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ABSTRACT

Active learning, an iterative process of selecting the most informative data points
for exploration, is crucial for efficient characterization of materials and chem-
icals property space. Neural networks excel at predicting these properties but
lack the uncertainty quantification needed for active learning-driven exploration.
Fully Bayesian neural networks, in which weights are treated as probability dis-
tributions inferred via advanced Markov Chain Monte Carlo methods, offer ro-
bust uncertainty quantification but at high computational cost. Here, we show
that partially Bayesian neural networks (PBNNs), where only selected layers have
probabilistic weights while others remain deterministic, can achieve accuracy and
uncertainty estimates on active learning tasks comparable to fully Bayesian net-
works at lower computational cost. Furthermore, by initializing prior distributions
with weights pre-trained on theoretical calculations, we demonstrate that PBNNs
can effectively leverage computational predictions to accelerate active learning
of experimental data. We validate these approaches on both molecular property
prediction and materials science tasks, establishing PBNNs as a practical tool for
active learning with limited, complex datasets.

1 INTRODUCTION

Active learning (AL) (Cohn et al., 1996; Settles, 2009) optimizes exploration of large parameter
spaces by strategically selecting which experiments or simulations to conduct, reducing resource
consumption and potentially accelerating scientific discovery (Cao et al., 2024; Lookman et al.,
2019; Wang et al., 2022; Xu et al., 2023; Slautin et al., 2024; Ziatdinov et al., 2022). A key compo-
nent of this approach is a surrogate machine learning (ML) model, which approximates an unknown
functional relationship between structure or process parameters and target properties. At each step,
the model uses the information gathered from previous measurements to update its “understanding”
of these relationships and identify the next combinations of parameters likely to yield valuable infor-
mation. The success of this approach critically depends on reliable uncertainty quantification (UQ)
in the underlying ML models.

The development of effective ML models for active learning builds upon broader advances in ma-
chine learning across materials and chemical sciences, tackling problems including phase stability
(Arróyave, 2022; Peivaste et al., 2023; Liu et al., 2024), thermal conductivity (Huang et al., 2023;
Luo et al., 2023; Barua et al., 2024; Carrete et al., 2014), glass transition temperatures (Liu & Su,
2024; Zhang et al., 2023; Armeli et al., 2023; Galeazzo & Shiraiwa, 2022; Uddin & Fan, 2024),
dielectric properties (Hu et al., 2024; Dong et al., 2021; Grumet et al., 2024; Shimano et al., 2023),
and more (Morgan & Jacobs, 2020; Chong et al., 2023; Zhong et al., 2022; Schmidt et al., 2019).
However, traditional ML models often lack robust UQ, posing challenges for their application in AL
workflows. Moreover, many of them are trained on computational data, such as density functional
theory calculations, and generalization to experimental workflows in physical labs, where data are
often sparse, noisy, and costly to acquire, is often non-trivial and requires predictions with reliable
coverage probabilities.

Gaussian Process (GP) (Rasmussen & Williams, 2005; Snoek et al., 2012; Gramacy, 2020) is an
ML approach that provides mathematically-grounded UQ and has become a popular choice for
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scientific applications, including AL frameworks (Deringer et al., 2021; Ziatdinov et al., 2022).
However, GPs struggle with high-dimensional data, discontinuities, and non-stationarities, which
are common in physical science problems. Deep kernel learning (DKL) (Calandra et al., 2016;
Wilson et al., 2016a;b) attempts addressing these issues by combining neural network representation
learning with GP-based UQ. While DKL has shown promise in chemistry and materials science
(Singh & Hernandez-Lobato, 2024; Duhrkop, 2022; Valleti et al., 2024), it is still limited by GP
scalability in feature space, potential mode collapse, and conflicting optimization dynamics between
its GP and neural network components (Ober et al., 2021). These limitations highlight the need for
further advancement of methods to support AL in non-trivial materials design and discovery tasks.

Bayesian neural networks (BNNs), where all network weights are treated as probability distribu-
tions rather than scalar values (Titterington, 2004; Lampinen & Vehtari, 2001), offer a promising
approach that combines powerful representation learning capabilities with reliable UQ. By maintain-
ing a distribution over network parameters rather than point estimates, BNNs naturally account for
model uncertainty, and are particularly effective for smaller and noisier datasets. However, reliable
Bayesian inference requires computationally intensive sampling methods, making fully Bayesian
neural networks prohibitively expensive for many practical applications. In this work, we explore
partially Bayesian neural networks (PBNNs) for active learning of molecular and materials prop-
erties. We show that by making strategic choices about which layers are treated probabilistically
we can achieve performance on active learning tasks comparable to fully Bayesian neural networks
at significantly reduced computational cost. Furthermore, we demonstrate how PBNNs can be en-
hanced through transfer learning by initializing their prior distributions from weights pre-trained on
computational data. We validate these approaches on both molecular property prediction and mate-
rials science tasks, establishing PBNNs as a practical tool for active learning with limited, complex
datasets.

2 METHODS

We have examined the potential of BNNs and PBNNs for active and transfer learning on several
benchmark datasets. Descriptions of the datasets, as well as details regarding our active learning
workflow, are given in Appendices A.1 and A.2, respectively.

2.1 BAYESIAN NEURAL NETWORKS

In conventional, non-Bayesian NNs, network weights θ are optimized to minimize a specified loss
function, resulting in a deterministic, single-point prediction for each new input. Due to their ar-
chitectural flexibility they can be powerful function approximators, but are known to suffer from
overfitting on small or noisy datasets and overconfidence on out-of-distribution inputs (Nguyen
et al., 2015; Hendrycks & Gimpel, 2017; Lakshminarayanan et al., 2017). In contrast, in BNNs
the weights θ are treated as random variables with a prior distribution p(θ). This not only helps re-
duce overfitting, but also provides robust prediction uncertainties. Given a dataset D = {xi, yi}ni=1,
a BNN is defined by its probabilistic model:

Weights: θ ∼ p(θ) (typically N (0, 1)) (1)

Noise: σ ∼ p(σ) (typically Half-Normal(0, 1)) (2)

Likelihood: yi|xi, θ, σ ∼ N (g(xi; θ), σ
2) (3)

where g(xi; θ) represents the neural network function mapping inputs to outputs using weights θ.
While we focus on normal likelihoods here for regression tasks, the framework naturally extends
to other distributions (e.g., Bernoulli for classification, Poisson for count data) depending on the
problem domain. The posterior predictive distribution for new input x∗ is then given by

p(y|x∗,D) =
∫
θ,σ

p(y|x∗, θ, σ)p(θ, σ|D)dθdσ (4)

This predictive distribution can be interpreted as an infinite ensemble of networks, with each net-
work’s contribution to the overall prediction weighted by the posterior probability of its weights
given the training data. Unfortunately, the posterior p(θ, σ|D) in Eq. (4) is typically intractable. It
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is therefore common to use Markov Chain Monte Carlo (MCMC) (Hastings, 1970) or variational
inference (Blei et al., 2017) techniques to approximate the posterior. The advanced MCMC meth-
ods, such as Hamiltonian Monte Carlo (HMC) (Betancourt, 2018), generally provide higher accu-
racy than variational methods for complex posterior distributions. Here, we employ the No-U-Turn
Sampler (NUTS) extension of the HMC, which constructs a Markov chain of network weight and
noise samples that converges to the posterior distribution p(θ, σ|D). The algorithm uses Hamilto-
nian dynamics with the network weights as position variables, employing leapfrog integration and
adaptively determining the trajectory length to efficiently explore the parameter space (Homan &
Gelman, 2014). The predictive mean (µpost) and predictive variance (Upost) at new data points are
then given by:

µpost =
1

N

N∑
i=1

g(x∗; θi) (5)

Upost =
1

N

N∑
i=1

(y∗i − µpost)2 (6)

y∗i ∼ N (g(x∗; θi), σ
2
i ) (7)

where y∗i is a single sample from the model posterior at new input x∗, {θi, σi}Ni=1 are samples from
the MCMC chain approximating p(θ, σ|D), and N is the total number of MCMC samples. Note
that Upost naturally combines both epistemic uncertainty (from the variation in network predictions
across different weight samples θi) and aleatoric uncertainty (from the noise terms σi), providing a
comprehensive measure of predictive uncertainty.

2.1.1 PARTIALLY BAYESIAN NEURAL NETWORKS

Even with sampling methods, full BNNs can be computationally expensive for reasonably-sized
datasets, in terms of number of samples or feature dimensions. Variational inference, a common ap-
proximation method for BNNs, aims to alleviate these costs but often struggles with limited expres-
sivity, underestimation of uncertainty, and sensitivity to initialization and hyperparameters, which
degrades its performance on real-world tasks. To leverage the representational power and computa-
tional efficiency of deterministic NNs and the advantages of BNNs, we explore partially Bayesian
neural networks (PBNNs), where only a selected number of layers are probabilistic and all other
layers are deterministic. Building upon existing research that proposed usage of selectively stochas-
tic layers (Sharma et al., 2023; Harrison et al., 2024), our work specifically investigates the potential
of PBNNs in active and transfer learning contexts, with a focus on molecular and materials science
datasets.

The PBNNs are trained in two stages. First, it trains a deterministic neural network, incorporating
stochastic weight averaging (SWA) (Izmailov et al., 2019) at the end of the training trajectory to
enhance robustness against noisy training objectives. Second, the probabilistic component is intro-
duced by selecting a subset of layers and using the corresponding pre-trained weights to initialize
prior distributions for this subset, while keeping all remaining weights frozen. HMC/NUTS sam-
pling is then applied to derive posterior distributions for the selected subset. Finally, predictions
are made by combining both the probabilistic and deterministic components. See Algorithm 1 and
Figure 1 for more details. In certain scenarios, such as autonomous experiments, the entire training
process needs to be performed in an end-to-end manner. In these cases, it is crucial to avoid over-
fitting in the deterministic component, as there will be no human oversight to evaluate its results
before transitioning to the probabilistic part. To address this, we incorporate a MAP prior, modeled
as a Gaussian penalty, into the loss function during deterministic training. All the PBNNs were
implemented via the NeuroBayes package1.

In this work, we have investigated PBNNs of multilayer perceptron (MLP) architecture consisting
of five layers: four utilize non-linear activation functions, such as the sigmoid linear unit, while
the final (output) layer contains a single neuron without a non-linear activation, as is typical for
regression tasks. As there are multiple ways to select probabilistic layers for the PBNNs, we have
evaluated the effects of setting different combinations of probabilistic layers as shown in Figure 2.

1https://github.com/ziatdinovmax/NeuroBayes
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Figure 1: (a) Schematic illustration of Partially Bayesian Neural Network (PBNN) operation. First,
we train a deterministic neural network, incorporating stochastic weight averaging to enhance ro-
bustness against noisy training objectives. Second, the probabilistic component is introduced by
selecting a subset of layers and using the corresponding pre-trained weights to initialize prior distri-
butions for this subset, while keeping all remaining weights frozen. HMC/NUTS sampling is then
applied to derive posterior distributions for the selected subset. Finally, predictions are made by
combining both the probabilistic and deterministic components. (b) Schematic illustration of flow
through a PBNN model alternating probabilistic and deterministic processing stages.

Algorithm 1 Partially Bayesian Neural Network Training
Require:

Input data X ∈ Rn×d, targets y ∈ Rn

Deterministic neural network architecture gθ
Set of probabilistic layers L
Optional: Custom SWA collection protocol ψ
Optional: Custom prior width τ for probabilistic weights
† Deterministic training hyperparameters follow typical deep learning practices
‡ Probabilistic training parameters follow standard Bayesian inference practices

1: Initialize network parameters θ
2: Initialize empty weights collectionW = {}
3: for epoch e = 1 to E do
4: ηe, collect = ψ(e, E)
5: Update θ using SGD: θ ← θ − ηe∇L(θ)
6: if collect then
7: Add current weights to collection: W =W ∪ {θ}
8: end if
9: end for

10: Compute averaged weights θdet = 1
|W|

∑
θ∈W θ

11: // Run HMC/NUTS sampler for posterior inference
12: for each layer l in network do
13: if l is probabilistic then
14: Set prior p(θl) = N (θdet,l, τ)
15: Sample weights θl ∼ p(θl)
16: else
17: Set weights θl = θdet,l
18: end if
19: end for
20: Calculate network output µ = gθ(X)
21: Sample observation noise σ ∼ p(σ)
22: Score observations y ∼ N (µ, σ2)
23: return Posterior samples of probabilistic weights and noise parameter

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: (a) Schematic representation of the partially Bayesian MLP employed in this study. The
model consists of five layers: four utilize non-linear activation functions, such as the sigmoid linear
unit, while the final (output) layer contains a single neuron without a non-linear activation, as is typ-
ical for regression tasks. Circles filled with red denote stochastic layers, while orange filled circles
represent deterministic layers. Note that the single output neuron is always made probabilistic, as it
often improves training stability. (b) Code snippet illustrating a single train-predict step with PBNN
(0, 4).

3 RESULTS AND DISCUSSION

3.1 ACTIVE LEARNING ON MOLECULAR DATASETS

We first investigate the effectiveness of different PBNNs for AL on the standard molecular bench-
mark datasets. Figures 3(a) and 3(b) show RMSE, NLPD, and coverage probability as a function
of AL exploration step for ESOL and FreeSolv, respectively. We see that the accuracy and qual-
ity of the uncertainties improve with AL for all PBNNs, as demonstrated by i) decreasing RMSE
and NLPD and ii) increasing coverage over time for all models. Across all metrics for both datasets,
making earlier layers probabilistic proves more effective, with PBNN(0,4) approaching the accuracy
of a Full BNN. Furthermore, PBNN(0,4) exhibits a relatively stable decrease in NLPD and increase
in coverage throughout the AL process, similar to Full BNN. In contrast, configurations where the
probabilistic layer is moved away from the first hidden layer, PBNN(1,4), (2,4), and (3,4), show
strong oscillatory behavior in NLPD and coverage metrics, suggesting that uncertainty propagation
becomes unstable when probabilistic layers are placed in later hidden layers. This shows that, at
least within the standard MLP architecture employed here, capturing uncertainty in the first feature
transformation layer, combined with a probabilistic output layer, is more effective, both in terms
of performance and reliability. In addition, it decreased the overall computational time by nearly a
factor of four. Notably, with only a fraction of points explored, AL with PBNN achieves accuracy
either comparable to (ESOL) or better than (FreeSolv) that obtained using standard 80:20 or 90:10
train-test splits with standard deterministic ML models (Wu et al., 2018).

3.2 ACTIVE LEARNING ON MATERIALS DATASETS

Next, we follow a similar analysis for the two materials datasets, Steel fatigue (NIMS) and Conduc-
tivity (HTEM), as shown in Figure 4. We observe overall similar trends to the molecular datasets
(decreasing RMSE and NLPD and increasing coverage), although we see a much stronger difference
between the different PBNNs in the uncertainty metrics, with smaller difference in RMSE across dif-
ferent selections of probabilistic layers. We also do not observe the clean monotonic trends that we
observed with the molecular datasets for NLPD and Coverage on the Steel fatigue (NIMS) dataset.
This could be due to a variety of factors, but we suspect that this is largely due to differences in
the types of input features. While the molecular datasets utilized SMILES-derived descriptors as
their input features, the materials datasets contained experimental parameters as their input features,
which may not be as predictive of the target properties as the structural SMILES-based descriptors.
There could also be a difference in experimental noise between the molecular and materials datasets,
as it is well known that values of the materials target properties, fatigue strength and electrical con-
ductivity, are sensitive to experimental variations in their measurement, whereas measurements of
hydration free energy and aqueous solubility are relatively standardized.
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Figure 3: Comparison of Partially Bayesian Neural Networks (PBNNs) and fully Bayesian neu-
ral network (Full BNN) on molecular property prediction tasks. (a) Aqueous solubility prediction
(ESOL database) and (b) hydration free energy prediction (FreeSolv database). Each PBNN config-
uration PBNN (i, 4) has two probabilistic layers: one at position i (counting from 0) and one at the
output. Shaded areas represent a standard deviation across five different random seeds.

Despite these domain-specific variations, the results across both molecular and materials domains
support the emerging general principle that making the first hidden and the output layers probabilis-
tic is more effective than doing so for intermediate or final layers. We would also like to emphasize
that we used the same MLP architecture and training parameters (SGD learning rate and iterations
for the deterministic component, warmup steps and samples for NUTS in the probabilistic compo-
nent) across all four datasets. This demonstrates that PBNNs can be relatively robust to hyperpa-
rameter selection, a valuable characteristic for practical applications as it minimizes the need for
extensive dataset-specific tuning.

3.3 CONVERGENCE DIAGNOSTICS

We next discuss convergence diagnostics for PBNN models during active learning. A popular choice
for convergence diagnostics in Bayesian inference is the Gelman-Rubin statistic (‘R-hat’), which
provides a measure of convergence for each model parameter (Gelman & Rubin, 1992). However,
for Bayesian neural networks, where the parameter space is high-dimensional, examining individ-
ual parameter convergence becomes impractical. Instead, we analyzed the distribution of R-hat
values across all parameters and found that for the majority of weights (95–99%, depending on
dataset), these values lie within acceptable ranges between 1.0 and 1.1 (Brooks & Gelman, 1998).
While layer-wise or module-wise convergence analysis is also possible for complex architectures,
we opted for global parameter statistics due to the relatively simple network structure in this study.
See Appendix A.3 for more details.

We note that in active learning-based autonomous science tasks, reliable convergence diagnostics
play an important role in ensuring the autonomous system performance. The R-hat statistic can
therefore serve as an automated quality check, triggering specific actions when convergence issues
are detected: for example, if a high proportion (> 10%) of parameters display R-hat values outside
the acceptable range, the system can employ various convergence improvement heuristics. These
include increasing the number of warm-up states, trying different parameter initialization schemes,
or adjusting prior distributions. If issues persist after these interventions, the system can flag the
experiment for human review, ensuring reliability of the autonomous decision-making process.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: Comparison of Partially Bayesian Neural Networks (PBNNs) and fully Bayesian neural
network (Full BNN) on materials property prediction tasks. (a) Fatigue strength prediction (NIMS
database) and (b) electrical conductivity prediction (HTEM database). Each PBNN configuration
PBNN (i, 4) has two probabilistic layers: one at position i (counting from 0) and one at the output.
Shaded areas represent a standard deviation across five different random seeds.

3.4 TRANSFER LEARNING

Transfer learning (TL) is particularly valuable when data is limited and difficult to acquire, as is often
the case in experimental materials science and chemistry. For deterministic NNs, TL is performed
by initializing the network parameters with those of a pre-trained network. Most often the target
NN’s parameters are still optimized for the task at-hand via backpropagation, which is referred to as
fine-tuning. In the context of BNNs, TL can be done through a selection of prior distributions over
the weights, where the priors incorporate some domain knowledge. Here, we use the weights of a
deterministic model trained in a computational space to initialize the prior distributions by setting
their means to the corresponding pre-trained weights, thereby transferring domain knowledge to a
(P)BNN operating in the experimental space. We can do this for the entire model or only for some
parts (layers). We can also specify a “degree of trust” in the theory by selecting appropriate standard
deviations for these distributions: wider distributions indicate less confidence in the computational
model, while narrower ones encode stronger confidence. Here, we examine how this simulation-
to-experiment transfer learning affects AL with (P)BNNs. The process involves first training a
deterministic NN on simulation data, then using its weights to inform the (P)BNN surrogate model
that guides active learning on experimental data.

We start with Noisy-FreeSolv dataset. Here the deterministic neural network is pre-trained on com-
putational data from molecular dynamics simulations, whereas experimental data is augmented with
synthetic noise to create a more challenging test case for our models. For this study, we made the
last two hidden layers and the output layer probabilistic, with priors initialized at values of weights
from the corresponding pre-trained deterministic neural network. Figure 5 shows the performance of
PBNN with theory-informed priors for different prior widths (τ ). While all prior widths demonstrate
good performance, intermediate width (τ = 0.5) achieves slightly better RMSE and NLPD values
compared to tighter (τ = 0.1) or wider (τ = 1.0) priors, suggesting an optimal balance between
leveraging theoretical knowledge and adapting to experimental data. Comparing pre-trained and
standard priors at τ = 1.0, we observe that theory-informed priors lead to substantially better per-
formance across all metrics. The improvement is particularly pronounced in NLPD and coverage,
where standard priors show high uncertainty and unstable behavior throughout the active learning
process.

7
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Figure 5: Transfer learning with pre-trained PBNNs applied to noisy FreeSolv dataset. (a ) RMSE,
NLPD, and coverage probability for different prior widths (τ ). (b) Comparing the performance of
pre-trained priors (τ = 1.0) against standard priors. Shaded areas represent a standard deviation
across five different random seeds.

Figure 6: Transfer learning with pre-trained PBNNs applied to Bandgaps dataset. (a ) RMSE,
NLPD, and coverage probability for different prior widths (τ ). (b) Comparing the performance of
pre-trained priors (τ = 1.0) against standard priors. Shaded areas represent a standard deviation
across five different random seeds.
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Finally, we analyze bandgaps of non-metals, where priors are pre-trained on density functional the-
ory (DFT) calculations. The results shown in Figure 6 demonstrate that among different prior widths,
there is a clear trade-off: the tight prior (τ = 0.1) shows stable but limited improvement, suggesting
it constrains the model too closely to DFT predictions, while wider priors (τ = 0.5 and τ = 1.0)
show initial oscillations but ultimately achieve better RMSE through greater adaptation to experi-
mental data. This suggests that one can in principle apply dynamic adjustment: impose a strong
belief in the theoretical model initially, and then, as more data becomes available, gradually relax
it, allowing the data to speak for itself. Comparing pre-trained and standard priors at τ = 1.0, we
observe similar trends to the FreeSolv dataset. The advantage of pre-trained priors is particularly
pronounced in the early stages of active learning, where in the first 50 steps they achieve signifi-
cantly lower RMSE and better calibrated uncertainties compared to standard priors, indicating more
efficient use of limited experimental data. While both approaches eventually converge to similar
RMSE values, the benefits of pre-trained priors persist in uncertainty quantification throughout the
entire process, maintaining substantially better coverage probability.

4 CONCLUSION

In this work, we explored the capabilities of partially Bayesian neural networks (PBNNs) in active
learning tasks. Within the MLP architectures deployed here, we found that the choice of which
layers are made probabilistic significantly impacts performance, with early layers providing better
and more stable uncertainty estimates - a finding that held consistently across studied molecular and
materials datasets. Notably, PBNNs with probabilistic first layer achieved performance comparable
to fully Bayesian networks while requiring substantially fewer computational resources. We fur-
ther enhanced PBNN performance through transfer learning by initializing priors using theoretical
models, which proved particularly beneficial in the early stages of active learning. Our analysis
revealed an important trade-off in prior width selection: tight priors ensure stability but may con-
strain the model too closely to theoretical predictions, while wider priors enable better adaptation
to experimental data. Across both studied systems, theory-informed priors led to better calibrated
uncertainties and more efficient data utilization. Overall, this work demonstrates the feasibility of
PBNNs for materials science and chemistry, particularly in the context of AL for limited, complex
datasets.

5 CODE AND DATA AVAILABILITY

The repository containing code and data supporting the paper’s findings, together with additional
implementation details, will be specified upon acceptance.
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A APPENDIX

A.1 DATASETS

To assess the performance of PBNNs for AL on a variety of diverse datasets, we have selected
two molecular and two materials datasets for benchmarking, and one molecular and one materials
dataset containing both simulation and experimental data to investigate transfer learning (TL) from
computed to experimental properties. Details, such as the dataset sizes and relevant references,
regarding these datasets are provided in Tables A1 and A2. The FreeSolv, ESOL, and Steel fatigue
(NIMS) datasets were used as published, while the Conductivity (HTEM) and Bandgap datasets
are subsets of the published databases. Specifically, the Conductivity (HTEM) dataset utilized here
is restricted to oxides containing Ni, Co, and Zn which have electrical conductivity values, and
the Bandgap dataset is a random sample of 1000 non-metals from the intersection of the Materials
Project bandgap dataset and the Matbench experimental bandgap dataset. We also used a noisy
version of FreeSolv (Noisy-FreeSolv) for TL where experimental target values were corrupted by a
zero-centered Gaussian noise with a standard deviation of one.

As far as the input features are concerned, we used standard RDKit (Contributors) physicochemical
descriptors for the molecular datasets. For the steel fatigue dataset, the input features were chem-
ical compositions, upstream processing details, and heat treatment conditions. For the electrical
conductivity data, the input features were formed from oxide concentrations, deposition conditions,
and processing parameters, such as power settings and gas flow rate. The input features for the
Bandgap dataset were derived using the Magpie featurizer, which computes statistical descriptors
from elemental properties and composition fractions (Ward et al., 2016).

Table A1: Datasets for Active Learning
Name Target property Nfeatures Nsamples Reference

FreeSolv Hydration free energy 9 642 Mobley & Guthrie (2014)
ESOL Aqueous solubility 9 1128 Delaney (2004)

Steel fatigue (NIMS) Fatigue strength 25 437 Agrawal et al. (2014)
Conductivity (HTEM) Electrical conductivity 12 1184 Zakutayev et al. (2018)

Table A2: Datasets for Transfer Learning
Name Target property Nfeatures Nsamples Reference

Noisy-FreeSolv Hydration free energy 9 642 Mobley & Guthrie (2014)
Bandgap Bandgap energy 132 1000 Jain et al. (2013); Zhuo et al. (2018)

A.2 ACTIVE LEARNING

In AL, the algorithm iteratively identifies points from a pool of unobserved data, within a pre-defined
parameter space Xdomain ⊆ Rd, that are expected to improve the model’s performance in reaching
some objective. Starting with an initial, usually small, training dataset D = {(xi, yi)}Ni=1, an initial
PBNN is trained and predictions are made on all x∗ ∈ Xdomain. The predictions that maximize a
suitably selected acquisition function are then selected for measurement via an experiment, simula-
tion, or human labeling. For the sake of benchmarking, we have chosen an acquisition function that
simply maximizes the predictive uncertainty, i.e., xnext ← argmaxx∗∈Xdomain U(x∗), and only select
a single xnext at each iteration. Note that here we naturally balance exploration between regions
of model uncertainty and inherent complexity, as high aleatoric uncertainty often indicates areas re-
quiring additional samples to better estimate noise distributions and capture underlying patterns. For
further details regarding the AL algorithm, see Algorithm A1. Usually, this process is repeated until
a desired goal is reached or an experimental budget is exhausted; here, we perform 200 exploration
steps for all datasets. Lastly, we have selected initial training datasets by randomly sampling subsets
of the total datasets containing 5% of the total number of data points. While this procedure results
in differently sized initial training datasets, the trends observed are consistent across all datasets and
corresponding sizes.
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Algorithm A1 Active Learning
Require:

Parameter space Xdomain ⊆ Rd

Number of initial measurements N
PBNN model architecture and parameters
Stopping criterion

1: Conduct N random measurements to create initial dataset D = {(xi, yi)}Ni=1
2: Train the PBNN on D using Algorithm 1
3: repeat
4: Compute PBNN’s predictive uncertainty U(x∗) for each x∗ ∈ Xdomain
5: xnext ← argmaxx∗∈Xdomain U(x∗)
6: Perform measurement at xnext to obtain ynext
7: Update D by adding (xnext, ynext)
8: Re-train the PBNN on updated D using Algorithm 1
9: until Stopping criterion is met

To assess AL performance, we computed several key metrics after each AL iteration. Our evaluation
encompasses both prediction accuracy and uncertainty quantification.

Prediction accuracy was evaluated using the standard root mean square error (RMSE):

RMSE =

√∑M
i (yi − µi)2

M
, (A8)

where M is the size of the test set.

To assess the quality of the predictive uncertainties, we used two metrics, the negative log predictive
density (NLPD) and the confidence interval coverage probability, which we refer to as coverage
from this point forward. NLPD is given by the following equation:

NLPD = − 1

M

M∑
i=1

[
−1

2
log(2πUi)−

(yi − µi)
2

2Ui

]
(A9)

NLPD assesses how well a model’s predictive distributions align with observed data. A lower NLPD
indicates that the model assigns higher probability density to true outcomes while maintaining well-
calibrated uncertainty estimates. This metric is valuable for evaluating probabilistic models as it
penalizes both overconfident incorrect predictions and underconfident correct ones.

Coverage is given by

Coverage =
1

M

M∑
i

yi∈CI(xi), (A10)

where CI(xi) is the confidence interval of test point xi. Coverage measures the empirical reliability
of a model’s uncertainty estimates by calculating the proportion of true values that fall within the
predicted confidence intervals (Kompa et al., 2021). In this work, all coverage values are computed
for 95% confidence intervals.

A.3 CONVERGENCE DIAGNOSTICS

Figure A1 shows the distribution of R-hat values across PBNN (0, 4) parameters aggregated over
all active learning steps for four different case studies: ESOL, FreeSolv, Steel fatigue, and HTEM
datasets. All cases demonstrate good convergence characteristics, with the majority of parameters
having R-hat values close to 1.0. The distributions exhibit a right-skewed pattern, which is expected
in MCMC convergence diagnostics. There are, however, variations between datasets - particularly,
the Steel fatigue case shows a wider spread of R-hat values, which correlates with more volatile
NLPD values and slower Coverage convergence in early active learning steps. Nevertheless, most of
the weights and biases fall within the the range 1.0 < R-hat < 1.1, which is traditionally considered
to indicate good convergence.
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Figure A1: Gelman-Rubin ‘R-hat’ values over all active learning steps for ESOL, FreeSolv, Steel
fatigue, and HTEM datasets.
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