality makes unit-level alloca-
tions competitive with individual-level targeting. In our work, allocations are always unit-level; we
study how accurate unit-level treatment effect estimates have to be for the purpose of allocation.
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Another recent line of work studies different strategies for using RCT data effectively (Sharma &
Wilder, 2024; Cortes-Gomez et al., 2024; Wilder & Welle, 2025). In line with these results, our
work provides further evidence that investing in greater accuracy is not always necessary in order to
achieve a more efficient intervention. Unlike these works, our paper focuses on sample complexity
upper bounds for treatment allocation, rather than on considering alternative strategies for estimating
treatment effects. There is a vast causal inference literature on learning optimal targeting rules that
address heterogeneity in the population (Manski, 2004; Qian & Murphy, 2011; Kitagawa & Tetenov,
2018; Kallus, 2018; Athey & Wager, 2021). Much work tackles the case of large M using machine
learning methods (Chernozhukov et al., 2018; Nie & Wager, 2021), which is not our focus. There’s
also much work targeting rules subject to budget constraints, e.g., Bhattacharya & Dupas (2012);
Luedtke & Van Der Laan (2016); Le et al. (2019). Our work also relates to the literature on bandits,
specifically to the problem of identifying good arms (Audibert & Bubeck, 2010) and the numerous
variants of this problem, such as identifying any subset of a set of good arms (Kalyanakrishnan
et al., 2012; Bubeck et al., 2013; Chaudhuri & Kalyanakrishnan, 2019; Rejwan & Mansour, 2020).
In our setting, however, we are not interested in an adaptive procedure; we want our algorithm to be
implementable in practice. The lower bound for CATE estimation runs through the bandit literature
in various guises, see, e.g., Kaufmann et al. (2016); Katz-Samuels & Jamieson (2020).

2 NOTATION AND PRELIMINARIES

We have a population X divided into a set U of M units. Each unit u ∈ U is independent from
the others, and we wish to select K out of the M units to carry out an intervention. We operate in
the setting of a resource-constrained positive intervention: ideally, we would like to treat all units,
but a budget limits the number of units that we can intervene on. In order to decide which units
to select, a typical approach is for the policy-maker to estimate the average treatment effect τ(u)
in each unit u, and then choose the K units with the highest τ(u) values. Throughout we assume
bounded treatment effects τ(u) ∈ [0, 1], normalized to the unit interval. Due to space constraints,
we defer all proofs of the main body to the appendix, while providing some proof sketches.

Estimating the average treatment effect within a unit—either via an RCT or an observational
design—is the well-established problem of causal inference that is not the subject of this work. We
therefore assume that we can get the average treatment effect τ(u) up to an additive error ϵ > 0 at
the cost of O(1/ϵ2) samples. This assumption hides the challenges of causal inference, but exposes
the sample complexity relevant for our argument.

Definition 1. Call τ̂ an (ϵ, δ)-accurate estimate of τ if |τ̂ − τ | ≤ ϵ with probability 1− δ.

Definition 2 (Estimation oracle). Given a unit u ∈ U and parameters ϵ, δ > 0, an estimation
oracle O returns an (ϵ, δ)-accurate estimate τ̂(u) of τ(u) at the cost of O(ln(2/δ)/ϵ2) samples.

Throughout the paper, we always assume that the estimation oracle O is available to the algorithm.
The sample complexity stated in Definition 2 follows from Hoeffding’s inequality. The upper bound
is tight up to constants except in special cases. This follows from standard lower bounds for mean
estimation in Bernoulli families (Le Cam, 1973; Wasserman, 2004; Tsybakov, 2008). These lower
bounds extend to estimating average treatment effects (Imbens & Rubin, 2015). Typically, in the
setting of treatment effect estimation, we compute an (ϵ, δ)-accurate estimate for every unit. We
refer to this problem as the FullCATE problem.

Definition 3 (FullCATE problem). Given a population X of individuals divided into a set of M
units U , solving the FullCATE(X ,U , ϵ, δ) problem consists of producing M estimates τ̂ such that
τ̂(u) is an (ϵ, δ)-accurate estimate of τ(u) for each u ∈ U .

We can compute the sample complexity of the FullCATE problem if we solve it by calling the
estimation oracle with parameters (ϵ, δ) for each unit u ∈ U , making a total of M independent calls.
This upper bound is again tight, in general, up to constant factors when groups are non-overlapping,
since each sample can only contribute to estimating one of the treatment effects.

Lemma 2. Having access to an estimation oracle O, we can solve the FullCATE(X ,U , ϵ, δ) prob-
lem with a total of NFullCATE = O(M ln(2/δ)/ϵ2) samples from X .
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2.1 ALLOCATION VERSUS ESTIMATION

Our goal is to find a near-optimal allocation without incurring the cost of solving FullCATE. This
means selecting the K ≤ M units with the highest true treatment effect values τ(u), where K is
determined by the given budget. We think of the treatment as a positive intervention, which is why
we focus on identifying the units with the highest values of τ(u). For an integer K ∈ {1, . . . ,M},
we denote the K-th largest value of τ(u) among the M possible treatment effect values by τK .
Definition 4 (Value). Given a set U of M units and a budget K ≤ M , an allocation function g
returns a set Ug ⊆ U of K units. The value of the allocation function over an interval A ⊆ [0, 1],
denoted VUg (A), is defined as VUg (A) =

∑
u∈Ug|τ(u)∈A τ(u). The (total) value of the allocation

function g for budget K is equal to VUg ([0, 1]).

We abbreviate VUg
([0, 1]) by VUg

if the interval A = [0, 1] can be inferred from the context. The
optimal allocation for a given budget is the one that realizes the highest value.
Definition 5. Given a budget to treat K units, the optimal allocation function is the one that selects
the K values τ(u) that maximize the value

∑
u∈U τ(u) over all subsets U of K units. We denote the

set of units chosen by the optimal allocation function by U∗.

Throughout, we assume that the true treatment effect values τ(u) are unique (otherwise, we can
slightly perturb them), and thus the optimal allocation is unique.
Definition 6 (ALLOC problem). Given a budget K ≤ M and parameters ϵ, δ, we say that a set
Ug ⊆ U of K units is an (ϵ, δ)-optimal allocation ALLOC∗ if

VUg ([0,1])

VU∗ ([0,1]) ≥ 1 − ϵ with probability
at least 1− δ, where the probability is taken over the coins of g. Solving the ALLOC(X ,U ,K, ϵ, δ)
problem consists of selecting a set Ug of K units that is a (1− ϵ, δ)-optimal allocation.

We usually drop the parameter δ, implying that the guarantee holds with high probability. Crucially,
the value of an allocation is computed with the true τ values rather than with the estimated τ̂ values.
The standard way of solving the ALLOC problem is through the FullCATE problem.
Lemma 3. Given any budget K ≤ M and parameters ϵ, δ, we can solve the ALLOC(X ,U , ϵ, δ)
problem with N = O(M ln(2/δ)/ϵ2) samples from X .

3 DIRECTLY TARGETING UNITS FOR ALLOCATION

Recall, the optimal allocation for a given budget K chooses the K units with the largest treatment
effect value τ(u). It is clear that U∗ = {u | τ(u) ≥ τK} (Claim B.1). Hence, solving the allocation
problem reduces to solving a threshold problem, where for a given budget K, the task is to determine
whether τ(u) ≥ τK or τ(u) < τK for each u ∈ U . In the former case, we decide to intervene on unit
u; otherwise we do not. In order to solve this thresholding problem, we do not need to estimate each
of the τ(u) values up to accuracy ϵ; we only need to determine whether τ(u) lies above or below
τK . The farther τ(u) is from τK , the less accuracy we need for our corresponding τ̂(u) estimate.
Conversely, we only need high accuracy in estimating τ̂(u) when τ(u) is close to the threshold τK .

3.1 LOW-ACCURACY ESTIMATION ALGORITHM

We introduce another parameter ρ that quantifies the error to which we estimate each treatment
effect. Intuitively, we only try to determine whether τ(u) is above τK + 2ρ or not. If we believe
that τ(u) belongs to the interval [τK , τK + 2ρ], then we “give up” and stop trying to determine the
precise value of τ(u). As we show, the value of ρ that strikes the right balance between a low sample
complexity and a close-to-optimal allocation value is ρ = Θ(

√
ϵ). That is, instead of estimating all

treatment effect values up to accuracy ϵ, we only estimate them up to accuracy of the order
√
ϵ and

then select the top K values based on these coarse estimates. This yields the following low-accuracy
algorithm (Algorithm 1), which is non-adaptive so that it can be implemented in a typical one-round
RCT (further sample complexity reductions can be achieved by introducing adaptivity, for example
with a multiple stage RCT, but these are not usually implementable in practice).

By definition, the algorithm selects all units u such that τ̂(u) ≥ τ̂K . First, by Hoeffding’s bound and
the choice of ρ, the algorithm requires a number of samples proportional to 1/ϵ, rather than 1/ϵ2.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Low-estimation non-adaptive allocation (LEA)
Input: M units, budget K, parameters ϵ, δ, γ > 0, where γ = Θ(1).
For each unit u, obtain a (ρ, δ/M)-accurate estimate τ̂(u) for ρ = γ

√
ϵ.

Output: A set ULEA consisting of the top K units in sorted order of τ̂(u) values.

Lemma 4. Given any X ,U ,K, Algorithm 1 requires O(M ln(2M/δ)/ϵ) many samples from X .

By a union bound, all units u satisfy |τ̂(u)− τ(u)| ≤ ρ with probabbility at least 1− δ. Through a
careful analysis of the estimates, we also show the following:

Lemma 5. The output estimates τ̂K and the set ULEA returned by Algorithm 1 satisfy the following
properties: (1) |τ̂K − τK | ≤ ρ. (2) All units u such that τ(u) > τK + 2ρ belong to ULEA. (3) All
units u such that τ(u) < τK − 2ρ do not belong to ULEA.

In other words, our algorithm selects the units optimally in the intervals (τK+2ρ, 1] and [0, τK−2ρ).
We only need to worry about the interval surrounding τK . This motives the following definitions:

Definition 7. We define the intervals A1 = (τK + 2ρ, 1] and D = [τK , τK + 2ρ]. We also let
U0
LEA = {c ∈ ULEA | τ(u) /∈ A1}, K1 = |{u | τ(u) ∈ A1}|, and K0 = K −K1.

The guarantees of Lemma 5 imply that VULEA
(A1) = VU∗(A1), and moreover allow us to lower

bound VU0
LEA

(
[0, 1]

)
with (τK − 2ρ)K0, and upper bound VU∗(D) with (τK + 2ρ)K0. This allows

us to get the following bound, where we use V (A1) as a short-hand for VULEA
(A1) = VU∗(A1).

Claim 3.1.
VULEA

(
[0, 1]

)
VU∗

(
[0, 1]

) ≥ 1− 4ρK0

V (A1) + (τK + 2ρ)K0
.

We let Prτ denote the distribution of τ(u) values. The quantity Prτ [τK , τK+2ρ] and its relationship
to 2ρM is key to our analysis. To that end, we let PrτK [τK , τK + 2ρ] = θK and V (A1) = γ1M .
This leads to the following general accuracy bound for Algorithm 1:

Claim 3.2. Given any X ,U ,K, Algorithm 1 returns a
(
1− 4γθK

γ1 + τKθK
·
√
ϵ
)

-optimal approximation

with O(M ln(2M/δ)/ϵ) many samples.

In Section 4, we show how the expression in Claim 3.2 simplifies to (1− ϵ) in the case of ρ-regular
distributions, thus attaining a (1− ϵ)-OPT allocation.

3.2 QUANTILES SUFFICE

A key insight in our analysis is the fact that for the problem of treatment allocation we only need
to know quantiles of the distribution. In other words, it’s enough to approximate the CDF of the
distribution Prτ of treatment effect values.

Definition 8. Let F (t) = Prτ [τ(u) ≤ t] be the CDF of the distribution of τ(u) values, and let F̂
denote the CDF corresponding to the distribution Prτ̂ of the low-accuracy estimates τ̂(u) produced
by Algorithm 1. That is, F̂ (t) = 1

M |{u : τ̂(u) ≤ t}|.

We denote the PDF by f(t). Given a budget of K ≤ M , τK definitionally corresponds to the value
in [0, 1] such that F (τK) = 1 −K/M ; i.e., the K-th M -th quantile of the distribution of τ values.
Similarly, γ1 and VU∗ can be computed as permutation-invariant quantities derived from the CDF:

Claim 3.3. For any budget K ≤ M , we can compute τK , γ1, VU∗ as: (1) τK = F−1(1 −K/M),
(2) γ1 = 1

N

∫ 1

τK+2ρ
t dF (t), (3) VU∗([0, 1]) =

∫ 1

τK
t dF (t).

Moreover, the ρ-accurate estimates τ̂(u) naturally provide an approximation of f and F , which
we can in turn use to check, from the low-accuracy estimates τ̂K , the smoothness behavior of the
treatment effect values around the optimal threshold:

Claim 3.4. For any t ∈ [0, 1], F̂ (t− ρ) ≤ F (t) ≤ F̂ (t+ ρ).

6
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4 THE SAMPLE COMPLEXITY OF TREATMENT ALLOCATION

To illustrate the key ideas, we show that if the treatment effect values τ(u) are uniformly distributed,
our allocation algorithm achieves a (1 − ϵ)-optimal allocation with O(M/ϵ) many samples. At the
same time, any estimator that computes all M treatment effect values values τ(u), each within
ϵ-accuracy, must use at least Ω(M/ϵ2) many samples. Therefore, the uniform distribution demon-
strates a sample complexity gap between the problem of obtaining an optimal allocation and the
problem of full CATE estimation. By uniformly distributed we mean that we place the τ(u) values
uniformly-spaced in [0, 1] and randomly permute them.
Theorem 6. Let the treatment effect values be uniformly distributed. Then: (1) We can obtain a
(1 − ϵ, δ)-approximation of the optimal allocation with N = O(M ln(2M/δ)/ϵ) many samples
from X for any budget K ≤ M . (2) FullCATE requires Ω(M/ϵ2) samples.

Proof sketch. The sample complexity bound for Part (1) follows from Lemma 4. The ϵ-optimality
of the realized allocation value follows as a consequence of Claim 3.1 using the fact that θK =
Prτ [τK , τK + 2ρ] ≈ 2ρ, given that the τ(u) values are uniformly distributed by assumption. This
allows us to obtain the term ρ2 in the numerator of the expression 4ρθK/(γ1+(τK +2ρ)θK), which
is the key to achieving a (1− (

√
γρ)2) = (1− ϵ)-optimal allocation. The lower bound follows from

a minimax argument based on LeCam’s Theorem.

4.1 SMOOTH DISTRIBUTIONS

We can generalize our O(M/ϵ) upper bound beyond the uniform distribution. All we require is for
the D-interval to have “uniform-like” mass, so that θK ≈ 2ρ and thus our proof of Theorem 6 can
still go through (i.e., to obtain the ρ2 term in the numerator). Because τK could be anywhere, we
require this condition on all intervals that have width at least 2ρ, a condition that we call ρ-regularity:

Definition 9. Given ρ > 0, we say that a distribution Z on [0, 1] is ρ-regular if for all intervals
S ⊆ [0, 1] such that |S| ≥ 2ρ there exists a constant c = Θ(1) satisfying PrZ [S] ≤ c · U [S], where
U = PrU and U denotes the uniform distribution over [0, 1].

We can view this condition as a form of smoothness requirement. Note that this is a much looser
notion that requiring, for example, O(ρ) total variation distance between Z and U , or with any other
distance measure to the uniform that is not permutation invariant. Note that the value of c is always
upper-bounded by the supremum of the density of the distribution Z; i.e., c ≤ supt f(t).
Theorem 7. Let the treatment effect values be distributed according to a ρ-regular distribution
for ρ = Θ(

√
ϵ). Then, we can obtain a (1 − ϵ, δ)-approximation of the optimal allocation with

N = O(M ln(2M/δ)/ϵ) many samples from X for any budget 0 ≤ K ≤ M .

Proof sketch. The ρ-regularity condition ensures that θK = Prτ [τK , τK + 2ρ] = 2ρc for c = Θ(1).
Following Claim 3.1, this allows us to again obtain the term ρ2 in the numerator of the expression
4ρθK/(γ1 + (τK + 2ρ)θK), thus ensuring that the ratio is upper bounded by ϵ.

Note that for any distribution we can get a (1 − ϵ)-OPT approximation by setting γ =
√
γ1/8c

when calling Algorithm 1, by letting c be the minimum value such that PrY [S] ≤ c · U [S] for all
intervals S such that |S| ≥ 2ρ. However, if c is not Θ(1), then ρ might not be of the order Θ(

√
ϵ),

and so the sample complexity will no longer be of the order O(M/ϵ). That is, for an arbitrary Prτ :
Theorem 8. Let c be the minimum value such that Prτ [S] ≤ c · U [S] for all subsets S ⊆ [0, 1] such
that |S| ≥ 2ρ. For any budget K ≤ M , we call Algorithm 1 with with ρ =

√
VU∗/8c. This gives a

(1− ϵ)-OPT approximation of the optimal allocation with O(M ln(2M/δ)/ρ2) many samples.

We remark that VU∗ is short-hand for VU∗([0, 1]) and that it is a function of K. If the distribution is
ρ-regular, then c = Θ(1), in which case we require O(M/ϵ) many samples, recovering Theorem 7.
Note that solving the FullCATE problem to accuracy ϵ already required having a bound on τK
(Claim 3), if we want to ensure exactly that we get a (1− ϵ)-optimal allocation. Similarly, here we
use an upper bound of γ in order to ensure exact ϵ-optimality.

Why ρ-regularity is not a demanding property. As discussed, ρ-regularity is a permutation-invariant
property that only depends on the shape of the CDF. It also ensures that the threshold τK that deter-
mines which units are selected for treatment does not yield a highly arbitrary allocation. Empirically,
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as we extensively show in our experiments with real-world RCT data in Section 6, our algorithm
highly succeeds in practice, further demonstrating that ρ-regularity is a natural condition. Moreover,
typical families of distributions of treatment effect values are ρ-regular for reasonable values of γ.
As we compute in Section C.1 using the CDF-derived quantities shown in Claim 3.3, we can explic-
itly compute the values of τK , c, VU∗ , and γ for typical distributions of treatment effect values from
their CDF, which we do for the uniform, Beta, and Gaussian distribution families. In all of these
cases, γ ranges between 0.07 and 0.2.

4.2 GENERAL OPTIMALITY CONDITION

Theorem 7 is not an if and only if statement, and so ρ-regularity is a sufficient but not necessary
condition for Algorithm 1 to obtain an optimal allocation. This means that, in some cases, we can
obtain optimal allocations even if there is a lot of mass in the interval around the optimal threshold
τK (e.g., if the units are extremely close to τK). We conclude this section by providing a necessary
and sufficient condition on the CDF of the distribution of τ values (for the worst-case high probabil-
ity instance of Algorithm 1), thus providing a precise instance-dependent upper bound on the sample
complexity of near-optimal treatment allocation. To do so, we require the following definition:
Definition 10. Given budget K ≤ N , αK ∈ [0, 1] corresponds to the smallest value such that
Prτ

[
[τK − 2ρ, τK − αK ]

]
= Prτ

[
[τK , τK + 2ρ]

]
.

Claim 4.1. For any budget K ≤ N , Algorithm 1 called with parameters ϵ, δ, ρ returns a (1− ϵ, δ)-
OPT allocation if and only if the distribution of treatment effect values satisfies:∫ τK+2ρ

τK
tf(t) dt−

∫ τK−αK

τK−2ρ
tf(t) dt dt ≤ ϵ

∫ 1

τK
tf(t) . (1)

As we showed in Section 3.2, our estimation algorithm provides an approximation to the CDF of the
distribution of treatment effect values. Specifically, we can use it as a certificate to check whether
Equation 1 is satisfied (note that this is only a one-sided guarantee, given that we use various upper
bounds). To do so, we compute an upper bound of the expression (VU∗(D) − VU0

LEA
)/VU∗([0, 1])

using our τ̂ estimates. We do so in Section C.2 by using Claim 3.4. In the same section, we give an
example of Claim 6 in the case where the treatment effect values are uniformly distributed in [0, 1].

5 FLEXIBLE BUDGET

When the original τK threshold has too many units around it for our algorithm to return an optimal
allocation, we can slide the budget K up or down slightly into a new budget K ′ so as to find a
new threshold τK′ that lies in an interval of low probability mass (where ρ-regularity holds). In our
experiments in Section 6, we find the closest K ′ to K that obtains a (1− ϵ)-optimal allocation with
only O(M/ϵ) samples, in the few cases where the original K does not give an optimal allocation.

Very dense distributions. Such a budget K ′ does not always exist: e.g., if all τ(u) values are the
same, then the interval [τK , τK + 2ρ] does not satisfy ρ-regularity for any K ∈ [1, N ]. However,
in this case, Algorithm 1 always returns an optimal allocation, since any selection of K units yields
the optimal K · τ(u) value (this is also shown by Claim 4.1, since VU∗(D) − VU0

LEA
= 0). In

Section D we provide a “2 spikes” example where we show that no budget is able to achieve an
optimal allocation. Nonetheless, we show that we almost achieve an optimal allocation, and so in
order to realize the required value, we can either promise a (1 − κϵ)-OPT allocation for a small κ,
or we can select more units for intervention. This type of resource augmentation is different from
the “sliding budget” approach discussed at the beginning of this section. Here, we add more units
to our allocation ULEA, but we compete against the original budget K. For example, as we show in
Section D for the 2 spikes case, increasing the budget to K ′ = K(1 + 3ϵ) ensures the ϵ-optimality
of a random allocation. In the appendix, we apply this overspending idea to distributions that are
not ρ-regular around the initial budget threshold τK . As we show, adding an extra ≈

√
ϵK0 units

suffices to obtain a (1− ϵ)-optimal allocation. In our empirical results in Section 6, we obtain that in
practice we only require adding one extra unit in order to realize the value of the optimal allocation.

Choosing an appropriate budget. In Section D, we discuss various strategies for when the policy
maker has some flexibility over the budget, where it is sensible to refine the number of units that
are selected for intervention after running Algorithm 1. These include: Detecting when a budget

8
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Figure 2: Top row: failure rate vs ϵ. Bottom row: closest K ′ value vs ϵ. Each row represents one
dataset (STAR, TUP, NSW, Acup., Post-op) with one of the unit grouping methods that we study.

does not work by using the approximation F̂ of the CDF (this is a one-sided test, as per the test of
Claim 1), sliding the budget from K to K ′ as to find a ρ-regular interval, and adding a few extra
units to ULEA as to realize the optimal value (overspending), in the cases where the distribution is
dense throughout a large range. We test the flexible budget strategies experimentally in Section 6.

6 EXPERIMENTS WITH REAL-WORLD RCTS

We test our allocation algorithm extensively on five different real-world RCT datasets across dif-
ferent domains, these set of five datasets was recently studied in Sharma & Wilder (2024). These
are: the (1) Tennessee’s Student Teacher Achievement Ratio (STAR) project (Pate-Bain et al., 1997)
(eduction), (2) Targeting the Ultra Poor (TUP) in India (Banerjee et al., 2021) (economic de-
velopment), (3) National Supported Work (NSW) demonstration (Dehejia & Wahba, 2002; 1999;
LaLonde, 1986) (labor economics), (4) Acupuncture dataset (Vickers et al., 2004) (healthcare), and
(5) Postoperative Pain dataset (McHardy & Chung, 1999) (healthcare). We describe these in detail,
as well as our experimental set-up, in Section E and Section F.

For each dataset, we group individuals in different ways using the covariates, ensuring that each
group is somewhat balanced in terms of control vs treatment. Each different grouping method yields
a partition U of M units. For each unit u, we define τ(u) to be the average treatment effect within the
unit across the entire dataset. Then, we run our semi-synthetic experiments as follows: every time
we sample from the population, we choose a unit u uniformly at random, and then receive a sample
i.i.d. from Bern(τ(u)). This gives us estimates τ̂(u) for each u. This semi-synthetic setting allows
us to know the ground-truth of the value realized by the optimal allocation. We repeat the whole
sampling procedure 50 times, to be able to obtain confidence bounds. For the plots in Figure 1, for
various sample sizes, we compute the corresponding estimates τ̂ , and then the realized allocation
value for various budgets K ≤ M . For the plots in Figure 2, we repeat the sampling simulation
for different fixed values of ϵ (and in turn repeating each simulation 50 times). For each, we call
Algorithm 1 and obtain a set of units ULEA for each budget K. For all budgets K ∈ [1,M ], we
check whether or not ULEA is an (1− ϵ)-optimal allocation, and compute the percentage of budgets
(out of a total of M possible budgets) that fail to be (1 − ϵ)-optimal (top row in Figure 1). For the
budgets that fail, we compute the closest budget K ′ that yields an (1 − ϵ)-optimal allocation (blue
line, bottom row in Figure 1), and the closest budget K ′ satisfying K ′ ≤ K; i.e., if we only consider
underspending (orange line, bottom row in Figure 1). We see that, on average, the failure rate
always says below 5%, and that |K ′ −K| is typically 1, even if we are only allowed to underspend
(K ′ ≤ K). We also try the resource augmentation approach of adding more units, and in all failed
budget cases we always realize a (1− ϵ)-optimal value by adding just one extra unit.

We provide all the details of the experiments and datasets along with the rest of figures (which
include all of our grouping methods for each dataset, thus replicating Figures 1 and 2 extensively
across all datasets and groupings) in the appendix in Sections E and F.
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ETHICS STATEMENT

As we argue in this paper, treatment allocation is a problem of societal interest, given that policy
makers use allocation algorithms and run randomized control trials in order to decide which groups
of the population to intervene on. Studying algorithms for such interventions can thus crucially
affect how these are performed in practice. In our paper, we only use publicly-available data from
RCTs that have already been conducted, and so our study does not perform any real-world interven-
tion. Still, we hope that our results can be beneficial in guiding treatment allocations in practice;
specifically, our results suggest that good allocations can be attained with far fewer samples than
the usual CATE estimation bound would suggest, and thus should be much cheaper and easier to
implement in practice.

REPRODUCIBILITY STATEMENT

We provide all proofs for our mathematical statements in the appendix. We provide a detailed
summary of the set-up of our experiments in Section E, and we provide the code that we have used
to generate all of our plots and results in the supplementary material package for each of the five
datasets. All the RCT datasets that we explore in this paper are publicly available on the Internet.
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A DEFERRED PROOFS FROM SECTION 2

Lemma 9. We can compute an (ϵ, δ)-accurate estimate τ̂(u) of u with O(ln(2/δ)/ϵ2) samples.

Proof. By Hoeffding’s inequality, given that τ(u) ∈ [0, 1] for all u, it follows that with probability
at least 1− δ,

Pr
[∣∣τ̂(u)− τ(u)

∣∣ ≥ ϵ
]
≤ 2e−2mϵ2 .

Hence, if we want τ̂(u) to be an (ϵ, δ)-accurate estimate of the true value τ(u), we need to take
m ≥ O(ln(2/δ)/ϵ2) many samples from u.

Lemma 3. Given any budget K ≤ M and parameters ϵ, δ, we can solve the ALLOC(X ,U , ϵ, δ)
problem with N = O(M ln(2/δ)/ϵ2) samples from X .

Proof. By Lemma 2, we can solve the FullCATE(X ,U , ϵ, δ) problem with parameters X ,U , ϵ, δ
with O(m ln(2/δ)/ϵ2) samples from X . We use parameters ϵ′ and δ/M , for ϵ′ to be determined in
the proof. This produces M estimates τ̂ such that τ̂(u) is an (ϵ′, δ/N)-accurate estimate of τ(u) for
each u ∈ U . We then define the following allocation function g: select the K units with the highest
estimated values τ̂(u). This defines the set of units Ug .

By definition of τK , it follows that VU∗([0, 1]) ≥ KτK . In the worst case, all the units that we select
are wrong, and by the ϵ′ accuracy guarantee we have that, in general, VU∗([0, 1]) − VUg ([0, 1]) ≤
2Kϵ′, and equivalently

VUg
([0, 1])

VU∗([0, 1])
≥ 1− 2Kϵ′

VU∗([0, 1])
≥ 1− 2Kϵ′

KτK
= 1− 2ϵ′

τK
.

Thus, if we set ϵ′ ≤ τK
2
ϵ when calling the FullCATE problem, we obtain a (1−ϵ, δ)-OPT allocation

function. Hence, we have solved the ALLOC problem, as required.

B DEFERRED PROOFS FROM SECTION 3

Claim B.1. Given a budget K, U∗ = {u | τ(u) ≥ τK}.

Proof. By definition of τK , there are exactly K − 1 units that have τ(u) value higher than τK , all
of which are included in U . Hence swapping any unit in U∗ with one not in the U∗ would decrease
the value of the allocation, which would contradict the optimality of ALLOC∗.

Lemma 4. Given any X ,U ,K, Algorithm 1 requires O(M ln(2M/δ)/ϵ) many samples from X .

Proof. By a Hoeffding bound using parameters ρ and δ/M , letting N(u) denote the number of
samples that we require from unit u, we have that

Pr
[
|τ̂(u)− τ(u)| ≥ ρ

]
≤ 2 exp(−2N(u) · ρ2) = δ

M
=⇒ N(u) =

ln(2M/δ)

2ρ2
.

Therefore, adding the number of samples across the M units, we obtain that this low-accuracy
estimation requires

M ln(2M/δ)

ρ2
=

M ln(2M/δ)

ϵ

many samples from X .

Lemma 5. The output estimates τ̂K and the set ULEA returned by Algorithm 1 satisfy the following
properties: (1) |τ̂K − τK | ≤ ρ. (2) All units u such that τ(u) > τK + 2ρ belong to ULEA. (3) All
units u such that τ(u) < τK − 2ρ do not belong to ULEA.
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Proof. We prove each of the three parts separately.

(1) By definition of τK , there are exactly K values τ(u) such that τ(u) ≥ τK . By the ρ-accuracy
guarantee on our estimates τ̂(u), it follows that τ̂(u) ≥ τK − ρ for all such u. Then, there are K
values τ̂(u) that are at least τK − ρ. By definition of τ̂K , then, it must be that τ̂K ≥ τK − ρ.

Symmetrically, τ̂K is definitionally the (N −K +1)-th smallest number in the increasing sequence
of values τ̂(u), and similarly τK is the (N −K + 1)-th smallest number in the increasing sequence
of values τ(u). Therefore, exactly N −K values τ(u) are such that τ(u) < τK . By the ρ-accuracy
guarantee, τ̂(u) < τK + ρ for all such u. Thus there are N −K values τ̂(u) that are below τK + ρ.
By definition of τ̂K , it must be that τ̂K ≤ τK + ρ.

Since τ̂K ≥ τK −ρ and τ̂K ≤ τK +ρ, it follows that τ̂K ∈ [τK −ρ, τK +ρ]. Hence |τ̂K − τK | ≤ ρ.

(2) By the ρ-accuracy guarantee, all units u satisfying τ(u) > τK + 2ρ also satisfy τ̂(u) > τK + ρ.
By part (1) of this claim, it then follows that τ̂(u) > τ̂K . Hence, Algorithm 1 selects such u for
treatment and so they belong to ULEA.

(3) Symmetrically, by the ρ-accuracy guarantee, all units u satisfying τ(u) < τK − 2ρ also satisfy
τ̂(u) < τK − ρ. By part (1) of this claim, it then follows that τ̂(u) < τ̂K . Hence, Algorithm 1 does
not select such u for treatment and so they do not belong to ULEA.

Claim 3.1.
VULEA

(
[0, 1]

)
VU∗

(
[0, 1]

) ≥ 1− 4ρK0

V (A1) + (τK + 2ρ)K0
.

Before we prove Claim 3.1, we show some intermediate lemmas.

First, we use interval A1 to analyze the difference between VULEA
and VU∗ .

Claim B.2. VU∗
(
[0, 1]

)
= VU∗

(
[τK , 1]

)
.

Proof. As shown in Claim B.1, the optimal allocation for budget K contains all units u such that
τ(u) ≥ τK .

Claim B.3. VULEA

(
[0, 1]

)
≥ VULEA

(A1) = V
(
(τK + 2ρ, 1]

)
.

Proof. Firstly, VULEA

(
[0, 1]

)
≥ VULEA

(A1) follows since A1 ⊆ [0, 1] and V (·) is an additive function.
Secondly, VULEA

(A1) = V
(
(τK + 2ρ, 1]

)
follows by the definition of A1.

We can lower bound VULEA

(
[0, 1]

)
more precisely using the interval D = [τK , τK + 2ρ] and the set

U0
LEA (see Definition 7). Specifically, we write the values of the optimal allocation and our allocation

using the D interval.

Claim B.4. (1) VU∗
(
[0, 1]

)
= VU∗(D) + VU∗

(
(τK + 2ρ, 1]

)
.

(2) VULEA

(
[0, 1]

)
=

∑
i∈U0

LEA
τ(i) + VULEA

(
(τK + 2ρ, 1]

)
.

Proof. The first equality follows by Claim B.2 and the additivity of V (·). The second equality
follows just from the additivity of V (·).

We want to separate the budget between the number of units it treats over A1 versus elsewhere, so
we split K as follows:

Definition 11. Let K1 =
∣∣{u | τ(u) ∈ A1}

∣∣, and let K0 = K −K1.

We can now provide the following bounds:

Claim B.5. VU0
LEA

(
[0, 1]

)
≥ (τK − 2ρ)K0.

Proof. By Lemma 5, all units u ∈ ULEA satisfy τ(u) ≥ τK − 2ρ, and K0 ≤ K.
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Claim B.6. VU∗(D) ≤ (τK + 2ρ)K0.

Proof. By definition of A1, all units u such that τ(u) ∈ A1 satisfy satisfy τ(u) > τK + 2ρ. Hence,
by definition of K0, any unit u ∈ K0 must satisfy τ(u) ≤ τK + 2ρ.

Claim B.7.
VULEA

(
[0, 1]

)
VU∗

(
[0, 1]

) =
VULEA

(A1) + VU0
LEA

(
[0, 1]

)
VU∗(A1) + VU∗(D)

≥ VULEA
(A1) + (τK − 2ρ)K0

VU∗(A1) + (τK + 2ρ)K0
.

Proof. The first equality follows from Claim B.4; the inequality from Claims B.5, and B.6.

To further simplify the expression, we use:

Claim B.8. VULEA
(A1) = VU∗(A1).

Proof. By definition of A1, all units u ∈ A1 satisfy τ(u) > τK + 2ρ. By definition of τK , all such
u are part of U∗. As for our allocation, by Lemma 5 all such u are also part of ULEA.

By the previous claim, we can use V (A1) as a short-hand for VULEA
(A1) = VU∗(A1). With these

intermediate small claims, we can now show Claim 3.1.

Proof of Claim 3.1. This follows from re-arranging the expression in Claim B.7. Specifically,

VULEA
(A1) + (τK − 2ρ)K0

VU∗(A1) + (τK + 2ρ)K0
=

V (A1) + (τK − 2ρ)K0

V (A1) + (τK + 2ρ)K0

=
V (A1) + (τK + 2ρ)K0 − (τK + 2ρ)K0 + (τK − 2ρ)K0

V (A1) + (τK + 2ρ)K0

= 1− (τK + 2ρ)K0 − (τK − 2ρ)K0

V (A1) + (τK + 2ρ)K0

= 1− 4ρK0

V (A1) + (τK + 2ρ)K0

For the proof of Claim 3.2, recall the formal definitions of θK and γ1:

Definition 12. Let Prτ [τK , τK + 2ρ] = θK and let V (A1) = γ1N .

Moreover, we can relate K0 to the distribution Prτ of treatment effect values:

Claim B.9. K0 = Prτ
[
[τK , τK + 2ρ]

]
·N .

Proof. All units u selected with the K0 budget satisfy τ(u) /∈ A1 by definition, and hence they
satisfy τ(u) ≤ τK + 2ρ. Since all units selected by K0 are still part of U∗, it follows that they all
satisfy τ(u) ≤ τK . Hence, |K0| =

∣∣{u | τ(i) ∈ [τK , τK + 2ρ]
∣∣. Lastly,

∣∣{u | τ(i) ∈ [τK , τK +

2ρ]
∣∣ = Prτ [τK , τK + 2ρ] ·N by definition of Prτ .

Claim 3.2. Given any X ,U ,K, Algorithm 1 returns a
(
1− 4γθK

γ1 + τKθK
·
√
ϵ
)

-optimal approximation

with O(M ln(2M/δ)/ϵ) many samples.

Proof. Using the Definition 12 on Claim 3.1 and dividing by N it follows that

VULEA

(
[0, 1]

)
VU∗

(
[0, 1]

) ≥ 1− 4ρθK
γ1 + (τK + 2ρ)θK .
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This is a (1− ϵ)-OPT approximation if

4ρθK
γ1 + (τK + 2ρ)θK

≤ ϵ.

Hence, to get a (1− ϵ)-OPT approximation, we require

θK ≤ ϵγ1
4ρ− ϵ(τK + 2ρ)

.

Alternatively, by plugging in ρ = γ
√
ϵ, we obtain the expression in the statement of Claim 3.2.

Claim 3.3. For any budget K ≤ M , we can compute τK , γ1, VU∗ as: (1) τK = F−1(1 −K/M),
(2) γ1 = 1

N

∫ 1

τK+2ρ
t dF (t), (3) VU∗([0, 1]) =

∫ 1

τK
t dF (t).

Proof. First, τK is definitionally the K-th largest τ(u) value. In terms of the CDF F of treatment
effect values Prτ , this means that τK corresponds to the value in [0, 1] satisfying F (τK) = 1−K/M .

Second, γ1 definitionally satisfies γ1 = V (A1)/N . By the definition of the value function and given
that A1 = (τK + 2ρ, 1], it follows that

V (A1) =
∑

u|τ(u)∈A1

τ(u).

Therefore, this corresponds to taking the integral
∫ 1

τK+2ρ
tf(t) dt, where t accounts for the value of

τ(u) and f(t) for the density of units for each value.

Similarly,

VU∗([0, 1]) =

∫ 1

0

tf(t) dt =

∫ 1

τK

tf(t) dt,

given that by Claim B.2 VU∗
(
[0, 1]

)
= VU∗

(
[τK , 1]

)
. Lastly, integrating tf(t) dt with the PDF is

equivalent to integrating tdF (t) with the CDF.

Claim 3.4. For any t ∈ [0, 1], F̂ (t− ρ) ≤ F (t) ≤ F̂ (t+ ρ).

Proof. If τ̂(u) ≤ t− ρ, by the ρ-accuracy guarantee it follows that τ(u) ≤ τ̂(u) + ρ ≤ t. Hence:

F̂ (t− ρ) =
|{u : τ̂(u) ≤ t− ρ}|

N
≤ |{u : τ(u) ≤ t}|

N
= F (t).

Symmetrically, if τ(u) ≤ t, then by the ρ-accuracy guarantee it follows that τ̂(u) ≤ τ(u)+ρ ≤ t+ρ.
Hence:

F (t) =
|{u : τ(u) ≤ t}|

N
≤ |{u : τ̂(u) ≤ t+ ρ}|

N
= F̂ (t+ ρ).

We can equivalently express Claim 3.4 in terms of the number of units present in an interval. Specif-
ically, for any interval in [0, 1] we have that:

Claim B.10. Given any interval [a, b] ⊆ [0, 1],∣∣u : τ̂(u) ∈ [a+ ρ, b− ρ]
∣∣ ≤ Pr

τ

[
[a, b]

]
·N ≤

∣∣u : τ̂(u) ∈ [a− ρ, b+ ρ]
∣∣.

Proof. By the ρ-accuracy guarantee, we know that for any unit u, if τ̂(u) ∈ [a+ ρ, b− ρ], then the
corresponding τ(u) is in [a, b]. Similarly, if τ(u) ∈ [a, b], then this implies that τ̂(u) ∈ [a−ρ, b+ρ].
Lastly, the number of τ(u) such that τ(u) ∈ [a, b] is precisely equal to Prτ

[
[a, b]

]
·N .
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This allows us to use our low-accuracy estimates of the treatment effects to approximate the true
probability mass in any interval by enlarging or shrinking the interval accordingly.

We can use this approximation of the CDF to check the smoothness behavior of the treatment effect
values from our low-accuracy estimates τ̂K . Specifically, we are interested in the number of units in
the D = [τK , τK + 2ρ] interval. By Claim B.10, we have that

Pr
τ

[
[τK , τK + 2ρ]

]
·N ≤

∣∣u : τ̂(u) ∈ [τK − ρ, τK + 3ρ]
∣∣.

Moreover, by the ρ-accuracy guarantee, we know that τK ∈ [τ̂K − ρ, τ̂K + ρ]. Hence, the number
of units that have τ̂(u) value in the interval [τ̂K − 2ρ, τ̂K + 4ρ] upper bounds the quantity

Pr
τ

[
[τK , τK + 2ρ]

]
·N,

and can be entirely computed from out low-accuracy estimates τ̂ . This allows us to check whether
the interval around the optimal threshold contains too many units, and thus fails to satisfy the
smoothness condition required by ρ-regularity. As we discuss in Section 5, we can also use our
low-accuracy estimation of the CDF to guide the choice of the budget, provided there is flexibility
in the choice of the budget.

C DEFERRED PROOFS FROM SECTION 4

We begin by showing our upper-bound for ρ-regular distributions, and then show the upper-bound
for uniform distributions as a corollary, given that the uniform distribution is ρ-regular.
Theorem 7. Let the treatment effect values be distributed according to a ρ-regular distribution
for ρ = Θ(

√
ϵ). Then, we can obtain a (1 − ϵ, δ)-approximation of the optimal allocation with

N = O(M ln(2M/δ)/ϵ) many samples from X for any budget 0 ≤ K ≤ M .

Proof. For the first part, we use our Algorithm 1. The sample complexity follows from Claim 4. As
for the accuracy guarantee, by Claim 3.1 we know that we get a (1− ϵ, δ)-OPT approximation if

4ρθK
γ1 + (τK + 2ρ)θK

≤ ϵ. (2)

Because Prτ is ρ-regular, we have that

θK = Pr
τ
[τK , τK + 2ρ] = 2ρc

for some c = Θ(1). As in Section 4, we bound the value of V (A1). We obtain a more conservative
bound by dropping (τK + 2ρ)θK from the denominator and requiring that

4ρ(2ρc)

γ1
=

8cρ2

γ1
≤ ϵ.

Hence, we obtain a (1 − ϵ)-OPT approximation by setting γ =
√

γ1/(8c) and ρ = γ
√
ϵ, which

ensures that the previous inequality holds.

We can also keep the more precise ratio 4ρθK
γ1+(τK+2ρ)θK

. Note that

γ1 + (τK + 2ρ)θK ≥ VU∗([τK , 1]) = VU∗ .

Note that VU∗ is a function of K as well (even if not indicated with a subscript). Therefore, we need
to satisfy the inequality

4ρθK
γ1 + (τK + 2ρ)θK

≤ 4ρθK
VU∗

≤ ϵ,

which we do by setting γ =
√

VU∗/(8c) and ρ = γ
√
ϵ.

It is clear from this proof why we need θK = 2ρc. If we only have the bound θK ≤ 1, then we get
4ρ/VU∗ ≤ ϵ, which in turn requires ρ to be of the order of ϵ, rather than of

√
ϵ. But if θK = Θ(ρ),

then we get the term ρ2 in the numerator, which is the crucial point that allows us to get ρ = Θ(
√
ϵ)

and thus an optimal allocation algorithm with sample complexity Õ(N/ϵ) rather than with O(N/ϵ2).
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Theorem 6. Let the treatment effect values be uniformly distributed. Then: (1) We can obtain a
(1 − ϵ, δ)-approximation of the optimal allocation with N = O(M ln(2M/δ)/ϵ) many samples
from X for any budget K ≤ M . (2) FullCATE requires Ω(M/ϵ2) samples.

Proof. For the first part, we use our Algorithm 1. The sample complexity follows from Claim 4. As
for the accuracy guarantee, by Claim 3.1 we know that we get a (1− ϵ, δ)-OPT approximation if

4ρθK
γ1 + (τK + 2ρ)θK

≤ ϵ. (3)

For a fixed M , recall that for a uniform distribution of M treatment effect values, the τ(u) are
equally-spaced in [0, 1] and randomly permuted among them. Thus, this discrete version of the
uniform distribution is ρ-regular with ρ = 1/M and c = 2. This follows from the following
argument: let S ⊆ [0, 1] be any interval of length ℓ ≥ 2ρ. By the discrete equal spacing of the
treatment effects, there are at most ℓM + 2 units in S, and so Pr[S] ≤ (ℓM + 2)/M = ℓ + 2/M
under this distribution. So for all intervals S with |S| ≥ 2ρ = 2/M , it follows that

Pr[S] ≤ ℓ+ 2/M ≤ 2ℓ = 2U [S],
thus satisfying the definition of ρ-regularity with c = 2. Given that M is fixed, ρ = Θ(

√
ϵ) and thus

we can apply Theorem 7 to this discrete uniform distribution, from which the upper bound follows.

For the lower bound, we provide a minimax argument based on LeCam’s method. Given a parameter
space Θ, for each θ ∈ Θ we let Pθ denote the distribution of the observed data under parameter θ.
Then, LeCam’s Theorem (also known as the two-point method) states that

inf
Ψ

sup
θ,θ′

max{Pr
Pθ

[Ψ ̸= 0], Pr
Pθ′

[Ψ ̸= 1] ≥ 1

2
e−KL(Pθ||Pθ′ )

for any estimator Ψ and parameter values θ, θ′ ∈ Θ, where PrPθ
denotes the probability when

the data is distributed according to Pθ, and similarly for Pθ′ . Here, KL(Pθ||Pθ′) denotes the KL
divergence between Pθ and Pθ′ .

Because we are working with the discrete uniform distribution, where the τ(u) values are uniformly
spaced in [0, 1], we consider the family of values p = {1/M, 2/M, . . . , 1}. Let p be one of such
values, bounded away from 0 and from 1; without loss of generality, we can let p ∈ [1/4, 3/4]. For
a unit u, we consider the two parameters

θ : τ(u) = p− ϵ, θ′ : τ(u) = p+ ϵ.

If τ̂(u) is an (ϵ, δ)-accurate estimate of τ(u), then definitionally it must satisfy

Pr
[
|τ̂(u)− (p− ϵ)| ≤ ϵ

]
≥ 1− δ, Pr

[
|τ̂(u)− (p+ ϵ)| ≤ ϵ

]
≥ 1− δ.

We consider the test Ψu = 1[τ̂(u) ≥ p]. For an (ϵ, δ)-accurate estimate, we have that
Pr
θ
[Ψu = 1] ≤ δ, Pr

θ′
[Ψu = 0] ≤ δ.

That is, a good estimator yields a test with small error.

For each unit u, we observe N samples drawn i.i.d. from Bern(τ(u)). By standard bounds on the
KL divergence we have that

KL(Bern(p− ϵ)||Bern(p+ ϵ)) ≤ 13ϵ2.

Therefore, LeCam’s Theorem tells us that for any estimator Ψ,

Pr
θ
[Ψ = 1] + Pr

θ′
[Ψ = 0] ≥ 1

2
e−KL(Bern(p−ϵ)||Bern(p+ϵ).

Hence we get that

2δ ≥ 1

2
e−13Nϵ2 =⇒ N ≥ 1

13ϵ2
log(1/4δ).

Lastly, because the τ(u) values are uniformly distributed over [0, 1] it follows that Θ(M) many
units have τ(u) value bounded away from 0 and 1. (In the case where we consider p ∈ [1/4, 3/4],
there are N/2 many such units.) Therefore, by applying the LeCam Theorem on each such unit and
taking a union bound over them it follows that the total number of samples required for producing
(ϵ, δ)-accurate estimates for all units that have τ(u) value bounded away from 0 and 1 is N =
O((M/ϵ2) log(M/δ)) for any estimator Ψ, and hence N = Ω(M/ϵ2), as we wanted to show.
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While the upper bound of Theorem 6 follows as a corollary of the ρ-regularity theorem (Theorem 7)
for the discrete uniformly-spaced placement of the treatment effect values, it is illustrative to prove
the upper bound for an idealized version of the uniform distribution, where M → 0.

In this case, we have that
θK = Pr

τ
[τK , τK + 2ρ] = 2ρ.

Recall that γ1 is such that V (A1) = γ1N . We can compute V (A1) exactly (as per Claim 3.3),
but for this proof it is enough to bound V (A1). Given that A1 = (τK + 2ρ, 1], it follows that
Prτ [A1] = 1− (τK + 2ρ) = 1− τK − 2ρ. Hence:

γ1 =
V (A1)

N
≥ (τK + 2ρ) Pr

τ
[A1] = (τK + 2ρ)(1− τK − 2ρ),

given that all units in A1 have value at least τK + 2ρ. Using this bound on the denominator of the
LHS in Equation 3 we get that

γ1 + (τK + 2ρ)θK ≥ (τK + 2ρ)(1− τK − 2ρ) + (τK + 2ρ)(2ρ) = (τK + 2ρ)(1− τK).

Hence by Equation 3 we obtain a (1− ϵ, δ)-OPT approximation if

4ρθK
γ1 + (τK + 2ρ)θK

=
4ρ(2ρ)

(τK + 2ρ)(1− τK)
=

8ρ2

(τK + 2ρ)(1− τK)
≤ ϵ.

This is true whenever ρ ≤
√

τK(1− τK)

8

√
ϵ. In the case of the uniform distribution, we have that

τK = 1−K/N , which allows us to compute the value of γ exactly. We can also provide a general
bound for all budgets K: the function τK(1−τK) for τK ∈ [0, 1] is maximized at 1/4, and so setting
ρ = γ

√
ϵ for γ = 1

4
√
2

guarantees that our Algorithm 1 achieves a (1− ϵ, δ)-OPT approximation.

Theorem 8. Let c be the minimum value such that Prτ [S] ≤ c · U [S] for all subsets S ⊆ [0, 1] such
that |S| ≥ 2ρ. For any budget K ≤ M , we call Algorithm 1 with with ρ =

√
VU∗/8c. This gives a

(1− ϵ)-OPT approximation of the optimal allocation with O(M ln(2M/δ)/ρ2) many samples.

Proof. While c might not be of the order of Θ(1), we can still write θK = 2ρc. Then, we get a
(1− ϵ, δ)-OPT approximation if

4ρθK
γ1 + (τK + 2ρ)θK

=
8cρ2

γ1 + (τK + 2ρ)(2ρc)
≤ ϵ.

We can similarly ensure the more conservative inequality 8cρ2/γ1 ≤ ϵ by setting γ =
√

γ1

8c and

ρ = γ
√
ϵ. Less conservatively, we can set γ =

√
V K
U∗/(8c), given that γ1+(τK+2ρ)θK ≥ VU∗ .

C.1 EXAMPLES OF γ FOR TYPICAL DISTRIBUTIONS

For a distribution Prτ , recall that we denote the CDF by F , and so we denote the density function
by f . Note that we can bound the value of γ1 using f :

γ1 =

∫ 1

τK+2ρ

tf(t) dt =

∫ 1

τK

tf(t) dt−
∫ τK+2ρ

τK

tf(t) dt

≥
∫ 1

τK

tf(t) dt− (τK + 2ρ)θK

≥
∫ 1

τK

tf(t) dt− (τK + 2ρ)2cρ.

Recall that
∫ 1

τK
tf(t) dt = V K

U∗ . Indeed, in order to compute the value of the optimal allocation, it
suffices to have the CDF function, with any permutation of the units. Similarly, we can compute τK
directly from the CDF. Following our expressions derived in Claim 3.3, we can compute the values
of γ, c, and VU∗ for various typical distributions from their CDFs. In these examples, it is neater to
integrate tf(t) instead of the CDF directly, but not that we only need knowledge of the CDF of the
distribution (and the integration is equivalent).
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Uniform distribution. For the uniform distribution, we have f(t) = 1. Hence, c = 1, since it is
the maximum possible value of f(t). Moreover, we have:

VU∗([0, 1]) =

∫ 1

τK

tf(t) dt =

∫ 1

τK

t dt =
1− τ2K

2
.

Moreover, τK = 1−K/N . Therefore, by Theorem 7 and Claim 8, it follows that

γ =

√
VU∗

8c
=

√
1− (1−K/N)2

8
.

For all K ∈ [0, N ], γ is maximized at ≈ 0.35.

Beta distribution. For α, β, the PDF of the Beta distribution is given by

f(t;α, β) =
1

B(α, β)
tα−1(1− t)β−1,

where the Beta function B(α, β) is the normalization constant, and the CDF is given by

F (t) =
B(t;α, β))

B(α, β)
:= Ix(α, β),

where B(x;α, β) =
∫ x

0
tα−1(1− t)β−1 dt is known as the incomplete Beta function.

For α, β > 1, the mode of the distribution is given by α−1
α+β−2 (if α = β, then the mode is equal to

1/2), and so

c ≤ sup
t

f(t) = f
( α− 1

α+ β − 2

)
=

(α− 1)α−1(β − 1)β−1

(α+ β − 2)α+β−2B(α, β)
.

As for VU∗ , we have that

VU∗([0, 1]) =

∫ 1

τK

tf(t) dt =

∫ 1

τK

t · 1

B(α, β)
tα−1(1− t)β−1

=
1

B(α, β)

∫ 1

τK

tα(1− t)β−1 dt

=
B(α+ 1, β)−B(τK ;α+ 1, β)

B(α, β)

=
B(α+ 1, β)

B(α, β)

(
1− IτK (α+ 1, β)

)
=

a

a+ b

(
1− IτK (α+ 1, β)

)
.

Lastly, τK is the value such that F (τK) = 1 − K/N , or equivalently, such that
∫ 1

τK
f(t) dt =

1−K/N . Given that F (t) = It(α, β), it follows that

τK = I−1
1−α(α, β).

For example, for Beta(2, 2) we have that f(t) = 6t(1 − t) and so supt f(t) = f(1/2) = 1.5. We
also have that It(3, 2) = 4t3 − 3t4, and so

VU∗ =
2

4

(
1− IτK (α+ 1, β)

)
=

2

4

(
1− (4τ3K − 3τ4K)

)
=

1

2
(1− 4τ3K + 3τ4K).

Given that F (t) = It(2, 2) = 3t2 − 2t3, and that τK is the value in [0, 1] such that F (τK) =
1−K/N , it follows that τK corresponds to the unique root of the polynomial 2τ3K−3τ2K+1−K/N
in [0, 1]. For example, if K/N = 0.5, we get that VU∗ ≈ 0.34 and γ ≤ 0.17. For K/N = 0.25 we
get γ ≤ 0.12, and for K/N = 0.75 we get γ ≤ 0.19.

For Beta(3, 3) we have that f(t) = 30t2(1− t)2 and so supt f(t) = f(1/2) = 1.875. We also have
that It(4, 3) = 10t4 − 15t5 + 6t6, and so

VU∗ =
3

6

(
1− IτK (α+ 1, β)

)
=

1

2

(
1− (10τ4K − 15τ5K + 6τ6K)

)
=

1

2
(1− 10τ4K + 15τ5K − 6τ6K).
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Given that F (t) = It(3, 3) = 10t3 − 15t4 +6t5 and tK satisfies F (tK) = 1−K/N , it follows that
τK corresponds to the root of the polynomial 6τ5K − 15τ4K + 10τ3K − (1−K/N) = 0 in [0, 1]. For
example, if K/N = 0.5, we get that VU∗ ≈ 0.37 and γ ≤ 0.16. For K/N = 0.25 we get γ ≤ 0.13,
and for K/N = 0.75 we get γ ≤ 0.17.

For Beta(2, 4) we have that f(t) = 20t(1 − t)3 and mode 2−1
2+4−2 = 1

4 , and so c ≤ supt f(t) =

f(1/4) ≈ 2.1. We also have that It(3, 4) = 20t3 − 45t4 + 36t5 − 10t6, and so

VU∗ =
2

6

(
1−IτK (α+1, β)

)
=

1

3

(
1−(20t3−45t4+36t5−10t6)

)
=

1

3

(
1−20t3+45t5−36t6+10t6).

Using F (t) = It(2, 4), it follows that τK corresponds to the root of the polynomial 10τ2K − 20τ3K +
15τ4K−4τ5K−1+K/N in [0, 1]. For example, if K/N = 0.5, we get that VU∗ ≈ 0.24 and γ ≤ 0.12.
For K/N = 0.25 we get γ ≤ 0.09, and for K/N = 0.75 we get γ ≤ 0.13.

Gaussian distribution. Given a normal distribution N (µ, σ2), we truncate it to [0, 1] and re-
normalize it. Let ϕ(t) denote the PDF of N (µ, σ2), and Φ(t) the CDF. Let

a =
0− µ

σ
, b =

1− µ

σ
, Z = Φ(b)− Φ(a).

Then, the truncated PDF function is equal to

f(t) =
ϕ
(
t−µ
σ

)
σZ

,

where t ∈ [0, 1]. The CDF is then equal to

F (t) =
Φ
(
t−µ
σ

)
− Φ(a)

)
Z

for t ∈ [0, 1]. Assuming that µ ∈ [0, 1], we get that the maximum density occurs at ϕ(0), where

c = sup
t

f(t) =
ϕ(0)

σZ
=

1

σZ
√
2π

.

Given a budget K, the threshold τK is the value satisfying F (τK) = 1−K/N , and hence the value
satisfying

Φ
(τK − µ

σ

)
− Φ(b)− αZ.

Hence, τK = µ+ σ · Φ−1(Φ(b)− αZ). Lastly, we compute V K
U∗ Let yK = (τK − µ)/σ.

VU∗ =

∫ 1

τK

tf(t)dt =
1

Z

∫ 1

τK

t
1

σ
ϕ
( t− µ

σ

)
=

1

Z

∫ b

yK

(µ+ σy)ϕ(y)dy

=
1

Z

(
µ

∫ b

yK

ϕ(y)dy + σ

∫ b

yK

yϕ(y)dy
)

=
µ · (Φ(b)− Φ(yK)) + σ · (ϕ(yK)− ϕ(b))

Z
,

where we used the change of variable y = t−µ
σ , and so t = µ+ σy and dt = σdy.

For example, for µ = 0.5, σ = 0.15, and budget K/N = 0.5, we get τK ≈ 0.5, VU∗ ≈ 0.31,
c ≈ 2.66, and γ ≤ 0.11. For µ = 0.3, σ = 0.2, and budget K/N = 0.75, we get τK ≈ 0.19,
VU∗ ≈ 0.23, c ≈ 2.13, and γ ≤ 0.13. For µ = 0.7, σ = 0.10, and budget K/N = 0.25, we get
τK ≈ 0.77, VU∗ ≈ 0.19, c ≈ 3.98, and γ ≤ 0.07.

C.2 GENERAL CDF CONDITION

Claim 4.1. For any budget K ≤ N , Algorithm 1 called with parameters ϵ, δ, ρ returns a (1− ϵ, δ)-
OPT allocation if and only if the distribution of treatment effect values satisfies:∫ τK+2ρ

τK
tf(t) dt−

∫ τK−αK

τK−2ρ
tf(t) dt dt ≤ ϵ

∫ 1

τK
tf(t) . (1)
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Proof. By Claims B.7 and B.8, we know that

VULEA

(
[0, 1]

)
VU∗

(
[0, 1]

) =
VULEA

(A1) + VU0
LEA

(
[0, 1]

)
VU∗(A1) + VU∗(D)

=
V (A1) + VU0

LEA

V (A1) + VU∗(D)
.

By re-arranging the expression in a manner similar to Claim 3.1 (but without using lower and upper
bounds), we get that:

VULEA

(
[0, 1]

)
VU∗

(
[0, 1]

) =
V (A1) + VU∗(D)− VU∗(D) + VU0

LEA

V (A1) + VU∗(D)
= 1−

VU∗(D)− VU0
LEA

V (A1) + VU∗(D)
.

By definition of the value function and the PDF f(t), it follows that

V (A1) =

∫ 1

τK+2ρ

tf(t)dt, VU∗(D) =

∫ τK+2ρ

τK

tf(t)dt.

As for VU0
LEA

, by Claim 5 it follows that all units u ∈ ULEA satisfy τ(u) ≥ τK − 2ρ. Therefore,
in the worst case, Algorithm 1 selects the K0 units with the lowest τ(u) values in the interval
D = [τK , τK + 2ρ]. This is precisely what the definition of αK captures (Definition 10), and so it
follows that

VU0
LEA

≥
∫ τK−αK

τK−2ρ

tf(t)dt,

with the equality holding in the worst-case instance of Algorithm 1 (even with high probability).
Hence, we get a (1− ϵ, δ)-OPT allocation whenever∫ τK+2ρ

τK
tf(t)dt−

∫ τK−αK

τK−2ρ
tf(t)dt∫ 1

τK
tf(t)dt

≤ ϵ,

as we wanted to show.

We can use our low-accuracy estimates τ̂K to check whether Equation 1 is satisfied (note that this
is only a one-sided guarantee; failing to satisfy it does not imply that the allocation achieved by
Algorithm 1 is not optimal, given that we use various upper bounds).

To do so, we want to compute an upper bound of the expression

VU∗(D)− VU0
LEA

VU∗([0, 1])
(4)

using our τ̂ estimates. To lower bound the denominator, the number of units that have τ(u) ∈ [τK , 1]
is lower-bounded by |u : τ̂(u) ∈ [τK+ρ, 1]|. For each of the τ̂(u) values that we find in this interval,
by ρ-accuracy we know that τ(u) ≥ τ̂(u)− ρ. Hence,

VU∗([0, 1]) ≥
∑

u:τ̂(u)≥τK+ρ

τ̂(u)− ρ.

Because we do not have access to the true τK , but we know that |τ̂K − τK | ≤ ρ by Claim 5, we can
actually compute the lower bound as

VU∗([0, 1]) ≥
∑

u:τ̂(u)≥τ̂K+2ρ

τ̂(u)− ρ. (5)

Next, we upper bound V (D). The number of units that have τ(u) ∈ [τK , τK+2ρ] is upper-bounded
by |u : τ̂(u) ∈ [τK − ρ, τK + 3ρ]|. For each of the τ̂(u) values that we find in this interval, by ρ-
accuracy we know that τ(u) ≤ τ̂(u) + ρ. Hence,

VU∗(D) ≤
∑

u:τ̂(u)∈[τK−ρ,τK+3ρ]

τ̂(u) + ρ.

Again because we do not have access to the true τK but we do have the guarantee that |τ̂K−τK | ≤ ρ,
it follows that

VU∗(D) ≤
∑

u:τ̂(u)∈[τ̂K−2ρ,τ̂K+4ρ]

τ̂(u) + ρ. (6)
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Lastly, as for VU0
LEA

, we are interested in lower bounding the number of units that belong to U0
LEA. To

do so, first we lower bound the quantity K0, which corresponds to upper bounding the quantity K1.
We know that K1 ≤ |u : τ̂ ∈ [τK + ρ, 1]| ≤ |u : τ̂ ∈ [τ̂K , 1]|. Hence, K0 ≥ K − |u : τ̂ ∈ [τ̂K , 1]|.
Recall that all units in ULEA satisfy τ(u) ≥ τK − 2ρ. To lower bound the value of VU0

LEA
, we add up

the first K − |u : τ̂ ∈ [τ̂K , 1]| units that have τ̂(u) value above τ̂K − 3ρ, in increasing order.

Putting the three terms together, that is, our bounds for VU∗([0, 1]) (Equation 5), VU∗(D) (Equa-
tion 6), and VU0

LEA
(the sum of the first K − |u : τ̂ ∈ [τ̂K , 1]| units that have τ̂(u) value above

τ̂K − 3ρ) computed with our low-approximation τ̂ values, we have obtained an upper bound to the
expression in Equation 4 and thus to Equation 1 in Claim 1.

Hence, if our upper bound is smaller than ϵ, we have a guarantee that Algorithm 1 has returned an
(1− ϵ, δ)-OPT approximation.

It is clear that, definitionally, we get a (1 − ϵ)-OPT allocation whenever we satisfy the inequality
VULEA

(
[0,1]

)
VU∗

(
[0,1]

) ≥ 1 − ϵ. The importance of Lemma 4.1 is that it shows how we can check (one sided)

whether we have obtained an optimal allocation using only our τ̂K estimates.

We give an example of how to apply Claim 4.1 for a specific distribution by repeating the accuracy
and sample complexity calculation for the case where the CATE τ values are uniformly distributed,
this time with a tight accuracy analysis rather than using lower and upper bounds for VA2(I) and
VA2

(ALLOC∗), respectively.

Tight accuracy calculation for the uniform distribution. Let the treatment effect values be dis-
tributed as Unif(0, 1). Then, the PDF corresponds to the function f(t) = 1. We compute each of
the three terms in the RHS of Equation 1. Given that the uniform distribution is symmetric around
τK for any value of τK , it follows that αK = 0 for all K.

VU∗([0, 1]) =
∑

u:τ(u)∈[τK ,1]

τ(u) =

∫ τK+2ρ

τK

t dt =
[ t2
2

]1
τK+2ρ

=
1

2
− (τK)2

2
− 2τKρ− 2ρ2.

VU∗(D) =
∑

u:τ(u)∈[τK ,τK+2ρ]

τ(u) =

∫ τK+2ρ

τK

t dt =
[ t2
2

]τK+2ρ

τK
= 2τKρ+ 2ρ2.

VU0
LEA

=
∑

u:τ(u)∈[τK ,τK−2ρ,τK−αK ]

τ(u) =

∫ τK−αK

τK−2ρ

t dt =
[ t2
2

]τK
τK−2ρ

= 2τKρ− 2ρ2,

where the equality holds in the worst-case high probability output of Algorithm 1; otherwise it is a
lower bound. That is, the computation for VU0

LEA
corresponds to the worst-case output of Algorithm 1,

as is the definition of αK . Then, VU∗(D)− VU0
LEA

= 4ρ2 and

VULEA

(
[0, 1]

)
VU∗

(
[0, 1]

) = 1−
VU∗(D)− VU0

LEA

V (A1) + VU∗(D)
= 1−

VU∗(D)− VU0
LEA

VU∗([0, 1])
≥ 1− 4ρ2

(1− (τK)2)/2
.

Hence, by setting ρ =

√
ϵ
4

(
1
2 − (τK)2

2

)
, we obtain a (1 − ϵ, δ)-OPT approximation of ALLOC∗

with O(N ln(2N/δ)/ϵ) many samples.

Remark C.1. These tight accuracy calculations assume a worst-case analysis (given the definition
of the value of an allocation stated in Definition 6), rather than only achieving the looser notion of
a (1− ϵ)-OPT approximation on expectation.

D FLEXIBLE BUDGET

Very dense distributions. Consider the following “2 spikes” case, where N/2 units have τ(u)
value equal to 1/2 − 2ϵ, and the other N/2 units have τ(u) value equal to 1/2 + 2ϵ. This example
is connected to the usual lower-bound that appears in the sample complexity of bandit algorithms
Bubeck et al. (2013); Kaufmann et al. (2016). We show that for this 2 spikes case, no budget is able
to obtain a (1− ϵ)-optimal allocation
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For any budget K ≤ N/2 we have that

VU∗([0, 1]) =
K

2
·
(1
2
+ 2ϵ

)
=

K

4
+ ϵN.

As for the low-accuracy estimation algorithm, given that our τ̂ estimates are computed to ρ = γ
√
ϵ

accuracy, the value of a random allocation, which we denote by Vrand, upper-bounds the worst-case
value realized by Algorithm 1.

On expectation, we have that

Vrand =
K

2
·
(1
2
− 2ϵ

)
+

K

2
·
(1
2
+ ϵ

)
=

K

2
.

The worst-case value is naturally given by K(1/2− 2ϵ) = K/2− 2ϵK. By definition, an (1− ϵ, δ)-
OPT allocation f must realize value

Vf ([0, 1]) ≥ (1− ϵ)VU∗([0, 1]) = (1− ϵ) ·K ·
(1
2
+ 2ϵ

)
=

K

2
+ 2ϵK −K ·

( ϵ

2
+ 2ϵ2

)
=

K

2
+K ·

(3ϵ
2

+ 2ϵ2
)

with probability at least 1− δ. Hence, for any budget K, the expected value of a random allocation
never yields a (1 − ϵ, δ)-optimal allocation, and is always short of at least K(3ϵ/2 + 2ϵ2) much
value. Thus, the worst-case of Algorithm 1 fails to satisfy the (1 − ϵ, δ)-optimality requirement as
well.

Nonetheless, we are quite close to achieving the value required by an optimal allocation. This
presents an interesting duality for the problem of allocation: either the distribution of treatment effect
values is ρ-regular, in which case Algorithm 1 returns an optimal allocation, or the distribution is
very dense around the threshold, in which case Algorithm 1 (and even a random allocation) still does
quite well. In order to realize the required value, we can either promise a (1− κϵ)-OPT allocation,
or we can increase the budget in order to include more units. This type of overspending/resource
augmentation is different from the modification of the budget discussed at the beginning of this
section (which cannot work in this 2 spikes case, as we just showed). Here, we add more units to
our allocation ULEA, but we compete against the original budget K.

For the former, we want to find the smallest κ such that a random allocation realizes an (1−κϵ)-OPT
allocation. This has value:

(1− κϵ)VU∗([0, 1]) = (1− κϵ)
(1
2
+ 2ϵ

)
·K =

K

2
+

4ϵK − κϵK

2
− 2κϵ2K.

Given that the expected value of Vrand([0, 1]) is K/2, we need κ to satisfy

4ϵK − κϵK

2
= 0 =⇒ κ ≥ 4.

Indeed, a (1− 4ϵ)-OPT allocation requires realizing value at least

(1− 4ϵ)VU∗([0, 1]) = (1− 4ϵ)
(1
2
+ 2ϵ

)
·K =

(1
2
− 2ϵ+ 2ϵ− 8ϵ2

)
·K =

K

2
− 8ϵ2K,

and so Vrand([0, 1]) ≥ (1 − 4ϵ)VU∗([0, 1]), as desired. Performing a similar calculation with the
worst-case scenario of Algorithm 1, we get κ ≥ 8.

Overspending. Alternatively, we can take the dual approach and ask what is the smallest budget
K ′ > K that allows a random allocation to get at least a (1− ϵ)-OPT allocation, where optimality
is measured with respect to the original budget K. This is a form of resource augmentation. For any
budget K ′ > K, we showed that Vrand([0, 1]) = K ′/2. We want a K ′ that satisfies

K ′

2
≥ (1− ϵ)VU∗([0, 1]) = (1− ϵ) ·K ·

(1
2
+ 2ϵ

)
.
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This means that K ′ must satisfy

K ′ ≥ K + 4ϵK − ϵK − 4ϵ2K = K + 3ϵK − 4ϵ2K.

Hence, we need K ′ ≥ K + 3ϵK = K(1 + 3ϵ).

We can apply this overspending/resource augmentation idea to distribution that is not ρ-regular
around the initial budget threshold τK . That is, suppose that the initial budget K is such that the
interval [τK − 2ρ, τK + 2ρ] contains a lot of probability mass. What is the minimum number S of
extra units that we need to spend on such that we achieve a (1−ϵ)-OPT allocation, where optimality
is measured with respect to the original budget K? The extra units that we add to ULEA are naturally
added in descending order of τ̂ value starting at τ̂K , and we denote their added value by VUS

extra
. That

is, the final threshold is τK+S . Because we assume that the interval [τK − 2ρ, τK + 2ρ] is highly
dense, we lower bound the value τ̂(u) of all of the extra units that we add by τK − 2ρ. Then:

V K+S
ULEA

([0, 1])

V K
U ([0, 1])

=
V (A1) + VU0

LEA
+ VUS

extra

V (A1) + VU∗(D)

= 1−
VU∗(D)− VU0

LEA
− VUS

extra

V (A1) + VU∗(D)

≥
(τK + 2ρ)K0 − (τK − 2ρ)K0 − VUS

extra

V (A1) + (τK + 2ρ)K0

≥ (τK + 2ρ)K0 − (τK − 2ρ)K0 − (τK − 2ρ)S

V (A1) + (τK + 2ρ)K0

=
4ρK0 − (τK − 2ρ)S

V (A1) + (τK + 2ρ)K0
.

By setting
4ρK0 − (τK − 2ρ)S

V (A1) + (τK + 2ρ)K0
≤ ϵ,

we get that the minimum number of units that we need to add to our initial budget K is

S ≥

(
4ρ− ϵ(τK + 2ρ)

)
K0 − ϵV (A1)

τK − 2ρ
.

Asymptotically, this means that S is of the order of
√
ϵK0. As we will see in Section 6, in practice

we only require adding one extra unit in order to realize the value of the optimal allocation.

Choosing an appropriate budget. In the cases where the policy-maker has some flexibility over
the budget, it is a sensible approach to refine the budget after running our algorithm. Choosing
a budget K such that τK lies in an interval (of width ≈ 2ρ) of uniform-like probability mass is
desirable for several reasons. First, it ensures that an optimal allocation is achieved, given that ρ-
regularity is satisfied in the D-interval. Second, it ensures that the allocation is less arbitrary, as it
minimizes the number of units that are very close to the threshold that determines whether or not
treatment is given. As shown in Section 4.2, the low-accuracy estimates τ̂ give an approximation
of the CDF curve as well, and so we can upper bound the probability mass contained in an interval
[a, b] by counting the number of units u that have τ̂(u) value in the interval [a − ρ, b + ρ]. If the
interval is too dense, the policy-maker can slide the budget up or down in order to find a threshold
τ̂K that lies in a low-mass interval.

While the 2 spikes case demonstrates that we cannot always hope to find such an interval, this only
occurs in the cases where the CDF satisfies a strong “anti-Lipschitz” condition, where changing K
for a much larger or much smaller K ′ induces very little difference between τK and τK′ . However, it
is rare to find such densely-packed distributions in real-world RCTs, and it would be highly arbitrary
to decide on an allocation in the case of these distributions. As we will see in Section 6 in our
experiments for real-world data, we can always find a K ′ very close to K (even if we are only
willing to underspend) in the few cases where Algorithm 1 does not yield an optimal allocation.
Moreover, as we have show in this section, we can obtain optimal allocations for distributions with
high mass around τK by overspending and adding some extra units to ULEA. We also test this method
in our experiments in Section 6.
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Summarizing, if a budget does not work, the policy-maker can: (1) detect so correctly by using the
approximation F̂ of the CDF (this is a one-sided test, (2) slide the budget from K to K ′ as to find a
smooth interval, or (3) if no interval is ρ-regular, then the distribution Prτ is very dense in the entire
range, in which case Algorithm 1 should obtain a (1 − κϵ)-OPT allocation for a small value of κ,
or, equivalently, we can add a few extra units to ULEA to realize the optimal value.

We test these strategies experimentally and report the results in Section F. We find that, in practice,
we only need to slide the budget by at most 2 units in order to find a K that obtains a (1 − ϵ)-
allocation with O(M/ϵ) many samples. As for the overspending/resource augmentation strategy,
we find that in all cases adding one extra unit (namely, the unit corresponding to τ̂K+1) suffices to
realize a (1− ϵ)-optimal allocation.

E EXPERIMENTAL DETAILS

E.1 RCT DATA

We test our algorithm on real-world RCT data in order to test its efficacy and study the ρ-regularity
smoothness condition in practice. For robustness, we test our algorithm on data from five different
real-world RCTs, which have been conducted across multiple domains. These datasets have recently
been analyzed in the work of Sharma & Wilder (2024), and tested for different policies, which is
why we choose these five datasets. We summarize each RCT dataset, following the descriptions
given in Sharma & Wilder (2024) and in the original papers.

(1) Tennessee’s Student Teacher Achievement Ratio (STAR) project (Pate-Bain et al., 1997). Domain:
education. This is a 4-year RCT conducted by the Tennessee State Department of Education to
examine class size effects on student performance. The study involved 11,601 students across 79
schools. Students and teachers were randomly assigned to class types beginning in kindergarten
and followed through grade 3. The original study considered three possible treatments: small class
(≈13–17 students), regular class (≈22–25 students), or regular class with a full-time aide. Following
the analysis performed in Sharma & Wilder (2024), in order to keep the binary treatment/control
study, treatment corresponds to having been assigned to a small class, whereas control corresponds
to having been assigned to a regular class. The outcome is a cumulative test-score measure in
kindergarten (which should be positively affected by the treatment), which is a composite outcome
from four standardized test scores: reading, math, listening, and word skills.

We filter out out observations with missing test scores, treatment assignments, or school IDs, leaving
a total of 3,712 students. Out of these, 1,989 are control and 1,723 are treated.

(2) Targeting the Ultra Poor (TUP) in India (Banerjee et al., 2021). Domain: economic development.
This RCT studies the long-term effects of providing large one-time capital grants to low-income
households. The treatment given was a one-time capital grant to ultra-poor households, and the
control was to give no grant. The study measured how family income and overall consumption
evolved over a period of 7 years. The outcome variable that we use in our experiments is the total
household expenditure (which should be positively affected by the treatment). This is the difference
between the endline consumption and the baseline consumption.

After filtering the dataset, we have 864 households, with 410 control and 454 treated.

(3) National Supported Work (NSW) demonstration (Dehejia & Wahba, 2002; 1999; LaLonde,
1986). Domain: labor economics. This study was carried out to analyze the impact of the National
Supported Work Demonstration, which was a job training program, on the income of the partici-
pants in the year 1978. This job-training program targeting disadvantaged workers. The dataset also
collected the participants’ income in the year 1975 as a baseline. The treatment was assignment to
the NSW training program, and the control was no assignment. The outcome variable that we use is
the annual earnings in 1978 (which should be positively affected by the treatment).

After filtering the dataset, we have 722 individuals, out of which 425 are control and 297 are treat-
ment.

(4) Acupuncture dataset (Vickers et al., 2004). Domain: healthcare. This RCT evaluates the effect
of acupuncture therapy on patients with chronic headache, with assessments at randomization, 3
months, and 1 year. The treatment is accupuncture for chronic headaches, and control is the usual
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care. The outcome variable that we use is the headache-severity score one year after randomization.
Headache severity is measured using a discrete 0-5 Likert scale. Treatment is thus expected to lower
the outcome, which is why we flip the sign in our figures for coherence with the other RCTs.

After filtering the dataset, we have 301 patients, with 140 control and 161 treatment.

(5) Postoperative Pain dataset (McHardy & Chung, 1999). Domain: Healthcare. This RCT inves-
tigates whether gargling a licorice solution prior to endotracheal intubation reduces postoperative
sore throat, a common side effect of thoracic surgery using double-lumen tubes. Hence, treatment
corresponds to receiving licorice gargle prior to endotracheal intubation, and control corresponds
to placebo/standard care. The outcome variable we use is throat-pain score 4 hours post-surgery,
measured on a on a discrete 0-7 Likert scale. As in the case of the acupuncture dataset, treatment is
expected to lower the outcome, and so we also flip the sign in our figures for coherent with the other
RCTs.

After filtering the dataset, we have 233 patients, with 116 control and 117 treatment.

E.2 SEMI-SYNTHETIC EXPERIMENTS

Grouping methods. For each of the five RCT datasets, we create a set of units U by partitioning
the individuals into groups from their covariates. For each dataset, we describe the various grouping
methods that we test in our algorithm. For any grouping strategy, we require at least 3 treated
individuals and 3 control individuals, and that the treatment rate is between 15% and 85%, to ensure
balance within each unit. We only include the grouping methods that succeeded in creating a set
of units satisfying these requirements, and discarded several other grouping methods based on the
dataset variables.

(1) STAR dataset. We use the following grouping methods:

• School groups. We cluster the students by school ID.
• Causal forest groups. We use random forest regressors to predict treatment effects, and

then cluster the students based on predicted CATE values and covariates using K-means
clustering. We cluster aiming for different number of groups (typically 30 and 50).

• Propensity score groups. We perform a stratification based on propensity scores using
cross-validated logistic regression, diving the propensity score distribution into equal-sized
quantile-based strata (thus grouping students with similar propensity score).

• Performance groups. We group the students based on baseline performance percentiles
(test score averages).

(2) TUP dataset. We use the following grouping methods:

• Baseline poverty groups. We group the households using baseline consumption as a poverty
proxy, clustering them using K-means.

• Demographic groups. We search for various demographic variables (such as “gender”,
“education”, “age”) and take their intersections.

• Causal forest groups. We use random forest regressors to predict treatment effects, and then
cluster the households based on the predicted CATE values and covariates using K-means.

• Propensity score groups. We perform a stratification based on propensity scores using
cross-validated logistic regression.

• Assets. We identity asset-related variables (such as “land” or “livestock”) and group them
using K-means.

(3) NSW dataset. We use the following grouping methods:

• Baseline earnings groups. We divide the employed individuals into percentile-based earn-
ings brackets.

• Age groups. We create a percentile-based stratification of the age distribution.
• Causal forest groups. We use random forest regressors to predict treatment effects, and then

cluster the individuals based on the predicted CATE values and covariates using K-means.
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• Propensity score groups. We perform a stratification based on propensity scores using
cross-validated logistic regression.

(4) Acupuncture dataset. We use the following grouping methods.

• Age groups. We create percentile-based age brackets.

• Age-Chronicity interaction groups. We computing a score for each patient combining their
age and their chronicity variables, and then group them into equally-sized groups (in order
of the scores).

• Baseline headache. We group the patients by their initial headache score.

• Chronicity groups. We group the patients by the length of chronic headache history.

• Covariate forest groups. We perform a K-means clustering based on the covariate profiles.

• Multidimensional composite groups. We use the variables age, chronicity, baseline
headache score, and combine them into an average score.

(5) Postoperative dataset. We use the following grouping methods.

• BMI groups. We divide the patients into into 30 equal-sized BMI brackets.

• Age groups. We perform a percentile-based stratification on the age variable.

• Demographics. We combine different preoperative patient characteristics.

• Covariate forest. We perform K-means clustering on the patient characteristics.

Note that for the acupuncture and postoperative dataset we have less data than for the other datasets,
which is why the group sizes that we obtain are smaller and thus prone to higher error.

Obtaining the CATE values. Each grouping method for each dataset yields a partition of the
dataset into a set U of M units. For each unit, we compute τ(u) as follows: we compute the treated
outcome mean (i.e., the mean of the outcome variable among the treated members of group u)
and the control outcome mean (i.e., the mean of the outcome variable among the control members
of group u). Subtracting the control outcome mean from the treatment outcome mean yields the
treatment effect value for each unit. Lastly, we normalize all of the treatment effect values across
the M units into [0, 1], yielding the final τ(u) values.

Once we have the τ(u) values, which allow us to compute the value of the optimal allocation, we
simulate the sampling as follows. For every drawn sample of the population, we select one of the
units u uniformly at random and draw a sample from the distribution Bern(τ(u)). That is, each
group represents an “arm” with a Bernoulli reward equal to its normalized CATE.

E.3 FIRST APPROACH: GENERATING FIGURE 1

For this approach, we do not select a specific value of ϵ. Instead, we try different sample sizes, from
N = 100 to N = 20,000 across different budget constraints. Specifically, we try budgets K that
are 10%, 20%, 30%, 50%, 70%, and 90% of M . For each sample size and each budget, we sample
from the population for that many samples and compute the estimates τ̂(u) for each of the M units
u. Then, we select the K units with the highest τ̂ estimates. Using the ground-truth values τ(u), we
compute the value of this allocation. We then plot the realized value of the allocation (y-axis) for
each sample size (x-axis), having one plot for each fixed budget and grouping method. We repeat
this sampling process 50 times, obtaining an average value of the allocation for each sample size
and confidence bounds.

In each figure, we also plot the value that we would expect from the worst-case bound of O(M/ϵ2)
and our bound of O(M/ϵ). Specifically, from Lemma 3, we have that the expected value of the
allocation using the worst-case bound is(

1−
√

M ln(2M/δ)

N

)
· VU∗ .
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From Theorem 7, we obtain that the expected value of the allocation using our theoretic bound for
ρ-regular distributions is (

1− M ln(2M/δ)

N

)
· VU∗ .

In Section F, we display these plots for each of the grouping methods for each of the datasets. For
each, we plot the relationship between the normalized allocation value and the sample size for six
choices of a budget.

Note: the titles in the figures in Section F should say M , not N (i.e., it refers to the total number of
units created by the corresponding grouping method).

E.4 SECOND APPROACH: GENERATING FIGURE 2

For Figure 2 and its further displays in Section F (the last two plots for each subsection), we carry
out our analysis differently.

Here, we do choose a value of ϵ, which ranges from 0.001 to 0.2. Based on our computation of the
value of γ in Section C for various distributions, we choose to call Algorithm 1 with γ = 0.5. This
bound is best decided using an informed guess of how the τ values are distributed; if γ is too high
then Algorithm 1 will have a higher error rate. For each value of ϵ, we compute the corresponding
number of samples in total that we use to construct our estimates τ̂ using our theoretical bound of
N = M ln(2M/δ)/ϵ. Note that each grouping method yields a fixed number of units M . Sampling
that many units, we obtain the coarse estimates τ̂(u), and for each possible budget K ∈ {1, . . . ,M}
we compute the value realized by our allocation (where we compute the value using the ground-truth
estimates τ , but they are selected using the low-accuracy estimates τ̂ ). This gives the value VULEA

for
each budget K.

Separately, for each possible budget K ∈ {1, . . . ,M}, we compute the value VU∗ of the optimal
allocation. Then, we check whether or not VULEA

/VU∗ ≥ 1− ϵ, for each value of K and for the fixed
value of ϵ. We compute the rate of failed budgets (i.e., the proportion out of M ) that do not achieve
a (1− ϵ-optimal allocation. We repeat this process 50 times for each combination of K and ϵ, giving
us a robust average failure rate with confidence bounds. We do this for every grouping method and
for every RCT dataset. The first row in Figure 2 plots some of these failure rates. The second-to-last
plot in each subsection of Section F shows these plots for all of the grouping strategies for each
RCT dataset. In all cases, we see that the average failure rate is below 5%. This is higher for the
acupuncture and postoperative datasets, since we work with fewer groups in all grouping strategies
(because the dataset is smaller). Moreover, we remark that in our experiments we test all budgets,
and we do not discard budgets that are very small (e.g., K = 1). As per the VU∗ term in Theorem 8,
very small values of K increase the failure rate. The looser choice of γ also increases the failure rate.
For all these reasons, the failure rate that we obtain is higher than what it would be if we discarded
small budgets and decreased γ further, or if we had a higher number M of units.

Second, we test our flexible budget strategies discussed in Section 5. In the cases where a budget K
fails to obtain a (1− ϵ)-optimal allocation (recall that we are always using the fewer O(M/ϵ) many
samples to compute the allocation), we find the closest value of K ′ such that we obtain a (1 − ϵ)-
optimal allocation, and then we report |K−K ′|. We also compute such a |K−K ′| for K ′ ≤ K; i.e.,
if we are only willing to underspend. We repeat this process 50 times for each ϵ, grouping method,
and RCT. Some of the results are reported in the second row of Figure 2; the comprehensive set
of plots is in Section F. The last plot of each subsection of Section F shows these plots for all of
the grouping strategies for each RCT dataset. In all cases, including the subcases where we only
underspend, we see that, on average, |K −K ′| ≤ 2.

We also test our overspending idea of adding extra units to our allocation. We test it on each of the
failed budget settings. In all cases, without exception, we find that adding one extra unit (i.e., the
unit that corresponds to τ̂K+1), realizes an optimal allocation.

Use of LLMs. We have used LLMs to explore the five RCTs and their various variables, in order to
find sensible grouping strategies for each RCT. After implementing the code for the base simulation
of our algorithm, we used LLMs in aiding us to adapt the algorithm to the specifics of each dataset
and to clean up the final code. Lastly, we have used LLMs to find a design that makes the plots more
legible, and to check the integrals computed for the Beta and Gaussian distributions.
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F FURTHER EMPIRICAL RESULTS

F.1 STAR DATASET
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Figure 3: STAR dataset, school groups.

0 5000 10000 15000 20000
Sample size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d 
al

lo
ca

tio
n 

va
lu

e

Budget = 10% (K=5)

Optimal (1.0)
FullCATE
ALLOC
Empirical data

0 5000 10000 15000 20000
Sample size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d 
al

lo
ca

tio
n 

va
lu

e

Budget = 20% (K=10)

Optimal (1.0)
FullCATE
ALLOC
Empirical data

0 5000 10000 15000 20000
Sample size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d 
al

lo
ca

tio
n 

va
lu

e

Budget = 30% (K=15)

Optimal (1.0)
FullCATE
ALLOC
Empirical data

0 5000 10000 15000 20000
Sample size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d 
al

lo
ca

tio
n 

va
lu

e

Budget = 50% (K=25)

Optimal (1.0)
FullCATE
ALLOC
Empirical data

0 5000 10000 15000 20000
Sample size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d 
al

lo
ca

tio
n 

va
lu

e

Budget = 70% (K=35)

Optimal (1.0)
FullCATE
ALLOC
Empirical data

0 5000 10000 15000 20000
Sample size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d 
al

lo
ca

tio
n 

va
lu

e

Budget = 90% (K=45)

Optimal (1.0)
FullCATE
ALLOC
Empirical data

Performance Groups (N=50)

Figure 4: STAR dataset, performance groups.
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Figure 5: STAR dataset, causal forest 30.
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Figure 6: STAR dataset, causal forest 50.
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Figure 7: STAR dataset, propensity score.
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F.2 TUP DATASET
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Figure 10: TUP dataset, baseline poverty 30.
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Figure 11: TUP dataset, baseline poverty 50.
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Figure 12: TUP dataset, asset groups 30.
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Figure 13: TUP dataset, asset groups 50.
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Figure 14: TUP dataset, causal forest 30.
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Figure 15: TUP dataset, causal forest 50.
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Figure 16: TUP dataset, propensity score 30.
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Figure 17: TUP dataset, propensity score 50.
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Figure 20: NSW dataset, baseline earnings.
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Figure 21: NSW dataset, age groups.
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Figure 22: NSW dataset, causal forest.
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Figure 23: NSW dataset, propensity score.
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Figure 26: Acupuncture dataset, age groups.
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Figure 27: Acupuncture dataset, age-chronicity interaction.
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Figure 28: Acupuncture dataset, baseline headache.
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Figure 29: Acupuncture dataset, chronicity groups.
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Covariate Forest (N=15)

Figure 30: Acupuncture dataset, covariate forest.
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Figure 31: Acupuncture dataset, multidimensional.
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F.5 POSTOPERATIVE DATASET
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Figure 34: Postoperative dataset, BMI.
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Figure 35: Postoperative dataset, age groups.
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Figure 36: Postoperative dataset, demographics.
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Figure 37: Postoperative dataset, covariate forest.
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