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ABSTRACT

General purpose agents need to be able to execute large skillsets in stochastic set-
tings. Given that the mutual information between skills and states measures the
number of distinct skills in a skillset, a compelling objective for learning a diverse
skillset is to find the skillset with the largest mutual information between skills and
states. The problem is that the two main unsupervised approaches for maximizing
this mutual information objective, Empowerment-based skill learning and Unsu-
pervised Goal-Conditioned Reinforcement Learning, only maximize loose lower
bounds on the mutual information, which can impede diverse skillset learning. We
propose a new empowerment objective, Skillset Empowerment, that maximizes a
tighter bound on the mutual information between skills and states. For any pro-
posed skillset, the tighter bound on mutual information is formed by replacing the
posterior distribution of the proposed skillset with a variational distribution that
is conditioned on the proposed skillset and trained to match the posterior of the
proposed skillset. Maximizing our mutual information lower bound objective is a
bandit problem in which actions are skillsets and the rewards are our mutual in-
formation objective, and we optimize this bandit problem with a new actor-critic
architecture. We show empirically that our approach is able to learn large abstract
skillsets in stochastic domains, including ones with high-dimensional observa-
tions, in contrast to existing approaches.

1 INTRODUCTION

General purpose agents that operate in the real world will need to be able to execute a large set
of skills in highly stochastic settings. A futuristic household robot, for instance, will need to ex-
ecute the vast number of skills involved in household chores like cooking and cleaning while the
human members of the household may be moving as well as conversing with each other and the
robot in seemingly random ways. Even the simple act of the robot moving its head to look in dif-
ferent directions will produce unpredictable outcomes as relevant objects to the robot may appear in
unexpected places. An appealing approach for learning diverse skillsets, regardless of the level of
randomness in the domain, is to find the skillset with the largest mutual information between skills
and skill-terminating states because this mutual information measures the number of distinct skills
in a skillset.

The problem is that the two most popular approaches for optimizing the mutual information between
skills and states, Empowerment-based skill learning (Gregor et al., 2016; Eysenbach et al., 2018;
Achiam et al., 2018; Choi et al., 2021; Sharma et al., 2019) and Unsupervised Goal-Conditioned
Reinforcement Learning (GCRL) (Ecoffet et al., 2019; Mendonca et al., 2021; Nair et al., 2018;
Pong et al., 2019; Campos et al., 2020; Pitis et al., 2020; Held et al., 2017; McClinton et al., 2021;
Held et al., 2017; Kim et al., 2023), only maximize a loose lower bound of the mutual information
between skills and states. The loose bound means agents are not able to accurately measure the di-
versity of candidate skillets, which in turn makes it difficult to find a diverse skillset. In both existing
empowerment and unsupervised GCRL approaches, this loose lower bound on mutual information
for a candidate skillset is formed by replacing the true posterior probability that computes the prob-
ability of a skill given the skill-terminating state and the candidate skillset with a potentially very
different distribution. Existing empowerment approaches replace the true posterior of the candidate
skillset with another distribution trained to match the true posterior of the current skillset, which
may have significant differences with the candidate skillset. This can create a loose lower bound on
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Figure 1: (Left) Overview of the problematic ways existing empowerment and GCRL train the
variational posterior qψ . The variational mutual information Ĩ(Z;S|π) between skills z and states
s measures the diversity of skillset π accurately if qψ is similar to the true posterior p(z|π, s) (i.e.,
the “distance” between the distributions D(p||qϕ) is small). But existing empowerment methods
train the variational posterior, qψ , for a candidate skillset π to match the posterior of the current
skillset p(z|πCurrent, sn), even when πCurrent is different than the candidate skillset π. GCRL sets the
variational posterior to a fixed Gaussian centered at the skill-terminating state, which also does not
depend on the skillset candidate π. In contrast, our approach trains qψ to minimize its difference with
the posterior of the candidate skillset π, improving the accuracy of Ĩ(Z;S|π). (Right) Two candidate
skillsets π1 and π2 are compared using different measures of diversity. π1 is the more diverse
skillset as each of its nine skills target different states, whereas the skills in π2 target two different
states (different skills are shown by different colored trajectories emanating from the black square
agent). Thus, using the true mutual information, ITrue(Z;S|π1) > ITrue(Z;S|π2). However,
using the loose lower bound on mutual information employed by existing empowerment methods
that penalizes differences from the current skillset, IExisting(Z;S|π1) < IExisting(Z;S|π2) because
π2 is more similar to the current skillset π than π1. We introduce a tighter bound to the mutual
information in which the more diverse skillset π1 would score higher than π2.

mutual information for desirable diverse skillsets that differ significantly from the current skillset.
Similarly, GCRL replaces the true posterior with a fixed posterior distribution that encourages the
goal-conditioned policy to execute actions that achieve the assigned goal state (Choi et al., 2021).
However, in stochastic settings, this implementation can produce a loose lower bound on mutual in-
formation for diverse skillsets with abstract skills that target groupings of states, making it unlikely
an agent will discover these desirable abstract skillsets. Figure 1 (Left) highlights how the way ex-
isting empowerment and GCRL methods train their variational posteriors leads to inaccurate skillset
diversity measurements, and Figure 1 (Rights) illustrates the consequences of these inaccuracies.

Our main contribution, Skillset Empowerment, is an empowerment objective that maximizes a
tighter lower bound on the mutual information between skills and states. In our variational lower
bound on mutual information, we replace the true posterior distribution within the mutual informa-
tion term for a candidate skillset with a variational posterior that is (i) conditioned on the candidate
skillset and (ii) trained to match the true posterior of the candidate skillset. The resulting empow-
erment objective is a bandit problem, in which the actions are candidate skillsets (e.g., the param-
eters of the skill-conditioned policy neural network) and the reward is our version of the skillset
candidate’s mutual information variational lower bound, which measures the diversity of the pro-
posed skillset. To efficiently optimize this objective despite its large action space, we introduce a
new actor-critic architecture. Our experiments show that our approach can learn diverse abstract
skillsets in stochastic settings, including ones with high-dimensional observations. To our knowl-
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edge, our approach is the first unsupervised skill learning method to successfully learn large skillsets
in stochastic settings.

2 BACKGROUND

2.1 SKILLSET MODEL AND EMPOWERMENT

We model an agent’s skillset using a probabilistic graphical model defined by the tuple (S , A,
Z , T , ϕ, π). S is the space of states; A is the space of actions; Z is the space of skills;
T is the environment transition dynamics T (st+1|st, at) that provides the probability of a state
given the prior state and action. The transition dynamics are assumed to be conditionally in-
dependent of the history of states and actions (i.e., T (st+1|st, at) = T (st+1|s0, a0, . . . , st, at)).
The remaining distributions ϕ and π are the skillset distributions that can be learned. ϕ rep-
resents the distribution over skills ϕ(z|s0) given a skill start state s0. π represents the skill-
conditioned policy π(at|st, z) that provides the distribution over primitive actions given a state
st and skill z. Assuming each skill consists of n primitive actions, the full joint distribution
of a skill and a trajectory of actions and states (z, a0, s1, . . . , an−1, sn) conditioned on a par-
ticular start state s0 and skillset defined ϕ and π is given by p(z, a0, s1, . . . , an1

, sn|s0, ϕ, π) =
ϕ(z|s0)π(a0|s0, z)p(s1|s0, a0) . . . π(an−1|sn−1, z)p(sn|sn−1, an−1).

In this paper, we measure the diversity of a skillset defined by ϕ and θ and executed from some start
state s0 using the mutual information between the skill random variable Z and the skill-terminating
state random variable Sn, I(Z;Sn|s0, ϕ, π). This mutual information provides a way to measure
the number of distinct skills in a skillset, in which a skill is distinct if it terminates in a set of states
not targeted by other skills in the skillset. I(Z;Sn|s0, ϕ, π) is defined

I(Z;Sn|s0, ϕ, π) = H(Z|s0, ϕ, π)−H(Z|s0, ϕ, π, Sn) (1)
= Ez∼ϕ(z|s0),sn∼p(sn|s0,π,z)[log p(z|s0, ϕ, π, sn)− log p(z|s0, ϕ)]. (2)

Per equation 1, the diversity of a skillset grows when there are more skills in a skillset (i.e., higher
skill distribution entropy H(Z|s0, ϕ, π)) and/or the skills become more distinct (i.e., the conditional
entropy H(Z|s0, ϕ, π, Sn) shrinks).

The empowerment of a state is the maximum mutual information with respect to all possible (ϕ, π)
skillsets:

E(s) = max
ϕ,π

I(Z;Sn|s0, ϕ, π). (3)

That is, the empowerment of a state measures the size of the most diverse skillset in that state.
Note that this use of empowerment, in which mutual information is maximized to find the most
diverse skillset, is different than maximizing an empowerment reward function, in which agents are
encouraged to take actions that lead them to high empowerment states (Klyubin et al., 2008; Jung
et al., 2012; Mohamed & Rezende, 2015). Indeed, in order to enable this other use of empowerment
that is popular in the literature, there needs to be a better way to measure the empowerment of a
state, which is what our work is focused on.

2.2 EXISTING APPROACHES TO MEASURING EMPOWERMENT

Next we discuss why both of two dominant approaches to unsupervised skill learning,
empowerment-based skill learning and unsupervised GCRL, are only optimizing loose lower bounds
on the mutual information between skills and states.

A key problem with optimizing the mutual information of the skill channel for a candidate skillset
(ϕ, π) is that it depends on the posterior distribution p(z|s0, ϕ, π, sn), which provides the probability
of a skill z given the start state s0, skillset (ϕ, π), and skill-terminating state sn. As shown in line
4, the posterior is intractable to compute in large settings (e.g., domains with continuous state and
action spaces) because it requires integrating over an infeasible number of trajectories.

p(z|s0, ϕ, π, sn) =

∫
a0,s1,a2,...,sn−1,an−1

p(z, a0, s1, . . . , an−1, sn|s0, ϕ, π)∫
z,a0,s1,a2,...,sn−1,an−1

p(z, a0, s1, . . . , an−1, sn|s0, ϕ, π)
(4)
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To overcome this problem, both existing empowerment and unsupervised GCRL methods replace
the original posterior with a different variational distribution qψ(z|s0, sn), similar to Mohamed &
Rezende (2015) who first replaced the intractable posterior with a variational distribution when op-
timizing a different mutual information between open loop action sequences and terminating states.
Replacing the true posterior p(z|s0, ϕ, π, sn) with the variational distribution qψ(z|s0, sn) results in
a lower bound on mutual information Ĩ(Z;Sn|s0, ϕ, π) for the candidate skillset (ϕ, π). The gap
between the actual mutual information I(Z;Sn|s0, ϕ, π) and the variational lower bound on mutual
information Ĩ(Z;Sn|s0, ϕ, π) is an average of the KL divergences between the true posterior and
the variational distribution (Barber & Agakov, 2003):

I(Z;Sn|s0, ϕ, π)− Ĩ(Z;Sn|s0, ϕ, π) = Esn∼p(sn|s0,ϕ,π)[DKL(p(z|s0, ϕ, π, sn)||qψ(z|s0, sn))].
(5)

Thus, replacing the true posterior with a similar variational distribution can produce a tight bound
on mutual information, but replacing the true posterior with a markedly different one can produce
a loose bound, which can cause the agent to significantly underestimate the diversity of a skillset.
Next, we discuss the variational posteriors used by existing empowerment approaches and unsuper-
vised GCRL, and why these can cause loose lower bounds on Ĩ(Z;Sn|s0, ϕ, π).
Existing Empowerment The typical empowerment-based skill-learning algorithm replaces the true
posterior with a variational distribution trained to be similar to the posterior of the current skillset
p(z|s0, ϕCurrent, πCurrent, sn) (Gregor et al., 2016; Eysenbach et al., 2018; Achiam et al., 2018; Lee
et al., 2019; Choi et al., 2021; Strouse et al., 2021). Specifically, the parameters of the variational
posterior ψ are trained to minimize the KL divergence between the posterior of the current skillset
and the variational distribution:

ψ∗ = argmin
ψ

Esn∼p(sn|s0,ϕCurrent,πCurrent)[DKL(p(z|s0, ϕCurrent, πCurrent, sn)||qψ(z|s0, sn))]. (6)

With this posterior, the empowerment objective becomes

Ẽ(s0) = max
ϕ(z|s0),π(a|s,z)

Ĩ(Z;Sn|s0, ϕ, π),

Ĩ(Z;Sn|s0, ϕ, π) = Ez∼ϕ(z|s0),sn∼p(sn|s0,π,z)[log qψ∗(z|s0, sn)− log ϕ(z|s0)]. (7)

Using this objective, the diversity of candidate skillsets (ϕ, π) is evaluated using the variational
lower bound on mutual information defined in line 7.

The problem with this posterior implementation is that it produces a loose variational lower bound
Ĩ(Z;Sn|s0, ϕ, π) for desirable diverse (ϕ, π) skillsets that differ significantly from the current
skillset. The loose lower bound results from the potentially large difference between the posteriors
of the diverse candidate skillsets and the posterior of the current skillset. Examples of this outcome
include situations similar to the one discussed in Figure 1 (Right) in which a candidate skillset can
target more unique states than the current greedy skillset but because the skills z that achieve the
terminating states sn do not have high probability according to variational posterior qψ∗(z|s0, sn)
at the states sn, the log qψ∗(z|s0, sn) can be very low, which can then result in a low diversity score
Ĩ(Z;Sn) for the candidate skillset (ϕ, π) that significantly underestimates its true diversity. The low
Ĩ(Z;Sn) scores would then discourage the agent from selecting these skillsets. Instead, the skillsets
that are favored are the ones similar to the current skillset because the (z, sn) tuples generated by
skillsets similar to the current skillset will be rewarded with higher log qψ∗(z|s0, sn) values. Several
prior works have empirically demonstrated this result in which existing empowerment approaches
tend to learn skillsets that do not change much from initialization (Campos et al., 2020; Park et al.,
2022; 2023a;b; Strouse et al., 2021; Levy et al., 2023).

Unsupervised GCRL Unsupervised GCRL approaches replace the true posterior with a fixed varia-
tional posterior that encourages the skill-conditioned policy (or the goal-conditioned policy) to target
the conditioned goal state. There are different options for the fixed variational posterior depending
on the desired goal-conditioned reward. The variational posterior could take the form of a fixed stan-
dard deviation gaussian centered at the skill-terminating state sn: q(z|s0, sn) = N (z;µ = sn, σ =
σ0) (Choi et al., 2021). This will encourage the learning of a goal-conditioned policy such that when
given a goal state z, the goal-conditioned policy will target a skill-terminating state sn close to z.
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For the desirable diverse skillsets, the tightness of a variational lower bound on mutual information
Ĩ(Z;Sn|s0, ϕ, π) that employs a fixed posterior can depend on the level of randomness in the do-
main. In deterministic settings, the variational lower bound Ĩ(Z;Sn|s0, ϕ, π) for diverse skillsets
can form a tight bound to the true mutual information I(Z;Sn|s0, ϕ, π). Consider the Ĩ of an effec-
tive goal-conditioned policy π, in which the fixed gaussian posterior q(z|sn) takes the form of a tight
fixed-variance gaussian with a mean at the skill-terminating state sn. Because the goal-conditioned
policy is effective (i.e., for goal state z, sn ≈ z), the true posterior p(z|s0, ϕ, θ, sn) will be similar
to the fixed-variance gaussian variational posterior, and thus the gap between the true mutual infor-
mation and Ĩ will be small. In deterministic settings, GCRL can thus be an effective way to learn
diverse skillsets, which has been repeatedly demonstrated empirically (Andrychowicz et al., 2017;
Mendonca et al., 2021; Nair et al., 2018; Pong et al., 2019; Campos et al., 2020; Pitis et al., 2020;
Held et al., 2017; McClinton et al., 2021; Held et al., 2017; Kim et al., 2023; Levy et al., 2019).

However, in significantly stochastic settings in which specific states cannot be consistently achieved,
the lower bound can be quite loose for the most diverse skillsets. In significantly random domains,
the most diverse skillsets may be ones that contain abstract skills that target distinct groupings of
states. Abstract skillsets like these will have posteriors in which many skill-terminating states map
to the same skill, which can be far different than the fixed posterior used in GCRL in which each
terminating state is mapped to its own unique goal state. Thus, the GCRL lower bound on mutual
information can be quite loose for these desirable abstract skillsets, which will discourage the agent
from learning them. Instead, the GCRL objective may limit skillsets to the more deterministic parts
of the environment because trying to achieve any goal state that cannot be reliably achieved may be
heavily penalized.

3 SKILLSET EMPOWERMENT

To enable agents to learn diverse skillsets in stochastic domains, we introduce the empowerment
objective, Skillset Empowerment. In this section, we first present the objective and explain how
the objective measures a tighter lower bound on the empowerment of a states, meaning that our
approach can learn larger sets of skill in a state relative to existing approaches.

3.1 SKILLSET EMPOWERMENT OBJECTIVE

The Skillset Empowerment objective is defined as follows:

ESE(s0) = max
ϕ(z|s0),π(a|s,z)

ĨSE(Z;Sn|s0, ϕ, π),

ĨSE(Z;Sn|s0, ϕ, π) = Ez∼ϕ(z|s0),sn∼p(sn|s0,π,z)[log qψ∗(z|s0, ϕ, π, sn)− log ϕ(z|s0)], (8)

ψ∗ = argmin
ψ

Esn∼p(sn|s0,ϕ,π)[DKL(p(z|s0, ϕ, π, sn)||qψ(z|s0, ϕ, π, sn))]

Like existing approaches, Skillset Empowerment optimizes a variational lower bound on the mutual
information between skills and states in which the true posterior of a candidate skillset (ϕ, π) is
replaced with a variational distribution. The key reason Skillset Empowerment optimizes a tighter
bound on mutual information and thereby measures a tighter bound on the empowerment of a state
is the manner in which ψ∗ is selected. For any candidate skillset (ϕ, π), Skillset Empowerment
trains the variational posterior qψ(z|s0, ϕ, π, sn) to match the true posterior of the candidate skillset
p(z|s0, ϕ, π, sn). Note that the variational posterior is now additionally conditioned on the skillset
distributions (ϕ, π) in contrast to existing empowerment approaches. The next section will discuss
how this is implemented in practice. This strategy for learning ψ∗ results in a variational mu-
tual information ĨSE(Z;Sn|s0, ϕ, π) that is a tighter lower bound on the true mutual information
I(Z;Sn|s0, ϕ, π) for any (ϕ, π) skillset because the KL divergence between the true and variational
posterior cannot be larger than the KL divergence in existing approaches. This is true because in
the selection of ψ∗, Skillset Empowerment can choose the ψ selected by existing empowerment ap-
proaches or a ψ that produces a fixed variational distribution like in unsupervised GCRL if that is the
ψ that minimizes the KL divergence, but Skillset Empowerment is not limited to those options. The
tighter bound on the mutual information between skills and states for any (ϕ, π) skillset means that
Skillset Empowerment also measures a tighter bound on the empowerment of a state (see section A
of the appendix for proof).
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3.2 PRACTICAL IMPLEMENTATION

Next, we provide a practical implementation that optimizes the objective with deep learning. We
first discuss how we optimize the skillset distributions ϕ and π because that informs how we will
train the variational parameters ψ. Before discussing how the skillset distributions are updated up-
dated, note that the Skillset Empowerment objective is not a typical skill-conditioned Reinforcement
Learning (RL) problem in which rewards are only functions of states, skills, and actions. If Skillset
Empowerment were to be converted to an RL problem, the reward function for the final action
would be log qψ(z|s0, ϕ, π, sn), which depends in part on the skill-conditioned policy π. Optimiz-
ing Skillset Empowerment with a typical skill-conditioned RL approach, in which the agent learns a
policy mapping states and skills to primitive actions, would be subject to potentially significant non-
stationary rewards because each time the skill-conditioned policy is updated, the final step reward
could change.

Instead we optimize the Skillset Empowerment with respect to the skillset distributions as a bandit
problem, in which actions are (ϕ, π) skillsets and rewards are the diversity of those skillsets as
measured by ĨSE(Z;Sn|s0, ϕ, π). In order for the skillset distributions ϕ and π to serve as actions,
we first describe how Skillset Empowerment vectorizes these distributions. In our implementation
of Skillset Empowerment, we represent the skill-conditioned policy π as a vector containing the the
weights and biases of a neural network fπ that forms the skill-conditioned policy. fπ : S ×Z → A
takes as input a state s and skill z outputs the mean of a gaussian skill-conditioned policy. That
is, π(a|s, z) = N (a;µ = fπ(s, z), σ = σ0), in which σ0 is a small fixed standard deviation.
We represent ϕ(z|s0) using a scalar that represents a uniform distribution that takes the shape of
a d-dimensional cube with side length ϕ. For instance, in our tasks in which the skills are two-
dimensional, skills are sampled from a square with side length ϕ centered at the origin. Figure 3
in the Appendix provides an illustration of a two-dimensional skill distribution ϕ. The probability
density ϕ(z|s0) = (1/ϕ)d.

We optimize both ϕ and π using their own bandit problem. In the ϕ bandit problem, the bandit policy
is fµ : S → ϕ, which takes as input the skill start state s0 and outputs ϕ (i.e., a scalar representing the
size of the uniform skill space). In the π bandit problem, the bandit policy fλ : S × ϕ→ π takes as
input the skill start state s0 and a ϕ value and outputs π, the vector of parameters that define the skill-
conditioned policy. In the π bandit problem, the reward for an π action is the Skillset Empowerment
variational lower bound on mutual information ĨSE(Z;Sn|s0, ϕ, π) (equation 8) (i.e., the reward
for proposing the skillset (ϕ, π) is is the diversity of the skillset). Similarly, the reward in the ϕ
bandit problem for a ϕ action is ĨSE(Z;Sn|s0, ϕ, π = fλ(s0, ϕ)), in which the skill-conditioned
policy π is the greedy output from the π bandit policy. Both bandit policies are optimized using an
actor-critic structure. That is, to determine the gradient for the bandit policy fµ, a critic Qρ(s0, ϕ) is
trained to approximate ĨSE(Z;Sn)(s0, ϕ, fλ(s0, ϕ)) for ϕ values around the current greedy output
fη(s0). Similarly, a critic Qω(s0, ϕ, π) is used to approximate ĨSE for sets of parameters π that are
near the current greedy vector fλ(s0, ϕ). Figure 4 in the Appendix provides a visual overview of the
two bandit problems.

The current setup is not yet practical because trying to learn the critic Qω(s0, ϕ, π) for the π actor
when the vector of parameters π may be thousands of dimensions is infeasible. Qω would need to
be able to discern the difference in mutual information when small changes are made to numerous
parameters in π. Instead, because the gradient with respect to the π bandit policy fλ only needs to
know how the ĨSE reward responds to small changes in each of the individual parameters in π, we
instead train |π| critics, Qω0

(s0, ϕ, π0), . . . , Qω|π|−1
(s0, ϕ, π|π|−1). Each of these critics only takes

a scalar, πi, as input, in which πi represents the i-th parameter of π (e.g., could be a noisy value
of the current greedy i-th parameter fλ(s0, ϕ)[i]). The remaining parameters of π are assumed to
take on their current greedy values from fλ(s0, ϕ). Thus, each critic Qi(s0, ϕ, πi) only needs to
approximate how the mutual information changes from small changes to a weight or bias parameter
in π. All of these critics are updated in parallel. In Figure 5 in the Appendix we show how each of
these |π| critics attach to the bandit policy fλ that outputs π.

Prior to updating the critics for each parameter of the skill-conditioned policy π, the variational
distribution parameters ψ need to be updated so that ĨSE(Z;Sn|s0, ϕ, π) forms a tighter bound
on the true mutual information I(Z;Sn|s0, ϕ, π) (i.e., more accurately measures the diversity of
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the (ϕ, π) skillset). Because we need to estimate ĨSE for small changes in each of the parameters
of π, we train |π| different sets of variational parameters ψ0, . . . , ψ|π|−1. Each set of variational
parameters ψi is trained in parallel to minimize the KL divergence between p(z|s0, ϕ, πi, sn) and
qψi(z|s0, ϕ, πi, sn).

Algorithm 1 Skillset Empowerment
repeat

Update skill-conditioned policy critics Qωi (see Equation 17)
Update skill-conditioned policy actor fλ (see equation 18)
Update skill distribution critic Qρ (see equation 19)
Update skill distribution actor fµ (see equation 20)

until convergence

Section B in the Appendix provides the specific objective functions for updating the parameter-
specific critics, skill-conditioned policy actor, skill distribution critic, and skill distribution actor.
Algorithm 1 provides the full algorithm for the practical implementation of Skillset Empowerment.
Section C of the Appendix discusses how the |π| sets of variational posteriors and the |π| skill-
conditioned policy critics can be training efficiently in parallel with the help of multiple accelerators
and the parallelization capabilities of modern deep learning frameworks (e.g., JAX).

3.3 LIMITATIONS

The major limitation of Skillset Empowerment is that it requires a model of the transition dynamics
p(st+1|st, at) (i.e., access to simulator of the environment) in order to generate the large number
of (skill z, skill-terminating state sn) tuples needed to train all of the parameter-specific critics.
However, subsequent work by Author (2024) (included as an anonymous supplementary file), which
builds on Skillset Empowerment, shows how large skillsets can be learned without a simulator.
Instead of maximizing the mutual information between skills and states, Author (2024) maximize
a different objective that has the same optimal skillset as I(Z;Sn) but only requires learning a
latent-predictive model, which is significantly easier to learn than a simulator as it operates in a
lower-dimensional latent space.

4 EXPERIMENTS

4.1 ENVIRONMENTS

We apply Skillset Empowerment and a pair of baselines to several domains. In terms of stochastic-
ity and the dimensionality of observations, most of these environments are complex because they
have highly stochastic transition dynamics and some include high-dimensional state observations.
On the other hand, in terms of the dimensionality of the underlying state space not visible by the
agent, most domains have simple, low-dimensional underlying state spaces. Stochastic domains are
used because general purpose agents need to be able to build large skillsets in environments with
significant randomness, and there are already effective algorithms for learning skills in determinis-
tic settings such as unsupervised goal-conditioned RL methods. Low-dimensional underlying state
environments are used in order to limit the parallel compute needed to train Skillset Empowerment
agents because larger skill spaces require more (z, sn) data to train the parameter-specific critics.

The first two experiments are built in a stochastic four rooms setting. In the navigation version of this
setting, a 2D point agent executes 2D (i.e., (∆x,∆y)) actions in a setting with four separated rooms.
After each action is complete, the agent is moved randomly to the corresponding point in one of the
four rooms. In the pick-and-place version of this setting, there is a two-dimensional object the agent
can move around if the agent is within a certain distance. The abstract skills agents should learn
in these domains are to target (x, y) offset positions from the center of a room for the agent (and
for the object in the pick-and-place version). The other two stochastic environments are built in a
RGB-colored QR code domain, in which a 2D agent moves within a lightly-colored QR code where
every pixel of the QR code changes after each action. The state observations are 432 dimensional
(12x12x3 images). We also created a pick-and-place version of this task, in which the agent can
move around an object provided the object is within reach. The abstract skills to learn in these
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Stochastic 
Four Rooms

RGB QR 
Code

t=1 t=2 t=3 t=4 t=5

Figure 2: Sample skill sequences in the pick-and-place versions of the Stochastic Four Rooms and
RGB QR Code domains. In top row, the blue circle agent executes a skill to carry the red triangle
object to the right side of a room. In bottom row, the black square agent carries the yellow object to
bottom of room.

domains are again to target (x, y) locations for the agent (and object in the pick-and-place version).
Image sequences showing executed skills in the pick-and-place versions of the stochastic tasks are
shown in Figure 2. In addition to the stochastic domains, we also applied Skillset Empowerment to
the Continuous Mountain Car domain (Towers et al., 2024) and the Ant domain in Brax (Freeman
et al., 2021) to test whether agents can learn skills to target states containing both positions and
velocities. We also tested the Ant domain to see how the algorithm would perform in a domain with
a much larger underlying state space (29-dim). Additional details for these domains are provided in
section D of the Appendix.

Given our purpose of using empowerment to learn large skillsets, we evaluate the performance of
Skillset Empowerment and the baselines by the size of the skillsets they learn in each domain. We
measure the size of the skillsets using the variational mutual information Ĩ(Z;Sn|s0, ϕ, π) from a
single start state s0. In this paper, we are not assessing performance on downstream tasks, in which,
for instance, a hierarchical agent needs to learn a higher level policy that executes skills from the
learned skillsets to maximize some reward function. However, in section E of the Appendix we
describe how it is simple to implement such hierarchical agents that use the Skillset Empowerment
(ϕ, π) skillsets as a temporally extended action space.

4.2 BASELINES

We compare our approach, Skillset Empowerment, to both an empowerment-based skill-learning
method and unsupervised GCRL. For the prior empowerment-based method, we selected Variational
Intrinsic Control (VIC) (Gregor et al., 2016). VIC, like other approaches to measuring empower-
ment including DIAYN (Eysenbach et al., 2018) and VALOR (Achiam et al., 2018), maximizes a
loose lower bound on the mutual information between skills and states because the variational pos-
terior is trained to match the posterior of the current greedy skillset and not the candidate skillset.
For the unsupervised GCRL comparison, our focus was solely on whether goal-conditioned skills
can be learned in stochastic domains and not on exploration which is the primary focus of recent
unsupervised GCRL algorithms. Thus, we assist the unsupervised GCRL algorithm and provide it
with the distribution of reachable states to use as the distribution of goal states and thereby are just
comparing our algorithm to supervised GCRL. We compare to a GCRL objective in which the vari-
ational posterior used is the tight diagonal gaussian centered at the skill-terminating state discussed
in section 2.2. For the higher dimensional QR code tasks, we implemented Reinforcement learn-
ing with Imagined Goals (RIG) (Nair et al., 2018). RIG performs GCRL in a latent space learned
separately by a VAE. See section F for details on how the baselines were implemented.

4.3 RESULTS

Table 1 shows the size of the skillsets learned by all algorithms in the stochastic settings. Skillset
size is measured with the variational mutual information Ĩ(Z;Sn). Note that mutual information in
measured on a logarithmic scale (in this case, nats) so the 8.7 nats of skills learned by Skillset Em-
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Table 1: Average learned skillset sizes for all baselines as measured by variational empowerment
Ĩ(Z;Sn). Average and standard deviation computed from 5 random seeds.

TASK OURS VIC GCRL

FOUR ROOMS NAV. 5.1± 0.3 0.2± 0.4 0.3± 0.4
FOUR ROOM P.-AND-P. 8.7± 0.3 -0.1± 0.3 3.9± 0.6
RGB QR NAV. 3.5± 0.1 -0.4± 0.0 -0.4± 0.3
RGB QR P.-AND-P. 6.0± 0.2 -0.6± 0.1 -2.6± 5.8

powerment in the pick-and-place version of the Stochastic Four Rooms domain means that Skillset
Empowerment learned e8.7 ≈ 6, 000 skills. In the Continuous Mountain Car and Ant domains,
Skillset Empowerment learned skillsets with sizes of 5.3 ± 0.3 and 16.8 ± 1.8 nats, respectively.
The results show that Skillset Empowerment was able to learn large skillsets in all domains, while
both VIC and GCRL were unable to learn meaningful skillsets in the stochastic settings. Note that
because skillset sizes were measured with variational mutual information, which is a lower bound
on the mutual information between skills and states, skillset size results can be negative. This hap-
pens with training goes poorly and the true posterior distribution p(z|sn) of the learned skillset is
significantly different from the diagonal gaussian variational posterior qψ(z|sn).
For additional evidence that Skillset Empowerment is able to learn large skills in
all domains, we provide visualizations of the mutual information entropy terms (i.e.,
H(Sn), H(Sn|Z), H(Z), H(Z|Sn)) both before and after training in Figures 6-16 in the Appendix.
The H(Sn) visuals show the skill-terminating states sn achieved by 1000 skills randomly sampled
from the learned skill distribution. In all the stochastic settings and Continuous Mountain Car, the
skill-terminating states nearly uniformly cover the reachable state space. To show that this was not
achieved by simply executing a policy that uniformly samples actions from the action space, in the
center image we visualizeH(Sn|Z), which shows 12 skill-terminating states sn from four randomly
selected skills from the skill distribution. In the stochastic settings, for instance, the sn generated
by each skill z target a specific (x, y) offset location for the agent and an (x, y) offset location for
the object in the pick-and-place tasks, which is the correct abstract skill to learn. These visuals also
visualize H(Z) by showing the distribution over skills ϕ that takes the shape of a d-dimensional
cube. Lastly, we visualize H(Z|Sn) by showing four randomly selected skills z and samples from
the learned posterior qψ(z|s0, ϕ, π, sn). As expected for a diverse skillset in which different skills
target different states, these samples of the posterior distribution tightly surround the original skill.
In addition, Figure 16 shows entropy visualizations for the Ant domain. In this setting, Skillset Em-
powerment learned a very large skillset of 16.8 nats (≈ 20 million skills). However, as shown by
the visual of H(Sx,yn ) showing the final torso locations, most of these skills are small rotations of
the body or bending of the joints and not translations of the torso. We believe this is mostly a result
of being compute constrained. We would need to sample much larger batches of (z, sn) tuples to
properly measure the diversity of skillsets of this size, but this would require more compute.

We note that searching across the space of (ϕ, π) skillsets for a skillset that targets a diverse distri-
bution of skill-terminating states is not a trivial task in these domains. A skill-conditioned policy
that randomly executes actions would produce a zero mutual information skillset. A skillset that
tried to maximize the mutual information between skills and open loop action sequences I(Z;A)
(i.e., have each skill execute a different action) would also produce relatively low I(Z;Sn) because
among the space of open loop action sequences a0, a1, . . . , an−1, many of these sequences target
the same skill-terminating state sn. In addition, the need to have the skillset fit a diagonal gaussian
variational posterior qψ(z|s0, ϕ, π, sn) also makes the task challenging because a skillset in which
distant skills z target the same state sn can produce a low Ĩ(Z;Sn) score because this would result
in a high entropy variational posterior qψ . Instead, each small region of the skill distribution needs
to target a distinct grouping of states sn.

Moreover, the baselines were not able to learn large skillsets in any of the settings. For instance,
in the stochastic four rooms task, the GCRL agent only learns skills to move to corners of the
room as shown in Figure 17, which shows the skill-terminating states of 1000 random skills. More
specifically, as shown in Figure 18, when given a goal state of some (x,y) position in one of the
four rooms, the agent simply moves towards whichever room the goal is in regardless of where in
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the room the goal is. This behavior is likely taken to minimize the average distance to the goal
as the goal-conditioned reward heavily penalizes the agent if it is far from the specific goal state.
In the image-based QR code tasks, the VAE generally struggled to reconstruct the large variety of
colored QR codes as shown in Figure 19, ultimately producing an image similar to a mean QR code.
The overly abstract latent state space in turn made it challenging for the GCRL component to learn
distinct skills. These results provide evidence that GCRL’s loose lower bound on mutual information
for diverse abstract skillsets does discourage agents from learning these desirable skillsets. On the
other hand, because Skillset Empowerment can learn a tight bound on mutual information for diverse
abstract skillsets, agents are encouraged to learn them. In addition, like GCRL, the performance of
VIC agents also was poor. As with prior works, we observed stagnant skillsets.

5 RELATED WORK

There have been many prior works that have tried to use empowerment to learn large skillsets.
Early empowerment methods showed how mutual information between actions and states could be
optimized in small settings with discrete state and/or action spaces (Klyubin et al., 2008; Salge
et al., 2013a; Jung et al., 2012). Several later works integrated variational inference techniques that
enable empowerment-based skill learning to be applied to larger continuous domains (Mohamed &
Rezende, 2015; Karl et al., 2017; Gregor et al., 2016; Eysenbach et al., 2018; Sharma et al., 2019;
Li et al., 2019; Hansen et al., 2020). However, these methods were limited in the size of skillsets
they were able to learn as they only maximize a loose lower bound on mutual information, making
it difficult to accurately measure the diversity of a skillset.

Complementary to our work are the methods that use empowerment for downstream applications,
such as using empowerment as a state utility function (Klyubin et al., 2008; Salge et al., 2013b; Jung
et al., 2012; Mohamed & Rezende, 2015; Karl et al., 2015; 2017), as a temporally extended action
space for hierarchical RL (Eysenbach et al., 2018; Levy et al., 2023), as an evolutionary signal to
evolve sensors and actuators (Klyubin et al., 2005), as an objective for learning a state representation
(Capdepuy, 2011; Bharadhwaj et al., 2022), as an intrinsic motivation reward (Oudeyer & Kaplan,
2007; Bharadhwaj et al., 2022), and as a way to measure human empowerment (Du et al., 2020;
Myers et al., 2024).

Also related to our work are the methods that learn abstract skills in settings with random envi-
ronment distractors (Bharadhwaj et al., 2022; Fu et al., 2021; Ma et al., 2021; Zhang et al., 2020;
Rudolph et al., 2024; Zou & Suzuki, 2024). However, these approaches only learn a single skill with
the help of a reward function or require supervision in the form of a hand-crafted goal space. To our
knowledge, our approach is the first unsupervised skill learning method to successfully learn large
skillsets in stochastic settings.

6 CONCLUSION

Agents need to be able to execute large skillsets in settings with significant randomness and empow-
erment should be able to help. We show a major reason why previous empowerment methods have
been unable to learn large skillsets is that they have been maximizing a loose lower bound on the
mutual information between skills and states. To overcome this problem, we introduced the Skillset
Empowerment algorithm, which maximizes a tighter bound on the mutual information between
skills and states using a new actor-critic architecture. We show empirically that Skillset Empow-
erment enables agents to learn large skillsets in a variety of settings, includes ones with stochastic
transition dynamics and high-dimensional state observations.
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Line 9 provides the variational empowerment learned by existing approaches, in which
(ϕ∗Existing, π

∗
Existing) are the mutual information maximizing distributions learned by the existing ap-

proach. As shown in Line 10, this is less than or equal to the mutual information learned by
Skillset Empowerment using the same skillset distributions (ϕ∗Existing, π

∗
Existing). This is true be-

cause the gap between the true mutual information I(Z;On|s0, ϕ∗Existing, π
∗
Existing) and the varia-

tional mutual information found by existing approaches ĨExisting(Z;On|s0, ϕ∗Existing, π
∗
Existing) cannot

be smaller than the gap between the true mutual information and the variational mutual informa-
tion learned by Skillset Empowerment, ĨSE(Z;On|s0, ϕ∗Existing, π

∗
Existing). The gap cannot be smaller

because the gap depends on the KL divergence between the true and variational posteriors and
Skillset Empowerment can always choose the same variational parameters ψ as existing approaches.
Subtracting these two differences produces the inequality, ĨSE(Z;On|s0, ϕ∗Existing, π

∗
Existing) ≥

ĨExisting(Z;On|s0, ϕ∗Existing, π
∗
Existing). In line 11, the inequality results because the skillset distri-

butions (ϕ∗SE , π
∗
SE) that maximize the Skillset Empowerment version of variational mutual infor-

mation are selected. Line 12 uses the definition of Skillset Empowerment. The inequality in line 13
results because of the gap between the variational mutual information learned by Skillset Empow-
erment and the true mutual information I(Z;On|s0, ϕ∗SE , π∗

SE). The inequality in line 14 because
(ϕ∗SE , π

∗
SE) may not be the maximizing skillset distributions (ϕ∗, π∗). The last line uses the defini-

tion of empowerment

ɸ

ɸ

Figure 3: Illustration of the uniform distribution over skills ϕ used by Skillset Empowerment. The
uniform distribution takes the shape of a d-dimensional cube centered at the origin with side length
ϕ. For instance, if the dimensionality of the skill space is 2 (i.e., d = 2) as in the figure, skills
z ∼ ϕ(z|s0) are uniformly sampled from a square centered at the origin with side length ϕ.
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Figure 4: Overview of the two bandit problems. In the π bandit problem, the task is to optimize the
bandit policy fλ : S × ϕ → π, which takes as input the skill start state s0 and side length of the
uniform distribution ϕ and output a vector π consisting of the parameters of the skill-conditioned
policy neural network. That is, π is the vector of the weights and biases of the function fπ that
determines of the mean of an action given a state and skill. The reward for a π action R(s0, ϕ, π) is
the mutual information lower bound ĨSE(Z;Sn|s0, ϕ, π) (i.e., the reward is how diverse the skillset
(ϕ, π) is). In the ϕ bandit problem, the task is to learn the bandit policy fµ : S → ϕ, which
takes as input the skill start state s0 and outputs ϕ, which is the side length of the d-dimensional
cube uniform distribution centered at the origin. The reward for a particular ϕ action R(s0, ϕ) is
ĨSE(Z;Sn|s0, ϕ, π = fλ(s0, ϕ)). That is, the bandit policy is encouraged to output ϕ that results in
diverse skillsets (ϕ, π = fλ(s0, ϕ)).

[start state s0, skill distribution ɸ]

Neural Network
𝜆𝜋 Actor

𝜋 Critics

…

Figure 5: Illustration of how the parameter-specific critics, Qωi
for i = 0. . . . , |π| − 1, attach to

the actor fλ in order to determine the gradients of the actor. For each parameter i in π, a critic Qωi

approximates how the diversity of the skill-conditioned policy changes with small changes to the
i-th parameter of π. To obtain gradients showing how the diversity of a skill-conditioned policy
changes with respect to λ, gradients are thus passed through each of the parameter-specific critics.

B ACTOR-CRITIC OBJECTIVE FUNCTIONS

B.1 SKILL-CONDITIONED POLICY π ACTOR-CRITIC

To update the parameter-specific critics, Qω0 , . . . , Qω|π|−1
, so that they accurately measure the di-

versity of (ϕ, πi) skillsets, a two step process is followed. In the first step, the parameter-specific
variational parameters ψ0, . . . , ψ|π|−1 are updated by maximizing the following maximum likeli-
hood objective with respect to the variational posterior parameters ψi for all i = 0, . . . , |π| − 1 in
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parallel:

J(ψi) = Es0∼p(s0),ϕ∼f̂µ,πi∼f̂λ [Ĩ
SE(Z;Sn|s0, ϕ, π)] (16)

= Es0∼p(s0),ϕ∼f̂µ,πi∼f̂λ,z∼ϕ(z|s0),sn∼p(sn|s0,πi,z)
[log qψ(z|s0, ϕ, πi, sn)].

In the outer expectation, the skill start state s0 is sampled from the skill start state distribution p(s0);
ϕ is sampled by adding noise to the greedy output of the skill distribution actor fµ(s0); πi, which
represents the i-th parameter of the skill-conditioned policy, is sampled by adding noise to the i-th
parameter of fλ(s0, ϕ).

In the second step, the parameter-specific critics are updated so that they better approximate the
variational mutual information Ĩ(Z;Sn|s0, ϕ, πi) using the updated variational posterior parame-
ters. This is done by minimizing the follow supervised learning objective for all critic parameters
ω0, . . . , ω|π|−1 in parallel.

J(ωi) = Es0∼p(s0),ϕ∼f̂µ,πi∼f̂λ [(Qωi
(s0, ϕ, πi)− Target(s0, ϕ, πi))2], (17)

Target(s0, ϕ, πi) = Ez∼ϕ(z|s0),sn∼p(sn|s0,πi,z)[log qψ(z|s0, ϕ, πi, sn)].

The skill-conditioned policy actor fλ is then updated by maximizing the following objective function
with respect to λ.

J(λ) = Es0∼p(s0),ϕ∼f̂µ

[ |π|−1∑
i=1

Qωi
(s0, ϕ, fλ(s0, ϕ)[i])

]
, (18)

in which fλ(s0, ϕ)[i] outputs the i-th parameter of the skill-conditioned policy actor. Thus, all the
parameter-specific critics are used to obtain the gradient with respect to the skill-conditioned policy
actor parameters λ.

B.2 SKILL DISTRIBUTION ϕ ACTOR-CRITIC

The skill distribution critic Qρ(s0, ϕ) is updated by minimizing the following supervised learning
objective with respect to ρ:

J(ρ) = E
s0∼p(s0),ϕ∼ ˆfµ(s0)

[(Qρ(s0, ϕ)−Qω0(s0, ϕ, fλ(s0, ϕ)))
2]. (19)

That is, the target Q value for the skill distribution critic is the skill-conditioned policy critic value
Qω0

(s0, ϕ, fλ(s0, ϕ)).

The skill distribution actor fµ is updated by maximizing the following objective with respect to µ:

J(µ) = Es0∼p(s0)[Qρ(s0, fµ(s0))]. (20)

C PARALLELIZING TRAINING

Although the number of skill-conditioned policy parameters may be large, the |π| sets of variational
posterior and π critic parameters can be trained efficiently using the parallelization capabilities of
modern deep learning frameworks (e.g., JAX) and multiple accelerators. For instance, the update
step for each set variational posterior parameters ψi requires (skill z, state sn) tuples from skillsets
(ϕ, πi). Assuming access to multiple accelerators, this update step can occur in parallel for all |π|
sets of variational posterior parameters using the pmap and vmap functions in JAX. For instance, if
the skill-conditioned policy π has 1000 dimensions and there are 4 GPUs available, each GPU can
process the updates to 250 sets of variational posterior parameters in parallel.

Table 2 provides some data on the parallel computation demands of our approach for each of our
experiments. |π| is the number of parameters in the skill-conditioned policy. Update Time reflects
the time (in seconds) required to complete one whole update step (i.e., one iteration of the Repeat
loop in Algorithm 1). Note that the update times shown for the four rooms tasks were when using a
single A100 40GB device, while the update times for the RGB QR tasks reflect 8 A100 80GB SXM
GPUs. When we used multiple GPUs, the update times were roughly 1/Num GPUs of the original
time with a single GPU.
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Table 2: Table shows various measures of the parallel computation demands for each environment.

TASK |π| UPDATE TIME (S) GPU NOTES

FOUR ROOMS NAV 386 37 1 A100 40GB OR 2 H100 80GB SXM5
FOUR ROOMS PICK 484 56 1 A100 40GB OR 2 H100 80GB SXM5
RGB QR NAV 2528 10 8 A100 80GB SXM
RGB QR PICK 2528 10 8 A100 80GB SXM

D ENVIRONMENT DETAILS

1. Stochastic Four Rooms Navigation

• State dim: 2
• Action space: Continuous
• Action Dim: 2
• Action range per dimension: [−1, 1] reflecting (∆x,∆y) for position of agent
• p(s0) is a single (x, y) position
• n = 5 primitive actions

2. Stochastic Four Rooms Pick-and-Place

• State dim: 4
• Action space: Continuous
• Action Dim: 4
• Action range per dimension: [−1, 1]. First two dimensions reflect (∆x,∆y) change

in position for agent and the second two dimensions reflect the change in position for
the object. The object can only be moved by the amount specified in the final two
dimensions of the action if the object is within two units.

• p(s0) is a single (xagent, yagent, xobject, yobject) start state
• n = 5 primitive actions

3. RGB QR Code Navigation

• State dim: 2
• Action Dim: 2
• Action space: Discrete
• Action Range: [−1, 1]. First dimension reflects the horizontal movement. If first

dimension is in range ∈ [−1,− 1
3 ], agent moves left. If first dimension is in range

[ 13 , 1], agent moves right. Otherwise the agent does not make a horizontal movement.
The second dimension reflects the north-south movement following the same pattern.

• The RGB color vector for the colored squares in the QR code background is a 3-dim
vector, in which each component is randomly sampled from the range [0.7, 1] (i.e., has
a light color). The agent is shown with a 2x2 set of black squares.

• p(s0) is a single start state in the center of the room with a white background
• n = 5 primitive actions

4. RGB QR Code Pick-and-Place

• State dim: 4
• Action Dim: 4
• Action space: Discrete
• Action Range: [−1, 1]. First two dimensions are same as navigation task. The second

two reflect how the object will be moved provided the object is within two units.
• The RGB color vector for the colored squares in the QR code background is a 3-dim

vector, in which each component is randomly sampled from the range [0.7, 1] (i.e., has
a light color). The agent is shown with a 2x2 set of black squares. The object is shown
with a 2x2 set of yellow squares.
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• p(s0) is a single start state in which the agent and object are in same position in the
center of the room with a white background

• n = 5 primitive actions
5. Continuous Mountain Car

• State dim: 2
• Action space: Continuous
• Action Dim: 1
• Action range per dimension: [−1, 1]

• p(s0) is a single x position and velocity.
• n = 10 primitive actions

E IMPLEMENTING HIERARCHICAL AGENTS WITH SKILLSET
EMPOWERMENT

Coding hierarchical agents that use the (ϕ, π) Skillset Empowerment skillsets as a temporally ex-
tended action space is simple. For the higher level policy π : S → Z that outputs a skill z from the
learned (ϕ, π) skillset given some state, attach a tanh activation function to this policy, which bounds
the output to [−1, 1], and then multiply that output by ϕ, which will bound the skill action space to
[−ϕ, ϕ] in every dimension, which has the same shape as d-dimensional cubic distribution that ϕ
represents. (Note that in our implementation, ϕ is technically the log of the half length of each side
of the d-dimensional cubic uniform distribution so the output of the tanh activation function should
be multiplied by eϕ. We have ϕ represent the log of the half length of each side so the ϕ actor fµ
can output negative numbers.) Then once a skill z has been sampled, the skill can be passed to
the Skillset Empowerment skill-conditioned policy π(a|s0, z) which will then execute a closed loop
policy in the environment.

F BASELINE DETAILS

For the GCRL comparison, in the low-dimensional stochastic four rooms domains, we compared
against the variant of GCRL that is a lower bound to Empowerment, in which the variational poste-
rior consists of a tight diagonal gaussian centered at the skill-terminating state. The goal distribution
is set to the distribution of all reachable state (e.g., all possible agent (x, y) positions in the stochastic
four rooms navigation task). For the higher dimensional QR code tasks, we implemented Reinforce-
ment learning with Imagined Goals (RIG) Nair et al. (2018). RIG is an unsupervised GCRL method
that combines representation learning and GCRL. RIG uses a VAE to separately learn an encoder
that maps states to distributions over skills and a decoder that maps latent states to distributions over
observations. RIG then performs GCRL in the learned embedding space (i.e, the agent learns skills
that target specific latent states). Because the focus of this paper is not exploration, we make it eas-
ier on the representation learning component of RIG and provide it with a large dataset of reachable
observations (e.g., images of the agent and object in a large variety of positions in the pick-and-place
QR code environment.) The goal distribution for the GCRL phase is the prior distribution p(z) from
the VAE component.
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G MUTUAL INFORMATION ENTROPY VISUALIZATIONS

H(Sn ) H(Sn|Z) H(Z), H(Z|Sn )

Figure 6: Entropy visualizations for the stochastic four rooms navigation setting. Left image visual-
izes H(Sn) by marking the skill-terminating state from 1000 skills randomly sampled. The center
image visualizes H(Sn|Z) by showing 12 samples of skill-terminating states from 4 specific skills
randomly sampled. The right image visualizes (i) H(Z) by showing the square skill distribution
ϕ (black square outline) and (ii) H(Z|Sn) by showing samples of the variational posterior (empty
circles) for four different skills (filled squares)). The images show the agent has learned a large
abstract skillset, in which different skills target different (x, y) offset positions.

H(Sn ) H(Sn|Z) H(Z), H(Z|Sn )

Stochastic Four Rooms Navigation – Pre-Training 

Figure 7: Entropy visualizations for a non-trained Skillset Empowerment agent in the stochastic
four rooms navigation task. Per the poor state coverage in the left image and the high entropy
posterior distributions in the right image, the agent does not start with a diverse skillset.
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H(Sn ) H(Sn|Z) H(Z), H(Z|Sn )

Figure 8: Images show the entropy visualizations for the stochastic four rooms pick-and-place do-
main. The near uniform coverage of the state space in the left image shows that H(Sn) is large.
Note that the circles represent the final (x, y) position of the agent, and the triangles represent the
final (x, y) position of the object. The middle image visualizes H(Sn|Z) by focusing on four skills,
uniformly sampled from the skill space, and for each skill displaying 12 samples of skill-terminating
states sn. Per the image, each skill targets an abstract state representing an offset from the center of
a room for both the agent and object. For instance, the blue skill results in the agent carrying the
object to the bottom right corner of the room. The right image focuses on four skills and shows 5
samples from the variational posterior qψ(z|s0, l, θ, sn). Per the image, the samples form a narrow
distribution around the executed skill, showing that H(Z|S) is low.

H(Sn ) H(Sn|Z) H(Z), H(Z|Sn )

Stochastic Four Rooms Pick-and-Place – Pre-Training 

Figure 9: Entropy visualizations for a non-trained Skillset Empowerment agent in the stochastic
four rooms pick-and-place task. Again, per the poor state coverage in theH(Sn) visual and the high
entropy posteriors in the H(Z|Sn) visual, the agent does not start with a diverse skillset.
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H(Sn ) H(Sn|Z) H(Z), H(Z|Sn )

Figure 10: Entropy visualizations for the RGB QR code navigation task. Left image visualizes
H(Sn) by marking the skill-terminating states sn produced by executing 1000 samples of skills
from the learned skill space. Center image visualizes H(Sn|Z) by executing four skills 12 times
each and recording the skill-terminating states. Each skill targets an abstract (x,y) position. Note
the agent does not have access to the underlying state (i.e., the (x, y) position of the agent) that is
marked. The agent receives a 432-dim state (i.e., a 12x12x3 image). The right image shows samples
from the variational posterior distribution. Note that in this case, the latent space is four dimensional
even though the underlying state space is two dimensional. Because the agent does not need those
extra dimensions, you see the horizontal lines in the variational posterior visualization.

H(Sn ) H(Sn|Z) H(Z), H(Z|Sn )

RGB QR Code Navigation – Pre-Training 

Figure 11: Entropy visualizations for a non-trained Skillset Empowerment agent in the RGB QR
code navigation task. Per the visuals, the agent does not start with a diverse (ϕ, π) skillset.
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H(Sn ) H(Sn|Z) H(Z), H(Z|Sn )

Figure 12: Entropy visualizations for the RGB QR code pick-and-place tasks. Left image visualizes
H(Sn) by marking the skill-terminating states sn produced by executing 1000 samples of skills
from the learned skill space. Note that the circles represent the final (x, y) position of the agent,
and the triangles represent the final (x, y) position of the object. Center image visualizes H(Sn|Z)
by executing four skills 12 times each and recording the skill-terminating states. Each skill targets
an abstract (x,y) position for both the agent and object. The right image shows samples from the
variational posterior distribution. Per the visuals, as expected, H(Sn) is large while the conditional
entropies H(Sn|Z) and H(Z|Sn) are small.

H(Sn ) H(Sn|Z) H(Z), H(Z|Sn )

RGB QR Code Pick-and-Place – Pre-Training 

Figure 13: Entropy visualizations for a non-trained Skillset Empowerment agent in the RGB QR
code pick-and-place task. Per the visuals, the agent does not start with a diverse (ϕ, π) skillset.
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H(Sn ) H(Z), H(Z|Sn )H(Sn|Z )
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Figure 14: Entropy visualizations for a Skillset Empowerment agent agent in the Continuous Moun-
tain Car task. The x-axis in the H(Sn) and H(Sn|Z) visuals show the agent position component
of sn and the y-axis shows the velocity component of sn. The black dot in the H(Sn|Z) shows the
starting state for the mountain car agent. Per the images, the agent has learned a diverse skillset, in
which skills target different tuples of (cart position, cart velocity).

H(Sn ) H(Sn|Z) H(Z), H(Z|Sn )

Continuous Mountain Car – Pre-Training 
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Figure 15: Entropy visualizations for a non-trained Skillset Empowerment agent in the Continuous
Mountain Car task task. Per the visuals, the agent does not start with a diverse (ϕ, π) skillset.
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H(Sx,y
n ) H(Z), H(Z|Sn )

Figure 16: Applying Skillset Empowerment to the large ant domain produced some interesting re-
sults. The agent learned a massive skillset of 16.8 nats, which is around 20 million skills. The
H(Z), H(Z|Sn) visual shows these are distinct skills as the variational posterior distributions
qψ(z|s0, ϕ, π, sn) are tight. On the other hand, these skills do not involve much torso translation
as shown by the H(Sx,yn ) visual which plots the (x, y) torso positions from sn.

Figure 17: GCRL state coverage in stochastic four rooms domain. The agent only learns skills to
target the corners of the rooms.
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Figure 18: Image shows the skill-terminating states (empty circles) from four randomly selected
goal states (filled squares). Each skill simply moves in the direction of the room of the goal state
regardless of where in the room the goal is. For instance, given the purple goal (shown by purple
square) in the lower left of the top right room, the agent just moves to the top right, which you can
see by the purple circles in the top right room and bottom left room (hard to see). Similarly for the
dark blue goal, the agent just moves to the top left, which you can see by the blue circles in the top
left of the various rooms.

Figure 19: Image shows a sample of the VAE results in the RGB QR code navigation task. The left
column shows sample images from the environment and the right column shows the results when
those samples are encoded and then decoded. The VAE was able to decode the initial state of the
environment, which is just a white background with the agent in the center, but struggled for other
states.
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