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Abstract
We propose a family of curvature-based regular-
ization terms for deep generative model learn-
ing. Explicit coordinate-invariant formulas for
both intrinsic and extrinsic curvature measures
are derived for the case of arbitrary data mani-
folds embedded in higher-dimensional Euclidean
space. Because computing the curvature is a
highly computation-intensive process involving
the evaluation of second-order derivatives, effi-
cient formulas are derived for approximately eval-
uating intrinsic and extrinsic curvatures. Compar-
ative studies are conducted that compare the rela-
tive efficacy of intrinsic versus extrinsic curvature-
based regularization measures, as well as perfor-
mance comparisons against existing autoencoder
training methods. Experiments involving noisy
motion capture data confirm that curvature-based
methods outperform existing autoencoder regular-
ization methods, with intrinsic curvature measures
slightly more effective than extrinsic curvature
measures.

1. Introduction
For a large class of deep generative models, the problem
of manifold learning is central to their training: given a set
of data points drawn from some high-dimensional space
X and for which the Manifold Hypothesis remains valid –
that is, the data points are assumed to lie on some lower-
dimensional manifold M ⊂ X – the objective is to de-
termine a mapping f : Z → X , where Z is typically a
bounded region of a vector space with the same dimen-
sion as M, such that f(Z) closely approximates M. The
mapping f is the generator (or the decoder in the context
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Figure 1. Autoencoder-based manifold learning examples given
noise-corrupted training data.

of autoencoders), Z is called the latent space, and M is
referred to as the data manifold.

Deep neural networks are a popular choice of parametric
mapping for the generator f (LeCun et al., 2015). Methods
for training such deep generative models include those based
on the autoencoder (Kramer, 1991; Kingma & Welling,
2013), adversarial training (Goodfellow et al., 2014), man-
ifold flow (Brehmer & Cranmer, 2020), and the autode-
coder (Bojanowski et al., 2017). As with any function ap-
proximation problem, the presence of noise in the data can
lead to overfitting, resulting in poor manifold approxima-
tions of the type shown in Figure 1. Adding a regularization
term to the loss function is one means of mitigating the
effects of overfitting. With few exceptions the regulariza-
tion terms are formulated in terms of the gradient of f ; the
underlying intuition is that by minimizing, e.g., the norm of
the gradient, f is forced to be close to linear, and thus less
prone to overfitting to any noise-induced variations in the
data.

Several recent works have pointed out the importance of
formulating both the loss function and regularization terms
in a coordinate-invariant way (Jang, 2019; Jang et al., 2020;
Lee et al., 2022b). In fact, in (Lee et al., 2022b) a compelling
case is made that the problem of determining f is best
framed as one of finding a minimum distortion map between
two Riemannian manifolds: the key idea is to “wrap” M
by Z in such a way that the overall distortion – one can
view M as being made of marble and Z of elastic, with the
distortion corresponding to the elastic energy resulting from
deforming Z – is minimized. This geometric framework
allows for, among other things, classifying existing manifold
and representation learning approaches based on, e.g., the
choice of Riemannian metric, boundary conditions, and
other a priori specified factors.
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Figure 2. Left: The cylindrical surface has zero intrinsic curvature
but has non-zero extrinsic curvature. Right: The spherical surface
has non-zero intrinsic and extrinsic curvature.

In this paper we adopt a different geometric approach that
focuses on the curvature of the data manifold. Intuitively,
curvature measures how much a manifold deviates from a
flat manifold, and for the purpose of learning a generator f
that is robust to noise, a regularization term that attempts to
minimize the curvature of the resulting data manifold would
seem quite sensible. In the case of classical two-dimensional
surfaces embedded in R3, curvature is quantified as the rate
of change of the surface normal along certain directions; for
this, second-order derivatives of the surface parametrization
f are involved. This is a key fundamental difference with
distortion-based regularization terms, which involve only
first-order derivatives of f .

The theory of curvature for Riemannian manifolds is both
well-developed and at the same time intimidatingly com-
plex, but the intuitive ideas can be understood from the case
of classical two-dimensional surfaces (Do Carmo, 1992;
2016). The extrinsic curvature of a surface captures how
the surface is embedded in R3, whereas the intrinsic cur-
vature is a property intrinsic to the surface, independent of
its embedding in R3. For example, a cylinder and a flat
piece of paper have different extrinsic curvatures but iden-
tical intrinsic curvatures – the flat paper can be rolled into
a cylinder without any deformations – while a sphere and
cylinder have different intrinsic curvatures (see Figure 2).

In the context of deep generative model learning, the role
of extrinsic versus intrinsic curvature in the formulation of
a regularization term has yet to be investigated. At first
glance, it would seem obvious that extrinsic measures are
more relevant, since the shape of the data manifold – specifi-
cally, how it is embedded in the higher-dimensional ambient
space – is clearly important. On the other hand, generaliza-
tions of curvature to higher-dimensional manifolds are fo-
cused almost exclusively on intrinsic measures like the Ricci
curvature (Ricci-Curbastro, 1904; Besse, 2007; Do Carmo,
1992); coordinate-invariant measures of extrinsic curvature
for higher-dimensional manifolds embedded in Euclidean
space have yet to be addressed in the literature. More-
over, formulas for both intrinsic and extrinsic curvatures are
heavily computation-intensive, as they involve second-order
derivatives of the generator f .

This paper reports on three contributions. First, we formu-
late explicit coordinate-invariant extrinsic curvature mea-
sures for multi-dimensional manifolds embedded in higher-
dimensional Euclidean space. The core idea is to general-
ize the Gauss map for two-dimensional surfaces in R3 to
higher-dimensional embedded manifolds using the machin-
ery of Grassmann manifolds (Wong, 1967; Bendokat et al.,
2020) and Dirichlet energy (Eells & Lemaire, 1978; 1988).
Second, we derive computationally efficient algorithms for
approximately computing both intrinsic and extrinsic cur-
vature measures that are based on Hutchinson’s stochastic
trace estimator (Hutchinson, 1989).

The third and final contribution is a comparative study of the
efficacy of extrinsic versus intrinsic curvature measures for
generative deep model learning. Adopting an autoencoder
framework, regularization terms that minimize intrinsic and
extrinsic curvature measures are developed, and applied to
motion capture data. Performance comparisons with ex-
isting autoencoder training methods (Vincent et al., 2010;
Kingma & Welling, 2013; Rifai et al., 2011b; Alain & Ben-
gio, 2014; Lee et al., 2021; 2022b) are also provided.

A key finding of our study is that both intrinsic and extrinsic
curvature-based regularization terms are more effective than
existing autoencoder regularization methods in mitigating
the effects of noise. The same can be said when comparing
our curvature-based methods to purely first-order gradient-
based distortion measures. Intrinsic curvature measures,
although requiring more computation than their extrinsic
counterparts, appear to be slightly more effective.

2. Curvature of Riemannian Manifolds
In what follows we consider an m-dimensional Riemannian
manifold M embedded in RD. Choosing z ∈ Rm as local
coordinates for M, M is parametrized by the mapping f :
Rm → M, i.e., z 7→ x = f(z). Here x ∈ M ⊂ RD. The
Riemannian metric on M is obtained in terms of local co-
ordinates z as G(z) := JT

f (z)Jf (z) where Jf (z) =
∂f
∂z (z)

(this follows from the Euclidean incremental arclength for-
mula ds2 = dx2

1 + . . . dx2
D = dxT dx = dzTJT

f Jfdz,
where dx = ∂f

∂z dz = Jfdz). The (i, j)-th component of the
Riemannian metric G is denoted by gij , and that of G−1 is
denoted by gij .

2.1. Intrinsic Curvature

For classical two-dimensional surfaces in R3, the Gaus-
sian curvature, which can be obtained as the product of
the principal curvatures, is an intrinsic curvature measure.
For higher-dimensional Riemannian manifolds, the study
of intrinsic curvature begins with the Riemann curvature
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Figure 3. The tangent space to M at x varies as x moves to x +
dx, i.e., TxM ≠ Tx+dxM; the manifold has non-zero extrinsic
curvature at x.

tensor (Do Carmo, 1992), which is defined in coordinates as

Ra
bcd =

∂

∂zc
Γa
db −

∂

∂zd
Γa
cb +

m∑
λ=1

Γa
cλΓ

λ
db −

m∑
λ=1

Γa
dλΓ

λ
cb,

(1)
where Γa

bc are the Christoffel symbols of the second kind:

Γa
bc =

1

2

m∑
λ=1

gaλ(
∂

∂zc
gλb +

∂

∂zb
gλc −

∂

∂zλ
gbc). (2)

The Ricci curvature is obtained by contracting the Riemann
curvature tensor: Ricij(z) :=

∑m
a=1 R

a
iaj(z). In the case

of two-dimensional surfaces, the Ricci curvature reduces to
Ricij(z) = Kgij(z) where K is the Gaussian curvature.

The scalar curvature R =
∑

i,j Ricij(z)g
ij(z) is a natural

scalar measure of the intrinsic curvature of a Riemannian
manifold. We note that R = 2K for two-dimensional sur-
faces. Just like Gaussian curvature, the scalar curvature can
be negative or positive. In what follows we use the squared
scalar curvature as a local intrinsic curvature measure:

Intrinsic Curvature(z) =
(
Tr(G−1(z)Ric(z))

)2
. (3)

More detailed and formal treatments of the Riemann cur-
vature tensor can be found in, e.g., (Do Carmo, 1992). A
more intuitive derivation of the curvature tensor based on
the notion of parallel transport can be found in (Fecko, 2006;
Schutz, 2022).

2.2. Extrinsic Curvature

For a two-dimensional surface S in R3, its extrinsic curva-
ture can be quantified as the rate of change of the surface
normal. Specifically, the Gauss map n : S → S2 assigns to
each point x ∈ S a unit vector n(x) that is normal to S at
x. The differential of the Gauss map then leads to a mea-
sure of the extrinsic curvature via the second fundamental
form (Do Carmo, 2016; Kühnel, 2015).

We now generalize the above Gauss map construction to
an m-dimensional manifold M in RD and formulate a
coordinate-invariant extrinsic curvature measure as the norm
of ∂

∂xTxM, where TxM denotes the tangent space to M at

x (see Figure 3). The first step is to establish a 1-1 correspon-
dence between the set of tangent spaces and the Grassmann
manifold Gr(m,RD):

Gr(m,RD) = {P ∈ RD×D |PT = P, P 2 = P, rank(P ) = m}.
(4)

Gr(m,RD) can be viewed as the m(D −m)-dimensional
manifold of orthogonal projection matrices; every element
P ∈ Gr(m,RD) can be uniquely identified with the linear
subspace Range(P ) ⊂ RD (Bendokat et al., 2020)1. For
a generator f : Rm → M, the tangent space of M at
x = f(z) is equal to the range of Jf (z), and hence the
orthogonal projection matrix E(Jf ) := Jf (J

T
f Jf )

−1JT
f ,

which is an element of Gr(m,RD), can be identified with
the tangent space TxM in a 1-to-1 manner. We note that
the representation E(Jf ) is coordinate-invariant; the proof
is given in Appendix A.

We next consider a generalization of the Gauss map. The
mapping T : M → Gr(m,RD) assigns to each point x ∈
M an m-dimensional linear subspace in RD tangential to
M. In local coordinates z, this mapping can be expressed
as

T (z) = E(Jf (z)) = Jf (z)(Jf (z)
TJf (z))

−1Jf (z)
T .

(5)
Finally, taking the standard Riemannian metric on the Grass-
mann manifold given by

⟨V1, V2⟩ := Tr(V T
1 V2) (6)

for any V1, V2 ∈ TP Gr(m,RD), we use the Dirichlet energy
of the mapping T (Eells & Lemaire, 1978; 1988), which
is a natural coordinate-invariant smoothness measure for a
mapping between two Riemannian manifolds, to define the
local extrinsic curvature measure as follows:

Extrinsic Curvature(z) :=
1

2
Tr(

m∑
i,j=1

(G−1)ij
( ∂

∂zi
T
)T ∂

∂zj
T ).

(7)
This measure is coordinate-invariant; the proof is given in
Appendix A.

3. Minimum Curvature Deep Generative
Models

In this section we propose a curvature minimization frame-
work for deep generative models. We first develop efficient
methods for estimating the local intrinsic and extrinsic cur-
vature measures in Section 3.1 and Section 3.2. Finally, we
explain how our local curvature measures can be used in
deep generative models in Section 3.3.

Throughout we will use Hutchinson’s stochastic trace es-
timator (Hutchinson, 1989) to simplify the above cur-

1This is an implicit parametrization of the Grassmann manifold
viewed as being embedded in Euclidean space RD×D .
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vature measures: for an n × n matrix A, Tr(A) =
Ev∼N (0,In)[v

TAv], where In denotes the n × n identity
matrix. For the purposes of this paper, unless otherwise
specified we set the number of samples from N (0, In) in
the trace estimation to be always 1 in the training phase,
i.e., Tr(A) ≈ vTAv for v ∈ N (0, In). We use the Ein-
stein summation notation (Einstein, 1922), i.e., when an
index variable appears twice in a single term, it implies the
summation of that term over all the values of the index,
e.g., vii =

∑
i v

i
i . Finally, we use the shorthand notation

∂i :=
∂

∂zi .

3.1. Intrinsic Curvature Approximation

Using Hutchinson’s trace estimator, we can estimate the
local intrinsic curvature in (3) as (vTG−1(z)Ric(z)v)2 for
v ∈ N (0, Im). Denoting G−1(z)v by ṽ, the square root of
the estimate is then

ṽT Ric(z)v = (∂aΓ
a
ij−∂jΓ

a
ai+Γa

abΓ
b
ij−Γa

ibΓ
b
aj)ṽ

ivj . (8)

Computing the Christoffel symbols Γi
jk for all i, j, k, and

using these to compute (8) is practically infeasible due to
memory limitations. Instead, approximate formulas for the
four terms in (8) are derived that can be computed using the
Jacobian-vector and vector-Jacobian products. We assume
that ∂ṽ = ∂(G−1v) is small enough to ignore and derive
a more compact expression (∂G−1 = −G−1∂GG−1, and
∥G−1∥ is often very small as the norm of Jf is typically
large for high-dimensional data). Our later experiments
show that the approximate intrinsic curvature with this as-
sumption can effectively reduce the actual intrinsic curva-
ture (Figure 4 and 10). For space limitations, we derive
the approximate formula only for the first term in (8) only;
formulas for the remaining terms are given in Appendix B.

Substituting (2) into the first term of (8), we get

1

2
∂a

(
gaλ(vj∂j(gλiṽ

i)+ṽi∂i(gλjv
j)−∂λ(ṽ

igijv
j))

)
. (9)

Since ṽigij = vi, the first and third terms in (9) vanish. The
first term in (8) then simplifies to

∂aΓ
a
ij ṽ

ivj =
1

2
Tr
(
∇(G−1(ṽ · ∇)(Gv))

)
. (10)

Again using Hutchinson’s trace estimator,

1

2
Tr
(
∇(G−1(ṽ ·∇)(Gv))

)
≈ 1

2
wT ((w ·∇)(G−1(ṽ ·∇)(Gv))

)
(11)

for w ∈ N (0, Im). The final approximate formula can
be computed by repeatedly using the Jacobian-vector and
vector-Jacobian products. The remaining terms in (8) can be
computed similarly; see Appendix B. The full expression for

the estimated local intrinsic curvature is given as follows:(1
2
(w · ∇)(wTG−2(v · ∇)(Gv))

− 1

2
(v · ∇)(wTG−2(v · ∇)(Gw))

+
1

4
(wTG−3(v · ∇)(G)(v · ∇)(Gw))

− 1

4
(wTG−2(v · ∇)(G)G−1(v · ∇)(Gw))

− 1

4
(wTG−2(v · ∇)(G)G−1(w · ∇)(Gv))

+
1

4
(wTG−1(v · ∇)(G)G−2(w · ∇)(Gv))

)2

, (12)

where v, w ∈ N (0, I) and G = JT
f Jf ; it can be computed

by using the Jacobian-vector and vector-Jacobian products
multiple times.

3.2. Extrinsic Curvature Approximation

Using Hutchinson’s trace estimator, we can estimate the
local extrinsic curvature in (7) as

1

2
vT gij∂iT∂jTv =

1

2
gij∂i(vkT

k
l )∂j(T

l
mvm)

=
1

2
Tr((∇(Tv))T∇(Tv)G−1). (13)

for v ∈ N (0, ID). Again via Hutchinson’s trace estimator,
we get

1

2
wT (∇(Tv))T∇(Tv)G−1w =

1

2

(
(w ·∇)(Tv)

)T
(w̃ ·∇)(Tv),

(14)
for w ∈ N (0, Im) and w̃ = G−1w; we can compute the
final approximate formula via repeated use of the Jacobian-
vector and vector-Jacobian products.

3.3. Curvature Minimization Framework

In this section, we describe our curvature minimization
framework for deep generative model learning. Essentially,
we integrate the local curvature measures from Section 3.1,
3.2 to define global curvature measures which are then
augmented to each of the original loss functions used in
existing deep manifold learning methods. It is not neces-
sary to integrate these measures over the entire latent space
Rm. Rather, a probability density in the latent space p(z)
is assumed available. For GAN (Goodfellow et al., 2014)
and manifold flow (Brehmer & Cranmer, 2020), the sam-
pling distribution is defined in the latent space. For autoen-
coders (Kramer, 1991; Kingma & Welling, 2013), given
an encoder g : RD → Rm, the pushforward of the data
distribution by g is defined in the latent space (i.e., as the ag-
gregated posterior). For the autodecoder (Bojanowski et al.,
2017), there exists a set of latent vectors simultaneously
optimized, which can then be used to construct p(z).
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We define the global curvature measure as an expectation
of the local curvature measure over p(z), which is then
multiplied by the weight parameter α and added to the
original loss. Further algorithmic details can be found in
Appendix C.

4. Experiments
In this section, with applications of our minimum curva-
ture framework to autoencoders, we implement Minimum
Intrinsic Curvature Autoencoder (MICAE) and Minimum
Extrinsic Curvature Autoencoder (MECAE). Our minimum
curvature autoencoders are compared to the existing meth-
ods: vanilla Autoencoder (AE) (Kramer, 1991), Variational
Autoencoder (VAE) (Kingma & Welling, 2013), Contrac-
tive Autoencoder (CAE) (Rifai et al., 2011a), De-noising
Autoencoder (DAE) (Vincent et al., 2010), Reconstruction
Contractive Autoencoder (RCAE) (Alain & Bengio, 2014),
Isometrically Regularized Autoencoder (IRAE) (Lee et al.,
2022b), and Neighborhood Reconstructing Autoencoder
(NRAE) (Lee et al., 2021).

Throughout, we assume that clean data is not available dur-
ing training. Among models trained with various hyper-
parameters, we select the one with the lowest mean valida-
tion reconstruction error. In this selection process we use
clean validation data since the ability to reconstruct cor-
rupted data well is not a desirable property of good models.

In section 4.1, with a synthetic two-dimensional manifold
example, we empirically show that, as the level of noise
added to the training data increases, AE tends to learn more
curved manifolds in both intrinsic and extrinsic senses, and
minimizing curvatures with the proposed methods helps to
learn more accurate manifolds.

In section 4.2, we train ours and existing autoencoders with
human skeleton pose data corrupted by Gaussian noise and
compare the manifold learning performance. To evaluate
quantitatively, we compare two mean test reconstruction
errors. First, clean2clean measures the mean reconstruction
error of the clean test data. Secondly, corrupt2clean mea-
sures the mean square error between the reconstruction of
the corrupted test data and clean test data. Experimental
details not visible in the main script (e.g., network architec-
tures) and comparisons of computational costs can be found
in Appendix D.

4.1. Synthetic Data

Consider a ground truth two-dimensional manifold embed-
ded in R3, that is M := {(x, y, x2 + y2) | x, y ∈ (−1, 1)};
see Figure 4 (Upper Left). We sample 200 random points
in (x, y)-space, map them to R3, and add Gaussian noise
to construct the training data set. We use three-layer fully
connected neural networks (512 nodes per layer) for both

Figure 4. Upper: Ground truth manifold, and learned manifolds
by AE given noisy training data sets (the noise level means the
standard deviation). Lower: Density plots for the log MSE, Log
Intrinsic Curvature, and Log Extrinsic Curvature. Log MSEs for
the GT manifold are always −∞.

Figure 5. Learned manifolds by minimum curvature autoencoders
given noisy training data sets.

encoder and decoder with ELU activation functions, and
the latent space dimension is 2. The test data set is con-
structed with the 100× 100 two-dimensional mesh grid in
(x, y)-space (no noise added).

Figure 4 demonstrates how AE learns manifolds as the level
of noise added to the training data increases. As the noise
level increases, AE learns manifolds with higher intrinsic
and extrinsic curvatures, as shown in the log curvature plots,
that are less accurate, as shown in the log MSE density plot
(the lower, the more accurate).

Figure 5 shows the manifold learning results of the pro-
posed minimum curvature autoencoders trained with the
same training data as in Figure 4 (Upper Right) (the noise
level is 0.2), and the density plots compared to the vanilla
AE. Overall, our methods learn flatter and more accurate
manifolds than AE.

Figure 6 shows how the learned manifold varies as the
regularization coefficient increases. In both MICAE and
MECAE, if the regularization coefficient is too small, the
manifold is still overfitting to noise. If it is too large,
the curvature is excessively reduced, and the manifold be-
comes inaccurate. We should choose an appropriate level
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Figure 6. Illustration of how the learned manifold varies as the
regularization coefficient increases. Upper: MECAE. Lower: MI-
CAE.

Figure 7. One-dimensional manifold learning results.

of regularization coefficient. As the regularization coeffi-
cient increases, manifolds learned by MECAE and MICAE
converge differently. While the MECAE learns a plane-
like manifold that is extrinsically flat, the MICAE learns a
cylinder-like manifold that is intrinsically flat.

Figure 7 shows one-dimensional manifold learning results
trained with the noise-corrupted data, where the ground
truth manifold is a sin-curve manifold. Since the intrinsic
curvature of a curve is always zero, the intrinsic curvature
minimization in MICAE does not affect manifold learning.
On the other hand, MECAE learns a smoother and more
accurate manifold.

Comparison to First-Order Distortion Minimization:
Isometrically Regularized Autoencoder (IRAE) (Lee et al.,
2022b), which is a first-order distortion minimization frame-
work, attempts to make the pullback Riemannian metric
G(z) = JT

f (z)Jf (z) be proportional to the identity, i.e.,
G(z) = cI for some c > 0 and for all z ∈ Z . In other
words, the generator f is regularized to be a scaled isome-
try that preserves angles and scaled distances between the
Euclidean latent space and the learned data manifold. Inter-
estingly, this distortion minimization approach has a close
relation to intrinsic curvature minimization.

According to Gauss’s Theorema Egregium (i.e., Gauss’s
Remarkable Theorem), the Gaussian curvature of a surface
is invariant under local isometry. In other words, if two
surfaces or manifolds are mapped to each other without
distortion, then their Gaussian curvatures or intrinsic cur-

vatures should be preserved. Therefore, if f is a scaled
isometry, then since the intrinsic curvature of the Euclidean
latent space is everywhere 0, the resulting manifold’s in-
trinsic curvature must be 0 everywhere as well. As a result,
in IRAE, intrinsic curvatures are implicitly minimized as
a byproduct of distortion minimization, whereas MICAE
directly minimizes intrinsic curvatures. In the following,
we compare IRAE and MICAE with the above synthetic
manifold example with a noise level of 0.2.

Figure 8 shows that MICAE learns a more accurate manifold
than IRAE. A potential explanation for this is that IRAE has
an extra requirement of obtaining undistorted coordinates
in addition to minimizing intrinsic curvature, which can
make the task of the generator network more challenging
compared to that of the MICAE. Meanwhile, we found
both methods converge to cylinder-like manifolds as the
regularization coefficient or weight parameter α increases.
When the level of noise is low (≤ 0.1), the two methods did
not show a significant difference.

Figure 8. Manifold learning results of the first-order distortion min-
imization method, IRAE, and second-order (intrinsic) curvature
minimization method, MICAE, for noise level 0.2.

4.2. Human Skeleton Data

In this section, we evaluate our minimum curvature autoen-
coders with the human skeleton pose data adopted from
the NTU RGB+D dataset (Shahroudy et al., 2016). A hu-
man pose skeleton data consists of 25 three-dimensional
key points and thus is considered a 75-dimensional vector.
There are 60 action classes (e.g., drinking water, brushing
teeth), and each action data consists of a sequence of skele-
ton poses. We use randomly selected 800, 200, and 9000
skeleton poses for each action class as training, validation,
and test data. We add Gaussian noises of standard deviations
0.05 and 0.1 to the training data. We use two-layer fully
connected neural networks (512 nodes per layer) for both
encoder and decoder with ELU activation functions, and the
latent space dimension is 8.

Table 1 shows the averages, and standard errors of the clean
and corrupted test data set reconstruction MSEs over 60
different action classes, the lower, the better. IRAE produces
the lowest reconstruction error when the noise level is 0.05,
and MICAE produces the lowest reconstruction error when
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Figure 9. Clean and corrupted test data reconstruction results. Exemplar skeletons are selected from the “drink water” and “throw” action
classes (noise level is 0.1). Methods that show qualitatively best reconstruction results are marked in bold (IRAE, MICAE, MECAE).

Table 1. Averages and standard errors of the skeleton test data set
reconstruction MSEs with Gaussian noise of standard deviations
0.05, 0.1, the lower, the better. The best results are marked in red.
Those that show comparable performance to the best results are
marked in bold (if the mean errors are included in the error bars of
the best results). The numbers are written in units of 10−3.

Noise 0.05 0.1
Metric clean2clean corrupt2clean clean2clean corrupt2clean

graph-free
AE 7.52 ± 0.18 9.03 ± 0.16 15.4 ± 0.18 19.4 ± 0.18

VAE 5.56 ± 0.18 6.74 ± 0.18 13.6 ± 0.24 19.1 ± 0.26
CAE 2.32 ± 0.08 2.60 ± 0.08 2.48 ± 0.08 3.54 ± 0.08
DAE 3.09 ± 0.12 3.26 ± 0.12 5.55 ± 0.17 6.48 ± 0.18

RCAE 3.77 ± 0.14 3.99 ± 0.14 6.51 ± 0.17 7.17 ± 0.19
IRAE 2.18 ± 0.08 2.46 ± 0.08 2.44 ± 0.09 3.55 ± 0.09

MICAE 2.20 ± 0.08 2.48 ± 0.08 2.37 ±0.08 3.45 ± 0.08
MECAE 2.29 ± 0.08 2.56 ± 0.08 2.40 ± 0.08 3.46 ± 0.08

graph-based
NRAE-L 2.19 ± 0.08 2.46 ± 0.08 2.73 ± 0.08 3.79 ± 0.08
NRAE-Q 2.51 ± 0.10 2.92 ± 0.11 4.00 ± 0.11 5.93 ± 0.12

the noise level is 0.1. Overall, our minimum curvature
autoencoders produce lower reconstruction errors, where
MICAE slightly outperforms MECAE. Figure 9 shows some
example reconstruction results, where IRAE, MICAE, and
MECAE seem to be most effective at mitigating noises
and producing accurate skeletons, followed by CAE and
NRAEs.

Figure 10 shows the Log Intrinsic Curvature and Log Ex-
trinsic Curvature density plots of the learned manifolds. We
train autoencoders with the corrupted training data from the
“throw” action class (noise level is 0.1) and compute the den-
sity plots with the test data set. As expected, MECAE pro-
duces the smallest extrinsic curvature and MICAE produces
the smallest intrinsic curvature. One interesting observation
is that other regularization methods, IRAE, and NRAE-L,
which show some decent performance in mitigating the ef-
fects of noise, also reduce the curvature of the manifold,
although their loss functions do not explicitly involve the
curvature terms.

Figure 10. Density plots for the Log Intrinsic Curvature and Log
Extrinsic Curvature, where the autoencoders are trained with data
from the “throw” action class (noise level is 0.1).

5. Conclusions
We have proposed a class of curvature-based regularization
terms for deep generative model learning. Formulas for mea-
suring both intrinsic and extrinsic curvature, which are inde-
pendent of the choice of coordinates, have been developed
for data manifolds of arbitrary dimensions embedded in
higher-dimensional Euclidean space. Since the formulas re-
quire a lot of computations as they require the evaluation of
second-order derivatives, we have developed efficient ways
to approximate these curvatures. Experiments that include
noisy motion capture data have shown that curvature-based
regularization methods are more effective for noise-robust
manifold learning than the existing autoencoder methods,
where using intrinsic curvature measures slightly outper-
forms using extrinsic curvature measures.

Limitations and future research directions: While ap-
proximate formulas allow for the computation of intrinsic
and extrinsic curvature terms, their calculations can still be
quite time-consuming. Specifically, computing the inverse
of the pullback Riemannian metric G(z)−1 requires a sig-
nificant amount of time and becomes even more challenging
with increasing latent space dimensionality. Therefore, it
is important to develop methods for even more approximat-
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ing curvature computations that can drastically reduce the
computation time, thus enabling their use in data and latent
spaces of much larger dimensions.

While we have assumed the ambient data space is Euclidean,
a growing number of problems involve non-Euclidean data
(e.g., diffusion tensor data (Fletcher & Joshi, 2007), point
cloud data (Lee et al., 2022a)). To develop minimum cur-
vature deep generative models for non-Euclidean data, we
need to generalize the intrinsic and extrinsic curvature mea-
sures for manifolds embedded in higher-dimensional Rie-
mannian manifolds.
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Appendix

A. Coordinate-Invariance of the Extrinsic Curvature Measure
In this section, we show that (i) the representation of TxM, E(Jf ) = Jf (J

T
f Jf )

−1JT
f , is coordinate-invariant and

(ii) the local extrinsic curvature measure, 1
2Tr(

∑m
i,j=1(G

−1)ij
(

∂
∂ziT

)T ∂
∂zj T ), is coordinate-invariant. Given a decoder

f : z ∈ Rm 7→ x ∈ M, consider a coordinate transformation h : z ∈ Rm 7→ z′ ∈ Rm and the transformed decoder
f ′ := f ◦ h−1 : z′ ∈ Rm 7→ x ∈ M. The Jacobian of f , Jf , is transformed as follows:

Jf 7→ Jf ′ =
∂f ′

∂z′
=

∂f

∂z

∂h−1

∂z′
= JfH, (15)

where H = ∂h−1

∂z′ is an m×m invertible matrix at z. Therefore the representation E(Jf ) is coordinate-invariant:

E(Jf ) 7→ E(Jf ′) = Jf ′(JT
f ′Jf ′)−1JT

f ′ = JfH(HTJT
f JfH)−1HTJT

f = E(Jf ). (16)

Next, to show the coordinate-invariance of the extrinsic curvature, firstly, investigate how the Riemannian metric G is
transformed:

G 7→ G′ = JT
f ′Jf ′ = HTJT

f JfH = HTGH. (17)

Since T ′ = T and ∂
∂z′iT =

∑m
a=1 Hai

∂
∂zaT , the curvature measure is coordinate-invariant:

Tr(
m∑

i,j=1

(G−1)ij
( ∂

∂zi
T
)T ∂

∂zj
T ) 7→ Tr(

m∑
i,j=1

(G
′−1)ij

( ∂

∂z′i
T ′)T ∂

∂z′j
T ′)

= Tr
( m∑

i,j=1

(HTGH)−1
ij

( m∑
a=1

Hai
∂

∂za
T
)T m∑

b=1

Hbj
∂

∂zj
T
)

= Tr
( m∑

i,j,k,l=1

(H−1)ik(G
−1)kl(H

−T )lj
( m∑
a=1

Hai
∂

∂za
T
)T m∑

b=1

Hbj
∂

∂zb
T
)

= Tr
( m∑

i,j,k,l,a,b=1

(H−1)ik(H
−T )ljHaiHbj(G

−1)kl
( ∂

∂za
T
)T ∂

∂zb
T
)

= Tr
( m∑

k,l,a,b=1

δakδbl(G
−1)kl

( ∂

∂za
T
)T ∂

∂zb
T
)

= Tr
( m∑

a,b=1

(G−1)ab
( ∂

∂za
T
)T ∂

∂zb
T
)
, (18)

where δij is the Kronecker delta symbol.
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B. Local Intrinsic Curvature Estimation
In this section, we provide simplified estimation formulas for the second, third, and fourth terms in (8), and summarize the
strategy for computing (3).

Second Term: Plugging (2) in the second term of (8), we get

∂jΓ
a
aiṽ

ivj =
1

2
∂j
(
gaλ(ṽi∂i(gλa)v

j + ∂a(gλiṽ
i)vj − ∂λ(gaiṽ

i)vj)
)
. (19)

Since ṽigij = vi, the second and third terms vanish, and then the second term of (8) is simplified to

∂jΓ
a
aiṽ

ivj =
1

2
vj∂j

(
gaλ(ṽi∂i(gλa)) =

1

2
vj∂jTr

(
G−1ṽi∂iG

)
. (20)

Using Hutchinson’s trace estimator again,

1

2
vj∂jTr

(
G−1ṽi∂iG

)
≈ 1

2
(v · ∇)(wTG−1(ṽ · ∇)(Gw)), (21)

for w ∈ N (0, I).

Third Term: Plugging (2) in the third term of (8), we get

Γa
abΓ

b
ij ṽ

ivj =
1

2
gaλ(∂bgaλ + ∂agbλ − ∂λgab)×

1

2
gbγ(vj∂j(ṽ

igiγ) + ṽi∂i(v
jgjγ)− ∂γ(ṽ

igijv
j)). (22)

Since ṽigij = vi, the first and third terms in the second bracket vanish, and then the third term of (8) is simplified to

Γa
abΓ

b
ij ṽ

ivj =
1

4
gaλ(∂bgaλ + ∂agbλ − ∂λgab)× gbγ(ṽi∂i(v

jgjγ)). (23)

To further simplify, we denote the term after the multiplication sign gbγ(ṽi∂i(v
jgjγ)) by

V b := gbγ(ṽi∂i(v
jgjγ)) =

(
G−1(ṽ · ∇)(Gv)

)b
. (24)

Then the third term is simplified to

Γa
abΓ

b
ij ṽ

ivj =
1

4

(
gaλV b∂bgaλ + gaλ∂aV

bgbλ − gaλ∂λgabV
b
)

=
1

4

(
Tr(G−1(V · ∇)(G))

)
, (25)

since the second and third terms cancel each other out. Using Hutchinson’s trace estimator again,

1

4

(
Tr(G−1(V · ∇)(G))

)
≈ 1

4

(
wTG−1(V · ∇)(Gw)

)
, (26)

for w ∈ N (0, Im).

Fourth Term: Plugging (2) in the fourth term of (8), we get

Γa
ibΓ

b
aj ṽ

ivj =
1

2

(
gaλ(ṽi∂igλb + ∂b(gλiṽ

i)− ∂λ(gbiṽ
i))

)
× 1

2

(
gbγ(vj∂jgγa + ∂a(gγjv

j)− ∂γ(gajv
j))

)
. (27)

Since ṽigij = vi, the second and third terms in the first bracket vanish, and then the fourth term of (8) is simplified to

Γa
ibΓ

b
aj ṽ

ivj =
1

4

(
gaλṽi∂igλb

)
×

(
gbγ(vj∂jgγa + ∂a(gγjv

j)− ∂γ(gajv
j))

)
. (28)

To further simplify, we denote the term before the multiplication sign gaλ(ṽi∂i(gλb)) by

W a
b := gaλ(ṽi∂i(gλb)) =

(
G−1(ṽ · ∇)(G)

)a
b. (29)
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We note that V = Wv. Then the fourth term is simplified to

Γa
ibΓ

b
aj ṽ

ivj =
1

4

(
W a

b g
bγ(vj∂jgγa + ∂a(gγjv

j)− ∂γ(gajv
j))

)
(30)

=
1

4

(
Tr(WG−1(v · ∇)(G)) + Tr(WG−1∇(Gv)− Tr(G−1WT∇(Gv))

)
. (31)

Using Hutchinson’s trace estimator again,

Γa
ibΓ

b
aj ṽ

ivj =
1

4

(
wTWG−1(v · ∇)(Gw) + wT (WG−1 −G−1WT )(w · ∇)(Gv)

)
. (32)

for w ∈ N (0, Im).

Combining all four terms, finally we get the following local intrinsic curvature estimation formula:

EIC(z; f) =
(1
2
(w · ∇)(wTG−2(v · ∇)(Gv))

− 1

2
(v · ∇)(wTG−2(v · ∇)(Gw))

+
1

4
(wTG−3(v · ∇)(G)(v · ∇)(Gw))

− 1

4
(wTG−2(v · ∇)(G)G−1(v · ∇)(Gw))

− 1

4
(wTG−2(v · ∇)(G)G−1(w · ∇)(Gv))

+
1

4
(wTG−1(v · ∇)(G)G−2(w · ∇)(Gv))

)2

, (33)

where v, w ∈ N (0, I) and G = JT
f Jf ; it can be computed by using the Jacobian-vector and vector-Jacobian products

multiple times.
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C. Algorithmic Details
In this section, we describe algorithms for MICAE and MECAE. Given a decoder f : Rm → RD, at a latent point z ∈ Rm,
denote the estimated intrinsic curvature by EIC(z; f) (33) and the estimated extrinsic curvature by EEC(z; f) (14). Let
gϕ : RD → Rm be a parameterized encoder and fθ : Rm → RD be a parameterized decoder, where θ, ϕ are learnable
parameters.

The training of MICAE and MECAE is as simple as the vanilla autoencoder, where the only difference is the added
regularization term in the loss function. The new loss functions have the following form:

Ex∼pdata [∥fθ(gϕ(x))− x∥2] + α Ex∼pdata [EC(gϕ(x); fθ)], (34)

where α is the regularization coefficient, pdata is the empirical training data distribution, and EC(z; f) is either EIC(z; f) or
EEC(z; f). In practice, Ex∼pdata is replaced by 1

N

∑N
i=1 with the set of training data {xi}Ni=1.

D. Experimental Details
Latent Space Augmentation: Sometimes, a simple latent space data augmentation technique can improve the manifold
learning performance. Following (Lee et al., 2022b; Chen et al., 2020), we use the modified mix-up data-augmentation
method with a parameter η > 0. The encoded data is augmented by z = δz1 + (1− δ)z2 where zi, i = 1, 2 are randomly
sampled two encoded data and δ is uniformly sampled from (−η, 1 + η) (we set η = 0.2). Note that we use this technique
for synthetic data.

D.1. Synthetic Data

For both two-dimensional and one-dimensional manifold examples, we use three-layer fully connected neural networks
(512 nodes per layer) for both encoder and decoder with ELU activation functions. We use Adam optimizer with a learning
rate of 0.00001, and the number of training epochs is 10000. The regularization coefficient for the minimum curvature
autoencoders is searched in (0.0001, 0.001, 0.01, 0.1, 1, 10), and the one that produces the smallest (clean2clean) test
reconstruction error is reported.

For the two-dimensional manifold example, when computing the intrinsic and extrinsic curvatures for the density plots, we
did not use the curvature estimation formulas, rather compute them precisely using the original formulas, which is feasible
since both the data and latent space dimension are low. Table 2 shows the runtimes per epoch with the two-dimensional
manifold example for a batch size of 100.

Table 2. The runtimes per epoch for a batch size of 100 (where we use the GeForce RTX 3090).

AE MICAE MECAE
0.003 s 0.087 s 0.029 s

D.2. Motion Capture Data

We use two-layer fully connected neural networks (512 nodes per layer) for both encoder and decoder with ELU activation
functions. We use Adam optimizer with a learning rate of 0.001, and the number of training epochs is 5000. We search the
hyperparameters for each method over a wide enough range and report the results of the one that produces the smallest
(clean2clean) validation reconstruction error.

When computing the intrinsic and extrinsic curvatures for the density plots, we did not use the curvature estimation formulas,
rather compute them precisely using the original formulas, which is feasible since both the data and latent space dimension
are low. Table 3 shows the runtimes per epoch for a batch size of 100.

Table 3. The runtimes per epoch for a batch size of 100 (where we use the GeForce RTX 3090).

AE VAE CAE DAE RCAE IRAE MICAE MECAE NRAE-L NRAE-Q
0.0130 s 0.0198 s 0.0267 s 0.0133 s 0.0299 s 0.0353 s 0.4600 s 0.1523 s 0.0280 s 0.0459 s
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