TOWARDS THE THREE-PHASE DYNAMICS OF GENERALIZATION POWER OF A DNN

Anonymous authorsPaper under double-blind review

ABSTRACT

This paper addresses the core challenge in the field of symbolic generalization¹, i.e., how to define, quantify, and track the dynamics of generalizable and nongeneralizable interactions encoded by a DNN throughout the training process. Specifically, this work builds upon the recent theoretical achievement in explainable AI (Ren et al., 2024), which proves that the detailed inference patterns of DNNs can be strictly rewritten as a small number of AND-OR interaction patterns. Based on this, we propose an efficient method to quantify the generalization power of each interaction, and we discover a distinct three-phase dynamics of the generalization power of interactions during training. In particular, the early phase of training typically removes noisy and non-generalizable interactions and learns simple and generalizable interactions. The second and the third phases tend to capture increasingly complex interactions that are harder to generalize. Experimental results verify that the learning of non-generalizable interactions is the direct cause for the gap between the training and testing losses.

1 Introduction

Despite the rapid advancement of deep learning, a sophisticated theoretical understanding of the generalization power of deep neural networks (DNNs) remains elusive. In practice, the widely employed techniques for improving generalization are predominantly empirical, such as chain of thought (CoT) (Wei et al., 2022), data cleaning (Brown et al., 2020; Silcock et al., 2022), and large language model (LLM) alignment via reinforcement learning (Ouyang et al., 2022; Rafailov et al., 2023; Shao et al., 2024). Consequently, a gap persists between these practical methodologies and theoretical analyses of generalization (Foret et al., 2020; Li et al., 2018; Xiao et al., 2020).

Therefore, there is a clear tend towards more sophisticated and principled analysis of a DNN's generalization power, which is emerged in recent years. To this end, can the generalization power of a DNN be attributed to the representation quality of the inference patterns in the DNN?

Background: symbolic generalization. The emerging field of symbolic generalization has served as a pioneering response to the above question and has garnered considerable attention (Liu et al., 2023; Ren et al., 2023b;c; Zhou et al., 2024) (see Section 3 for a survey). Within this field, (Ren et al., 2024) have proven a counterintuitive phenomenon: the complex inference logic of a DNN can be accurately and comprehensively explained by a small set of symbolic interactions. As illustrated both in Figure 1 and Figure 7, an interaction represents an AND logic or an OR logic among input variables that exerts a specific numerical influence on the model's output. For instance, a large language model (LLM) in Figure 1 encodes an AND interaction between $S = \{earth, revolves, sun\}$, which is only triggered when all the three words in S are presented in the model input and exerts a numerical effect $I_T^{\rm and} = 0.39$ that increases the LLM's output confidence in generating the token "year." Crucially, (Ren et al., 2024) have proven such AND-OR interaction effects can accurately predict the DNN's outputs on exponentially massive samples, which ensures the faithfulness of regarding these interactions as the primitive inference patterns encoded by the DNN.

Our research. In this paper, we address a fundamental and long-standing challenge in the field of symbolic generalization¹: how to rigorously quantify the generalization power of different

¹The entire theory system of symbolic generalization contains more than 20 papers. Representative studies in this direction have been surveyed in Section 3.

Figure 1: (Left) It has been proven that a small set of AND-OR interaction patterns are sufficient to mathematically represent all intricate inference patterns used by a DNN for inference. (Right) For each DNN, the change of its generalization power can be explained by the distinct three-phase dynamics of the generalization power of interactions encoded by it. Please see Figure 7 in Appendix F for more AND-OR logical models that explain LLMs' outputs on different prompts.

interactions in a DNN and trace their evolution throughout the training process. As Figure 7 shows, since the output of a DNN can be reformulated as the sum of all interaction effects, if most interactions learned by the DNN can also frequently appear in (be transferred to) unseen testing samples, then the DNN would exhibit a high testing accuracy, and vice versa. In other words, the generalization power of interactions determines the generalization of the entire DNN.

To this end, previous studies in the field of symbolic generalization remain limited to qualitative analysis of the complexity (Zhou et al., 2024) and robustness (Ren et al., 2023c) of interactions. People still lack a direct method for measuring the exact generalization power of each individual interaction, which has been a long-standing challenge for symbolic generalization for years.

Therefore, in this paper, we propose an efficient method to quantify the generalization power of each individual interaction. Instead of the computationally prohibitive approach of checking an interaction across all test samples, our method trains a baseline DNN on testing samples. All interactions, which can be transferred to the baseline DNN, are considered generalizable to testing samples. It is because each transferable interaction is also learned by the baseline DNN from testing samples as a primitive inference pattern.

The quantification of generalizable interactions allows us to uncover the distinctive three-phase dynamics of generalization power of interactions through entire training process (see Figure 3):

- Phase 1: Given a fully initialized DNN, in the early epochs of training, a large number of non-generalizable interactions are removed from the DNN, while a few generalizable interactions are gradually learned. These generalizable interactions are often simple and involve a small number of input variables, leading to the enhancement of the DNN's generalization power.
- Phase 2: The DNN continues to learn more interactions, but the newly learned interactions exhibit increasing complexity (*i.e.*, learning interactions between more input variables). These more complex interactions often have poorer generalization power. Thus, although the testing loss of the DNN continues to decreases, it tends to saturate due to the decreasing generalization power of the newly learned interactions.
- Phase 3: The DNN continues to learn additional interactions, but these newly learned interactions are often complex and difficult to apply to unseen data. Very few of these late-stage learned interactions represent simple, broadly generalizable patterns. Therefore, we can consider this phase revealing the overfitting of the DNN. During this phase, the gap between training and testing loss continues to widen. And the testing loss may even increase.

To further investigate how these non-generalizable interactions influence the DNN's performance, we propose to remove the effects of non-generalizable interactions from the DNN's output. We find that the removal of non-generalizable interactions significantly reduces the gap between the training

loss and the testing loss, thereby effectively alleviating overfitting. Notably, follow-up studies in Appendix I have also shown that penalizing non-generalizable interactions during the training process will improve the DNN's performance.

2 METHODOLOGY

2.1 Preliminaries: AND-OR Interactions

Consider an input sample $\mathbf{x} = [x_1, x_2, \dots, x_n]^T$ comprising n input variables, where $N = \{1, 2, \dots, n\}$ denotes the index set. Let $v(\mathbf{x}) \in \mathbb{R}$ denote the scalar output of the DNN. While $v(\mathbf{x})$ can be defined in various ways², we adopt the standard formulation widely used by (Ren et al., 2024; Zhou et al., 2024; Liu et al., 2023) to let $v(\mathbf{x})$ represent the classification confidence score for the ground-truth label \mathbf{y}^* as

$$v(\mathbf{x}) = \log \left(\frac{p(\mathbf{y}^* \mid \mathbf{x})}{1 - p(\mathbf{y}^* \mid \mathbf{x})} \right). \tag{1}$$

Problem setting: A central challenge in the field of symbolic generalization is to elucidate the complex inference patterns of a DNN (Li & Zhang, 2023b; Ren et al., 2024; Zhou et al., 2024). The basic idea is to utilize a logical model d to explain all primitive inference patterns in the DNN v. The faithfulness of this explanation is contingent upon satisfying two fundamental requirements. (1) **Fidelity requirement:** The logical model d must faithfully replicate the DNN's outputs over a comprehensively massive input set Q. (2) **Conciseness requirement:** The logical model d must contain parsimonious patterns to allow for succinct explanations, as specified below:

$$\forall \mathbf{x}' \in \mathcal{Q}, d(\mathbf{x}') = v(\mathbf{x}'), \text{ subject to } Complexity(d) \le K,$$
 (2)

where K is the maximum complexity allowed for logical model d to be considered concise.

Concretely, the logical model d constructed below is designed to encode a set of AND-OR interaction patterns. Please see a **video demonstration** for symbolic generalization in supplementary material. Furthermore, please see Figure 7 in Appendix F for more logical models that explain LLMs.

$$d(\mathbf{x}') = \sum_{T \in \Omega_{\text{and}}} \underbrace{I_T^{\text{and}} \cdot \delta_{\text{and}} \left(\begin{array}{c} \mathbf{x}' \text{ triggers AND relation} \\ \text{between input variables in } T \end{array} \right)}_{\text{an AND interaction between input variables in } + \sum_{T \in \Omega_{\text{or}}} \underbrace{I_T^{\text{or}} \cdot \delta_{\text{or}} \left(\begin{array}{c} \mathbf{x}' \text{ triggers OR relation} \\ \text{between input variables in } T \end{array} \right)}_{\text{an OR interaction between input variables in } T} + b, \quad (3)$$

where \mathbf{x}' denotes the input \mathbf{x} where some input variables are masked³ and, b is a scalar bias.

Each AND interaction is represented by binary function $\delta_{\mathrm{and}}\left(\begin{array}{c} \mathbf{x}' \text{ triggers AND relation} \\ \text{between input variables in } T \end{array} \right) \in \{0,1\}.$ It returns 1 if all variables in T are not masked in \mathbf{x}' ; otherwise it returns 0. Each OR interaction is represented by a binary function $\delta_{\mathrm{or}}\left(\begin{array}{c} \mathbf{x}' \text{ triggers OR relation} \\ \text{between input variables in } T \end{array} \right) \in \{0,1\}.$ It returns 1 if any variables in T are not masked in \mathbf{x}' ; otherwise it returns 0. I_T^{and} and I_T^{or} are scalar weights.

First, the fidelity requirement is fulfilled by the universal matching property established in Theorem 1. This theorem demonstrates that a logical model with specific settings of $I_T^{\rm and}$ and $I_T^{\rm or}$ is able to accurately predict all outputs of the DNN across an exponential number of 2^n masked input states. The comprehensively massive sample set is then constructed as $\mathcal{Q} = \{\mathbf{x}_S \mid S \subseteq N\}$, which contains all 2^n masked instances of the input sample \mathbf{x} . \mathbf{x}_S represents a masked input \mathbf{x} , in which input variables in $N \setminus S$ are masked³.

Theorem 1 (universal matching property, proven by (Chen et al., 2024)). Given DNN v and an input sample \mathbf{x} , let us set the scalar weights as $\forall T \subseteq N$, $I_T^{and} = \sum_{L \subseteq T} (-1)^{|T|-|L|} o_L^{and}$, $I_T^{or} = -\sum_{L \subseteq T} (-1)^{|T|-|L|} o_{N \setminus L}^{or}$ where $o_L^{and} = 0.5 \cdot v(\mathbf{x}_L) + \gamma_L$ and $o_L^{or} = 0.5 \cdot v(\mathbf{x}_L) - \gamma_L$, and set $b = v(\emptyset)^4$. $\{\gamma_L\}$ are set of learnable parameters. The logical model can then accurately predict the

 $^{^2}$ E.g., $v(\mathbf{x})$ can be set to the feature dimension of the ground-truth category prior to the softmax operation. 3 The masking of input variable means substituting this variable with a baseline value. We set the baseline value of an input variable as the average value of this variable across different input samples. For NLP models, we use a specific embedding in (Cheng et al., 2024; Ren et al., 2024) to mask input tokens.

 $^{{}^4}v(\emptyset)$ represents the network output when all input variables in x are masked.

network outputs as follows, regardless of how x is randomly masked:

$$\forall \mathbf{x}' \in \mathcal{Q}, \quad d(\mathbf{x}') = v(\mathbf{x}'). \tag{4}$$

Computation of interactions. Building upon the framework established in (Chen et al., 2024; Ren et al., 2023b), the parameters $\{\gamma_L\}$ are then optimized by minimizing a LASSO-regularized loss $\min_{\{\gamma_L\}} \|\mathbf{I}_{\text{and}}\|_1 + \|\mathbf{I}_{\text{or}}\|_1$ to obtain the sparsest interaction patterns, where we vectorize interactions as $\mathbf{I}_{\text{and}} = \begin{bmatrix} I_{T_1}^{\text{and}}, \dots, I_{T_{2n}}^{\text{and}} \end{bmatrix}^T$, $\mathbf{I}_{\text{or}} = \begin{bmatrix} I_{T_1}^{\text{or}}, \dots, I_{T_{2n}}^{\text{or}} \end{bmatrix}^T \in \mathbb{R}^{2^n}$. Please refer to Appendix A for the pseudocode for the computation of interactions and technical details.

Second, the conciseness requirement is fulfilled by the sparsity⁵ property of interactions. Particularly, (Ren et al., 2024) have further proven that under three common conditions⁶, DNNs can encode only a small number $(\mathcal{O}(n^p/\tau) \ll 2^{n+1})$ of AND-OR interactions with salient effects, while all other interactions have almost zero effects. Specifically, τ is a tiny threshold for saliency of interactions, and empirically, $p \in [0.9, 1.2]$.

The above two requirements enable us to construct a **concise logical model with a few salient AND-OR interactions in** $\Omega_{\text{and}}^{\text{Salient}} = \{S \mid |I_S^{\text{and}}| > \tau\}$ and $\Omega_{\text{or}}^{\text{Salient}} = \{S \mid |I_S^{\text{or}}| > \tau\}$, which can faithfully match network outputs on all samples in Q. The theoretical analysis in Appendix D and lots of empirical results from diverse DNNs (including LLMs) in both Appendix F and (Li & Zhang, 2023b; Ren et al., 2024; Zhou et al., 2024) support the the scientific rigor of the symbolic generalization.

The order of an interaction S represents the complexity of this interaction. The order is defined as the number of input variables involved in the interaction $\operatorname{Order}_S = |S|$.

2.2 QUANTIFYING GENERALIZATION POWER OF INTERACTIONS

2.2.1 DEFINITION AND QUANTIFICATION

The above fidelity requirement and conciseness requirements have become foundational pillars for the emerging direction of symbolic generalization (Li & Zhang, 2023b; Ren et al., 2023c; Zhou et al., 2024). Crucially, studies in this direction introduce a paradigm shift in understanding the generalization behavior of DNNs. This is grounded in the observation that a DNN's predictive output can be mathematically decomposed into a linear combination of AND-OR interaction effects (see Figure 1). Consequently, a DNN's generalization power can be considered to be determined by the generalization power of the interactions in the DNN.

Previous definition of the generalization power of interactions. Let us first revisit the definition of generalization power of an interaction in (Zhou et al., 2024). Given a salient AND interaction S extracted from an input \mathbf{x} subject to $|I_S^{\rm and}| > \tau$, if this interaction S frequently occurs in the testing set and consistently making an effect on the classification of a category, then it is deemed to be generalizable; otherwise, it fails to generalize to testing samples. This criterion extends analogously to OR interactions. For instance, in a bird species classification task, suppose an AND interaction $S = \{red\ features, long\ beak\}$ consistently appears in both training and testing datasets and consistently increases the confidence in predicting the "Flamingo" class. In this case, the interaction S demonstrates strong generalization power to unseen testing samples.

Efficient quantification of the generalization power of interactions. However, the above definition does not provide an efficient method for quantifying the generalization power of interactions. For example, in natural language processing tasks, this would necessitate an exhaustive search for specific interactions across numerous testing samples, leading to prohibitive computational costs.

Therefore, we propose an approximate and efficient method that first quantifies the exact generalizability of each individual interaction. Instead of performing an exhaustive search, we evaluate the transferability of individual interactions encoded by the DNN to a baseline DNN, denoted by $v^{\rm base}$ and trained on the testing samples. Since all representations in the baseline DNN $v^{\rm base}$ are acquired from the testing samples, all interactions, which are transferable to $v^{\rm base}$, can be regarded as primitive

⁵In the field of symbolic generalization, the sparsity is defined as the state that almost all interactions have negligible values with only very few interactions having salient values. Please see Appendix B for details.

⁶(Ren et al., 2024) have demonstrated that the sparsity of interactions can be ensured through three common conditions for smooth inferences in DNNs on randomly masked samples. See Appendix B for more details.

inference patterns inherent in these testing samples, thus strongly suggesting their generalization power. Please refer to Appendix C for ablation study.

To elucidate this approach, let us consider an extracted salient AND interaction S, s.t. $|I_{S}^{\rm and}| > \tau$. To this end, the interaction S is deemed to represent a generalizable pattern within the testing set if the baseline DNN $v^{\rm base}$ concurrently identifies the AND interaction S to have salient effect (i.e., $|I_{S,v^{\rm base}}^{\rm and}| > \tau$) and the AND interaction S exerts a consistent directional influence on the classification of \mathbf{x} (i.e., $I_{S,v^{\rm base}}^{\rm and} \cdot I_{S,v^{\rm base}}^{\rm and} \cdot I_{S,v^{\rm base}}^{\rm and}$). The same principle applies to OR interactions. Accordingly, the generalization power of an AND/OR interaction is assessed by the following binary metrics:

$$\begin{aligned} \mathcal{G}_{S,v^{\text{base}}}^{\text{and}} &= \mathbf{1}(|I_{S,v^{\text{base}}}^{\text{and}}| > \tau) \cdot \mathbf{1}(I_{S}^{\text{and}} \cdot I_{S,v^{\text{base}}}^{\text{and}} > 0) \in \{0,1\}, \\ \mathcal{G}_{S,v^{\text{base}}}^{\text{or}} &= \mathbf{1}(|I_{S,v^{\text{base}}}^{\text{or}}| > \tau) \cdot \mathbf{1}(I_{S}^{\text{or}} \cdot I_{S,v^{\text{base}}}^{\text{or}} > 0) \in \{0,1\}, \end{aligned} \tag{5}$$

where $\mathbf{1}(\cdot)$ is a binary indicator function that outputs 1 only when the condition is satisfied.

2.2.2 Verifying previous findings on the generalization power

The above metrics $\mathcal{G}_{S,v^{\text{base}}}^{\text{and}}$ and $\mathcal{G}_{S,v^{\text{base}}}^{\text{or}}$ allow us to further verify and elucidate decisive factors behind the classical empirical finding in symbolic generalization¹ (Zhou et al., 2024), *i.e.*, low-order interactions generally exhibit stronger generalization power compared to high-order interactions, which was observed by (Zhou et al., 2024) in experiments⁸ and lacked rigorous quantification and analysis.

Therefore, although the above claim regarding the low generalization power of high-order interactions has been widely cited by (Chen et al., 2024; Cheng et al., 2024), this assertion still requires more rigorous verification by identifying the generalization power of each specific salient interaction.

Specifically, to assess the generalization power of interactions 7 at distinct orders 9 , we utilize four distinct metrics: (1) $\mathbb{I}^{(m),+}_{\text{total}}$ denotes the aggregate effect strength of all salient interactions of the m-th order with positive effect; (2) $\mathbb{I}^{(m),-}_{\text{total}}$ denotes the aggregate effect strength of all salient interactions of the m-th order with negative effect; (3) $\mathbb{I}^{(m),+}_{\text{gen}}$ denotes the aggregate effect strength of all generalizable salient interactions with positive effect; (4) $\mathbb{I}^{(m),-}_{\text{gen}}$ denotes the aggregate effect strength of all generalizable salient interactions with negative effect. The metrics are calculated as

$$\mathbb{I}_{\text{total}}^{(m),-} = \sum_{\substack{\text{type} \in \\ \{\text{and, or}\}}} \sum_{\substack{S \in \Omega_{\text{type}}^{\text{Salient}}:\\ |S| = m}} \max(I_S^{\text{type}}, 0), \quad \mathbb{I}_{\text{total}}^{(m),+} = \sum_{\substack{\text{type} \in \\ \{\text{and, or}\}}} \sum_{\substack{S \in \Omega_{\text{type}}^{\text{Salient}}:\\ |S| = m}} \min(I_S^{\text{type}}, 0), \quad (6)$$

$$\mathbb{I}_{\text{gen}}^{(m),-} = \sum_{\substack{\text{type} \in \\ \{\text{and, or}\}}} \sum_{\substack{S \in \Omega_{\text{type}}^{\text{Salient}}:\\ |S| = m}} \max(I_S^{\text{type}} \cdot \mathcal{G}_S^{\text{type}}, 0), \quad \mathbb{I}_{\text{gen}}^{(m),+} = \sum_{\substack{\text{type} \in \\ \{\text{and, or}\}}} \sum_{\substack{S \in \Omega_{\text{type}}^{\text{Salient}}:\\ |S| = m}} \min(I_S^{\text{type}} \cdot \mathcal{G}_S^{\text{type}}, 0). \tag{7}$$

To this end, we conducted experiments to analyze the strength of generalizable and non-generalizable interactions in comparison across different interaction orders. We trained VGG-19 and ResNet-101 on the Tiny-ImageNet dataset, and VGG-16 on the CUB-200-2011 dataset. We also trained Bert-large and Bert-medium on the SST-2 dataset and Bert-large on the AG News dataset. Please refer to Appendix E for further experimental details. Figure 2 demonstrates that high-order interactions consistently exhibited lower generalization power than low-order interactions in different cases.

2.3 THREE-PHASE DYNAMICS OF GENERALIZATION POWER OF INTERACTIONS

Based on the new generalization power metrics $\mathbb{I}^{(m),+}_{\text{total}}$, $\mathbb{I}^{(m),-}_{\text{total}}$, $\mathbb{I}^{(m),+}_{\text{gen}}$, $\mathbb{I}^{(m),-}_{\text{gen}}$ proposed in Section 2.2, this subsection investigates the evolution of generalization power of interactions throughout the entire training process, which is recognized as a long-standing challenge in the field of symbolic generalization¹. Specifically, we propose the following metric $\overline{\mathcal{H}}$ to measure the average generalization

⁷Interaction extraction is introduced in both Section 2.1 and the pseudocode in Appendix A.

⁸Evidence from two experiments substantiates this claim: (1) It is observed that, when more label noise is introduced, overfitted DNNs tend to model more high-order interactions compared to standard DNNs trained on clean data. (2) It is demonstrated that high-order interactions typically show worse robustness to input noise.

⁹As explained in Section 2.1, the order of an interaction refers to the number of input variables it involves.

Figure 2: Comparison of generalization power between low-order interactions and high-order interactions. High-order interactions generally exhibit weaker generalization power than low-order interactions. Considering up to 10th order, we report the ratio of generalizable interactions of low orders as $\overline{\mathcal{H}}_{\text{low}} = \sum_{m=1}^2 (|\mathbb{I}_{\text{gen}}^{(m),+}| + |\mathbb{I}_{\text{gen}}^{(m),-}|) / \sum_{m=1}^2 (|\mathbb{I}_{\text{total}}^{(m),+}| + |\mathbb{I}_{\text{total}}^{(m),-}|)$ and the ratio of generalizable interactions of high orders as $\overline{\mathcal{H}}_{\text{high}} = \sum_{m=6}^{10} (|\mathbb{I}_{\text{gen}}^{(m),+}| + |\mathbb{I}_{\text{gen}}^{(m),-}|) / \sum_{m=6}^{10} (|\mathbb{I}_{\text{total}}^{(m),+}| + |\mathbb{I}_{\text{total}}^{(m),-}|)$.

power of all salient interactions on an input sample x as follows:

$$\overline{\mathcal{H}} = \sum_{m} \left(|\mathbb{I}_{\text{gen}}^{(m),+}| + |\mathbb{I}_{\text{gen}}^{(m),-}| \right) / \sum_{m} \left(|\mathbb{I}_{\text{total}}^{(m),+}| + |\mathbb{I}_{\text{total}}^{(m),-}| \right). \tag{8}$$

We measure the number of interactions $\overline{\mathcal{N}}$ as the number of top-ranked salient interactions that account for 80.0% of the total interaction strength. Specifically, the number of AND interactions, denoted as $\overline{\mathcal{N}}_{\text{and}}$, can be determined as follows:

$$\overline{\mathcal{N}}_{\text{and}} = \underset{\Omega \subseteq 2^N}{\operatorname{argmin}} |\Omega| \quad \text{s.t.} \quad \sum_{S \in \Omega} |I_S^{\text{and}}| \ge 0.8 \cdot \sum_{S \subseteq N} |I_S^{\text{and}}|. \tag{9}$$

where $2^N = \{S \subseteq N\}$. The number of OR interactions, denoted as $\overline{\mathcal{N}}_{or}$, can be quantified through the same approach. Therefore, the overall interaction number $\overline{\mathcal{N}}$ is calculated as

$$\overline{\mathcal{N}} = \overline{\mathcal{N}}_{\text{and}} + \overline{\mathcal{N}}_{\text{or}}.$$
 (10)

Three-phase dynamics. Figure 3 shows that for most DNNs, the distribution of interactions follows a three-phase dynamics in terms of the generalization power $\overline{\mathcal{H}}$ and the interaction number $\overline{\mathcal{N}}$, which can be summarized as:

Finding 1: During the training of all DNNs, the number of interactions always exhibits a regularity of first decreasing and then increasing.

Finding 2: The average generalization power of interactions always demonstrates a regularity of first increasing and then decreasing.

Finding 3: The three-phase dynamics of interactions is temporally aligned with and well explains decisive factors behind the curve of the training-testing loss gap. Detailed dynamics is as follows.

• **Before Training**: Given a DNN with fully initialized parameters, although all interactions extracted from the initialized DNN represent random noise patterns, statistically, the interactions exhibit a specific spindle-shaped distribution. In words, the model primarily encodes middle-order interactions, while very high-order and very low-order interactions are rarely modeled. Furthermore, the effects of the positive interactions and the negative interactions often tend to cancel out. This phenomenon has been demonstrated in previous study (Cheng et al., 2025).

At this stage, we observe that most interactions cannot transfer to the baseline DNN. This corroborates that interactions encoded in an initialized DNN are noise patterns.

Figure 3: We visualize the change of interactions through the entire training process and track the change of the average generalization power of interactions $\overline{\mathcal{H}}$ and the number of interactions $\overline{\mathcal{N}}$. The dynamics of quantity and the average generalization power of interactions explains the change of the loss gap. Please see Appendix E for the training loss and the testing loss.

• Phase 1: In the early epochs of training, the average generalization power of interactions $\overline{\mathcal{H}}$ usually increases, and the number of generalizable interactions $\overline{\mathcal{N}}$ usually decreases. The training primarily eliminates noise in the spindle-shaped distribution while simultaneously learning a few low-order interactions. During this phase, the DNN mainly learns these low-order interactions, which tend to generalize better to the baseline DNN as they capture simple, meaningful patterns. Meanwhile, high-order interactions initially modeled by the DNN are gradually eliminated.

According to Equation (15), we can conclude that the classification confidence depends jointly on the number of salient interactions and the average generalization power of these interactions. Therefore, the emergence of generalizable low-order interactions and the elimination of non-generalizable high-order interactions characterize the healthiest stage of training.

• **Phase 2**: As training progresses, the average generalization power of interactions $\overline{\mathcal{H}}$ gradually decreases, and the number of interactions $\overline{\mathcal{N}}$ usually increases. Both generalizable (mainly low-order) interactions and non-generalizable (mainly mid-to-high-order) interactions are learned by the DNN simultaneously. Since the initial noise interactions have been removed after the first phase, in the second phase the DNN progressively learns interactions of increasing order. Notably, we find that high-order interactions are generally less likely to be generalized to testing samples than lower-order interactions according to Section 2.2.2. Thus, two phenomena co-occur in the second phase: (1) the DNN continues to learn additional interactions; (2) the generalization power of newly learned interactions steadily decreases.

Consequently, the second phase faces a dilemma. Although the continuous learning of new interactions provides meaningful features for classification, the diminishing generalization power of these interactions introduces a risk of overfitting. This observation is further corroborated by the training curves: The rate of decrease of the training loss outpaces that of the testing loss, resulting in a widening gap that indicates potential risk of overfitting of the model to the training data. This phenomenon may arise because non-generalizable interactions contribute exclusively to the classification of training samples and fail to aid in the classification of unseen testing samples.

Figure 4: The change of the cross-entropy loss when we remove non-generalizable interactions from the network output $v_{\text{removed}}(\mathbf{x})$. The removal of non-generalizable interactions significantly increases the training loss, which restores the training loss that was inappropriately depressed by overfitted representations. In comparison, the testing loss either decreases significantly or does not change a lot.

• **Phase 3**: During the final training stage, DNNs primarily acquire non-generalizable (mainly mid-to-high-order) interactions, while it learns minimal generalizable (predominantly low-order) interactions. As a matter of fact, low-order interactions have already been thoroughly captured during the preceding two phases. Meanwhile, these emergent high-order interactions typically demonstrate poor generalization to unseen samples.

We hypothesize that these high-order interactions represent potential sources of overfitting. While generalizable interactions facilitate effective classification of unseen testing samples, non-generalizable interactions widen the gap between training and testing loss.

2.4 INFLUENCE OF NON-GENERALIZABLE INTERACTIONS ON THE CLASSIFICATION LOSS

In addition to the three-phase dynamics of interactions' generalization power, in this subsection, we propose an alternative perspective to examine if the non-generalizable interactions are truly responsible for the overfitting of the DNN. The basic idea is that if we remove the effects of non-generalizable interactions from the scalar output of the DNN, then we can test **whether the removal of non-generalizable interactions will reduce the training-testing loss gap.** To accomplish this, let us rewrite the scalar output of the DNN in Equation (3) as (see Appendix G for proof)

$$v(\mathbf{x}) = \sum_{\substack{\text{type} \in \{\text{and, or}\}}} \sum_{S \in \Omega_{\text{type}}^{\text{Salient}}} I_S^{\text{type}} \cdot G_S^{\text{type}} \cdot \delta_{\text{type}} \left(\begin{array}{c} \mathbf{x} \text{ triggers type relation} \\ \text{between input variables in } T \right) \end{array} \\ + \sum_{\substack{\text{type} \in \\ \{\text{and, or}\}}} \sum_{S \in \Omega_{\text{type}}^{\text{Salient}}} I_S^{\text{type}} \cdot \left(1 - G_S^{\text{type}} \right) \cdot \delta_{\text{type}} \left(\begin{array}{c} \mathbf{x} \text{ triggers type relation} \\ \text{between input variables in } T \right) \end{array} \\ + \sum_{\substack{\text{type} \in \{\text{and, or}\}}} \sum_{S \in \Omega_{\text{type}}^{\text{Non-Salient}}} I_S^{\text{type}} \cdot \delta_{\text{type}} \left(\begin{array}{c} \mathbf{x} \text{ triggers type relation} \\ \text{between input variables in } T \right) + b \end{array} \\ *negligible non-salient interactions}, \tag{11}$$

where $\Omega_{\mathrm{type}}^{\mathrm{Non-Salient}} = \{S: |I_S^{\mathrm{or}}| \leq \tau\}$ represents the set of non-salient interactions.

Then, the probability of classifying the input x to the ground-truth label y^* after the removal of non-generalizable interactions can be derived from Equation (1) as follows:

$$p_{\text{removed}}(\mathbf{y}^*|\mathbf{x}) = \text{sigmoid}(v_{\text{removed}}(\mathbf{x}))$$
subject to
$$v_{\text{removed}}(\mathbf{x}) = v(\mathbf{x}) - \sum_{\text{type} \in \{\text{and, or}\}} \sum_{S \in \Omega_{\text{salient}}^{\text{Salient}}} I_S^{\text{type}} \cdot (1 - G_S^{\text{type}})). \tag{12}$$

¹⁰When interaction S does not satisfy the generalization condition in Equation (5), *i.e.*, when interaction S does not have a salient effect or dose not exert a consistent directional influence. And we have $\mathcal{G}_{S,a,base}^{type} = 0$.

Then, given the revised classification probability $p_{\text{removed}}(\mathbf{y}^*|\mathbf{x})$, we can compute the new cross-entropy loss as: $L_{\text{removed}} = -\sum_{\mathbf{x}} \log p_{\text{removed}}(\mathbf{y}^*|\mathbf{x})$.

We conducted experiments to train VGG-19, ResNet-50, and ResNet-101 on the Tiny-ImageNet dataset, and Bert-large and Bert-medium on the SST-2 dataset, and Bert-large the AG News dataset. We computed the standard cross-entropy loss using the original classification probability $p(\mathbf{y}^*|\mathbf{x})$, as well as a modified cross-entropy loss using the revised probability $p_{\text{removed}}(\mathbf{y}^*|\mathbf{x})$. Please see Appendix H for details. As shown in Figure 4, the removal of non-generalizable interactions significantly reduced the training-testing loss gap. This removal primarily increased the training loss while significantly decreasing or having minimal impact on the testing loss. These results confirm that the removed non-generalizable interactions were the fundamental cause for overfitting, as they exclusively contributed to training samples without generalizing to unseen data.

3 RELATED WORK: THEORY SYSTEM OF SYMBOLIC GENERALIZATION

Symbolic explanation: a seemingly impossible task. Studies (Deng et al., 2022; Li & Zhang, 2023b; Ren et al., 2023b) show DNN inference can be reformulated via symbolic interactions between inputs. Though counterintuitive, (Ren et al., 2023a) proved a logical model based on such interactions can approximate DNN outputs on masked inputs. Further, (Ren et al., 2024) found DNNs encode only a limited set of salient interactions under common conditions⁶. Complementing this, (Chen et al., 2024) developed a method to extract generalizable interaction patterns consistent across models. These works form a mathematical basis for interpreting DNNs via variable interactions.

Characterizing DNN representational capacity. Interaction theory also serves as a tool to analyze DNN representation quality. (Ren et al., 2021) showed adversarial attacks target complex interactions, with robustness decaying exponentially as interaction complexity grows. (Ren et al., 2023c) proved Bayesian networks (Pearl, 1985) inherently struggle to model complex interactions. (Deng et al., 2021) identified a DNN limitation: they capture very simple or highly complex interactions but falter with intermediate ones. (Zhang et al., 2021) found dropout improves generalization by modulating interactions. (Zhou et al., 2024) verified simpler interactions generalize better. (Liu et al., 2023) gave theoretical evidence that DNNs find complex interactions harder to learn.

However, towards the core issue of the generalization power of interactions, previous studies in the field of symbolic generalization all failed to quantify the generalization power of a specific interaction. To this end, we propose to use a baseline DNN to identify generalizable interactions, which breaks through the computational efficiency bottleneck. In this way, we discover a distinctive three-phase dynamics in how generalization power evolves during training. Significantly, our research attributes DNN's overfitting to the learning of non-generalizable interactions. Our discoveries establish a clear causal relationship between interaction patterns and a DNN's generalization power.

4 Conclusion

In this paper, we focus on the core issues in the field of symbolic generalization, *i.e.*, how to quantify generalization power of each individual interaction in a DNN and how to utilize the evolution of generalization power of interactions to diagnose the training process of a DNN. Specifically, we propose an efficient method to quantify the generalization power of each individual interaction learned by the DNN, so that we can use generalization power of all interactions to interpret the generalization power of the entire DNN. Our analysis reveals a three-phase dynamics in the generalization power of interactions, which well aligns the change of the DNN's training-testing loss gap. In the beginning, most non-generalizable interactions are eliminated, and the network primarily models simple, generalizable interactions. In the intermediate phase, the network begins to capture increasingly less generalizable interactions, and by the final phase, it predominantly learns entirely non-generalizable ones. Our experiments demonstrate that the learning of non-generalizable interactions is a direct cause for the gap between the training loss and the testing loss.

Practical value. Our experiments have demonstrated that removing non-generalizable interactions can reduce the training-testing loss gap. Besides, follow-up studies in Appendix I have also shown that penalizing the strength of non-generalizable interactions $|I_S^{\text{NoneG}}|$ along with the minimization of the classification loss during the training process substantially improves the DNN's performance.

REFERENCES

- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- Lu Chen, Siyu Lou, Benhao Huang, and Quanshi Zhang. Defining and extracting generalizable interaction primitives from DNNs. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=OCqyFVFNeF.
- Lei Cheng, Junpeng Zhang, Qihan Ren, and Quanshi Zhang. Revisiting Generalization Power of a DNN in Terms of Symbolic Interactions. *arXiv e-prints*, art. arXiv:2502.10162, February 2025. doi: 10.48550/arXiv.2502.10162.
- Xu Cheng, Lei Cheng, Zhaoran Peng, Yang Xu, Tian Han, and Quanshi Zhang. Layerwise change of knowledge in neural networks. In *Forty-first International Conference on Machine Learning*, 2024. URL https://openreview.net/forum?id=7zEoinErzQ.
- Huiqi Deng, Qihan Ren, Hao Zhang, and Quanshi Zhang. Discovering and explaining the representation bottleneck of dnns. *International Conference on Learning Representations*, 2021.
- Huiqi Deng, Qihan Ren, Hao Zhang, and Quanshi Zhang. Discovering and explaining the representation bottleneck of dnns. *International Conference on Learning Representations*, 2022.
- Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for efficiently improving generalization. *Learning*, Oct 2020.
- Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of neural nets. *Advances in neural information processing systems*, 31, 2018.
- Mingjie Li and Quanshi Zhang. Defining and quantifying and-or interactions for faithful and concise explanation of dnns. *arXiv preprint arXiv:2304.13312*, 2023a.
- Mingjie Li and Quanshi Zhang. Does a neural network really encode symbolic concepts? In *International conference on machine learning*, pp. 20452–20469. PMLR, 2023b.
- Dongrui Liu, Huiqi Deng, Xu Cheng, Qihan Ren, Kangrui Wang, and Quanshi Zhang. Towards the difficulty for a deep neural network to learn concepts of different complexities. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=mZ3hnyL9bS.
- Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in Neural Information Processing Systems*, 35:27730–27744, 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/hash/blefde5ae831c26027e15d81b4b94ij.pdf.
- J. Pearl. *Bayesian Networks: A Model of Self-activated Memory for Evidential Reasoning*. Report (University of California, Los Angeles. Computer Science Dept.). UCLA Computer Science Department, 1985. URL https://books.google.com.hk/books?id=1sfMOgAACAAJ.
- Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp. 53728–53741. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf.
- Jie Ren, Die Zhang, Yisen Wang, Lu Chen, Zhanpeng Zhou, Yiting Chen, Xu Cheng, Xin Wang, Meng Zhou, Jie Shi, and Quanshi Zhang. Towards a unified game-theoretic view of adversarial perturbations and robustness. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=fMaIxda5Y6K.

- Jie Ren, Mingjie Li, Qirui Chen, Huiqi Deng, and Quanshi Zhang. Defining and quantifying the emergence of sparse concepts in dnns. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 20280–20289, 2023a.
 - Jie Ren, Zhanpeng Zhou, Qirui Chen, and Quanshi Zhang. Can we faithfully represent absence states to compute shapley values on a dnn? *InInternational Conference on Learning Rep resentations*, 2023b.
 - Qihan Ren, Huiqi Deng, Yunuo Chen, Siyu Lou, and Quanshi Zhang. Bayesian neural networks avoid encoding complex and perturbation-sensitive concepts. In *International Conference on Machine Learning*, pp. 28889–28913. PMLR, 2023c.
 - Qihan Ren, Jiayang Gao, Wen Shen, and Quanshi Zhang. Where we have arrived in proving the emergence of sparse symbolic concepts in ai models. *International Conference on Learning Representations*, 2024.
 - Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models. *arXiv e-prints*, art. arXiv:2402.03300, February 2024. doi: 10.48550/arXiv.2402.03300.
 - Emily Silcock, Luca D'Amico-Wong, Jinglin Yang, and Melissa Dell. Noise-robust de-duplication at scale. *International Conference on Learning Representations*, 2022.
 - Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing systems, 35:24824–24837, 2022.
 - Lechao Xiao, Jeffrey Pennington, and Samuel Schoenholz. Disentangling trainability and generalization in deep neural networks. In *International Conference on Machine Learning*, pp. 10462–10472. PMLR, 2020.
 - Hao Zhang, Sen Li, Yinchao Ma, Mingjie Li, Yichen Xie, and Quanshi Zhang. Interpreting and boosting dropout from a game-theoretic view. *International Conference on Learning Representations*, 2021.
 - Huilin Zhou, Hao Zhang, Huiqi Deng, Dongrui Liu, Wen Shen, Shih-Han Chan, and Quanshi Zhang. Explaining generalization power of a dnn using interactive concepts. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 17105–17113, 2024.

APPENDIX

596 597 598

600

601

594

595

This appendix provides detailed information supporting our main paper. Appendix A describes the details of computing interactions. Appendix B discusses three common conditions for the sparsity of interactions. Appendix C provides ablation study on the number of baseline DNNs. Appendix E contains experimental details. Appendix G presents proof of Equation 12 in the main paper. Appendix H details our experiments on removing non-generalizable interactions from model outputs, including sample selection methods in multiple datasets. Appendix J describes the computing resources and experimental time consumed for computing in this study.

602 603 604

Α COMPUTATION OF INTERACTIONS

605 606 607

608

609

613

614 615

616

617

618

619

620 621

622

623

624

625

626

SETTING OF INTERACTION COMPUTATION

610 612

For an input sample x with n distinct input variables, the total number of subsets to evaluate scales as 2^n , rendering exhaustive computation intractable when each pixel (in vision) or each token (in language) is treated as an individual variable. To mitigate this, we adopt the protocol of prior work (Li & Zhang, 2023b; Liu et al., 2023) by restricting the interaction analysis to exactly 10 variables, as detailed below.

Image task. We conduct experiments on image classification using convolutional networks (ResNet-50, ResNet-101, VGG-19). From a chosen intermediate feature map of each model (the first Relu layer), we partition the spatial dimensions into an 8×8 grid and randomly sample 10 patches from the central 6×6 region to form the set N. We set the baseline value of each input variable to its empirical mean across the dataset. For any subset $S \subseteq N$, a masked input \mathbf{x}_S is generated by replacing all patches in $N \setminus S$ with b, thereby enabling efficient estimation of interaction strengths.

Natural language task. For text classification task, we employ BERT-Medium and BERT-Large architectures. For each input sentence, stop words, punctuation, and non-alphanumeric symbols removed. In this way, we then randomly select 10 tokens with semantic meanings to constitute N. To construct each masked sample, we follow the masking embedding scheme of (Cheng et al., 2024; Ren et al., 2024): for BERT models, every token in $N \setminus S$ is substituted with the pre-trained [MASK] embedding vector (ID=103), yielding \mathbf{x}_S and facilitating computation of higher-order token interactions.

627 628 629

630

631

632

633

634 635

636

637

638 639

640

641

642

643

Algorithm 1 Extract Interactions

Input: Trained DNN $v(\cdot)$; input sample **x** (features indexed $1, \ldots, n$; let $N = \{1, \ldots, n\}$ be the set of these indices).

Constants assumed: number of top interactions k.

Output: Interaction weights I_S^{and} , I_S^{or} for all $S \subseteq N$; bias b; sets of top-k salient interactions $\Omega_{\rm and}^{\rm Salient}, \Omega_{\rm or}^{\rm Salient}.$

for all $S \subseteq N$ do

Generate masked input \mathbf{x}_S and the corresponding model output $v(\mathbf{x}_S)$.

end for

for all $S\subseteq N$ do Determine $I_S^{\mathrm{and}},I_S^{\mathrm{or}}$ by solving $\min_{\{\delta_S,\gamma_S\}}\sum_{S\subseteq N}(|I_S^{\mathrm{and}}|+|I_S^{\mathrm{or}}|)$

end for

Determine the bias term b as the network's output for the empty set of features: $b \leftarrow v(\emptyset)$. for all $S \subseteq N$ do

Filter $|I_S^{\text{and}}|$ and $|I_S^{\text{or}}|$ to identify the most salient k interactions to construct $\Omega_{\text{and}}^{\text{Salient}}$ and $\Omega_{\text{or}}^{\text{Salient}}$ end for

return the computed interactions I_S^{and} , I_S^{or} , the bias b, and the sets of salient interactions $\Omega_{\rm and}^{\rm Salient}, \Omega_{\rm or}^{\rm Salient}$.

646 647

A.2 PRESUCODE FOR COMPUTATION OF INTERACTIONS

Additionally, drawing upon insights from (Chen et al., 2024; Ren et al., 2024; Li & Zhang, 2023a), the presence of noise σ_S in the model output $v(\mathbf{x})$ can significantly impede the accurate computation of interactions. Following the approach outlined in (Li & Zhang, 2023a) to address this challenge, we remove the noise σ_S from the output $v(\mathbf{x})$ to enable the extraction of AND-OR interactions. More specifically, the decomposition $v(\mathbf{x}_S) = o_S^{\text{and}} + o_S^{\text{or}}$ is reformulated such that $o_S^{\text{and}} = 0.5 \cdot (v(\mathbf{x}_S) - \sigma_S) + \gamma_S$ and $o_S^{\text{or}} = 0.5 \cdot (v(\mathbf{x}_S) - \gamma_S)$. Consequently, the parameters $\{\gamma_S\}$ and $\{\sigma_S\}$ are optimized within a LASSO-like loss framework. This process is designed to enforce sparsity and mitigate the influence of noise on the model output, as detailed in pseudocode 1.

B THREE COMMON CONDITIONS FOR THE SPARSITY OF INTERACTIONS

In the field of symbolic generalization, the sparsity is defined as the state that almost all interactions have negligible values with only very few interactions having salient values. And (Ren et al., 2024) have proven the sparsity of interactions under three common conditions as follows.

Condition 1: finite-Order interactions

The network's output, denoted by a function v, can be fully characterized by interactions involving at most M input variables. This implies that any interaction effects I(S) for subsets of input variables $S \subseteq \{1,\ldots,n\}$ where the size of the subset |S|>M are zero: I(S)=0 for all S such that |S|>M. Equivalently, in a Taylor expansion of the function v, all terms corresponding to mixed partial derivatives of order M+1 or higher vanish. Specifically, for any point $b\in\mathbb{R}^n$ and any non-negative

integers
$$\kappa_1, \ldots, \kappa_n$$
 such that $\sum_{i=1}^n \kappa_i \ge M+1$, we have: $\frac{\partial^{\kappa_1 + \cdots + \kappa_n} v}{\partial x_1^{\kappa_1} \dots \partial x_n^{\kappa_n}}\Big|_{x=b} = 0$. Such a constraint limits model complexity to lower-order effects, aligning with observations in some large models

limits model complexity to lower-order effects, aligning with observations in some large models where very high-order interaction strengths are minimal, thereby directly supporting the premise of sparse high-order interactions.

Condition 2: monotonicity of average network output

Let $v(x_S)$ be the network's output when only the features in subset S are revealed (and others are masked or set to a baseline x_\varnothing). Define the average increase in network output when exactly m features are revealed as: $\bar{u}(m) = \mathbb{E}_{S\subseteq\{1,\dots,n\}:|S|=m}\big[v(x_S)-v(x_\varnothing)\big]$. This condition requires that the average network output is monotonically non-decreasing with the number of revealed features. That is, for any $m' \le m$: $\bar{u}(m') \le \bar{u}(m)$. Average monotonic behavior suggests feature interactions have underlying simplicity. Models dominated by many complex high-order interactions would unlikely show such stability. This predictable response pattern indicates sparse, lower-order interactions drive outputs rather than numerous erratic high-order effects, indirectly showing the interaction structure isn't arbitrarily complex.

Condition 3: Polynomial lower bound on average output under masking

There exists a positive constant p>0 such that for any number of revealed features m' and m with $m' \leq m$, the average network output $\bar{u}(m')$ (as defined under Condition 2) is lower-bounded as follows: $\bar{u}(m') \geq \left(\frac{m'}{m}\right)^p \bar{u}(m)$. The polynomial bound on output degradation when masking features suggests an interaction structure without dense high-order terms. If complex high-order interactions were critical, feature removal would cause more drastic drops. This supports the sparsity hypothesis for impactful high-order interactions.

C ABLATION STUDY TOWARDS THE NUMBER OF BASELINE DNNS

When we delve deeper into the problem of interaction generalization power, we observe that there is no clear boundary between generalizable and non-generalizable interactions. Consequently, the quantification of interaction generalization power is caught in the following dilemma.

(1) On one hand, we can only guarantee that all interactions modeled by a baseline DNN are learned from the testing samples. However, we cannot ensure that the baseline DNN models all possible

Figure 5: Ablation results of distribution of generalizable interactions with varying numbers of baseline DNNs. The distributions of interactions across different orders demonstrate a positive relationship wherein the strength of interactions increases proportionally with increasing values of k

interactions. This issue necessitates training multiple baseline DNNs to cover as many different generalizable interactions as possible.

(2) On the other hand, given a group of baseline DNNs $v_1^{\text{base}}, v_2^{\text{base}}, \dots, v_K^{\text{base}}$, each generating a set of salient AND-OR interactions $\Omega_{\text{and/or},k}^{\text{Salient}}$, determining the generalization power of a target interaction becomes a fuzzy problem. If an interaction can only be generalized to one baseline DNN out of all K baseline DNNs, whether this interaction is truly a generalizable one remains an open problem.

Therefore, we conducted ablation experiments to illustrate the generalizable interactions that were identified by using different numbers of baseline DNNs. Given k baseline DNNs, a generalizable AND/OR interaction S was defined by its ability to generalize to any one baseline DNN, as follows.

$$\hat{\mathcal{G}}_{S}^{\text{type}}\left(k\right) = \mathbf{1}\underbrace{\left(\mathcal{G}_{S,v_{1}^{\text{base}}}^{\text{type}} = 1 \vee \mathcal{G}_{S,v_{2}^{\text{base}}}^{\text{type}} = 1 \vee \cdots \vee \mathcal{G}_{S,v_{k}^{\text{base}}}^{\text{type}} = 1\right)}_{S \text{ generalized to any one of the } \underbrace{psychological power}_{S,v_{k}^{\text{base}}} = 1\right)}_{S \text{ generalized to any one of the } \underbrace{psychological power}_{S,v_{k}^{\text{base}}} = 1\right)}_{S \text{ generalized to any one of the } \underbrace{psychological power}_{S,v_{k}^{\text{base}}} = 1)$$

where type \in {and, or} corresponds to AND/OR interactions, and $\mathbf{1}(\cdot)$ is a binary indicator function that outputs 1 if the condition is satisfied and 0 otherwise. Figure 5 shows the distribution of generalizable interactions and that of non-generalizable interactions under different numbers of baseline DNNs for different models. As evident from the figure, the proportion of generalizable interactions increases consistently with the number of baseline DNNs across all interaction orders. This observation aligns with our theoretical understanding that employing more baseline DNNs enhances the detection capability for generalizable interactions. These results empirically validate our approach of using multiple baseline DNNs to comprehensively capture the spectrum of generalizable interactions, thereby addressing the dilemma outlined earlier. Notably, it is evident that selecting k=2 for our experiments offers a favorable balance between effectiveness and computational efficiency.

Figure 6: Training loss and testing loss for models.

D LOGICAL MODEL ANALYSIS

The fidelity and conciseness in 2.1 requirements enable us to construct a concise logical model with only a few salient AND-OR interactions as below:

$$\forall \mathbf{x}' \in \mathcal{Q}, \quad v(\mathbf{x}') \approx d'(\mathbf{x}'), \tag{14}$$

$$d'(\mathbf{x}') = \sum_{T \in \Omega_{\text{odd}}^{\text{Salient}}} I_T^{\text{and}} \cdot \delta_{\text{and}} \left(\sum_{\text{between input variables in } T}^{\mathbf{x}' \text{ triggers AND relation}} \right) + \sum_{T \in \Omega_{\text{off}}^{\text{Salient}}} I_T^{\text{or}} \cdot \delta_{\text{or}} \left(\sum_{\text{between input variables in } T}^{\mathbf{x}' \text{ triggers OR relation}} \right) + b. \quad (15)$$

E EXPERIMENTAL DETAILS

E.1 ARCHITECTURES AND DATASETS

In our comprehensive experimental framework, we employed a diverse range of deep learning architectures across multiple benchmark datasets to systematically analyze the strength of generalizable and non-generalizable interactions across varying interaction orders. For computer vision tasks, we utilized several convolutional neural network architectures: VGG-19 and ResNet-101/Resnet-50 were trained on the Tiny-ImageNet dataset, which contains 200 classes with 500 training images per class, downsampled to 64×64 pixels. Additionally, we trained VGG-16 on the CUB-200-2011 dataset (Caltech-UCSD Birds), which consists of 11,788 images across 200 bird species. For natural language processing tasks, we leveraged transformer-based models, specifically BERT-large (24 layers, 1024 hidden dimensions) and BERT-medium (8 layers, 512 hidden dimensions), which were trained on the Stanford Sentiment Treebank (SST-2) dataset containing binary sentiment classifications of movie reviews. Furthermore, we extended our NLP experiments by training both BERT-large and BERT-medium variants on the AG News dataset, which comprises news articles categorized into four classes.

For the training image preprocessing, the CUB-200-2011 dataset underwent bounding box processing to focus on the bird regions within each image, eliminating background noise that could potentially affect classification performance. The training images were then processed using data augmentation techniques including random resized cropping to 224×224 pixels, random horizontal flipping, tensor conversion, and normalization using ImageNet statistics. Similarly, Tiny-ImageNet images were preprocessed using data augmentation techniques, ensuring consistent input dimensions across all vision models despite the original differences in image resolutions between datasets.

To facilitate the training of both an original DNN and a corresponding baseline DNN, we randomly sampled and split the original training datasets to create two balanced subsets with equivalent data distributions. These equally distributed training subsets were used separately to train the original and baseline DNNs with different initialized parameters, maintaining a controlled experimental environment and ensuring that any observed differences between models could be attributed to our specific experimental manipulations rather than to variations in training data distribution.

E.2 Training loss and testing loss

We report the training and testing loss for the model used in Section 3.3 as shown in Figure 6.

F AND-OR GRAPH

In this section we provide additional AND-OR logical models to explain the outputs of DeepSeek-R1-Distill-Llama-8B and Qwen2.5-7B across different prompts . The results detailed in Figure 7 show that the AND-OR logical model can explain LLMs' outputs on any randomly occluded samples.

DeepSeek-Sample1

Qwen-Sample1

Figure 7: The AND-OR logical model successfully explains model outputs on arbitrarily occluded samples. The used distinct prompt-target pairs are : (1) Sample 1: "New York Department of Health recommends that all people should wear N95, KN95, or KF94 masks in all public" \rightarrow "settings"; (2) Sample 2: "On June 11, 2018, OpenAI researchers and engineers published a paper introducing the first generative pre-trained" \rightarrow "transformer".

G PROOF OF EQUATION (11)

We want to derive Equation (11):

$$\begin{split} v(\mathbf{x}) &= \sum_{\text{type} \in \{\text{and, or}\}} \sum_{S \in \Omega_{\text{type}}^{\text{Salient}}} I_S^{\text{type}} \cdot G_S^{\text{type}} \cdot \delta_{\text{type}} \left(\begin{array}{c} \mathbf{x}' \text{ triggers type relation} \\ \text{between input variables in } S \end{array} \right) \\ &+ \sum_{\substack{\text{type} \in \\ \{\text{and, or}\}}} \sum_{S \in \Omega_{\text{type}}^{\text{Salient}}} I_S^{\text{type}} \cdot \left(1 - G_S^{\text{type}} \right) \cdot \delta_{\text{type}} \left(\begin{array}{c} \mathbf{x}' \text{ triggers type relation} \\ \text{between input variables in } S \end{array} \right) \\ &+ \sum_{\substack{\text{type} \in \{\text{and, or}\}}} \sum_{S \in \Omega_{\text{type}}^{\text{Non-Salient}}} I_S^{\text{type}} \cdot \delta_{\text{type}} \left(\begin{array}{c} \mathbf{x}' \text{ triggers type relation} \\ \text{between input variables in } S \end{array} \right) + b \end{split}$$

Let $v(\mathbf{x}')$ be the output of the DNN for a masked input \mathbf{x}' . From Theorem 1 (universal matching property), we know that the logical model $d(\mathbf{x}')$ precisely captures the DNN's output, so $v(\mathbf{x}') = d(\mathbf{x}')$. Equation (3) states:

$$d(\mathbf{x}') = \sum_{T \in \Omega_{\mathrm{end}}} I_T^{\mathrm{and}} \cdot \delta_{\mathrm{and}} \left(\begin{array}{c} \mathbf{x}' \text{ triggers AND relation} \\ \text{between input variables in } T \end{array} \right) + \sum_{T \in \Omega_{\mathrm{ord}}} I_T^{\mathrm{or}} \cdot \delta_{\mathrm{or}} \left(\begin{array}{c} \mathbf{x}' \text{ triggers OR relation} \\ \text{between input variables in } T \end{array} \right) + b. \tag{16}$$

For consistency with Equation (11)'s summation index S, we rewrite Equation (16) using S as the index:

$$v(\mathbf{x}') = \sum_{S \in \Omega_{\text{and}}} I_S^{\text{and}} \cdot \delta_S^{\text{and}}(\mathbf{x}') + \sum_{S \in \Omega_{\text{or}}} I_S^{\text{or}} \cdot \delta_S^{\text{or}}(\mathbf{x}') + b,$$
(17)

where $\delta_S^{\text{type}}(\mathbf{x}')$ is a shorthand for $\delta_{\text{type}}\left(\begin{array}{c} \mathbf{x}' \text{ triggers type relation} \\ \text{between input variables in } S \end{array}\right)$. The term $v(\mathbf{x})$ on the LHS of Equation (11) can be interpreted as $v(\mathbf{x}')$ where \mathbf{x}' is the specific input (potentially unmasked \mathbf{x}) for which the score is being decomposed. For generality, we proceed with $v(\mathbf{x}')$.

Equation (17) can be written more compactly as:

$$v(\mathbf{x}') = \sum_{\text{type} \in \{\text{and, or}\}} \sum_{S \in \Omega_{\text{type}}} I_S^{\text{type}} \cdot \delta_S^{\text{type}}(\mathbf{x}') + b.$$
 (18)

The set of all interactions for a given type, Ω_{type} , can be partitioned into salient interactions $\Omega_{\text{type}}^{\text{Salient}}$ and non-salient interactions $\Omega_{\text{type}}^{\text{Non-Salient}}$. These are defined as:

- $\bullet \ \Omega_{\mathrm{type}}^{\mathrm{Salient}} = \{S \mid |I_S^{\mathrm{type}}| > \tau\}$
- $\bullet \ \Omega_{\mathrm{type}}^{\mathrm{Non\text{-}Salient}} = \{S \mid |I_S^{\mathrm{type}}| \leq \tau\}$

Thus, $\Omega_{\rm type} = \Omega_{\rm type}^{\rm Salient} \cup \Omega_{\rm type}^{\rm Non-Salient}$, and these two sets are disjoint.

Substituting this partition into the sum:

$$\begin{split} v(\mathbf{x}') &= \sum_{\text{type} \in \{\text{and, or}\}} \left(\sum_{S \in \Omega_{\text{type}}^{\text{Salient}}} I_S^{\text{type}} \cdot \delta_S^{\text{type}}(\mathbf{x}') + \sum_{S \in \Omega_{\text{type}}^{\text{Non-Salient}}} I_S^{\text{type}} \cdot \delta_S^{\text{type}}(\mathbf{x}') \right) + b \\ &= \sum_{\text{type} \in \{\text{and, or}\}} \sum_{S \in \Omega_{\text{type}}^{\text{Salient}}} I_S^{\text{type}} \cdot \delta_S^{\text{type}}(\mathbf{x}') \\ &+ \sum_{\text{type} \in \{\text{and, or}\}} \sum_{S \in \Omega_{\text{type}}^{\text{Non-Salient}}} I_S^{\text{type}} \cdot \delta_S^{\text{type}}(\mathbf{x}') + b. \end{split}$$

The second term here matches the "negligible non-salient interactions" part of equation 11: $\sum_{\text{type} \in \{\text{and, or}\}} \sum_{S \in \Omega_{\text{type}}^{\text{Non-Salient}}} I_S^{\text{type}} \cdot \delta_S^{\text{type}}(\mathbf{x}').$

Now, let's focus on the first term, which sums over salient interactions: $T_{\text{salient}} = \sum_{\text{type} \in \{\text{and, or}\}} \sum_{S \in \Omega_{\text{type}}^{\text{Salient}}} I_S^{\text{type}} \cdot \delta_S^{\text{type}}(\mathbf{x}')$. We introduce the generalizability indicator G_S^{type} (defined

as equation 5 to indicate whether a interaction is generalizable), where $G_S^{\text{type}} \in \{0,1\}$. For any term $A_S^{\text{type}} = I_S^{\text{type}} \cdot \delta_S^{\text{type}}(\mathbf{x}')$ in the sum, we can use the identity $A_S^{\text{type}} = A_S^{\text{type}} \cdot G_S^{\text{type}} + A_S^{\text{type}} \cdot (1 - G_S^{\text{type}})$. So, $I_S^{\text{type}} \cdot \delta_S^{\text{type}}(\mathbf{x}') = I_S^{\text{type}} \cdot \delta_S^{\text{type}} \cdot \delta_S^{\text{type}}(\mathbf{x}') + I_S^{\text{type}} \cdot (1 - G_S^{\text{type}}) \cdot \delta_S^{\text{type}}(\mathbf{x}')$. Substituting this back into the sum T_{salient} :

$$\begin{split} T_{\text{salient}} &= \sum_{\text{type} \in \{\text{and, or}\}} \sum_{S \in \Omega_{\text{type}}^{\text{Salient}}} \left(I_S^{\text{type}} \cdot G_S^{\text{type}} \cdot \delta_S^{\text{type}}(\mathbf{x}') + I_S^{\text{type}} \cdot (1 - G_S^{\text{type}}) \cdot \delta_S^{\text{type}}(\mathbf{x}') \right) \\ &= \sum_{\text{type} \in \{\text{and, or}\}} \sum_{S \in \Omega_{\text{type}}^{\text{Salient}}} I_S^{\text{type}} \cdot G_S^{\text{type}} \cdot \delta_S^{\text{type}}(\mathbf{x}') \\ &+ \sum_{\text{type} \in \{\text{and, or}\}} \sum_{S \in \Omega_{\text{type}}^{\text{Salient}}} I_S^{\text{type}} \cdot (1 - G_S^{\text{type}}) \cdot \delta_S^{\text{type}}(\mathbf{x}'). \end{split}$$

The first part of this expression corresponds to the "generalizable interactions" and the second part corresponds to the "non-generalizable interactions" in equation 11.

Combining all components, we obtain:

$$\begin{split} v(\mathbf{x}') &= \sum_{\text{type} \in \{\text{and, or}\}} \sum_{S \in \Omega_{\text{type}}^{\text{Salient}}} I_S^{\text{type}} \cdot G_S^{\text{type}} \cdot \delta_S^{\text{type}}(\mathbf{x}') \\ &+ \sum_{\substack{\text{type} \in \{\text{and, or}\}\\ \{\text{and, or}\}}} \sum_{S \in \Omega_{\text{type}}^{\text{Salient}}} I_S^{\text{type}} \cdot (1 - G_S^{\text{type}}) \cdot \delta_S^{\text{type}}(\mathbf{x}') \\ &+ \sum_{\text{type} \in \{\text{and, or}\}} \sum_{S \in \Omega_{\text{type}}^{\text{Non-Salient}}} I_S^{\text{type}} \cdot \delta_S^{\text{type}}(\mathbf{x}') + b. \end{split}$$

This matches equation 11. If equation 11 is intended for the unmasked input \mathbf{x} , we simply set $\mathbf{x}' = \mathbf{x}$ throughout this derivation, and the LHS $v(\mathbf{x})$ becomes consistent.

H EXPERIMENT OF REMOVING THE NON-GENERALIZABLE INTERACTIONS FROM THE MODEL OUTPUT

H.1 Sample selection for loss computation

The loss compare in Section 2.4, encompassing both standard and modified loss calculations after removing non-generalizable interactions, were derived from an average over 60 samples per dataset. For the Tiny-ImageNet dataset, these 60 samples were obtained by first randomly selecting 10 classes, and then randomly drawing 6 image instances from each chosen class. This sample selection process was applied independently to both the training and testing sets to gather the respective samples for loss calculation. For SST-2 and AG News datasets, 60 samples were randomly drawn from within all available classes, aiming for a proportional representation or a balanced distribution across classes (e.g., attempting to sample m=60/C instances from each of the C classes, with necessary adjustments made for class imbalances or varying class sizes).

H.2 FUTURE WORK AND POTENTIAL DIRECTIONS

The demonstration that non-generalizable interactions are a key driver of overfitting, as discussed in Section 3.4, suggests several compelling research avenues. Future efforts could focus on developing novel training paradigms—encompassing targeted regularization, interaction-aware network pruning, or refined early stopping criteria—all designed to proactively prevent or penalize the formation of these detrimental interactions. Another promising direction involves moving beyond simple removal, exploring methods to dynamically modulate or down-weight the influence of identified nongeneralizable interactions during training or inference, potentially guided by a deeper understanding of their emergence.

I EXPERIMENT OF PENALIZING NON-GENERALIZABLE INTERACTIONS IN DNN

To bridge the theoretical discussion in our paper with practical implementation, we conducted a follow-up experiment. The core idea was to leverage a dedicated validation set to identify and subsequently penalize non-generalizable interactions and classification loss during the end-to-end training process.

Our approach consisted of two key steps. First, to **quantify the generalization power of interactions**, we trained a baseline Deep Neural Network (DNN) on a separate validation set. This model allowed us to quantify which of the learned feature interactions were non-generalizable. Second, to **design the penalty term**, we designed a specialized loss function based on the quantification from the previous step. During the main model's training, this function directly penalized the absolute values of the interactions identified as non-generalizable, denoted as $|I_S^{\rm NoneG}|$, along with minimization of the classification loss.

We evaluated this approach on the CIFAR-10 dataset using a VGG-11 architecture, and the results were encouraging. The method led to a clear improvement in the quality of learned interactions: The proportion of generalizable interactions, as measured by $\overline{\mathcal{H}}$ defined in Section 2.3, increased significantly from 28% to 39%. Correspondingly, the proportion of non-generalizable interactions decreased from 72% to 61%.

Regarding the impact on model accuracy, the proposed method consistently improves performance across different architectures and datasets. For the VGG-16 model on the Tiny-ImageNet dataset, test accuracy increased by 2.5% (46.3% to 48.8%). Similarly, for the BERT-Tiny model on the SST-2 sentiment classification task, accuracy improved by 4.4% (72.2% to 76.6%). The algorithm also demonstrates significant gains in few-shot learning scenarios. For instance, in an object recognition task with only 200 training samples, our method achieved a 6.0% (76.6% to 82.6%) improvement in classification accuracy using a ResNet-18 model.

In summary, this experiment demonstrated that our proposed method effectively reduced the learning of non-generalizable interactions and improved the neural network's performance, showing particular promise in situations with limited training data.

J COMPUTATIONAL RESOURCES AND PROCEDURAL DURATIONS

All experiments were conducted on a dedicated server equipped with four NVIDIA GeForce RTX 3080 Ti GPUs and powered by Intel(R) Xeon(R) Gold 6146 CPU.

The model training durations varied depending on the specific experiment and model complexity:

- **Ablation study:** The training for ablation studies, involving up to five baseline Deep Neural Networks (DNNs), represented the most time-consuming part. Due to the necessity of training these models sequentially or on separate GPUs to ensure resource isolation, the cumulative training time for these experiments was approximately 50 hours.
- **Small to medium models:** For other experiments involving small to medium-sized models such as ResNet-50, individual training runs were typically completed within 12 hours per model.
- Larger models: Training larger models, including ResNet-101 and BERT-large, for the remaining experimental setups generally concluded within 30 hours per model.

Regarding specific experimental procedures:

- **Interaction extraction:** The process of extracting each individual interaction took approximately 80 seconds.
- **Generalizable interaction assessment:** The evaluation of interaction generalization was comparatively swift. Assessing the generalizable power for a set of 60 samples typically completed within a range of 4 to 10 seconds.

These resources and timeframes allowed for comprehensive experimentation and validation of the proposed methods.

K THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this article, Large Language Models (LLMs) were utilized solely for the purpose of language polishing and identifying grammatical inaccuracies. The core research, analysis, findings, and intellectual contributions remain entirely those of the authors. The LLMs acted as an assistive tool to improve the clarity and fluency of the academic prose, without influencing the substantive content or the logical arguments presented.