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Abstract
Neural architecture search (NAS) has recently attracted more attention due to its ability
to design deep neural networks automatically. Differentiable NAS methods have predom-
inated due to their search efficiency. However, differentiable NAS methods consistently
adopt approximate gradient-based methods to solve bilevel optimization problems. While
second derivative approximation optimizes Jacobian or/and Hessian vector computation, it
is imprecise and time-consuming in practice. In this paper, we revisit the hypergradient of
bilevel optimization problems in NAS, then propose a new optimizer based on a stochastic
gradient estimator(SGE) for the computation of the Jacobian matrix in the hypergradient.
The SGE is adaptable to previous differentiable NAS methods and more accurate than
previously direct gradient approximation method. In the experiments on commonly dif-
ferentiable NAS benchmarks, the proposed SGE-NAS algorithm outperforms the baseline
algorithm. The test result demonstrates that the proposed SGE-NAS can effectively reduce
search time and find the model with higher classification performance.

1. Introduction
Neural Architecture Search (NAS) is an effective method on automating the process of neu-
ral network design, with achieving remarkable success on various deep learning applications
[1, 4, 10, 12]. A recently proposed method Differentiable ARchiTecture Search (DARTS) [6]
adopts the continuous relaxation to convert the operation selection problem into the con-
tinuous magnitude optimization for a set of candidate operations, which makes it possible
solve the bilevel optimization problem in NAS via continuous method [8].
Gradient-based methods are widely used in bilevel optimization problems for NAS [2, 6, 14,
15]. Hypergradient in bilevel optimization is the gradient of the outer variable and depends
on the minimal solution of the inner function [8]. Previous differentiable NAS methods
[6] commonly replace hypergradient by a simple approximation scheme. The architecture
parameters α and network weights parameters w are alternately updated on the validation
and training datasets via gradient descent, with approximating either the previous step for-
ward or the current w∗. Only two forward passes to the weights and two backward passes
to α are needed to compute the hypergradient, thus the complexity is partially reduced
[6]. It also lays a hidden trouble for the common performance collapse problem of differen-
tiable NAS [15]. However, due to the high dimension of the neural network parameter α,
gradient-based methods are still computationally expensive in practice after approximate
processing.
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Figure 1: Overall on the calculation process of the hypergradient via our SGE-NAS

To overcome the computational challenges of current gradient-based methods, we employ an
estimation approach to optimize the second-order computation� namely stochastic gradient
estimator(SGE). An ES(evolution strategy)-based bilevel optimizer is proposed for hyper-
parameter optimization [3], which approximates the hypergradient, treating it completely
as a black-box objective. However, bilevel optimization as Eq. 3 has a more complex form
than the gradient in the standard minimization problem. SGE in our method is better
combined with Eq. 3 and only estimates the Jacobian matrix, thus alleviate the error of the
two-step gradient approximation and has better performance than the method that uses ES
estimation.
Overall, our contributions to this work are summarized as followed:
In this paper, SGE-NAS is proposed, a novel differentiable NAS combined with estimator
and gradient descent. SGE-NAS replaces the previous two-step approximation algorithm
and improves the search accuracy.
A simple but effective stochastic gradient estimator(SGE) is introduced to optimize the
complex Jacobian matrix calculation, which can be easily adapted with previous gradient-
based methods to reduce the search cost.

2. Methods
2.1. Hypergradient of NAS
Differentiable NAS stacks the entire neural network by searching the structure of nomal
cells and reduction cells [6]. Typically, a cell is defined as a Directed Acyclic Graph (DAG)
with N nodes, where each node represents a potential connection and the information
between every two nodes is transformed by an edge [13]. Each edge (i, j) contains multiple
candidate operations, and the discrete operation selection is transformed into a differentiable
parameter optimization problem by applying continuous relaxation through a learnable
architecture parameter set α to mix the outputs of different operations.
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where x and Ō are the input and mixed output of an edge, O is the candidate operation set,
and β denotes the softmax-activated architecture parameter set. In this way, we can per-
form architecture search in a differentiable manner by solving following bilevel optimization
objective.

min
α

Lval (w
∗(α), α)

s.t. w∗(α) = argmin
w

Ltrain(w,α)
(2)

Since the optimization of the inner variable α is too expensive, it is impossible to accurately
evaluate the architectural gradient. In the common-used gradient-based bilevel optimizer,
the key step is the estimation of the hypergradient.Different from the approximation pro-
cessing step widely used in gradient-based NAS[9]. The hypergradient of the optimization
objective in Eq. 2 is expanded and analyzed in the following form

∇Lval(w
∗(α), α)

=∇αLval(w
∗(α), α) + J∗(α)

⊤∇w∗(α)Lval(w
∗(α), α)

(3)

where the Jacobian matrix J∗(α) =
∂w∗(α)

∂α including the Hessian inverse and the second-
order mixed derivative, and expansed as

J∗(α) = −
[
∇2

w∗(α)Ltrain (α,w
∗(α))

]−1
∇α∇w∗(α)Ltrain (α,w

∗(α)) (4)

Eq. 3 consists of two parts, direct gradient ∇αLval(w
∗(α), α) and indirect gradient J∗(α)

⊤

∇w∗(α)Lval(w
∗(α), α). The direct component can be efficiently computed using existing

automatic differentiation techniques from deep learning. However, the indirect component
is much more computationally complex.

2.2. Stochastic gradient estimator
In this section, we propose a new estimation method to solve the computational problem of
hypergradient. An estimation method [3] takes the objective function as a black-box objec-
tive and directly applies the ES (Evolution Strategy) method to estimate the hypergradient
of the objective function. Because the hypergradient form is complex and very sensitive,
such estimation may lead to a large bias error [5, 7]. Instead of this approach, the gradient
∇αLval(w

∗(α), α) and ∇w∗(α)Lval(w
∗(α), α) can be computed efficiently and accurately in

Eq. 3, while the Jacobian matrix J∗(α) is the main term causing computational difficul-
ties. We subsume the Hessian matrix into J∗(α), then use the stochastic gradient estimator
(SGE) to form a Hessian-free method without two-step approximation, which makes the
calculation of the hypergradient more accurate and time-saving. The overall bilevel opti-
mization process is shown in Algorithm 1.
Specifically, our SGE-NAS optimizer has the following two steps:
Firstly, for the inner variable α: The amplitude is set to αk + µuk,j , and all SGD processes
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are sampled in the same size batch {S0, ..., SN−1}. Inspired by [11], ĴN (αk;uk,j) can be
calculated as

ĴN (α;u) =
wN (α+ µu)− wN (α)

µ
u⊤ (5)

where u is an independent and identically distributed Gaussian vector. For any vector v,
the vector product of the Jacobian can be efficiently computed using the dot product as
ĴN (α;u)⊤v = ⟨δ(α;u), v⟩u, where δ(α;u) = yN (α+µu)−wN (α)

µ .

Secondly, for the inner variable w∗(α): Sample a new batch DF independent from
{S0, ..., SN−1}, where sampled as an estimator of the stochastic gradient ∇αLval(αk, Y

N
k ;DF )

and ∇w∗(α)Lval(αk, Y
N
k ;DF ). The hypergradient is then estimated as

∇Lval(w
∗(αk), αk) = ∇αLval(αk, Y

N
k ;DF ) +

1

Q

Q∑
j=1

〈
δj ,∇w∗(α)Lval(αk, Y

N
k ; DF )

〉
uk,j (6)

Algorithm 1: Bilevel Optimizer with Stochastic Gradient Estimator
Data: inner and outer variables α and w∗(α), initializations α0 and w0

∗(α), lower- and
upper-level stepsizes p and q, inner and outer iterations numbers K and N , and
number of Gaussian vectors Q.

Result: updated inner variable αk+1, and hypergradient of bilevel optimization
∇Lval(w

∗(α), α)
initialization;
while k = 0, 1, ...,K do

set Y 0
k = w0

∗(α), Y 0
k,j = w0

∗(α), j = 1, ..., Q ;
generate uk,j = N (0, I) ∈ Rp, j = 1, ..., Q ;
while t = 1, 2, ..., N do

draw a sample batch St−1 ;
update Y t

k = Y t−1
k − p∇w∗(α)Ltrain(αk, Y

t−1
k ; St−1) ;

while j = 1, 2, ..., Q do
update Y t

k,j = Y t−1
k,j − p∇w∗(α)Ltrain

(
αk + µuk,j , Y

t−1
k,j ; St−1

)
;

end
end
calculate δj =

Y N
k,j−Y N

k

µ , j = 1, ..., Q ;
draw a sample batch DF ;
calculate ∇Lval(w

∗(αk), αk) via Eq. 6 ;
update αk+1 = αk − q∇Lval(w

∗(α), α) ;
end
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Table 1: Performance comparison between SGE-NAS series and corresponding differen-
tiable NAS on CIFAR-10 and CIFAR-100

Differentiable
mode Method CIFAR-10 CIFAR-100

Top-1↑ Param.↓ Cost↓ Top-1↑ Param.↓ Cost↓

SGD

DARTS 97.06 3.3 9.6 79.48 1.8 9.6
PC-DARTS 97.43 3.6 2.4 83.54 3.7 2.4
Fair DARTS 97.46 3.1 9.6 83.62 3.2 9.6
β-DARTS 97.49 3.7 9.6 83.76 3.8 9.6

SGE

SGE-NAS-a 97.65 3.3 6.5 82.98 1.9 6.5
SGE-NAS-b 97.88 3.5 1.9 84.72 3.5 1.9
SGE-NAS-c 97.59 3 7.1 84.69 3.1 7.1
SGE-NAS-d 97.98 3.8 6.3 85.12 3.8 6.3

3. Experiment
In this section, we conduct extensive experiments applying our SGE-NAS optimization
algorithm based on the following differentiable NAS with SGD-Methods:(1) SGE-NAS-a:
DARTS [6], (2) SGE-NAS-b: PC-DARTS [14],(3) SGE-NAS-c: Fair DARTS [2], (4) SGE
NAS-d: β-DARTS [15].
Image benchmark datasets CIFAR-10 and CIFAR-100 are used in the experiments. The
search space for the candidate operations includes: 3×3 and 5×5 separable convolutions,
3×3 and 5×5 dilated separable convolutions, 3×3 max pooling, 3×3 average pooling, and
skip connection. The hyperparameters for the architecture are kept the same as DARTS,
PC-DARTS, Fair DARTS, and β-DARTS. SGD optimizer is set with a momentum of 0.9
and a weight decay of 3e-4, and the initial learning rate is set to 0.005 with a cosine decay
scheduler. For our SGE optimizer, we set lower- and upper-level stepsizes p=0.01, q=0.01,
number of Gaussian vectors Q=10 in Algorithm 1 for searching the best architecture.
Table 1 shows that all SGE-NAS series models achieve comparable or better performance
than the baselines in terms of top-1 accuracy. Among them, models with comparable
accuracy on CIFAR-10 are obtained while our search cost is 34.3% GPU hours less than
β-DARTS [15]. Besides, there is an improvement of 1.05% ∼ 3.50% of top-1 accuracy on
CIFAR-100 with approximately 20% ∼ 34% search time reduction. After easily adapting
to the baselines, our SGE-NAS shows its advantage in reducing search time and improving
model accuracy compared to previous gradient-based methods.

4. Conclusion
In this work, we propose SGE-NAS, a novel Neural Architecture Search optimization algo-
rithm based on stochastic gradient estimation, to improve the search speed and reduce the
approximation error. Specifically, we analyze the hypergradient of bilevel optimization in
NAS and propose a stochastic gradient estimator for the Jacobian matrix to relieve the most
time-consuming part. The proposed estimator is combined with the gradient descent of the
derivative process to form a new method to solve the NAS bilevel optimization problem.
Extensive experimental results on several benchmark datasets demonstrate the effectiveness
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and efficiency of the SGE-NAS algorithm, which keeps low search costs and achieves better
search accuracy performance.
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