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Thinking Out-of-the-Box: A Comparative Investigation of
Human and LLMs in Creative Problem-Solving

Anonymous Authors1

Abstract
We explore the creative problem-solving capa-
bilities of modern LLMs in a novel constrained
setting. To this end, we create MACGYVER, an
automatically generated dataset consisting of over
1,600 real-world problems deliberately designed
to trigger innovative usage of objects and neces-
sitate out-of-the-box thinking. We then present
our collection to both LLMs and humans to com-
pare and contrast their problem-solving abilities.
MACGYVER is challenging for both groups, but
in unique and complementary ways. For instance,
humans excel in tasks they are familiar with but
struggle with domain-specific knowledge, leading
to a higher variance. In contrast, LLMs, exposed
to a variety of specialized knowledge, attempt
broader problems but fail by proposing physically-
infeasible actions. This work (1) introduces a
fresh arena for intelligent agents focusing on intri-
cate aspects of physical reasoning, planning, and
unconventional thinking, which supplements the
existing spectrum of machine intelligence; and
(2) provides insight into the constrained problem-
solving capabilities of both humans and AI.

1. Introduction
Creativity has long been considered the driving force behind
modern civilization, and one of the hallmarks of human
intelligence (Guilford, 1967b; Hennessey, 1995). As large
language models (LLMs) become increasingly powerful,
researchers investigate their reasoning ability in problem-
solving tasks (Yao et al., 2022; Brahman et al., 2023) and
their capacity for creativity as demonstrated by expressing
humor and generating artistic content (Mittal et al., 2022;
Hessel et al., 2023; Ramesh et al., 2022; Chakrabarty et al.,
2022; Tian et al., 2023). However, everyday activities that
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Problem (a): I need to roll out dough evenly but 
don't have a rolling pin. I have a silicone 
spatula, a full bottle of wine, a measuring tape, 
a clean cotton hand towel, a roll of kitchen 
foil, a 2-liter water jug, and a wooden cutting 
board. How should I proceed?

“Take the cotton towel and 
roll it up tightly to form a 

cylindrical shape!”

Problem (b): I have a flat tire, but my lug 
wrench is broken. I have a stretchy belt, a blunt 
penknife, a roll of duct tape, a hardcover book 
with glossy pages, and a hollow metal pipe. The 
metal pipe is rusted, breaking under force. How 
to replace the flat tire?

“Strengthen the pipe with 
duct tape. Use the 

reinforced pipe as a lever.”

“Use the bottle of wine as
a makeshift rolling pin!”

“None of the tools is
strong enough for … ”

Figure 1. Examples of the problems in our MACGYVER dataset
with the GPT-4 and human answers (continued in Figure 8). Pic-
tures, drawn by DALL·E 3, are solely for illustration purposes and
may not accurately reflect the text. In our experiment, all inputs to
human and LLMs are natural language texts.

involve creative thinking have not been studied to the same
extent. In this work, we contribute a benchmark for creative
problem solving, hoping to critically assess modern LLMs
when it comes to ‘thinking out-of-the-box’.

To bridge this gap, we curate MACGYVER, a novel un-
conventional problem-solving dataset consisting of 1,683
sets of verbal problems that require human-like creativity in
the realm of physical reasoning. Drawing inspiration from
the cognitive science literature (Duncker & Lees, 1945), we
collect problem scenarios that deliberately push against func-
tional fixedness—a cognitive bias that limits an agent from
employing familiar tools in innovative ways. Notably, lever-
aging the generative strength of LLMs and the verification
strength of humans, we design a novel and labor-efficient
pipeline to collect progressively more challenging scenar-
ios (Section 2). These scenarios are verified by humans as
requiring unconventional usage of objects to find a solu-
tion. For example, solving problem (a) in Figure 1 requires
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Solution: use the
kitchen tongs!

[Iteration 3]
Add additional items 

as distractors.

[Iteration 2]
Add constraints to 
veto the solution

Constraint added: The 
tongs are also slightly 
shorter than the jar.

Problem: You have a tall and narrow cookie 
jar, a pair of chopsticks, a roll of 
sticky tape, rubber bands and a pair of 
kitchen tongs. The jar is too narrow for 
your hand to fit in and the chopsticks are 
slightly shorter than the jar. How can you 
retrieve the cookies using only these 
items?

[Iteration 1]
Generate the 

vanilla scenario

The Cookie 
Jar Problem 

You have a tall and narrow cookie jar, a
piece of string, a plastic straw, a pair of
kitchen tongs, some napkins, a pair of
chopsticks, a roll of sticky tape, rubber
bands and a magnet. The jar is too narrow
for your hand to fit in and both the
chopsticks and tongs are slightly shorter
than the jar. How can you retrieve the
cookies using only these items?

GPT-4

Human

Figure 2. Progressive problem refinement with GPT-4. Starting from a vanilla version (i.e., Iteration 1), we carefully design refinement
steps that gradually increase the problem’s complexity by adding specific object properties as constraints to veto a previous solution (i.e.,
Iteration 2), and adding distracting objects that are (likely) not involved in the solution the problem (i.e., Iteration 3). After that, human
verifiers judge the quality of refined problems.

using the wine bottle as a makeshift rolling pin.1 Each
problem in our dataset is paired with at least one human-
provided or verified solution. To the best of our knowledge,
MACGYVER is the first dataset of unconventional everyday
problems requiring two key elements of creativity (Guilford,
1967a): divergent thinking (to come up with creative or
unconventional usage of objects) and convergent thinking
(to accomplish a goal efficiently).

Next, we use the resulting dataset as a benchmark to eval-
uate the creative problem-solving abilities of both human
participants and recent LLMs, including GPT-3.5, GPT-4,
PaLM2, Claude2, and Llama2 (OpenAI, 2022; 2023; Anil
et al., 2023; Touvron et al., 2023; Anthropic, 2023). Our
results in Section 3 reveal a substantial gap between most
LMs and human. While the best performing LM, GPT-4,
complements the capability of an arbitrary human under cer-
tain domain-specific settings (e.g., fixing a hole on the wall),
humans’ collective wisdom is so far still invincible. Ad-
ditionally, LLMs struggle to identify unsolvable problems
and either exhibit misleading helpfulness or are ultracon-
servative in inappropriate cases. Finally, in Section 4, we
present detailed comparison between human and machine,
demonstrating their complementary strengths.

2. MACGYVER Dataset
LLMs have demonstrated utility for idea generation (Girotra
et al., 2023). Therefore, instead of asking humans to come
up with thousands of constrained scenarios from scratch, we
design a progressive refinement pipeline to explore LLMs’
potential to generate problem settings quickly and at scale
(§2.1). Human annotators then verify that each problem

1If the problem is unsolvable given the presented tools and
constraints (problem b in Figure 1), we expect the agent to identify
such infeasibility and provide a short justification.

is concrete and requires creativity (Section 2.2). Each in-
stance in our dataset includes a constrained problem setting
paired with at least one human-provided or verified solution
(Section 2.2, §H.2).

2.1. Progressive Problem Refinement for Dataset
Creation

Figure 2 illustrates of our problem collection pipeline, show-
ing how we combine human and machine inputs. Specif-
ically, we propose a progressive problem refinement ap-
proach that gradually increases problem complexity by
1) adding specific object properties (e.g., material, size,
etc.) as constraints to eliminate a previous solution and
2) adding distracting objects that are not involved in the
solution. From a cognitive perspective on problem-solving
(Knoblock, 1991), the first refinement step removes the most
straightforward solution path, while the second step further
complicates the problem by adding branches to the search
space. We implement this pipeline through a dialogue in-
teraction with GPT-4. Human assessment results (detailed
in Appendix H.3) confirm that both steps within the pro-
gressive refinement approach pose additional challenges to
LLMs, and after the two iterations, the original problem
requires more creativity and becomes more challenging.

2.2. Human Verification Process

After the refinement process, we involve human verifiers to
judge if the final versions of the problems 1) are solvable,
unsolvable, or need more clarification (e.g., the setup is
vague, which will be discarded), and 2) for those solvable,
whether solving them efficiently requires creative thinking
(i.e., using objects to achieve goals they were not origi-
nally designed for —unconventional usage). Each problem
is annotated by three human verifiers, with average inter-
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Figure 3. Left: Benchmark results of seven LLMs and human with a single effort. For human participants, since there is no single
participant who worked on all problems, we take a random response from each problem. We color-code the three categories indicating
fine-grained aspects of correctness or falseness. Right: Comparison between GPT-4 and human where we evaluated multiple solutions per
problem. The best performance, which can be viewed as an upper bound, is computed by taking the individual best answer (out of 6) for
each problem. The actual numbers are reported in Table 3 in Appendix B.2.

Problem (All) Solvable Unsolvable Total

Count 1,306 377 1,683
Percentage 77.6% 22.4% 100%

Problem
(Solvable Subset) Unconv. Conv. Total

Count 1,073 233 1,306
Percentage 82.2% 17.8% 100.0%

Table 1. Statistics of the entire MACGYVER dataset (top), and solv-
able problems that require unconventional use of tools (bottom).

annotator agreement (IAA, measured by Cohen’s Kappa) of
0.67 and 0.77 for tasks 1) and 2), respectively. Finally, we
pair each problem with a gold answer. For the solvable sub-
set, it is a step-by-step feasible solution. For the unsolvable
subset, it is an explanation why the stated goal cannot be
achieved (detailed in §H.2).

In total, we created 1,683 problems, with a detailed break-
down in Table 1. Of those, 78% are solvable and 22% are
unsolvable. Another 7% of all problems were discarded
after being annotated by at least one annotator to be ambigu-
ous or contradictory. For solvable problems, 82% require
using tools in an innovative or unconventional manner.

Finally, we take measures to ensure the collected problems
are diverse, comprehensive, and free of repetitive patterns
in § H.4. In total, over 3,800 unique tools are included in
MACGYVER dataset.

3. Benchmarking Humans and LLMs
A natural follow-up question is how well modern LLMs
perform on this task, as compared to humans. We thus eval-
uate the performance of several recent LLMs (i.e., PaLM2,
Claude2, Llama2, GPT-3.5 and GPT-4) on a representative

sample of the entire MACGYVER dataset which contains
323 problems. In addition, we gauge the capability of aver-
age humans on the same set of tasks.

Next, a different set of human experts were asked to evaluate
if a presented answer is correct by selecting one out of
six fine-grained categories: A (or B) correctly giving a
feasible and efficient (or less efficient) solution to a solvable
problem; C correctly identifying an unsolvable problem and
giving the right justification; D giving a partially incorrect
answer; E giving a mostly or entirely wrong answer; and F
failing to identify the correct solvability status.

3.1. Benchmark Results

We report the benchmark results in Figure 3. Category A, B,
and C are the three aspects of correct responses, while the
remaining D, E, and F are aspects of the wrong ones. At
a glance, despite varying in their characteristics, all of the
benchmarked LLMs lag behind the performance of humans.

Performance with Single Effort. We first list the LLMs’
performances with their single best answers on left of Fig-
ure 3.For human participants, there is no single person who
approached all problems. Therefore, to simulate an arbi-
trary person’s individual performance, we take a random
response from each problem.

We see that most recent LLMs achieve a mere 35% to 42%
chance of success. Although GPT-4 and Claude2 stand
out among the tested LLMs, their best attempts still under-
perform an arbitrary average person with total correct rate
of 65.1% (sum of category A, B and C). Different fami-
lies of LLMs exhibit dissimilar behaviors. For example,
PaLM2 and GPT-4 are overly verbose and often suggest
solutions to problems that are inherently unsolvable. In
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contrast, Llama2-7b, Claude2, and GPT-3.5 are more con-
servative and fail to realize a constrained problem can still
be solvable (reflected in their high numbers in category
F). Comparing the three variants of Llama2, we find that
the larger models (13b, 70b) excel in correctly identifying
solvability (category F). The smaller model (7b) is more
subject to falsely recognizing a constrained problem as un-
solvable. Beyond this, however, it appears that scale alone
does not significantly unleash any creative problem-solving
capabilities.

Performance with Multiple Efforts. We collect multi-
ple solutions per problem from both GPT-4 and humans,
calculating their average and best performance. The best
performance, an upper bound, is the highest score from in-
dividual answers per problem. Additionally, we assess the
majority performance based on binary correctness, finding
humans at 79.3% accuracy, above GPT-4’s 73.3%.

On average, human participants are slightly worse than GPT-
4 in coming up with a correct solution (especially inefficient
ones in category B), possibly due to functional fixedness.
However, they generally surpass GPT-4, particularly as GPT-
4 often fails to recognize unsolvable problems. The best
human answer, reflecting collective wisdom, nearly achieves
perfection.

Finally, human seem to struggle with certain challenges
(category F). We hypothesize that an individual, lacking
expertise in all life domains, may not surpass a comprehen-
sive LLM like GPT-4, which is trained on massive amount
of data and a wide variety of tasks. Yet, collectively, hu-
man intelligence, enriched by diverse expertise and insights,
outstrips LLMs. We explore this further in the next section.

4. Comparing GPT-4 with Humans
4.1. Humans have higher variance than LLMs.

We plot the kernel density estimate (KDE) of individual
human and GPT-4 responses in Figure 4. We can see that
humans either approach a problem perfectly or fail totally.
Namely, once humans understand the task and acquire the
relevant knowledge, they can always propose a feasible and
often the most efficient solution. On the contrary, GPT-4
responses fall more into the middle (mostly/partially wrong,
or inefficient), owning to its ability to aggregate information
from a wide range of sources it has been trained on. How-
ever, GPT-4 is sometimes ignorant of tool affordances or
consequences of its proposed actions, lacking the depth of
understanding that humans possess (see more detailed error
analysis in §D.1).

Fail Mostly
Wrong

Partially
Wrong

Less
Efficient

Perfect

D
en

si
ty

Human vs GPT-4 on Creative Problem Solving
Individual GPT-4
Individual Human

Figure 4. The kernel density estimate of individual human and
GPT-4 answers.
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2D visualization of individual problems

household
personal life
in the city
school/office/work

Category
seaside/snow/beach
camping/in the wild
gardening/farming/
fishing

Figure 5. 2D visualization of human (x-axis) and GPT-4 (y-axis)
performance on individual problems. Each dot represents a prob-
lem, with its color representing seven different categories. Humans
are better at solving problems that they are familiar with (e.g.,
household), than those requiring domain-specific knowledge (e.g.,
gardening/farming/fishing).

4.2. Humans possess better general everyday knowledge,
but less domain-specifically.

Next, we visualize the capability of humans and GPT-4 on
individual problems in a 2D plot (Figure 5). Accordingly,
we convert categorical labels into numerical scores ranging
from 0 (Fail) to 1 (Perfect), and take the average score across
solutions. We also plot the diagonal line: the farther away
a point is from this, the larger the gap between human and
GPT-4 performance.

We find that humans are better at solving tasks in categories
likely to be familiar to them, such as household and personal
life. For those requiring domain-specific knowledge such
as gardening/farming/fishing, GPT-4 performs better. The
same holds when we manually inspect the outliers: those
few problems that belongs to everyday categories yet hu-
mans are poor at. Unsurprisingly, they are problems such
as demonstrating the concept of refraction without a prism
(category: school), and making a sundial (category: beach),
which an average person might have little experience with.
Refer to §B.1 for examples and other comparisons.
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Overall, the different creative strengths of humans and AI
systems suggests that the most effective solutions to tasks
requiring thinking “out-of-the-box” might arise from a col-
laborative approach leveraging the strengths of both parties.
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1,306 Solvable 377 Unsolvable

38.8%
2.9%

58.2%

Correct (↑)
Right Reason

Correct
Wrong Reason

Wrongly Says
Solv. (↓)

18.9%
42.5% 37.5%

1.1%

Efficient 
Solution (↑)

Inefficient
Solution

Infeasible 
Solution (↓)

Wrongly Says
Unsolv. (↓)

Figure 6. Left: Human-evaluated GPT-4 performance on all 1,306
problems from the MACGYVER that humans think are solvable.
Right: GPT-4 performance on all 377 problems that humans think
are unsolvable. Correct for the right reason means that the LLM
correctly identifies the problem is unsolvable, and gives the right
justification. Correct for the wrong reason means that it correctly
identifies the problem is unsolvable, but gives an incorrect justifi-
cation.

A. Assessing the Task Difficulty
To gauge the challenge of our task posed to the most recent
LLMs, we evaluate the zero-shot performance of GPT-4
(OpenAI, 2023). Nevertheless, existing automatic evalua-
tions fall short to assess the efficacy of a presented solution.
Therefore, we recruit human annotators to evaluate the qual-
ity of the GPT-4’s answers on the entire MACGYVER.

Assessment Setup. For a solvable problem, human an-
notators are asked to judge if the presented solution is 1.1
feasible and efficient2, 1.2 feasible yet inefficient, or 1.3 in-
feasible. The machine-generated answer may also wrongly
assume the problem is unsolvable and gives a wrong jus-
tification (1.4). For an unsolvable problem, they need to
judge if the presented answer 2.1 correctly identifies the
problem as unsolvable, and 2.2 gives the right justification.
Similarly, the answer may also wrongly assume the problem
is solvable and give a wrong solution (2.3).

GPT-4 Performance. We report the performance on the
solvable and unsolvable subset in Figure 6. Our preliminary
findings indicate that, firstly, LLMs as strong as GPT-4
still exhibit limitations in solving unconventional problems,
with only 18.9% likelihood of providing an efficient so-
lution, while 37.5% likelihood of providing an infeasible
solution. Analysis in the later section (Appendix D) shows
that one common mistake is it failing to realize the conse-
quences of actions and tool affordances in the given context
(e.g., proposing to use chopsticks to lift up the egg yolk).
Secondly, GPT-4 displays overconfidence, often suggest-
ing solutions to problems that are inherently unsolvable.
This could be partially due to GPT-4 being trained with
RLHF (Ouyang et al., 2022), maximizing its helpfulness.
Moreover, the model struggles to discern whether a prob-
lem description is sufficiently concrete for resolution or

2A solution is considered efficient if it has no redundant or
unnecessary steps, and it is unlikely that the problem can be solved
with less labor or using fewer steps.

61

121
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287

319

80

115

194

256

293
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80%

60%

40%

20%

GPT-4
Human

Figure 7. Number of problems (out of 323) that at least 20%, 40%,
60%, 80%, 100% human participants (or GPT-4) answer correctly.

too ambiguous, necessitating additional context (Liu et al.,
2023).

B. Additional Results
B.1. Comparing GPT-4 with Humans

What percentage of individual humans outperform AI?
Figure 7 compares human and machine by showing the
number of problems (out of 323) that at least 20%, 40%,
60%, 80%, and 100% human participants (or GPT-4) an-
swer correctly. Given the unique strengths and knowledge
scopes of different individuals, it is less likely that all human
participants can answer the same problem correctly. How-
ever, there is a higher chance where at least 60% human
participants know the answer.

Complementary capabilities of human and AI. Figure 8
presents two examples showing the complementary capabil-
ities of human and AI in creative problem solving. In prob-
lem (c), human participants find a more efficient solution
to heat the pizza than GPT-4. In problem (d) requiring do-
main knowledge gardening, humans fail to solve this highly-
specialized task, whereas the LLM has equipped itself with
such domain knowledge during massive pre-training.

What tools are human more proficient at? Recall that
in Section 4.2 we convert the categorical labels into numer-
ical scores ranging from 0 (Fail) to 1 (Perfect) to conduct
problem-wise analysis. Similarly, we conduct object-wise
analysis by first parsing the tools presented in each prob-
lem, and then calculating the same numerical scores for
each tool. Note that we opt to parse all the tools presented
in the problem setting instead of those actually used in a
proposed solution, because being able to reason about the
potential usage of presented tools and conclude to not use a
possible tool is also an keystone towards intelligence. We
identify several tools that humans and GPT-4 attempt most
differently and report them in Table 2. For example, humans
are more proficient at attempting magnifying glass, rocks,
calculators, knifes, etc., whereas AIs are better attempting

7
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Problem (c): You want to heat your leftover pizza 
in the hotel room but there is no microwave. 
Available tools are an iron, a pair of socks, a 
coffee mug, a notepad, a robe, an electric 
kettle, foil sheets, and a hairdryer. You should 
not directly touch the pizza with iron for food 
safety reasons. How to 
heat the pizza using 
these items only?

“Boil the water with 
kettle. Wrap pizza with 
foil. Use the steam to 

heat the pizza!”
“Wrap pizza with foil. It 

is now safe to iron!”

Problem (d): Your short-stemmed flowers are being 
invaded by small aphids. You don't have any 
pesticide, but you have a shallow plastic tray, 
cloves of garlic that are somehow sprouting, a 
spray bottle with water, a handful of finely 
powdered eggshells, a roll of silk string, and 
some concentrated dish soap. How can you protect 
your plants without harming them? 

“Tough. I don’t know how 
to repel aphids …”

Garlic contains natural sulfur 
compounds that are effective 

against pests like aphids. Strain 
and add finely powdered 

eggshells for extra plant health.”

“Crush garlic cloves and 
soak them in water.

Figure 8. Detailed examples showing the complementary capabili-
ties of human and GPT-4. In problem (c), human participants find
a more efficient solution to heat the pizza than AI. In problem (d),
humans fail to solve this highly-specialized task to repel aphids,
whereas the LLM has equipped itself with domain knowledge on
gardening during massive pre-training.

mirrors, gloves, and scarves. In general, there are more tools
humans are proficient at.

B.2. Benchmark Results

We report the benchmark results in Table 3. Category A, B,
and C are the three aspects of correct responses, while the
remaining D, E, and F are aspects of the wrong ones. At
a glance, despite varying in their characteristics, all of the
benchmarked LLMs lag behind the performance of humans.

B.3. Enhancing LLMs’ Problem Solving

Results with Claude2 and Llama2 We report the perfor-
mance of the standard, zero-shot prompting and two pro-
posed improvements for Claude2 and Llama2-13b in Figure
9 and Figure 10. Different from GPT-4 (shown in Figure
12), the self-reflection strategy does not help any

Object Human-AI
Difference

A. human>AI

magnifying glass 0.602
rock 0.447
calculator 0.405
kitchen knife 0.386
hair tie 0.359
paper cup 0.292
zip ties 0.283
pen 0.281
kettle 0.273
old t-shirt 0.252
sunscreen 0.25

B. human<AI

mirror -0.314
gardening gloves -0.311
scarf -0.307
tablecloth -0.289
clothespins -0.253

Table 2. Tools that human are more proficient at leveraging or
deciding to not leverage than AI (GPT-4 in our case), and vice
versa.

16.8
23.9

33.6

25.7

17.3

33.9
38.8

10.0

25.6 26.4
29.8

18.2

Efficient (↑) Inefficient Infeasible (↓) Says Impossible (↓)

Vanilla Self-Reflect Div-Conv

Figure 9. Results of different prompting strategies with Claude2.
We compare 1) vanilla prompting, 2) iterative step-wise reflection
(reflect), and 3) divergent-convergent thinking (div-conv).

of these two models to reduce infeasible answers. When
prompted to reflect on its previous answer, Llama2 always
claims that its original answer is mistaken and attempts
to correct itself blindly. We hypothesize that these two
LLMs are weaker than GPT-4 and lack the inherent ability
to faithfully conduct complicated physical reasoning. On
the other hand, we see that Divergent-Convergent
Thinking is beneficial for all LLMs across all dimensions.

C. The Four-C Creativity Model
Kaufman & Beghetto (2009) propose the Four-C model
(Table 5), categorizing human creative activities into
Mini-C: developmental creativity in the learning process,
Little-C: everyday innovation that ordinary people have
knowledge of and engage with (such as removing wrinkles
on a shirt without possession of an iron) , Pro-C: profes-
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Correct (%) Wrong (%)
A. Eff-
icient

B. Less
Efficient

C. Uns-
olvable

Correct in
Total (↑) D. Partial E. Mostly F. Fail to

Identify

Wrong in
Total (↓)

Single Effort

Llama2-7b 8.9 18.1 8.5 35.5 6.9 27 30.6 64.5
Llama2-13b 11.7 28 2.3 42.0 12.1 32.3 13.6 58.0
Llama2-70b 11.6 24 5.6 41.2 14.0 27.2 17.6 58.8
PaLM2 14.7 25.9 0.0 40.6 10.8 35.5 13.1 59.4
Claude2 14.0 22.2 16.5 52.7 8.2 12.3 26.7 47.2
GPT-3.5 13.8 15.4 11.4 40.6 10.2 11.4 37.8 59.4
GPT-4 (Random) 24.8 35.5 2.1 62.4 11.9 14.9 10.8 37.6
Human (Random) 27.6 27.6 9.9 65.1 5.6 10.8 18.6 35.0

Multiple Efforts

Average GPT-4 24.8 33.2 5.0 63.0 12.5 15.7 8.7 36.9
Average Human 26.2 28.7 12.9 67.8 5.1 10.2 16.9 32.2
Best GPT-4 62.5 21.1 8.7 92.3 2.2 4.3 1.2 7.7
Best Human 72.8 15.2 10.8 98.8 0.6 0.6 0.0 1.2

Table 3. Top: Benchmark results of seven LLMs and human with a single effort. For human participants, there is no single participant
who worked on all problems. So we take a random response from each problem. Bottom: Comparison between GPT-4 and human where
we evaluated multiple solutions per problem. The best performance, which can be viewed as an upper bound, is computed by taking the
individual best answer (out of 4) for each problem. We use boldface to denote the best performance and underline to denote the second
best.

5.3

27.7

61.7

5.33.2
11.8

84.9

0.1
10.1

29.3

58.6

2.0

Efficient (↑) Inefficient Infeasible (↓) Says Impossible (↓)

Vanilla Self-Reflect Div-Conv

Figure 10. Results of different prompting strategies with Llama2-
13b. We compare 1) vanilla prompting, 2) iterative step-wise re-
flection (reflect), and 3) divergent-convergent thinking (div-conv).

sional expertise such as writing poems or painting artwork,
and Big-C: highly eminent innovation that few people en-
gage with.

D. Enhancing LLMs’ Problem Solving
Here, we investigate whether different prompting strategies
can enhance the problem-solving abilities of existing LLMs.
In Appendix D.1, we conduct a detailed error analysis on
GPT-4, showing it is weakest at identifying the correct tool
affordance and physical feasibility. In Appendix D.2, we
propose two new prompting strategies that effectively reduce
its mistakes.

D.1. Error Analysis for GPT-4

To better understand the limitations of LLMs and provide
insight for potential improvement, we manually analyze

200 solutions generated by GPT-4 marked as infeasible by
human annotators. We identified five common failure modes
in Table 4.

We find that GPT-4 is highly prone to proposing physically
infeasible, unwanted, or wrong actions. In Table 4, error
type (1) wrong tool usage accounts for ∼half of all the
errors made (42.4%), followed by (2) not achieving the
goal (17.7%). It is crucial to highlight that LLMs act in
a fictional setting, failing to realize the consequences of
their proposed actions and the affordances of tools in the
given unconventional context. While one can argue that
LLMs lack direct interaction with the physical world, the
human solvers similarly contemplate the same task purely
in their minds, without any visual or physical cues. We also
observe two types of hallucination: (3) using unavailable
tools and (5) unfaithful to constraints, which account for
16.9% + 9.5% = 26.4% of all the errors made.

D.2. Improving LLMs via Prompting

The common error types in Table 4 motivates us to explore
techniques to enhance LLMs’ problem solving abilities.
Specifically, we explore two prompting strategies as illus-
trated in Figure 11:

[topsep=0pt, itemsep=-2pt, leftmargin=*]Iterative
Step-Wise Reflection : A self-reflection-based strat-
egy. After the LLM generates an initial solution,
we prompt it to verify if each step is physically fea-
sible and afforded. Subsequently, it modifies the
original solution iteratively until no more modifica-
tions are needed. Divergent-Convergent Thinking:
A cognitive-science-inspired strategy. The LLM is
prompted to first enumerate the affordance of each

9
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Error Description Example Freq.

(1) Wrong tool usage. Using tools in ways that are physically
infeasible or not afforded

Using the stapler to staple the duct tape on top of
broken glasses.

42.4%

(2) Not achieving the goal. The proposed approach contains
unnecessary or wrong steps towards the stated goal

To save space when packing, use the scissors to cut the
comforter into smaller pieces.

17.7%

(3) Using unavailable tools. - 16.9%

(4) Wrong spatial understanding Putting the shoe box inside the empty DVD case. 10.8%

(5) Unfaithful to constraints. Ignoring constraints added to a tool
or a situation

- 9.5%

Table 4. Categories of common errors made by GPT-4. It is highly prone to coming up with actions that are physically infeasible,
unnecessary, or wrong. An erroneous solution may have more than one type of mistake.

Solution with 
Vanilla Prompting: 
Use the chopstick 
to gently lift the 
yolk out of the 

bowl, leaving the 
egg white behind. 
Be careful not to 
break the yolk.

Figure 11. Proposed prompting methods: iterative step-wise reflection (left), divergent-convergent thinking (right).

30.1

38.7
31.2

0.0

32.3

45.7

21.5

0.5

36.6 36.0
26.9

0.5

Efficient (↑) Inefficient Infeasible (↓) Says Impossible (↓)

Vanilla Self-Reflect Div-Conv

Figure 12. Results of different prompting strategies with GPT-4 in
a zero-shot fashion: 1) vanilla prompting, 2) iterative step-wise
reflection (self-reflect), and 3) divergent-convergent thinking (div-
conv).

object (i.e., divergent thinking) and conclude whether
they are useful, followed by generating the steps to-
wards the goal (i.e., convergent thinking).

We implement both prompting strategies with GPT-4,
Claude2, and Llama2-13b on 180 randomly-sampled solv-
able problems that do not overlap with those used in Ap-
pendix D.1. The performance of the standard prompting and
two proposed improvements for GPT-4 (and the remaining
two LLMs) are shown in Figure 12 (and Appendix B.3).

For GPT-4, both proposed prompting methods con-

tribute to a reduction in infeasible solutions. Intuitively,
Self-Reflect, which is designed to verify the feasi-
bility of steps, has a larger improvement in reducing in-
feasible solutions (9.7% vs 4.3% drop); while Div-Conv
Thinking, which is designed for better preparation be-
fore generating the solution, is more helpful in generating
efficient solutions (6.5% vs 2.2% gain). Comparing all
three LLMs, Div-Conv Thinking is shown to be ben-
eficial for all, both in terms of efficiency and feasibility,
but Claude2 and Llama2’s performances do not improve
with Self-Reflect. Such a finding implies that, smaller
models so far still lack the inherent ability to self-reflect
and reason about physical consequences which GPT-4 is
capable of.

E. Related Work
Creativity Theory Guilford (1967a) defines a meaning-
ful creative process as an interplay between spontaneous
(divergent, to come up with novel ideas) and controlled (con-
vergent, to satisfy the demand of the task) modes of think-
ing. Kaufman & Beghetto (2009) categorize human creative
activities into four dimensions (Table 5), ranging from ev-
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Model Description Example

Mini-C
Developmental achievement
in the learning process.

A pupil applying a strategy
learned in a math class into
her science project.

Little-C
Everyday innovation that
ordinary people engage with.

Removing wrinkles on a
shirt without possession of
an iron.

Pro-C Professional expertise
Writing poems or stories
that receive professional
recognition.

Big-C
Legendary innovation that
redirect a field.

Albert Einstein arriving at
general relativity.

Table 5. The Four-C model of creativity.

eryday innovation that ordinary people have knowledge of
(e.g., removing wrinkles on a shirt without possession of an
iron) to highly eminent innovation that few people engage
with.

In the AI-related creativity community, everyday innova-
tion which better reflects the activities that most people may
engage in, is under-explored possibly due to the lack of a siz-
able dataset. For example, recent work (Koivisto & Grassini,
2023) study problems with four objects: rope, box, pencil,
and candle. We bridge this gap by contributing a dataset
with 1,600 everyday problems. collins2022structured In the
AI-related creativity community, everyday innovation which
better reflects the activities that most people may engage
in, is under-explored possibly due to the lack of a sizable
dataset. For example, recent work (Koivisto & Grassini,
2023) study problems with four objects: rope, box, pencil,
and candle. We bridge this gap by contributing a dataset
with 1,600 everyday problems.

Cognitive Bias Functional fixedness is a cognitive bias
limiting our ability to use familiar objects in novel ways.
For example, struggling to see a chair as anything other
than a seat exemplifies this. These biases subtly impact
our daily decisions, often unconsciously. Over 82% of
the solvable problems in MACGYVER require using tools
unconventionally to bypass such a bias. A similar work to
ours (Collins et al., 2022) explored LLMs’ problem-solving
ability in out-of-distribution reasoning tasks.

Machine Physical Reasoning Previous research such
as Hong et al. (2021) and Bakhtin et al. (2019) investi-
gated physical reasoning in visual contexts. In the realm
of language-based physical reasoning, prior studies pri-
marily focused on understanding physical concepts and at-
tributes of various objects, such as PROST (Aroca-Ouellette
et al., 2021), and NEWTON (Wang et al., 2023). Relatedly,
SWAG (Zellers et al., 2018) introduced the task of grounded
commonsense inference about physical situations. PIQA
(Bisk et al., 2020), which tests machines’ physical common-
sense reasoning ability is most similar. While proficiency in
addressing problems in MACGYVER involves all the above
abilities, our emphasis extends beyond. We focus on uncon-

ventional tool usage, reasoning over the affordance of tools
and ruling out unnecessary ones, and how individual objects
can be used in combination to achieve a complex goal.

F. Discussion and Conclusion
Significance of Work We propose a new playground and
the accompanying MACGYVER dataset for creative problem
solving, which covers a broad range of topics for everyday
innovation, such as household, training, and outdoor sports,
which is orthogonal to the existing areas of reasoning and
creativity, and adds to the spectrum of machine intelligence.

The area of daily innovation, or “little-c” according to the
creativity theory (Table 5), is a stand-alone type of creativity
and better reflects the creative activities that normal people
engage with, but is much less studied than math, logical rea-
soning, or writing problems. These so-called daily activities
can be complex too, by involving multiple-step planning for
efficiency, ruling out possibilities in a large search space,
using multiple tools in an unconventional manner that even
humans find difficult. Namely, solving these “daily activ-
ities” requires different kinds of creativity from scientific
discovery, art, etc., and have a high potential for AI making
people’s daily life more enjoyable.

Conclusion We present MACGYVER, a novel benchmark
focusing on everyday innovation that is carefully collected
with quality and diversity control. We evaluate and compare
both LLM and human performances, and highlight failure
modes of LLMs in proposing physically feasible actions
towards a goal. Nonetheless, we find LLM capabilities to be
complementary to human capabilities under certain domain-
specific settings. We propose two new prompting methods
that effectively improve this reasoning ability in LLMs.

G. Future Opportunities
We hope MACGYVER dataset opens the door to multiple
future directions that will contribute to the broader goal of
creating AI systems that can intelligently and flexibly in-
teract with their surroundings. For example in this paper,
we provide a preliminary attempt to improve the capability
of LLMs via two prompting strategies. We encourage fu-
ture investigation into planning and reasoning strategies to
enhance LLMs with physical knowledge and spatial under-
standing, and to reduce hallucination. To further ameliorate
the mistakes made by LLMs in a fictional setting, future
work are encouraged to build embodied agents that can inter-
act with physical or simulated worlds and receive feedback
from the environment.

Finally, we encourage automatic evaluation methods for
this complex reasoning task. For example, using LLMs to
extract claims from the candidate solutions, and examine
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the physical feasibility (or predict the consequences) of
proposed actions based on some physical world knowledge.

H. More Information on the MACGYVER
Dataset

H.1. Human Verification Process

After generating the challenging scenarios, we involve hu-
man verifiers to judge if the final versions of the problems
1) are solvable (i.e., it is possible to find a reasonable solu-
tion using the presented tools), unsolvable, or need more
clarification (i.e., the setup is vague or contradictory, which
will be discarded), and 2) for those solvable, whether solv-
ing them efficiently requires creative thinking (i.e., using
objects to achieve goals they were not originally designed
for —unconventional usage). Each problem is annotated
by three human verifiers from Amazon Mechanical Turk.
The detailed verification interface can be found in Appendix
I.6. The average inter-annotator agreement (IAA), measured
by Cohen’s Kappa, are 0.67 and 0.77 for tasks 1) and 2),
respectively.

H.2. Collecting Gold Solutions

We provide more details on the final step of our data col-
lection —to pair each problem with a gold answer. For the
solvable subset, the answer is a feasible solution written step
by step. For the unsolvable subset, the answer is a correct
explanation for why the stated goal cannot be achieved.

To save human effort, we start by leveraging the generative
strengths of a powerful LLM, i.e., GPT-4. Specifically, we
first prompt GPT-4 to generate a solution for each problem
in the MACGYVER dataset. Then, human verifiers assess
whether the generated solutions are valid. Only if all three
verifiers agree that a solution is valid, it becomes part of
our dataset. Otherwise, we ask human workers to write
down a solution (for solvable subset) or a justification (for
unsolvable subset).

H.3. Does the data collection pipeline result in
progressively challenging problems?

To test whether our data creation pipeline (in Figure 2) is
indeed iteratively posing challenge to a previous iteration,
we collect GPT-4 answers to iteration 1, 2, and 3 of 200
problems, and run the same human evaluation process.

GPT-4’s performance on all three iterations of the same set
of problems can be found in Table 7. As the problems get
iteratively refined, the ratio of feasible and efficient solutions
decrease, and the ratio of infeasible answers increase. This
reflects that most potent LLM, GPT-4, indeed finds the
problems increasingly challenging.
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Affordance of Presented Tools

Figure 13. Affordances of the presented tools in our MACGYVER

dataset and their frequency (and count). Note that one object may
have multiple affordances (e.g., paddle boards can be used for
boating, reaching high areas, and exercise).

H.4. Diversity Control and Check

Intuitively, we want to avoid generating multiple problems
with familiar goals and constraints. In this section, we
summarize our measures to ensure the collected problems
are diverse, comprehensive, and free of repetitive patterns.

For diversity control, We hand-craft more than 50 tags
of locations and activities, aiming to ensure that our data
collection pipeline delves into a variety of topics. These
predefined tags are integrated into the prompt that we used
to query GPT-4 for problem curation at Iteration 1. The
detailed list of all tags can be found in Table 6.

For diversity check After the final iteration, we parse the
objects presented as tools among all generated problems.
Intuitively, we consider two similar objects with different
properties (e.g., plastic knife and metal knife; eyeglasses and
magnifying glass) to be different. In total, 3,800 unique tools
were identified. We compute their frequency and use GPT-4
to analyze their affordances (Appendix Table 8; Figure 13).
We found that holding items and covering are the top two
types, followed by tying or connecting and cleaning. The
long tails in both illustrations signify a desirable level of
diversity.

Tags used for Diversity Control Before the first iteration,
we hand craft more than 50 tags of locations and activities,
aiming to ensure that our data collection pipeline delves
into a variety of topics. The tags cover diverse range of hu-
man activities, from indoor ones such as home arrangement
and working in the office, to outdoor ones such as hiking,
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Indoors/Household Neutral Outdoors

bedroom at a party at the beach
closet or storage organization classroom and university lecture hall backyard gardening
cooking a complex dish dog training beach cleanups, or planning a beach event
dining room garage boat trip
fitness workouts going out for a meal campsite setting
gym and sports facilities plants, flowers and garden city streets and sidewalks
hair styling and care public speaking construction work
home improvement recycling and waste management desert survival
in a hotel room school and student activity exploring a cave
indoors arrangement school science fair farm duties
kitchen science laboratory forest and jungle
library swimming hiking, camping, and traveling
living room university campus in the parks
office and work vehicle maintenance in the rain
packing things up weather preparation and response in the winter
personal grooming and beauty routine in the zoo
shopping on the playground

playing with snow
playing with water
rooftop terrace

Table 6. The tags (i.e., locations and activities) used to curate the dataset for diversity control. They can be broadly divided into
Indoors/Household, Neutral, and Outdoors.

Solutions Feasible
& eff. (↑)

Feasible
& ineff.

Infeasible
(↓)

LLM says
unsolv. (↓)

Iteration 1 39.1% 36.8% 24.0% 0.1%
Iteration 2 34.7% 32.2% 31.7% 1.4%
Iteration 3 25.4% 37.9% 35.7% 1.0%

Table 7. GPT-4 performance on iteration 1, 2, and 3 of 200 prob-
lems. Numbers in each row add up too 100%.

gardening, and playing with water. These predefined tags
are integrated into the prompt that we used to query GPT-4
for problem curation at Iteration 1. We list all the tags (i.e.,
locations and activities) used to curate the dataset in Table
6. They are introduced to prompt the LLM for diversity
control, and can be broadly divided into Indoors/Household,
Neutral, and Outdoors.

Generation in Batch All problems are generated and re-
fined in batches of 15 rather than one by one, as we find
out the former results in significantly higher diversity. We
then leverage a widely-used sentence transformer (Reimers
& Gurevych, 2020) to filter out any newly generated prob-
lem that is semantically similar to the existing ones in our
database.

Analyzing Tool Affordance We leverage GPT-4 to ana-
lyze the affordance of presented tools in the MACGYVER
dataset. Specifically, we start with a small set of hand-
crafted affordance as seed. Despite being required to choose
only from this fixed list of affordances, GPT-4 does not

strictly follow our instruction, and sometimes returns new
types that are not included in the seed list. We then gradually
expand the list of affordances with newly generated ones.

For eliciting tool affordances, we use the prompt shown in
Figure 14.

Commonly-presented tools and their frequencies In
total, more than 3,800 different tools appear in our MAC-
GYVER dataset. We list in Table 8 16 commonly-presented
tools, their featured affordances, and frequency. The num-
ber of unique tools and the long tails in distribution signify
a desirable level of diversity.

I. Experimental Details
I.1. Collecting Independent Human Responses

We assessed human capability by recruiting participants
who are new to this task. To this end, independent solutions
were collected from a pool of N = 252 UK participants
on Prolific. We intentionally used a different platform and
target population from those of the human evaluators (i.e.,
MTurk and US) to minimize any chances of overlap. For a
given problem, participants indicated whether they believed
the problem is solvable, unsolvable, or required further clar-
ification. If solvable, they provided a step-by-step solution,
and otherwise explained why the problem was unsolvable.
Overall, we elicited an average of six responses per prob-
lem and each participant contribute to up to five different
problems.
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1 <−− Instruction. −−>
2 You need to write the most common affordances of an item.

Please choose one or more options from the following
:

3 <−− Seed list to expand with . −−>
4 Container / holding items , covering , heating , measuring,

drawing/ writing , cleaning , sitting / stepping , tying or
connecting , illumination , stretching , starting fire ,
sealing , cutting , separation , reaching high areas ,

powering devices , digging , making noise , flatten ,
cutting , gripping things , reflecting , eaten as food.

5

6 <−− Examples. −−>
7 Here are some examples:
8 rice : eaten as food
9 case : container / holding items , protection , covering

10 ruler : measuring, straightening
11 box: container / holding items
12 pencil : drawing/ writing ,
13

14 <−− Actual Task. −−>
15 Please write the common types of affordances of the

following tools .
16

17 1. {Tool 1}.
18 ...
19 N. {Tool N}.

Figure 14. The prompt used to analyze tool affordance. We start
with a list of affordances as seed. We gradually expand our list
thanks to the fact that GPT-4 does cannot strictly follow our instruc-
tion and occasionally generates other affordances not belonging
the predefined set.

I.2. Collecting Machine Responses

We collected solutions from seven different LLMs using
Nucleus sampling (Holtzman et al., 2020) and return the
top one sequence (T=0.7 and p=0.95). In the prompt, we
instruct an LLM to either provide a feasible and efficient
solution to a problem when it believes the problem is solv-
able, or otherwise a justification explaining why the given
problem is unsolvable. To explore whether different sizes of
the same model plays a role in its problem solving ability,
we include three variations of Llama2 (i.e., -7b, -13b,
-70b), as well as two variants of GPT model family (i.e.,
gpt-3.5-turbo, gpt-4-0613).

Additional GPT-4 Responses For a fair comparison with
humans, we emulate the same setup in Appendix I.1 by
obtaining multiple solutions per problem from a single LLM.
Since exhaustive human evaluation is costly, we opted to
elicit multiple solutions exclusively from the most capable
LLM, GPT-4. Multiple manually-designed instructions are
used to prompt GPT-4 in order to reduce repetition among
separate sessions of API calls. More details can be found in
Appendix I.3.

Tool Affordance Freq.

duct tape sealing; tying or connecting 2.0%

plastic bag container or holding items;
covering 0.7%

flashlight illumination 0.7%
aluminum foil covering; heating; sealing 0.6%
hairdryer heating; drying; making noise 0.5%
ruler measuring; straightening 0.4%

broom cleaning; sweeping; reaching
high areas 0.4%

spoon eating; stirring; measuring 0.4%
toothbrush cleaning; spraying 0.4%
mag. glass magnifying; starting fire 0.4%

rope tying or connecting; reaching
high areas 0.4%

hammer flattening; gripping things;
making noise 0.3%

yoga mat stretching; sitting/stepping;
covering 0.3%

towel wetting; covering; absorbing 0.3%
frisbee playing; throwing 0.3%
toothpick cleaning; separating 0.3%

Table 8. Examples of most commonly presented tools, their fea-
tured affordances, and frequency of these tools in the entire dataset.
We randomly pick 16 tools from the top 40 frequent ones in the
MACGYVER dataset. In total, more than 3,800 different tools
appear in our dataset.

I.3. Benchmark Setup

Recruiting MTurk Evaluators We used qualification
tasks to recruit 160 qualified annotators on Mechanical Turk.
They are paid over 18 USD per hour for all the evaluation
and verification tasks.

Collecting Human Solutions on Prolific All participants
of human study provide informed consent in accordance
with an approved IRB protocol. For a given problem, par-
ticipants indicated whether they believed the problem is
solvable, unsolvable, or required further clarification. If
solvable, they provided a step-by-step solution, and other-
wise they explained why the problem was unsolvable. A
screenshot of the elicitation interface is shown in Figure 22.

Collecting Multiple GPT-4 Responses in Benchmark
Recall that in Appendix I.2, we elicit multiple solutions
exclusively from the most potent LLM, GPT-4, to emulate
the same setup of human study. To align with the varying
number of human responses for different problems, we ad-
justed the quantity of collected GPT-4 answers to match
that of human answers. On average, we elicited four GPT-4
solutions per problem through separate API call. To this
end, four manually-designed instructions are used to prompt
GPT-4 to reduce repetition among separate sessions. For
each API call, we still adopt Nucleus sampling and return
the top one sequence.
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I.4. Analyzing Results

Each machine-generated or human-written answer is anno-
tated by three Mturk workers, with an average IAA of 0.71
as measured by Cohen’s Kappa, indicating a substantially
strong agreement. Interestingly, we notice that human work-
ers disagree more often when deciding whether a solution
is efficient or inefficient. Upon further investigation, we
realize this is partially due to the limitation of individual
annotator’s capability – a person who is unaware of the most
efficient solution might label a sub-optimal one as highly
efficient. Therefore, for those generated solutions linked to
solvable problems, instead of taking the majority vote, we
take the worse labels as the golden label (e.g., taking ‘ineff.’
from [‘eff.’, ‘ineff.’, ‘eff.’]). For all other cases, we still take
the majority votes as gold labels. We find such modification
leads to a more accurate set of labels.

I.5. The Prompts for Improving LLM’s Ability

Figure 15 and Figure 16 list the actual prompts for
Self-Reflection and Divergent-Convergent
Thinking.

I.6. Human Task Interfaces

Data Collection and Difficulty Assessment. In practice,
we combine the questions of data collection (Section 2) and
difficulty assessment (Appendix A) into one single task. The
detailed human annotation interface, including the instruc-
tions, examples, and the actual task and be found in Figure
17 to Figure 21.

Human Study A screenshot of the interface to elicit in-
dependent human responses is shown in Figure 22. For a
given problem, participants indicate whether they believe
the problem is solvable, unsolvable, or required further clar-
ification. If solvable, they provide a step-by-step solution,
and otherwise they explain why the problem was unsolvable.

Benchmark Evaluation The screenshots of our human
evaluation interface for the benchmark experiment can be
found in Figure 23 and 24.
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1 <−− Round 1: −−>
2 User: {Problem Statement}
3 If the problem is solvable , provide a concise solution . Use step1 , step2 , etc , and mention the tools to achieve each

step . Use as few steps as possible and the answer should ideally be less than 100 words.
4

5 If you cannot find a feasible solution , just say that it is not possible and give a very short justification .
6

7 Assistant : {Answer}
8

9 <−− Round 2: −−>
10 User: Now, please verify if each step is physically feasible and afforded . After that , modify the solution if needed.
11 Use the following format :
12 Step 1: ...
13 Step 2: ...
14 ...
15 Conclusion 1: Whether the problem is indeed solvable given all the constraints
16 Conclusion 2: ( If still solvable ) No modification needed/ Modification needed.
17

18

19 Modified solution :
20 Assistant : {Response and Updated solution }
21 <−− Repeat until no modification is needed.−−>

Figure 15. Prompt used for the step-by-step verify strategy.

1 User: {Problem Statement}
2 Give a feasible solution very concisely . Note that some tools are not useful , so please analyze the affordance of each

presented object , and rule out unnecessary ones first .
3

4

5 Use the following format :
6 1. List the affordance of presented items and whether they are useful
7 2. Summary: list useful tools
8 3. If the problem is solvable under all these constraints , write the solution . Use step1 , step2 , etc , and mention the

tools to achieve each step . Use as few steps as possible and the answer should ideally be less than 100 words.
9

10 If you cannot find a feasible solution , just say that it is not possible and give a very short justification .
11

12 Assistant : {Analysis of the affordance and the main answer}

Figure 16. Prompt used for the divergent-convergent thinking strategy.
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Figure 17. Human Annotation Interface for Data Collection and Difficulty Assessment, Page 1.
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Figure 18. Human Annotation Interface for Data Collection and Difficulty Assessment, Page 2.

Figure 19. Human Annotation Interface for Data Collection and Difficulty Assessment, Page 3.
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Figure 20. Human Annotation Interface for Data Collection and Difficulty Assessment, Page 4.
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Figure 21. Human Annotation Interface for Data Collection and Difficulty Assessment, Page 5.

20



1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Thinking Out-of-the-Box: A Comparative Investigation of Human and LLMs in Creative Problem-Solving

Figure 22. Human Study Interface to Collect Independent Human Responses.

Figure 23. Human Evaluation Interface for Benchmarking, Page 1.
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Figure 24. Human Evaluation Interface for Benchmarking, Page 2.
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