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ABSTRACT

We propose Graphlet Message-Passing Neural Networks (MPNNs) as an exten-
sion of classical MPNNs in which vertex and edge graphlet information is taken
into account. In this way, the distinguishing power of MPNNs is increased in a
natural way. We introduce Graphlet MPNNs in quite some generality, hereby en-
compassing recent proposals. Our main result is a complete characterization of the
distinguishing power of Graphlet MPNNs. We conclude this paper by outlining
some interesting directions for future research.

1 INTRODUCTION

Xu et al. (2019) and Morris et al. (2019) showed that vertex embeddings, computed by Message-
Passing Neural Networks (MPNNs), are inherently limited in expressive power. This limitation can
be elegantly formalized, as follows. Let M be an MPNN and denote by M(G, v) and M(G) the
embedding (in some Rd), computed by M, of vertex v in the graph G, and of the graph itself,
respectively. For a graph X , denote by Xx a rooted version of X , where x is a vertex in X . Then:

Proposition 1 ((Dvořák, 2010; Dell et al., 2018)). For any two graphs G and H , vertices v in G
and w in H , and any MPNN M: M(G, v) = M(H,w) if for any rooted tree T r, hom(T r, Gv) =
hom(T r, Hw). Similarly, M(G) = M(H) if for any (unrooted) tree T , hom(T,G) = hom(T,H).

Here, hom(X,Y ) denotes the number of edge-preserving vertex mappings from graph X to Y
(called homomorphisms). In case X and Y are rooted, homomorphisms should additionally map
the root of X to the root of Y . Proposition 1 thus tells that MPNNs cannot distinguish vertices and
graphs, based on the computed embeddings, whenever they contain the same tree-like structures.
For example, the classical example graphs G1 ( ) and H1 ( ) cannot be distinguished by
any MPNN. We also remark that the class of MPNNs is powerful enough such that there exists an
MPNN M for which M(G, v) = M(H,w) implies that hom(T r, Gv) = hom(T r, Hw) for any
rooted tree T r, and similarly for graph embeddings (Xu et al., 2019; Morris et al., 2019).

Inspecting the example graphs G1 and H1 reveals what graph information could be used for dis-
tinguishing them. Indeed, G1 contains two triangles (3-cliques), whereas H1 does not contain any.
EmbeddingG1 andH1 in R in terms of 3-clique counts thus suffices to distinguish them. In general,
subgraph counts were used by Przulj (2007) to define vertex embeddings (graphlet degree vectors),
and by Shervashidze et al. (2009) to define graph embeddings (graphlet kernel). In those works,
graphlets refer to small graphs and for each graphlet, the number of induced subgraphs isomorphic
to the graphlet, is taken as a feature of a vertex or graph.

Natural questions are now: How can graphlet information be integrated in MPNNs? Can MPNNs
benefit from having such additional graphlet information? Can Proposition 1 be extended to such
“Graphlet MPNNs”? We will address these questions in quite some generality, by allowing a flexible
way to define how graphlets can be tied to the underlying graph data.

2 GRAPHLET MPNNS

Graphlet MPNNs are inspired by the Graph Substructure Networks (GSNs) of Bouritsas et al. (2021)
and the P-MPNNs of Barceló et al. (2021). In those works, graph structural information is used to
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augment the initial vertex and edge features, by using (induced) subgraph counts and homomor-
phism counts of graphlets, respectively. Subsequently, standard MPNNs are executed on such “aug-
mented” graphs. Graphlet MPNNs can be regarded as a unifying model for these two approaches
and further allow to define variants using general counting mechanisms of graphlets. We first explain
what we mean by such counting mechanisms and then define Graphlet MPNNs.

Counting vertex- and edge-graphlets. For a graphX , we denote by VX andEX its set of vertices
and edges, respectively. Moreover, Xx,y denotes a two-rooted graph X with (x, y) ∈ EX . A
graphlet P is just a small graph, a vertex-graphlet P r is single-rooted graphlet, and an edge-graphlet
Qr1,r2 is a two-rooted graphlet. Let P r be a vertex-graphlet and G a graph. We define the following
set of vertex mappings: Mapφ(P

r, Gv) := {f : VP → VG | f(r) = v, f satisfies φ}. Similarly, for
an edge-graphlet Qr1,r2 we define Mapψ(Q

r1,r2 , Gv,w) := {f : VP → VG | f(r1) = v, f(r2) =
w, f satisfies ψ}. Crucial in these definitions are the conditions φ and ψ which restrict the allowed
vertex mappings. Example conditions are:

• If φ = ∀ p, q ∈ VP
(
(p, q) ∈ EP → (f(p), f(q)) ∈ EG

)
, then Mapφ(P

r, Gv) consists of
homomorphisms from P r to Gv;

• If φ = ∀ p, q ∈ VP
((
(p, q) ∈ EP → (f(p), f(q)) ∈ EG

)
∧
(
(p ̸= q) → f(p) ̸= f(q)

))
, then

Mapφ(P
r, Gv) consists of subgraph isomorphisms from P r to Gv; and

• φ = ∀ p, q ∈ VP
((
(p, q) ∈ EP ↔ (f(p), f(q)) ∈ EG

)
∧
(
(p ̸= q) → f(p) ̸= f(q)

))
, then

Mapφ(P
r, Gv) consists of induced subgraph isomorphisms from P r to Gv .

Similar conditions ψ can be used for edge-graphlets. Depending on the graph learning task at hand,
any other condition can be used. Given these sets of mappings, we next turn them into quantitative
vertex and edge features. More precisely, we obtain features by counting graphlets as follows:1

#φ(P r, Gv) := |Mapφ(P
r, Gv)| and #ψ(Qr1,r2 , Gv,w) := |Mapφ(Q

r1,r2 , Gv,w)|.
With these vertex and edge features at hand, we can now define Graphlet MPNNs.

Graphlet MPNNs. Consider a set P = {P r1 , . . . , P rp } of vertex-graphlets, a set Q = {Qr1,r21 ,
. . . , Qr1,r2q } of edge-graphlets, and conditions φ and ψ used to restrict vertex mappings for vertex-
graphlets and edge-graphlets, respectively, as explained above. Then, a Graphlet MPNN is formally
specified as a (Pφ,Qψ)-MPNN in which:

• The initial vertex labels (labv) are augmented with vertex-graphlet counts, and edge-graphlet
counts are used for the edge labels. That is, the initial vertex embedding and edge labels are:

l(0)v :=
(
labv,#φ(P

r
1 , G

v), . . . ,#φ(P rp , G
v)
)

lvw :=
(
#ψ(Qr1,r21 , Gv,w), . . . ,#ψ(Qr1,r2q , Gv,w)

)
.

• Then, the vertex embedding l
(t)
v is updated just as in standard MPNNs (Gilmer et al., 2017):

l(t+1)
v := Update(t)

(
l(t)v ,Aggregate(t)

(
{{(l(t)w , lvw) | w ∈ NG(v)}}

))
,

where NG(v) denotes the set of vertices adjacent to v in G, and Aggregate and Update are arbi-
trary functions operating on multisets of vectors (denoted by {{ }}) and vectors, respectively.

• Finally, to obtain a graph embedding, a general readout function can be applied after T updates.
More precisely:

lG := Readout
(
{{l(T )
v | v ∈ VG}}

)
.

With Graphlet MPNNs in place, we next endeavor to provide a characterization of their distinguish-
ing power. More precisely, we show a generalization of Proposition 1 for Graphlet MPNNs.

3 DISTINGUISHING POWER OF GRAPHLET MPNNS

In order to generalize Proposition 1 to Graphlet MPNNs, we take inspiration from Barceló et al.
(2021). In that paper, the authors introduced P-MPNNs, for a set P of vertex-graphlets and con-
sidered homomorphism counts. As such, a P-MPNN is a (Pφ, ∅)-MPNNs with φ the condition

1One can further generalize this by allowing other functions on the cardinalities of the sets of mappings.

2



Submitted to the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

corresponding to homomorphisms, as described earlier. Barceló et al. (2021) show that the dis-
tinguishing power of P-MPNNs can be expressed in terms of homomorphism counts of so-called
P-pattern trees. Furthermore, it was observed that this pattern tree characterization can be extended
to a sub-class of GSNs (Bouritsas et al., 2021) in which only vertex-graphlets and induced subgraph
counts are used. This subclass corresponds to (Pφ, ∅)-MPNNs with φ the condition corresponding
to induced subgraph isomorphisms, as described earlier. In this section, we generalize the pattern
tree characterization for general Graphlet MPNNs, which can use general counting mechanisms (ex-
pressed through the conditions φ and ψ), and that incorporate both vertex- and edge-graphlets. We
start by describing pattern trees, followed by our main result.

Pattern trees. Given a graph G, a vertex v ∈ VG and a vertex-graphlet P r, the join graph G ⋆ P
is obtained by taking the disjoint union of G and P , followed by identifying the root vertex r with
v. For example, the join of G ( ) and P ( ) along the marked vertices is G ⋆ P ( ). Similarly,
for a graph G, an edge (v, u) ∈ EG and an edge-graphlet Qr1,r2 , the join graph G ⋆ Q is obtained
as above, but this time by identifying the edge (v, u) with (r1, r2). For example, the join of G ( )
and Q ( ) along the marked edges is G ⋆ Q ( ).

Given a collection P of vertex-graphlets and Q of edge-graphlets, we next define a (P,Q)-pattern
tree T r: It is a rooted tree, obtained from a standard rooted tree Sr = (VS , ES), called the backbone
of T r, followed by joining every vertex s ∈ VS with any number of copies of vertex-graphlets
from P and by joining every edge (s1, s2) in ES with any number of copies of edge-graphlets
from Q. For instance, for P = { , } and Q = { }, examples of (P,Q)-pattern trees are:

, where we marked vertices in the backbone in gray.

Main result. We are now ready to state our generalization of Proposition 1. In this generalization,
trees will be replaced by (P,Q)-pattern trees and we will use a revised notion of homomorphism,
based on the conditions φ and ψ used in Graphlet MPNNs.

More precisely, let T r be a (P,Q)-pattern tree with backbone Sr, and consider Gv for graph G.
A (φ,ψ)-homomorphism f from T r to Gv is defined as follows: It is mapping f : VT → VG
satisfying (i) f(r) = v; (ii) the restriction f

∣∣
S

of f to the backbone S is a standard homomorphism;
(iii) the restriction f

∣∣
P

of f to each (copy of a) joined vertex-graphlet P in T r is an element in
Mapφ(P

r, Gv); and finally, (iv) the restriction f
∣∣
Q

of f to each (copy of a) joined edge-graphletQ in
T r is an element in Mapψ(Q

r1,r2 , Gv,w). In accordance with the notation used in Proposition 1, we
denote the number of (φ,ψ)-homomorphisms from T r toGv by homφ,ψ(T

r, Gv). Finally, a (φ,ψ)-
homomorphism from an unrooted (P,Q)-pattern tree T to G is defined as a (φ,ψ)-homomorphism
from a rooted version T r of T to any rooted version Gv of G, for v ∈ VG. We use homφ,ψ(T,G) to
denote the number of such homomorphisms. Our main result is as follows:

Theorem 2. For any two graphs G and H , vertices v in G and w in H , and any (Pφ,Qψ)-MPNN
M, we have the following:

• M(G, v) = M(H,w) if for any rooted (P,Q)-pattern tree T r, we have that homφ,ψ(T
r, Gv) =

homφ,ψ(T
r, Hw); and

• M(G) = M(H) if for any (unrooted) (P,Q)-pattern tree T , homφ,ψ(T,G) = homφ,ψ(T,H).

Just as for classical MPNNs, the class of (Pφ,Qψ)-MPNNs is rich enough such that there
exists a (Pφ,Qψ)-MPNN for which M(G, v) = M(H,w) implies that homφ,ψ(T

r, Gv) =
homφ,ψ(T

r, Hw) for any rooted (P,Q)-pattern tree T r, and similarly for graph embeddings.

Theorem 2 tells that, intuitively, even when starting from a small number of vertex- and edge-
graphlets, when integrated in MPNNs, more complex graph patterns can be detected. Indeed, one
can show that a T -layered Graphlet MPNN can use (P,Q)-pattern trees of depth at most T (where
depth is defined in terms of the tree’s backbone). This is in contrast to, say graphlet degree vectors
or graph kernels, where one needs to explicitly provide all graphlets of interest. As such, Graphlet
MPNNs are more flexible and require less hand-crafted features (the initial set of graphlets). The
proof of Theorem 2 is a modification of the one in Grohe (2020a) and Barceló et al. (2021), but
generalized to edge-graphlets and general conditions φ and ψ (see supplementary material).
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We remark that when P and Q are empty, (P,Q)-pattern trees are just trees, and (φ,ψ)-
homomorphisms are just homomorphisms. Hence, Theorem 2 encompasses Proposition 1 as a
special case. Similarly, it also encompasses the results by Barceló et al. (2021) for the special
cases of Graphlet MPNNs described in the beginning of this section.

4 LOOKING AHEAD

We conclude by pointing out some interesting directions for future research and by describing some
related preliminary results. We defer details to the supplementary material.

Comparison of Graphlet MPNNs. In designing Graphlet MPNNs one has to decide what
graphlets to include and what kind of mappings (conditions φ and ψ) are of interest. A natural
question is how different instantiations of Graphlet MPNNs compare to each other, in terms of dis-
tinguishing power or performance. For a theoretical comparison, Theorem 2 may turn useful. For
example, one can show that there are graphs that can be distinguished by GSNs but not by P-MPNNs
when using the same graphlets, and vice versa. This shows that the choice ofφ, i.e., homomorphisms
versus subgraph isomorphisms, makes a difference. A related question is what the impact is of us-
ing vertex-graphlets versus edge-graphlets. One intuitively would expect that edge-graphlets result
in stronger features since vertex-graphlet features “summarize” all information into single vertices.
We have the following result, where we use edge-graphlets in Q also as vertex-graphlets by ignoring
one its roots.
Proposition 3. (∅,Qψ)-MPNNs can distinguish more graphs than (Qψ, ∅)-MPNNs; and (Qψ,Qψ)-
MPNNs are exactly as strong as (∅,Qψ)-MPNNs.

This result resolves an open problem of GSNs (Bouritsas et al., 2021): edge-graphlets are strictly
more powerful than vertex-graphlets. Clearly, these results only provide an initial understanding of
the entire space of Graphlet MPNNs.

Other uses of graphlets. So far, graphlets are used to augment vertex and edge features. We
can, however, also use edge-graphlets for defining an extended notion of neighborhood, over which
MPNNs can aggregate. Such an approach is recently proposed by Li et al. (2021). The idea is as
follows: Given an edge-graphlet Qr1,r2 (where now r1 and r2 are abitrary) and corresponding con-
dition ψ, define the extended neighborhood NG,Qψ (v) := {u ∈ VG | ∃f ∈ Mapψ(Q

r1,r2 , Gv,u)}.
In other words, vertices u ∈ VG are treated as neighbors of v, when they are linked through the
edge-graphlet via a mapping satisfying ψ. Using this, we can extend MPNNs by aggregating over
this extended set of neighbors:

l(t+1)
v := Update(t)

(
l(t)v ,Aggregate(t)

(
{{(l(t)u , lvu) | u ∈ NG(v) ∪NG,Qψ (v)}}

))
.

Furthermore, one can similarly revise (Pφ, ∅)-MPNNs.2 Let us denote the resulting extension by
Pφ-MPNNs+Q. A natural question is how the use of extended neighborhoods affects the distin-
guishing power. Well, as it turns out, we can leverage Theorem 2 to gain insights. Indeed, consider a
P-pattern tree T r (no edge-graphlets) underlying the characterization of (Pφ, ∅)-MPNNs. Now, let
Qr1,r2 be an edge-graphlet, which is used for the extended neighborhood. It now suffices to observe
that the backbone Sr of T r was a tree, because the standard neighbor setNG(v) was used. So, when
usingNG,Qψ (v) instead, it suffices to replace each edge in the backbone tree Sr by the edge-graphlet

Qr1,r2 . For example, suppose that our backbone is and we use the edge-graphlet is . Then,

we need to consider as backbone of our pattern tree instead. If additional vertex-graphlets

are present, these need to be joined with the original (gray) backbone vertices. With this extended
pattern-tree notion in place, Theorem 2 generalize to the case of extended neighborhoods.

To conclude, we believe that Graphlet MPNNs in all their forms and shapes are a promising and
interesting way of extending the power of classical MPNNs. Moreover, pattern-tree based charac-
terizations of distinguishing power are not only elegant, they are handy means for. reasoning over
Graphlet MPNNs.

2Combining extended neighborhoods with edge-graphlet count features seems less natural.
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A APPENDIX

A.1 PROOF OF MAIN THEOREM

Proof of Theorem 2

Earlier we mentioned that classical MPNNs are completely characterized in expressive power by the
Weisfeiler-Leman color refinement procedure. In Xu et al. (2019) this result is proven by demon-
strating that every couple of graphs distinguishable by Weisfeiler-Leman will be embedded differ-
ently with the right chosen depth for a GNN provided that the aggregation and updating functions
are injective. Moreover, a GNN architecture (called Graph Isomorphism Network or shortly GIN) is
constructed that satisfies these conditions. While this result is originally formulated for the ”basic”
MPNNs without extensions, it also holds for MPNNs with extended features and the corresponding
versions of the Weisfeiler-Leman procedure (see Barceló et al. (2021) for a full exposition on the
extension of node features with homomorphism counts as an example). We remind the reader that
the WL-procedure goes as follows:

l(t+1)
v := Hash

(
l(t)v , {{l(t)u | u ∈ NG(u)}}

)
Any graph morphism types ϕ and ψ enable us to define a version of the Weisfeiler-Leman color
refinement procedure that corresponds to MPNNs with extended node features and/or extended edge
features based on structural information about the nodes and edges in the graph.

l(0)v := (χv,#ϕ(P
r
1 , G

v), . . . ,#ϕ(P rp , G
v)

luv := (#ψ(Qr1r21 , Guv), . . . ,#ψ(Qr1r2q , Guv))

l(t+1)
v := Hash

(
l(t)v ,

{{
(l(t)u , luv) | u ∈ NG(v)

}})
For pattern sets P,Q and morphism types ϕ and ψ we call this the (Pϕ,Qψ)-WL procedure.

We show that for any finite collections P,Q of patterns, graphs G and H , vertices v ∈ VG and
w ∈ VH , and d ≥ 0:

(G, v) ≡(d)
(Pϕ,Qψ)-WL (H,w) ⇐⇒ homφ,ψ(T

r, Gv) = homφ,ψ(T
r, Hw), (1)

for every (P,Q)-pattern tree T r of depth at most d. Similarly,

G ≡(d)
(Pϕ,Qψ)-WL H ⇐⇒ homφ,ψ(T,G) = homφ,ψ(T,H), (2)

for every (unrooted) (P,Q)-pattern tree of depth at most d.

For a given set P = {P r1 , . . . , P rp } of patterns and s = (s1, . . . , sp) ∈ Np, we denote by Fs the
graph pattern of the form (P s11 ⋆ · · · ⋆ P spp )r, that is, we join s1 copies of P1, s2 copies of P2 and so
on.

Proof of equivalence (1). The proof is by induction on the number of rounds d.

=⇒ We first consider the implication (G, v) ≡(d)
(Pϕ,Qψ)-WL (H,w) =⇒ homφ,ψ(T

r, Gv) =

homφ,ψ(T
r, Hw) for every (P,Q)-pattern tree T r of depth at most d.

Base case. Let us first consider the base case, that is, d = 0. In other words, we consider (P,Q)-
pattern trees T r consisting of a single root r adorned with a pattern F s for some s = (s1, . . . , sp) ∈
Np. We note that due to the properties of the graph join operator:

homφ,ψ(T
r, Gv) =

∏
i∈[p]

(
#ϕ(P ri , G

v)
)si
. (3)
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Since, (G, v) ≡(0)
(P,Q)-WL (H,w), we know that χG(v) = χH(w) = a for some a ∈ Σ and

#ϕ(P ri , G
v) = #ϕ(P ri , H

w) for all P ri ∈ P . This implies that the product in (3) is equal to

∏
i∈[p]

(
#ϕ(P ri , H

w)
)si

= homφ,ψ(T
r, Hw)

as desired.

Inductive step. Suppose next that we know that the implication holds for d − 1. We assume now

(G, v) ≡(d)
(Pϕ,Qψ-WL (H,w) and consider an (P,Q)-pattern tree T r of depth at most d. Assume

that in the backbone of T r, the root r has m children c1, . . . , cm, and denote by T c11 , . . . , T cmm the
(P,Q)-pattern trees (of depth ≤ d − 1 in T r rooted at ci. Furthermore, we denote by T (r,ci)

i the
(P,Q)-pattern tree obtained from T cii by attaching r to ci; T

(r,ci)
i has root r. Let Fr be the pattern

in T r associated with r and let Er1r2i be the edge-wise join of patterns attached to backbone edge
(r, ci) . The following equality obviously follows from the definition of a (ϕ, ψ)-homomorphism:

homφ,ψ(T
r, Gv) = homφ,ψ(Fr, Gv)

∏
i∈[m]

( ∑
v′∈NG(v)

homφ,ψ(T
ci
i , G

v′)homφ,ψ(Er1r2i , Gvv
′
)
)
.

(4)

Recall now that we assume (G, v) ≡(d)
(Pϕ,Qψ)-WL (H,w) and thus, in particular, (G, v) ≡(0)

(Pϕ,Qψ)-WL

(H,w). Hence, by induction, homφ,ψ(S
r, Gv) = homφ,ψ(S

r, Hw) for every F-pattern tree Sr of
depth 0. In particular, this holds for Sr = Fr and hence

homφ,ψ(Fr, Gv) = homφ,ψ(Fr, Hw).

Furthermore, (G, v) ≡(d)
(Pphi,Qψ)-WL (H,w) implies that there exists a bijection β : NG(v) →

NH(w) such that (G, v′) ≡(d−1)
(Pphi,Qψ)-WL (H,β(v′)) and #ψ(Qr1r2i , Gvv

′
) = #ψ(Qr1r2i , Hww′

)

for every v′ ∈ NG(v). By induction, for every v′ ∈ NG(v) there thus exists a unique w′ ∈ NH(w)

such that homφ,ψ(S
r, Gv

′
) = homφ,ψ(S

r, Hw′
) for every F-pattern tree Sr of depth at most d−1.

In particular, for every v′ ∈ NG(v) there exists a w′ ∈ NH(w) such that

homφ,ψ(T
ci
i , G

v′) = homφ,ψ(T
ci
i , H

w′
)

homφ,ψ(Er1r2i , Gvv
′
) =

∏
j∈[q]

#ψ(Qr1r2i , Gvv
′
)yij

=
∏
j∈[q]

#ψ(Qr1r2i , Hww′
)yij = homφ,ψ(Er1r2i , Hww′

)

for each of the sub-trees T cii in T r. Hence, equation 4 is equal to

homφ,ψ(Fr, Hw)
∏
i∈[m]

( ∑
w′∈NH(w)

homφ,ψ(T
ci
i , H

w′
)homφ,ψ(Er1r2i , Hww′

)
)

which in turn is equal to homφ,ψ(T
r, Hw), as desired.

⇐= We next consider the other direction, that is, we show that when homφ,ψ(T
r, Gv) =

homφ,ψ(S
r, Hw) holds for every (P,Q)-pattern tree T r of depth at most d, then

(G, v) ≡(d)
(Pϕ,Qψ)-WL (H,w) holds. This is again verified by induction on d. This direction is more

complicated and is similar to techniques used in Grohe (2020b). In our induction hypothesis we fur-
ther include that a finite number of (P,Q)-pattern trees suffices to infer (G, v) ≡(d)

(Pϕ,Qψ)-WL (H,w)

for graphs G and H and vertices v ∈ VG and w ∈ VH .

7
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Base case. Let us consider the base case d = 0 first. We need to show that χG(v) = χH(w) and
#ϕ(P ri , G

v) = #ϕ(P ri , H
w) for every P ri ∈ P , since this implies (G, v) ≡(0)

(Pϕ,Qψ)-WL (H,w).

We first observe that homφ,ψ(T
r, Gv) = homφ,ψ(T

r, Hw) for every (P,Q)-pattern tree T r of
depth 0, implies that v and w must be assigned the same label, say a, by χG and χH , respectively.

Indeed, if we take T r to consist of a single root r labeled with a (and thus r is associated with the
pattern F0), then homφ,ψ(T

r, Gv) = homφ,ψ(T
r, Hw) will be one if χG(v) = χH(w) = a and

zero otherwise. This implies that χG(v) = χH(w) = a.

Next, we show that #ϕ(P ri , G
v) = #ϕ(P ri , H

w) for every P ri ∈ P . It suffices to consider the
P-pattern tree T ri consisting of a root r joined with a single copy of P ri :

#ϕ(P ri , G
v) = homφ,ψ(P

r
i , G

v)

= homφ,ψ(P
r
i , H

w) = #ϕ(P ri , H
w)

We observe that we only need a finite number of F-pattern trees to infer (G, v) ≡(0)
F -WL (H,w).

Indeed, suppose that χG and χH assign labels a1, . . . , aL, then we need L single vertex trees with
no patterns attached and root labeled with one of these labels. In addition, we need one F-pattern
tree for each pattern P ri ∈ F and each label a1, . . . , aL. That is, we need L(p + 1) (P,Q)-pattern
trees of depth 0.

Inductive step. We now assume that the implication holds for d − 1 and consider trees of depth
d. That is, we assume that if homφ,ψ(T

r, Gv) = homφ,ψ(T
r, Hw) holds for every F-pattern

tree T r of depth at most d − 1, then (G, v) ≡(d−1)
(Pϕ,Qψ)-WL (H,w) holds. Furthermore, we assume

that only a finite number K of F-pattern trees Sr1 , . . . , S
r
K of depth at most d − 1 suffice to infer

(G, v) ≡(d−1)
(Pϕ,Qψ)-WL (H,w).

So, for d, let us assume that hom(T r, Gv) = hom(T r, Hw) holds for every F-pattern tree of depth
at most d. We need to show (G, v) ≡(d)

(Pϕ,Qψ)-WL (H,w) and that we can again assume that a finite

number of F-pattern trees of depth at most d suffice to infer (G, v) ≡(d)
(Pϕ,Qψ)-WL (H,w).

By definition of (G, v) ≡(d)
(Pϕ,Qψ)-WL (H,w), we can, equivalently, show that (G, v) ≡(d−1)

(Pϕ,Qψ)-WL

(H,w) and that there exists a bijection β : NG(v) → NH(w) such that (G, v′) ≡(d−1)
(Pϕ,Qψ)-WL

(H,β(v′)) and #ψ(Qr1r2i , Gvv
′
) = #ψ(Qr1r2i , Hwβ(v′)) for every v′ ∈ NG(v). That

(G, v) ≡(d−1)
F -WL (H,w) holds, is by induction, since hom(T r, Gv) = hom(T r, Hw) for every

(P,Q)-pattern tree of depth at most d and thus also for every (P,Q)-pattern tree of depth at most
d− 1. We may thus focus on showing the existence of the bijection β.

We know, by induction and the proof of the previous implication, that (G, v) ≡(d−1)
F -WL (H,w) if

and only if homφ,ψ(S
r
i , G

v) = homφ,ψ(S
r
i , H

w) for each i ∈ K. Denote by R1, . . . , Re the
equivalence class on VG ∪ VH induced by ≡(d−1)

F -WL and the values of the counts #ψ(Qr1r2i , Gvv
′
)

or #ψ(Qr1r2i , Hww′
). In other words: two vertices are in the same equivalence class if the K

(ϕ, ψ)-homomorphism counts of the trees Si and the q ψ-counts of the patterns Qi are all the same.
Furthermore, define Nj,X(x) := NX(x) ∩ Rj and let nj = |Nj,G(v)| and mj = |Nj,H(w)| for
v ∈ VG and w ∈ VH , for each j ∈ [e]. If we can show that nj = mj for each j ∈ [e], then this
implies the existence of the desired bijection.

Let T r=ai be the F-pattern tree of depth at most d obtained by attaching Sri to a new root vertex r
labeled with a. We may assume that v andw both have label a, since their homomorphism counts for
the single root trees with labels from Σ. The root vertex r is not joined with any Fs (or alternatively
it is joined with F0). It will be convenient to denote the root of Sri by ri instead of r. Then for each
i1 ∈ [K]:

8
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homφ,ψ(T
r=a
i1 , Gv) =

∑
v′∈NG(v)

homφ,ψ(S
ri
i , G

v′) =
∑
j∈[e]

njhomφ,ψ(S
ri1
i , Gv

′
j )

=
∑
j∈[e]

mjhomφ,ψ(S
ri1
i1
, Hw′

j ) =
∑

w′∈NH(w)

homφ,ψ(S
ri1
i1
, Hw′

)

= homφ,ψ(T
r=a
i1 , Hw)

where v′j and w′
j denote arbitrary vertices in Nj,G(v) and Nj,H(w), respectively. Let us denote

homφ,ψ(Si
ri
1 , G

v′j ) by ai1j and observe that this is equal to homφ,ψ(Si
ri1
1 , Hw′

j ). Hence, we know
that for each i1 ∈ [K]: ∑

j∈[e]

ai1jnj =
∑
j∈[e]

ai1jmj .

Similarly, for each i2 ∈ [q]:

homφ,ψ(Q
r1
i2
, Gv) =

∑
v′∈NG(v)

homφ,ψ(Qi
r1r2
2 , Gvv

′
) =

∑
j∈[e]

njhomφ,ψ(Qi
r1r2
2 , Gvv

′
j )

=
∑
j∈[e]

mjhomφ,ψ(Qi
r1r2
2 , Hww′

j ) =
∑

w′∈NH(w)

homφ,ψ(Qi
r1r2
2 , Hww′

)

= homφ,ψ(T
r=a
i1 , Hw)

and thus ∑
j∈[e]

qi2jnj =
∑
j∈[e]

qi2jmj

for all i2 ∈ [q] if we denote homφ,ψ(Qi
r1r2
2 , Gvv

′
j ) = homφ,ψ(Qi

r1r2
2 , Hww′

) by qi2j .

In what follows, we will denote the patterns Q ∈ mathcalQ with Srii with i ∈ {K+1, . . . ,K+ q}
and the K (d− 1)-depth pattern trees from the inductive step with Srii with i ∈ K. This means that
we can denote qi,j = ai+K,j and that we won’t need qij in our notation and that the following holds
for all i ∈ [K + q]: ∑

j∈[e]

aijnj =
∑
j∈[e]

aijmj

We call a set I ⊆ [K + q] compatible if the following conditions are satisfied:

• For all i ∈ I ∩ [K], the corresponding trees have the same label in the root.
• If the pattern set Q consists of labeled patterns (i.o.w.: if preserving labels is a condition of the
ψ-type morphisms) : For all i ∈ I ∩ {K + 1, . . . ,K + q} the corresponding patterns have label a
in the first root and the same label as the roots of depth d− 1 in the second root.

Consider a vector s = (s1, . . . , sK , . . . , sK+q) ∈ NK+q and define its support as supp(s) := {i ∈
[K + q] | si ̸= 0}. We say that s is compatible if its support is. For such a compatible s we now
define T r=a,s to be the F-pattern tree with root r labeled with a, with one child c which is joined
with (and inheriting the label from) the following F-pattern tree of depth d− 1:

⋆i∈supp(s)∩[K]S
si
i .

The edge (r, c) is joined with the corresponding number of patterns from Q:

⋆i∈supp(s)∩{K+1,...,K+q}S
si
i .

9
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In other words, we simply join together powers of the K (d − 1)-deep pattern trees Srii ’s that have
roots with the same label, whereas we join the edge patterns on the edge (r, c). Then for every
compatible s ∈ N[K+q]:

Then for every compatible s ∈ N[K+q]:
homφ,ψ(T

r=a,s, Gv)

=
∑

v′∈NG(v)

∏
i∈[K+1,K+q]

(
homφ,ψ(S

r1r2
i , Gvv

′
)
)si ∏

i∈[K]

(
homφ,ψ(S

ri
i , G

v′)
)si

=
∑
j∈[e]

nj
∏

i∈[K+1,K+q]

(
homφ,ψ(S

r1r2
i , Gvv

′
j )
)si ∏

i∈[K]

(
homφ,ψ(S

ri
i , G

v′j )
)si

=
∑

j∈[K+q]

mj

∏
i∈[K+1,K+q]

(
homφ,ψ(S

r1r2
i , Hww′

j )
)si ∏

i∈[K]

(
homφ,ψ(S

ri
i , H

w′
j )
)si

=
∑

w′∈NH(w)

∏
i∈[K+1,K+q]

(
homφ,ψ(S

r1r2
i , Hww′

)
)si ∏

i∈[K+q]

(
homφ,ψ(S

ri
i , H

w′
)
)si

= homφ,ψ(T
r=a,s
i , Hw)

where, as before, v′j and w′
j denote arbitrary vertices in Nj,G(v) and Nj,H(w), respectively. Hence,

for any compatible s ∈ N[K+q]:∑
j∈[e]

nj
∏

i∈[K+q]

asiij =
∑
j∈[e]

mj

∏
i∈[K+q]

asiij .

We now continue in the same way as in the proof of Lemma 4.2 in Grohe (2020b). We repeat the
argument here for completeness. Define asj :=

∏
i∈[K+q] a

si
ij for each j ∈ [e]. We assume, for the

sake of contradiction, that there exists a j ∈ [e] such that nj ̸= mj . We choose such a j0 ∈ [e] for
which S = supp(aj0) is inclusion-wise maximal.

We first rule out that S = ∅. Indeed, suppose that S = ∅. This implies that aj0 = 0. Now observe
that aj and aj′ are mutually distinct for all j, j′ ∈ [e], j ̸= j′. Indeed, if they were equal then this
would imply that Rj = Rj′ . Hence, supp(aj) ̸= ∅ for any j ̸= j0. We note that nj = mj for all
j ̸= j0 by the maximality of S. Hence, nj0 = n−

∑
j ̸=j0 nj = n−

∑
j ̸=j0 mj = mj0 , contradicting

our assumption. Hence, S ̸= ∅.

Consider J := {j ∈ [e] | supp(aj) = S}. For each j ∈ J , consider the truncated vector âj :=
(aij | i ∈ S). We note that âj , for j ∈ J , all have positive entries and are mutually distinct. Lemma
4.1 in Grohe (2020b) implies that we can find a vector (with non-zero entries) ŝ = (ŝi | i ∈ S) such
that the numbers âŝj for j ∈ J are mutually distinct as well. We next consider s = (s1, . . . , sK)
with si = ŝi if i ∈ S and si = 0 otherwise. Then by definition of ŝ, also asj for j ∈ J are mutually
distinct.

We next note that for every p ∈ N, apsj = (asj)
p and if we define A to be the |J | × |J |-matrix such

that Ajj′ := aj
′s
j then this will be an invertible matrix (Vandermonde). We use this invertibility to

show that nj0 = mj0 .

Let nJ := (nj | j ∈ J) and mJ = (mj | j ∈ J). If we inspect the j′th entry of nJ ·A, then this is
equal to

∑
j∈J

nja
j′s
j =

∑
j∈[e]

nja
j′s
j −

∑
j∈[e]

S ̸⊆supp(aj)

nja
j′s
j −

∑
j∈[e]

S⊂supp(aj)

nja
j′s
j .

We want to reduce the above expression to∑
j∈J

nja
j′s
j =

∑
j∈[e]

nja
j′s
j −

∑
j∈[e]

S⊂supp(aj)

nja
j′s
j .

10
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To see that this holds, we verify that when S ̸⊆ supp(aj) then aj
′s
j = 0. Indeed, take an ℓ ∈ S such

that ℓ ̸∈ supp(aj). Then, aj
′s
j contains the factor aj

′sℓ
ℓj = 0sℓ with sℓ = ŝℓ ̸= 0. Hence, aj

′s
j = 0.

Now, by the maximality of S, for all j with S ⊂ supp(aj) we have nj = mj and thus∑
j∈[e]

S⊂supp(aj)

nja
j′s
j =

∑
j∈[e]

S⊂supp(aj)

mja
j′s
j .

Since
∑
j∈[e] nja

j′s
j =

∑
j∈[e]mja

j′s
j , we thus also have that∑
j∈J

nja
j′s
j =

∑
j∈J

mja
j′s
j .

Since this holds for all j′ ∈ J , we have nJ ·A = mJ ·A and by the invertibility of A, nJ = mJ .
In particular, since j0 ∈ J , nj0 = mj0 contradicting our assumption.

As a consequence, nj = mj for all j ∈ [e] and thus we have our desired bijection.

It remains to verify that we only need a finite number of F-pattern trees to conclude that nj = mj

for all j ∈ [e]. In fact, the above proof indicates that we just need to check test for each root label a,
we need to check identities for the finite number of pattern trees used to define the matrix A.

Proof of equivalence 2 This equivalence is shown just like proof of Theorem 4.4. in Grohe (2020a).
in Grohe (2020b).

=⇒ We first show that G ≡(d)
(Pϕ,Qψ)-WL H implies homφ,ψ(T,G) = homφ,ψ(T,H) for unrooted

(P,Q)-pattern trees T of depth at most d.

Assume that VX ∩ VY = ∅ for X,Y ∈ {G,H}. For x ∈ VX and y ∈ VY , define x ∼d y if and only
if hom(T r, Xx) = hom(T r, Y y) for all F-pattern trees T r of depth at most d. Let R1, . . . , Re be
the ∼d-equivalence classes and for each j ∈ [e], let pj := |Rj ∩ VG| and qj := |Rj ∩ VH |. Suppose
that G ≡(d)

F -WL H . This implies that pj = qj for every j ∈ [e].

Let T be an unrooted (P,Q)-pattern tree of depth at most d, let r be any vertex on the backbone
of T , and let T r be the rooted (P,Q)-pattern tree obtained from T by declaring r as its root. By
definition, for X ∈ {G,H}, any x ∈ VX ∩ Rj , homφ,ψ(T

r, Xx) are all the same number, only
dependent on j ∈ [e]. Hence,

homφ,ψ(T,G) =
∑

v∈V (G)

homφ,ψ(T
r, Gv) =

∑
j∈[e]

pjhomφ,ψ(T
r, Gvj )

=
∑
j∈[e]

qjhomφ,ψ(T
r, Hwj ) =

∑
w∈V (H)

homφ,ψ(T
r, Hw) = homφ,ψ(T,H),

where vj and wj are arbitrary vertices in Rj ∩ VG and Rj ∩ VH , respectively, and where we used
that homφ,ψ(T

r, Gvj ) = homφ,ψ(T
r, Hwj ) and pj = qj . Since this holds for any unrooted (P,Q)-

pattern tree T of depth at most d, we have shown the desired implication.

⇐= We next check the other direction. That is, we assume that homφ,ψ(T,G) = homφ,ψ(T,H)

holds for any unrooted (P,Q)-pattern tree T of depth at most d and verify that G ≡(d)
(Pϕ,Qψ)-WL H .

For x ∼d y to hold for x ∈ VX , y ∈ VY and X,Y ∈ {G,H}, we earlier showed that this
corresponds to checking whether homφ,ψ(T

ri
i , X

x) = homφ,ψ(T
ri
i , Y

y) for a finite number K
rooted (P,Q)-pattern trees T rii . By definition of the Rj’s, aij := homφ,ψ(T

ri
i , X

x) for x ∈ Rj is
well-defined (independent of the choice of X ∈ {G,H} x ∈ VX ). For the rooted T rii ’s we denote
by Ti its unrooted version. Similarly as before,

homφ,ψ(Ti, G) =
∑
j∈[e]

aijpj =
∑
j∈[e]

aijqj = homφ,ψ(Ti, H).

11
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Figure 1: A circular skip graph with 7 nodes and skip length 2

We next show that pj = qj for j ∈ [e]. In fact, this is shown in precisely the same way as in our
previous characterisation and based on Lemma 4.2 in Grohe (2020b). That is, we again consider
trees obtained by joining copies of the Ti’s, to obtain, for compatible s ∈ NK ,

∑
j∈[e]

asiijpj =
∑
j∈[e]

asiijqj .

It now suffices to repeat the same argument as before (details omitted).

A.2 DETAILED COMPARISONS OF DIFFERENT APPROACHES

Before introducing the examples substantiating the comparisons between different extensions of
MPNN models , we briefly define the Circular Skip Graphs. This is a graph consisting of n nodes
forming a cycle and additional edges making ’skip connections’ between nodes divided by k steps
in the cycle. As an example, see the graph CSL(7,2) in figure 1.

The computed numbers of homomorphism and subgraph isomorphisms in the propositions of this
section can be verified by self implemented code (available in 3).

We will use the notation Cl1 > Cl2 to denote that an instance from class Cl1 of MPNNs is able to
distinguish a pair of vertices that any instance of class Cl2 will not be able to distinguish.

At first, we prove that neither homomorphism or subgraph isomorphism counts of the same pattern
set result in a strictly stronger model.

Proposition 4. There exist vertices v1 and v2 in graphs G and H and a pattern set P such that v1
and v2 that can not be distinguished by (Psub, ∅)-MPNNs but are distinguishable by some (Phom, ∅)-
MPNN, as well as the other way around.

Proof. While such graphs are 4-regular graphs, CSL graphs of the same size but with mutually prime
skip connection numbers k are not isomorphic. These graphs can be used to test the expressive
power of GNN models (as in Dwivedi et al. (2020)), as every pair of CSL graphs with a fixed
number of nodes is WL-indistinguishable. Moreover, any pair of vertices in such graphs are also
WL-indistinguishable.

1. (Phom, ∅)-MPNN > (Psub, ∅)-MPNNs
Consider the graph G = C3 ∪ C3 ∪ C3 ∪ C3 ∪ C3 and H = C5 ∪ C5 ∪ C5. For any
vertex v in G and w in H: sub(Cr6 , G

v) = sub(Cr6 , G
v) = 0 , which means that those

two are indistinguishable by ({C6}sub, ∅)-MPNNs. However: hom(Cr6 , G
v) = 22 ̸= 20 =

3https://github.com/AnonSubmits/ICLRWorkshop2022
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hom(Cr6 , H
w), which means that a ({C6}hom, ∅)-MPNN exists that can distinguish those

vertices.

2. (Psub, ∅)-MPNN > (Phom, ∅)-MPNNs

Consider the graphG = CSL(7, 2)∪CSL(7, 2) andH = CSL(14, 2). For any vertex v inG
and any vertex w in H , hom(Cr6 , G

v) = hom(Cr6 , H
w) but sub(Cr6 , G

v) ̸= sub(Cr6 , H
w).

This means that these vertices are indistinguishable by ({C10}hom, ∅)-MPNNs but not by
({C10}sub, ∅)-MPNNs

Theorem 5. 1. (∅,Pϕ)-MPNNs are strictly stronger in distinguishing power than (Pϕ, ∅)-
MPNNs.

2. (Pϕ,Pϕ)-MPNNs are exactly as strong as (∅,Pϕ)-MPNNs

Proof. 1. We proof the first part of this proposition by demonstrating two things:

• (∅,Pϕ)-MPNNs > (Pϕ, ∅)-MPNNs
• Every pair of vertices undistinguishable by (∅,Pϕ)-MPNNs is indistinguishable by
(Pϕ, ∅)-MPNNs.

Consider the graph G and vertices v and w, illustrated in 2. The ”inner circle” is a 7-
cycle with a skip link connection of length 2, the ”outer circle” a 7-cycle with a skip link
connection of length 3. Node on corresponding position at the inside and the outside are
joined with an edge. The result is a 5-regular graph of 14 nodes which implies that if all
labels are identical no pair of vertices in this graph can be distinguished by the Weisfeiler-
Leman procedure within any number of rounds. A computational verification shows that
sub(C4, G

v) = sub(C4, G
w) = 20, we also observe that this means that sub(C4, G

u) = 20
for any vertex u in the graph as v and w are representatives of the two orbits of V (G)
induced by the action of the graph automorphism group. As a consequence, if P = C4

than v and w are indistinguishable by (Psub, ∅)-MPNNs

On the other hand: if we consider the edges in v and w (depictioned in bold) and compute
the numbers sub(C4, G

vv′) and sub(C4, H
ww′

) we get the multisets {{4, 4, 5, 5, 2}} and
{{6, 6, 3, 4, 2}}. This means that v and w are distinguishable by (∅,Psub)-MPNN.

We proof the general claim by induction. Specifically, we proof the following:

For any vertices v, w in the respective graphs G and H the following holds for all d ∈ N

(G, v) ≡(d)
(∅,Pϕ)-WL (H,w) ⇒ (G, v) ≡(d−1)

(Pϕ,∅)-WL (H,w)

We start with the base case d = 1

Suppose (G, v) ≡(1)
(∅,Pϕ)-WL (H,w): this means that

(
l0v,

{{
(l0v′ , lvv′) | v′ ∈ NG(v)

}})
=

(
l0w,

{{
(l0w′ , lww′) | w′ ∈ NH(w)

}})
⇓(

l0v,
{{
(l0v′ , (#ϕ(P

r1r2
i , Gvv

′
))i∈[p]) | v′ ∈ NG(v)

}})
=

(
l0w,

{{
(l0w′ , (#ϕ(P r1r2i , Hww′

))i∈[p]) | w′ ∈ NH(w)
}})

where l0v and l0w denote the original labeling in the graph. It is immediately clear that this
implies (

l0v, (#ϕ(P
r1
i , Gv))i∈[p]

)
=

(
l0w, (#ϕ(P

r1
i , Hw))i∈[p]

)
as

13
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Figure 2: (∅,Pϕ)-MPNNs are strictly stronger in distinguishing power than (Pϕ, ∅)-MPNNs

∀i ∈ [p] : #ϕ(P r1i , Gv) =
∑

v′∈NG(v)

#ϕ(P r1r2i , Gvv
′
)

=
∑

w′∈NG(w)

#ϕ(P r1r2i , Hww′
) = #ϕ(P r1i , Hw)

Hence, (G, v) ≡(0)
(Pϕ,∅)-WL (H,w)

In the inductive case we assume that (G, v) ≡(d+1)
(∅,Pϕ)-WL (H,w).

This implies that (G, v) ≡(d)
(∅,Pϕ)-WL (H,w) and the existence of a bijection β between

NG(v) and NH(w) mapping every v′ to a β(v′) such that (G, v′) ≡(d)
(∅,Pϕ)-WL (H,β(v′)).

By the induction hypothesis this implies that (G, v) ≡(d−1)
(Pϕ,∅)-WL (H,w) and

(G, v′) ≡(d−1)
(Pϕ,∅)-WL (H,β(v′) By the definition of the Weisfeiler-Leman procedure this

means that (G, v) ≡(d)
(Pϕ,∅)-WL (H,w).

2. It is obvious that (Pϕ,Pϕ)-WL distinguishes all pairs disitinguishable by (∅,Pϕ)-WL. The
other direction is verified in exactly the same way as in the first part of this proposition.

A.3 DETAILS AND PROOF ON PATTERN-INDUCED NEIGHBORHOODS

In the classical Weisfeiler-Leman color refinement procedure, a node color in each next iteration
is determined by aggregating the neighbors’ colors from the previous round. In the main paper
we described and (PϕQψ)-MPNNs and the proof of theorem 2 introduced the corresponding color
refinement procedure. While these extensions add local information to the node and edge labels
information is still propagated along the edges of the graph. In both cases this results in the possi-
bility to detect (albeit extended with pattern ”leaves”) tree-shaped structures. Suppose now that we
would be interested to propagate information not along edges, but between couples of nodes who
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appear together in a specific pattern. This kind of label propagation gives raise to a color refinement
procedure and corresponding message passing neural networks.

Li et al. (2021) combines the aggregation of features according to a classical MPNN updating rule
with a ”motif-neighborhood”, which essentially comes down to the approach analyzed in this sec-
tion. They note that this enables the model to simultaneously learn global graph information and
local structural information pertaining to a particular nodes and to distill the necessary combination
of this two types of information by introducing an attention mechanism.

In this section we would like to determine what kind of graph structures such frameworks would be
able to detect. Let us firstly introduce the necessary concepts and notations to formalize this notion.

Let G = (V,E) be a graph and let P r1,r2 be a two-rooted graph pattern. Suppose that a ϕ-type
morphism is a type of graph morphisms such that (homomomorphisms and subgraph isomorphisms
are both examples of such types) for all pairs of vertices v, w in G the following sets have the same
cardinality:

#{f : V (P ) → V (G) | f(r1) = v,f(r2) = w and f ∈ Φ}
=

#{f : V (P ) → V (G) | f(r1) = w,f(r2) = v and f ∈ Φ}

where we denoted the set of all graph morphisms satisfying the conditions imposed by a ϕ-type
by Φ. We denote the cardinality of these sets by #ϕ(P r1r2 , Gvw) and the sets themselves with
Φ(P r1r2 , Gvw)

For every v ∈ V we can construct a tree-shaped graph Gv,d,P of depth d in the following way:

1. The root vertex of Gv,d,P is a vertex with the same label lv as v.

2. For all w ∈ V with label lw for which #ϕ(P r1r2 , Gvw) = k, an edge from the root vertex
to a new vertex with label lw is added k times.

3. Repeat the previous step for all vertices on the second level. This means computing all
numbers #ϕ(P r1,r2 , Gw,z) = k and adding the corresponding number of edges from level
2 to level 3. An important remark here is that if a vertex already has an edge to a vertex
with label lz (i.e. the root vertex from step 1 has label lz), only k − 1 vertices with label lz
are added on level 3.

4. Complete this tree in this way until the depth is d.

5. We define a mapping α : V (Gv,d,P ) → V (G) mapping a vertex in this tree to a vertex in
G with the same label.

The previous construction and the presence of identyfying labels in G ensures us that for all vertices
with label lu in any Gv,d,P (independent of the choice of v) αv (u) will always be the same vertex
in V (G). This is why we will denote this mapping by α in the proofs.

This can be seen as an unfolding of this graph according to the neighborhood structure implied
by the common appearance of vertices in patterns P inside the graph G. The introduction of the
morphism type ϕ allows us to prove a general result, independent of the type of pattern counts used
to define the neighborhoods.

Example 6. Consider the following couple G and P r1,r2 in figure 3. Applying the steps described
above results in the tree Gv,2,P

Figure 4: Example
of T rP

Let now T r be some rooted, directed tree and P r1,r2 a two-rooted symmetric
graph pattern as before. The associated graph T rP is constructed by replacing
every edge with a subgraph of the same shape as Pr1,r2 . Consider the fol-
lowing couple T r = and P r1,r2 = . Applying the steps described
above results in the following graph T rP illustrated in figure 4. We call this
kind of graph a P-tree and define a notion corresponding type of graph map-
ping:

Definition 7. A ϕ-homomorphims from a rooted P-tree T rP to a rooted graph
Gv is a mapping f : V (TP ) → V (G) such that f(r) = v and that the
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Figure 3: An example of Gv,d,P

restriction f
∣∣
P

is a ϕ-type morphism on every subgraph of shape P con-
necting nodes on the ”virtual backbone” of T rP . We denote the number of
such ϕ-homomorphisms with ϕ− hom(T rP , G

v) and remark that it bears the same properties as the
(ϕ, ψ)-homomorphisms from the previous sections of this paper.
Lemma 8. For any vertex t on the ”virtual backbone” of a P -tree TP the number of ϕ−hom(TP , G)
can be factores into a product as:

ϕ− hom(T tP , G
w) = ϕ− hom(T t1P , G

w) · ϕ− hom(T t2P , G
w)

where T1P and T2P are the two P -trees obtained by cutting TP at t.

Proof. This holds because the definition of a ϕ-homomorphism of a P -tree imposes no conditions on
the images of different P -shaped parts of the tree: i.e. the number of mappings ϕ− hom(T t1P , G

w)
and ϕ− hom(T t2P , G

w) do not depend on each other.

These constructions bear the following usefull property. Suppose that we use this new notion of
neighborhood to define a color refinement procedure, called the P -WL-procedure, in the following
way:

χ
(0)
P,G,v :=

(
χG(v)

)
χ
(d)
P,G,v := HASH

(
χ
(d−1)
F,G,v, {{χ

(d−1)
F,G,u | u = h(r2) for some h ∈ Φ(P r1,r2 , Gv, w)}}

)
, for d > 0.

We will denote equivalence according to this color refinement procedure after d steps by ∼dP and
equivalence after d steps of the ”classical” WL (A.1) by ≡d. The following proposition shows that
performing this color refinement procedure on the original graph is the same as the ”classical” WL
on the tree graph Gv,d,P .
Proposition 9. For any two graphs G,H and vertices v ∈ G and w ∈ H the following equivalence
holds:

v ∈ G ∼dP w ∈ H ⇔ v ∈ Gv,d,P ≡d w ∈ Hw,d,P

Proof. The essence of the proof comes down to the fact that in both color refinement schemes, WL
(see equation A.1) in the original graphs and P -WL in the unfoldings, the (multi)sets of neighbors
have a one-to-one correspondence and have the same multisets of labels. To make this work techni-
cally, we introduce some definitions and assume that G and H have some unique node identifiers.
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The construction of Gv,d,P establishes an important correspondence between two ”neighborhood
sets”. On one hand we have a multiset of vertices of G, the so-called P -neighborhood of a vertex v:

NG,P (v) = {{h(r2) ∈ V (G) | h ∈ Φ(P r1,r2 , Gv,·)}}
On the other, the neighbors of any non-leaf vertex with label lv in the tree Gv,d,P .

To use these correspondences in out proofs we define a mapping αv from the vertices of Gv,d,P to
G. By using the unique node identifiers (labels) in G, the following is a well defined function:

V (Gv,d,P ) −→ V (G)

x with label lv 7−→ v with label lv

Moreover, the remark in the third step of the constructions ensures that this correspondence holds
no matter which vertex was chosen to be the root of the ”unfolding” of G. In other words a non-leaf
vertex with some label lv has exactly the same neighbors in Gu,d,P for all u ∈ V (G). We also
note that αv can be denoted as α as it only depends on the vertex label and hence well-defined and
independent of v . We can observe the following things about any vertex u ∈ G:∣∣NGv,d,P (u)

∣∣ = ∥{{α(NGv,d,P (u))}}∥ = ∥{{NG,P (α(u))}}∥

Moreover: {{α(NGv,d,P (u))}} = {{NG,P (α(u))}}
Exactly the same constructions are defined for H and its vertices and we define the mappings by α
for readibility.

We proof the proposition by induction on the depth d.

Our induction hypothesis is twofold:

1. v ∈ G ∼d−1
P w ∈ H ⇔ v ∈ Gv,d,P ≡d−1 w ∈ Hw,d,P

2. α(x) ∈ G ∼d−1
P α(y) ⇔ x ≡d−1 y. Where x ∈ Gu1,d,P and y ∈ Hu2,d,P and the

statement is independent of the chosen u1 ∈ G, u2 ∈ H

By definition of Gv,d,P and Hv,d,P and the remarks about α, it is clear that the base case d = 1 is
trivial.

Suppose now that v ∈ G ∼dP w ∈ H , this means that:

v ∈ G ∼d−1
PWL w ∈ H and ∃ bijection f :{{NG,P (v)}} → {{NH,P (w)}}

such that u ∼d−1
P f(u)(∀u ∈ NG,P )

⇕

v ∈ Gv,d,P ≡d−1 w ∈ Hw,d,P and ∃ bijection g : {{NGv,d,P (v)}} → {{NHw,d,P (w)}}
such that α(x) ∼d−1

P α(g(x))(∀x ∈ NGv,d,P (v))

⇕

v ∈ Gv,d,P ≡d−1 w ∈ Hw,d,P and ∃ bijection g : {{NGv,d,P (v)}} → {{NHw,d,P (w)}}
such that x ≡d−1 g(x)
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From the definition of Gv,d,P , it is clear that performing this iterative color refinement procedure
on some vertex v in the original graph G is the same as performing the classical Weisfeiler-Leman
on Gv,d,P . The neighbors of v in this graph are exactly those whose labels would be hashed when
performing the P -WL procedure on G.
Proposition 10. Given a tree T r of depth d, a graph G = (V,E), a pattern P r1,r2 and a vertex
v ∈ V and using the constructions ofGv,d,P and T rP described above. The following homomorphism
numbers are equal:

ϕ− hom(T rP , G
v) = hom(T r, Gvv,d,P )

Proof. Suppose that the root r of T r has children c1, . . . , cm. Every one of these is the root of a tree
T cii of depth ≤ d − 1. We denote the tree that is obtained by attaching r to T cii by T ri,cii . All of
these trees have maximal depth d. These trees give raise to the P -trees T ri,cii,P . Now we have:

hom(T r, Gvv,d,P ) =

m∏
i=1

hom(T ri,cii , Gvv,d,P )

=

m∏
i=1

∑
v′∈NGv,d,P (v)

hom(T cii , G
v′

v,d,P )

=

m∏
i=1

∑
v′∈NGv,d,P (v)

ϕ− hom(T cii,P , G
α(v′))

=

m∏
i=1

∑
h∈ϕ(P r1,r2 ,Gv,·)

ϕ− hom(T cii,P , G
h(r2))

=

m∏
i=1

∑
w∈V (G)

#ϕ(P r1,r2 , Gv,w)ϕ− hom(T cii,P , G
w)

=

m∏
i=1

ϕ− hom(T ci,rii,P , Gv)

= ϕ− hom(T rP , G
v)

Where we used the lemma about factorizing the number of ϕ-homomorphisms of P -trees and the
bijection between the neighborhoods inG andGv,d,P established in the proof of the previous propo-
sition.

Another proposition reformulates results of Grohe (2020a) and Krebs & Verbitsky (2015) for our
setting.
Lemma 11. Let T r11 , T r22 be two trees of depth d. The following implication holds

r1 ≡d r2 ⇒ T r11 ≃ T r22

Proof. We proof this statement by induction on d and note that the base case is trivial. Suppose
that r1 ≡d r2 ⇔ T r11 . This is equivalent with r1 ≡d−1 r2 ⇔ T r11 and the existence of orderings
{x1, . . . , xk} and {y1, . . . , yk} respectively such that xi ≡d−1 yi. This last part implies that xi ∈
T xi1,d−1 ≡d−1 yi ∈ T yi2,d−1. The induction hypotheses gives us that T r11,d−1 ≃ T r11,d−1 and T xi1,d−1 ≃
T yi1,d−1. Lemma 2.5 of Krebs & Verbitsky (2015) implies that we can conclude that T r11,d ≃ T r22,d

Proposition 12. For any graphs G, H , symmetric pattern P and any tree of maximal depth d:

v ∈ Gv,d,P ≡d w ∈ Hw,d,P ⇔ hom(P r, Gvv,d,P ) = hom(T r, Hw
v,d,P )

Proof. This is shown by the following implications:

v ∈ Gv,d,P ≡d w ∈ Hw,d,P ⇒ Gvv,d,P ≃ Hw
w,d,P ⇒

hom(T r, Gvv,d,P ) = hom(T r, Hw
v,d,P ) ⇒ v ∈ Gv,d,P ≡d w ∈ Hw,d,P

The first implication is an application of the previous lemma, the second is obvious and the third
was shown by Grohe (2020a) as theorem 4.14.
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These 3 propositions and the lemma above allow us to formulate the following theorem:
Theorem 13. Two vertices v and w in respective graphs G,H are indistinguishable by P -WL for
some pattern P r1,r2 if and only if ϕ − hom(T rP , G

v) = ϕ − hom(T rP , H
w) for every T rP obtained

by replacing the edges of a tree Tr by a graph pattern of shape P .

Proof.

v ∈ G ∼dP w ∈ H

⇕
v ∈ Gv,d,P ≡d w ∈ Hw,d,P

⇕
hom(P r, Gvv,d,P ) = hom(T r, Hw

v,d,P )

⇕
ϕ− hom(T rP , G

v) = ϕ− hom(T rP , H
w)

When applying the theory above to characterize the distinguishing power of such models we im-
plicitly assume that a regular edge is also in the pattern set. This way, we always obtain a class of
MPNNs at least as strong as the the classic message-passing framework without additional pattern
information.

A.3.1 COMPARING PATTERN-INDUCED NEIGHBORHOODS TO EXTENSION BY ADDITIONAL
FEATURES

On an intuitive level, this approach bears some similarity with the edge features based on pattern
counts. In both cases, the additional information contains relative positions for couples of nodes in a
chosen set of patterns. However, in this framework the two roots of the pattern are not required to be
on one edge but can have all possible positions relative to each other. We denote this ’completion’
of a pattern set by P̄ . E.g. if P = { } than P̄ = { }. It is an open question whether this
results in a stronger class of models.
Proposition 14. If a pattern set P has only patterns in which the two roots are joined by an edge,
than the distinguishing power of P-MPNNs is limited by (∅,Phom)-MPNNs.

Proof. This can be demonstrated by induction in exactly the same way as in the proof of 3.
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