GraphLSS: Integrating Lexical, Structural, and Semantic Features for
Long Document Extractive Summarization

Anonymous ACL submission

Abstract

Heterogeneous graph neural networks have re-
cently gained attention for long document sum-
marization, modeling the extraction as a node
classification task. Although effective, these
models often require external tools or addi-
tional machine learning models to define graph
components, producing highly complex and
less intuitive structures. We present GraphLSS,
a heterogeneous graph for long document ex-
tractive summarization, incorporating Lexical,
Structural, and Semantic features. It defines
two levels of information (words and sentences)
and four types of edges (sentence semantic sim-
ilarity, sentence occurrence order, word in sen-
tence, and word semantic similarity) without
requiring auxiliary learning models. Experi-
ments on two benchmark datasets show that
GraphLSS is competitive with top-performing
graph-based methods, outperforming recent
non-graph models. We release our code on
<anonymized>.

1 Introduction

Extractive document summarization condenses
documents into concise summaries by selecting
only the most relevant sentences with key infor-
mation to retain. One intuitive way for doing
so is to model cross-sentence relations by using
graphs. While some methods considered homoge-
neous graphs (Tixier et al., 2017; Xu et al., 2020),
heterogeneous graph constructions have recently
gained attention, showing high effectiveness on the
task (Wang et al., 2020; Jia et al., 2020). Such
graphs define more complex relationships between
multiple semantic units and capture long-distance
dependencies. Despite these graph structures have
proven successful for long documents like scientific
papers, many efforts have been made to propose
more effective graph constructions. These methods
differ in their definition of nodes, often requiring
external tools or additional machine learning mod-
els (Cui et al., 2020), and in their definitions of

edges, which despite being effective, may produce
highly complex structures that reduce the intuitive-
ness of the resulting graphs (Zhang et al., 2022).

This paper introduces GraphL.SS, a graph con-
struction that avoids the need for external learning
models to define nodes or edges. GraphLSS uti-
lizes Lexical, Structural, and Semantic features,
incorporating two types of nodes (sentences and
words) and four types of edges (sentence order,
sentences semantic similarity, words semantic sim-
ilarity, and word-sentence associations). We limit
word nodes to nouns and verbs for their high seman-
tic richness. Our document graphs are processed
with GAT (Velickovi¢ et al., 2018) models on two
summary benchmarks, PubMed and arXiv, which
are preprocessed and labeled by us.

Our contributions are: i. A new effective het-
erogeneous graph construction incorporating lex-
ical, structural, and semantic features, ii. State-
of-the-art results on both summary benchmarks
compared to previous graph strategies and recent
non-graph methods, iii. The preprocessed and la-
beled datasets, including the graph construction
method, are shared on <anonymized> for repro-
ducibility and collaboration.

2 Previous Work

Graph Structure Developing an effective graph
structure for summarization has been challenging,
leading to a proliferation of diverse approaches.
Wang et al. (2020) proposed using word nodes to
connect sentence nodes, with each word defining
undirected associations with the sentences contain-
ing it. In turn, Jia et al. (2020) extended this by
introducing named entity nodes and three other
types of edges: directed edges for tracking the next
named entity and word mentioned in a sentence,
directed edges for entities and words occurring in
a sentence, and undirected edges for sentence pairs
with trigram overlap.
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Topic-GraphSum (Cui et al., 2020) was one of
the first attempts to apply graph strategies to long
document extractive summarization. It integrated a
joint neural topic model to discover latent topics in
a document, defining these as intermediate nodes
to capture inter-sentence relationships across vari-
ous genres and lengths. SSN (Cui and Hu, 2021)
defined a sliding selector network with dynamic
memory. SSN splits a given document into mul-
tiple segments, encodes them with BERT (Devlin
et al., 2019), and selects salient sentences. Instead
of representing the document as a graph, it uses a
graph-based memory module, updated iteratively
with a GAT (Velickovi¢ et al., 2018), to allow in-
formation to flow across different windows. Heter-
GraphLongSum (Phan et al., 2022) utilized words,
sentences, and passages as nodes, while consider-
ing undirected edges for words in sentences, and
directed edges for words in passages and passage to
sentences. Instead of using pre-trained embeddings,
it used CNNs and bidirectional LSTMs for node
encoding, yielding outstanding results. MTGNN-
SUM (Doan et al., 2022) achieved similar results by
capturing both inter and intra-sentence information
when combining a homogeneous graph of sentence
nodes with a heterogeneous graph of words and
sentences, as in Wang et al. (2020).

Recent studies underscore the importance of
structural information in long document summa-
rization. HEGEL (Zhang et al., 2022) represented
documents as hypergraphs with hyperedges joining
multiple vertices, incorporating semantic connec-
tions such as keyword coreference, section struc-
ture, and latent topics. CHANGES (Zhang et al.,
2023) introduced a sentence—section hierarchical
graph, creating fully connected subgraphs for sen-
tences and sections, and linking sentence nodes to
their respective section nodes.

Sentence Labeling Most previous work (Jia
et al., 2020; Zhang et al., 2022; Wang et al., 2024)
adopted the greedy labeling approach from Nallap-
ati et al. (2017) without specifying the used n-gram
level for the ROUGE metric. Since ROUGE can
be computed for measuring the matching of uni-
grams, bigrams, or longest common subsequences,
different settings can significantly affect the perfor-
mance of the sentence classifier. Some methods
(Wang et al., 2020; Doan et al., 2022; Zhang et al.,
2023) followed Liu and Lapata (2019), which se-
lected sentences that maximize the ROUGE-2 score
against the gold summary. Other works (Cui et al.,

2020; Cui and Hu, 2021; Phan et al., 2022) used
pre-labeled benchmarks (Xiao and Carenini, 2019),
where labels were assigned by greedily optimizing
ROUGE-1. Conversely, Cho et al. (2022) selected
sentences that maximize the average of ROUGE-1
and ROUGE-2 F1-scores.

3 GraphLSS

Inspired by previous work, we propose a heteroge-
neous model using sentences and words as nodes,
with four edge types to capture Lexical, Structural,
and Semantic features. Our graphs are processed
by a heterogeneous GAT (Velickovic et al., 2018),
followed by a sentence node classifier.

Graph Construction We represent a document
as an undirected graph G = (V, E'), where the node
set is defined as V' = V U V4, and the edge set
E = {FEg, Eys, Ews, Eww}. Here, V; corresponds
to the n sentences in the document, and V5, denotes
the set of m unique words of the document, limited
to the most pertinent ones in terms of semantic rich-
ness, nouns and verbs. Conversely, Fg includes
sentence pair edges, weighted by cosine similarity,
within a predefined window size to account for lo-
cal similarity and prevent dense graphs. Boolean
edges Fy indicate the sentence occurrence order
in documents. F,s denotes words in sentences via
tf-idf weighted edges, and F,,, captures weighted
edges for word pairs using cosine similarity.

Extractive Labels There is no consensus on how
to effectively generate extractive ground truth la-
bels. We label the data by greedily optimizing the
ROUGE-1 score, a simple and intuitive method
widely adopted in previous work. This method
allows us to label more sentences as relevant com-
pared to other strategies. Instead of using the data
published by Xiao and Carenini (2019), we prepro-
cess and label the datasets from scratch.

Adaptive Class Weights Since the extractive
ground truth labels for long documents are highly
imbalanced, we optimize the GAT model using
weighted cross-entropy loss. We assign initial class
weights to relevant and irrelevant sentences, em-
ploying adaptive class weights for the relevant class
and static weights for non-summary sentences as:
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where 7 corresponds to the portion of sentences
predicted as relevant for the summary in relation to



the total number of existing sentences.

4 Experiments

Datasets We use two publicly available bench-
marks for long document summarization, PubMed
and arXiv (Cohan et al., 2018). PubMed comprises
biomedical scientific papers, while arXiv covers
various scientific domains. Both datasets contain
English articles, and are widely used by previous
work (Table 1). Their statistics and preprocessing
details are provided in Appendix A. Our data and
code are available on <anonymized>.

Comparison Methods For a more detailed com-
parative analysis with the models that achieved
the best benchmark results (Topic-GraphSum,
SSN, and HeterGraphLongSum), we also exe-
cuted our model using the preprocessed data and
sentence-level relevance labels provided by Xiao
and Carenini (2019). Additionally, we include re-
sults from recent non-graph extractive summarizers
in Table 1 for reference; Lodoss (Cho et al., 2022)
learns sentence representations through simulta-
neous summarization and section segmentation,
Topic-Hierarchical-Sum (Wang et al., 2024) uses
local topic information and hierarchical extraction
modules, and LOCOST (Le Bronnec et al., 2024)
is an abstractive summarization model based on
state-space models for conditional text generation.

Experimental Setup We trained a GAT model
(Velickovi¢ et al., 2018) with 4 attention heads,
varying the number of hidden layers between 1
and 2. We applied Dropout after every GAT layer
with a retention probability of 0.7. The final rep-
resentation is fed into a sigmoid classifier. We ini-
tialized word nodes using GloVe Wiki-Gigaword
300-dim. embeddings (Pennington et al., 2014) and
pre-trained SBERT (A11-MinilLM-L6-v2) embed-
dings for sentence nodes (Reimers and Gurevych,
2019). Notably, our word nodes are restricted to the
top 50,000 most frequent words in the respective
dataset’s vocabulary. All experiments used a batch
size of 64 samples and were trained for a maximum
of 20 epochs using Adam optimization with an ini-
tial learning rate of 10~3. The training was stopped
if the validation loss did not improve for 7 con-
secutive iterations. The objective function of each
model was to minimize the binary cross-entropy
loss using class weights, as described in Equation 1
(more details in Appendix B). All experiments are
based on PyTorch Geometric and conducted on an

NVIDIA GeForce RTX 3050.

5 Results & Analysis

Table 1 presents the results of different models
on both datasets. The first section includes graph-
based summarization models, including the Oracle
results reported in Xiao and Carenini (2019). The
second section includes non-graph summarizers
as reference, and the third section includes our
results. ROUGE is used as the evaluation metric,
including ROUGE-1/-2/-L F1-score for measuring
the informativeness and fluency of the summaries.

Summarization Results GraphLSS significantly
outperforms all compared approaches in ROUGE-
1/-2/-L scores on PubMed and arXiv, showing effec-
tiveness in identifying relevant sentences in highly
imbalanced settings (Equation 1). These results
are based on our own preprocessing and labeling.
Table 1 also shows the Oracle results using our
labels, which greatly exceed those achieved with
the labels of Xiao and Carenini (2019). Yet, when
using those labels, GraphLSS does not achieve the
best results, but still remains competitive, particu-
larly in terms of ROUGE-L. This means that the
summaries generated by GraphLSS closely match
the gold summaries in terms of the longest com-
mon subsequence. Such results also suggest that
GraphLSS, even when trained over previously la-
beled data, obtains better results than recently pro-
posed non-graph models. Although other graph
methods may show better results, they are included
for reference only, as they are not directly compa-
rable due to the use of different sentence labeling
strategies in part requiring extrinsic resources.

Preprocessing and Labeling Table 1 shows that
ROUGE scores can vary significantly depending
not only on the graph construction and model, but
also on the strategy used for generating extractive
labels. This crucial aspect has been overlooked
in related work, which often focuses on ROUGE
results without considering whether the correspond-
ing methods are using the same labeling approach.
Moreover, preprocessing steps prior to label calcu-
lation can also affect the results. Although Xiao
and Carenini (2019) and our study both aimed to
maximize the ROUGE-1 score, our labels differ
significantly. Comparable setups are a requirement
to accurately assess the advantages of models.

GraphLSS Learning Table 2 shows that a two-
layer heterogeneous GAT yields better results com-
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Model

PubMed
R-1 R-2 R-L R-1 R-2 R-L

arXiv

Graph-based Strategies

Oracle (Xiao and Carenini, 2019) 55.05 27.48 38.66 53.88 23.05 34.90
Topic-GraphSum (Cui et al., 2020) § 48.85 21.76 35.19 46.05 19.97 33.61
SSN (Cui and Hu, 2021) ¥ 46.73 21.00 34.10 45.03 19.03 32.58
HeterGraphLongSum (Phan et al., 2022) { 48.86 22.63 44.19 47.36 19.11 41.47
MTGNN-SUM (Doan et al., 2022) 48.42 22.26 43.66 46.39 18.58 40.50
HEGEL (Zhang et al., 2022) 47.13 21.00 42.18 46.41 18.17 39.89
CHANGES (Zhang et al., 2023) 46.43 21.17 41.58 45.61 18.02 40.06
Non-graph Strategies

Lodoss (Cho et al., 2022) 49.38 23.89 44.84 48.45 20.72 42.55
Topic-Hierarchical-Sum (Wang et al., 2024) 46.49 20.52 42.06 45.84 19.03 40.36
LOCOST (Le Bronnec et al., 2024) 45.70 20.10 42.00 43.80 17.00 39.70
GraphLSS

- Our Oracle 60.58 36.91 55.32 63.57 30.40 54.10
- GraphLSS + Labels by Xiao and Carenini (2019) t 47.85 21.74 42.22 4591 18.35 40.07
- GraphLSS + Our labels *51.42 %2432  x4948 %55.14 %23.00 x50.83

Table 1: ROUGE F1 summarization results. Scores are obtained from the respective papers. Models marked with {
used sentence-level labels from Xiao and Carenini (2019), making them directly comparable. We highlight the best
results in bold and underline the second-best. GraphLSS results are reported by averaging 3 runs.

pared to a single-layer GAT, indicating the advan-
tage of message passing across multiple semantic
units in an extended neighborhood. This applies for
both datasets. Additionally, previous work has not
adequately addressed the balance between preci-
sion and recall, focusing solely on reporting the F1
score without analyzing the individual values and
their implications. Our results show that precision
and recall are similar for the experiments on the
PubMed dataset, achieving a good match between
generated summaries and gold summaries for both
ROUGE-1 and ROUGE-2. In contrast, on the arXiv
dataset, the recall is significantly higher than pre-
cision, indicating that while our model retrieves
valuable information, the generated summaries are
contaminated with additional text. This effect is
more pronounced when using two layers for the
GAT. In such cases, while the precision does not
improve compared to using only one GAT layer, the
recall increases considerably. This means that more
text is correctly retrieved for the summary, but the
exactness of these summaries remains unchanged.
Interestingly, this discrepancy is not observed when
applying GraphLSS to the previously labeled data
by Xiao and Carenini (2019), where precision and
recall are balanced. This suggests that the observed
differences are due to artifacts in the data labeling
procedure rather than the graph construction pro-
posed here, or the trained GAT model, emphasizing
our earlier discussion.

ROUGE-1 ROUGE-2
Dataset L P R F1 P R F1
1 49.75 50.00 4992 2261 2471 23.17
PubMed 2 5259 50.11 5142 2391 23.82 24.32
2% 4643 4942 4785 2242 21.14 21.74
1 45,66 66.68 5423 17.14 30.20 22.31
arXiv 2 4520 71.04 55.14 17.02 3574 23.00
2% 4488 47.04 4591 1996 1699 18.35

Table 2: GraphLSS precision (P) and recall (R) using
our labels. L indicates the number of GAT layers used,
and the mark * indicates the results obtained by using
data from Xiao and Carenini (2019).

6 Conclusions

We introduced GraphLSS, a heterogeneous graph
for long document extractive summarization incor-
porating lexical, structural, and semantic features.
Our experiments on PubMed and arXiv datasets
highlight the impact of extractive labels due to their
inherent imbalance. GraphLSS demonstrates com-
petitiveness with top-performing graph-based meth-
ods and outperforms recent non-graph models by
employing a greedy labeling strategy and adaptive
weights during training. Future work will explore
integrating an abstractive summarizer based on our
extractive results to potentially enhance summa-
rization outcomes.



Limitations

While we showed the impact and potential of
GraphLSS for long document extractive summa-
rization, there are some points to keep in mind.

Storing document graphs as a data structure ob-
tained from the original documents (texts) involves
significant additional disk usage. Previous strate-
gies create such structures on the fly while training
the underlying GNN models, and others opt for
storing such graphs on disk to speed up model
training. We follow the latter strategy. Therefore,
the training time reported does not consider the
creation of the underlying graphs.

Furthermore, our proposal was only validated
on English datasets. Applying GraphLSS to other
languages may yield significantly different results,
since pre-trained word and sentence embeddings
are required for node initialization and thus, train-
ing the heterogeneous GAT model. Analyzing this
aspect would be particularly interesting for low-
resource languages. Additionally, our experiments
focus on scientific papers. Although they cover
multiple scientific domains, exploring other kinds
of long document, e.g., narrative and legal docu-
ments, is encouraged. Also, additional data collec-
tions should be analyzed in order to generalize our
findings to broader domains.

Ethics Statement

While extractive summaries are less prone to hal-
lucinated content, in some instances, they may be
misleading due to missing context. Another con-
cern is that of possible bias during the content selec-
tion. Depending on the graph construction applied,
a GAT model may favor certain types of content
over others, such as popular sentences and entities
with high degrees, as they might receive more atten-
tion. Thus, special care must be taken when relying
on summaries to make high-stakes decisions, for
example in the legal or medical domains.

Summarizing articles often involves extracting
information related to trending topics, institutions,
people, and other entities. Balancing the delivery
of valuable summaries while respecting the privacy
of these entities is essential. One strategy to allevi-
ate such concern is anonymization, which ensures
that the summary content does not reveal sensitive
features. In our study, we conduct all experiments
on publicly available scientific articles, and hence
have forgone such anonymization.
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A Datasets

For the data prepossessing, we removed instances
of empty summaries and instances where the article
is shorter than the summarization, and split the
documents via NLTK’s sentence tokenizer.

Since the sentence tokenizer splits text based
on punctuation, this can often result in meaning-
less generated sentences. For example, the sen-
tence “Neptune masses can be excluded by our
limits determinations (fig.1)" results in a head sen-
tence Sy, =“Neptune masses can be excluded by
our limits determinations (fig." and a tail sentence
Sy =“I).". In such cases, we merged tail sentences
with the preceding ones to maintain text coherence.

B Further Experiment Details

Adaptive Class Weights Figure 1 illustrates how
the adaptive class weights evolve across epochs
during training. Specifically, we update the weights
solely for the relevant class (summary sentences),
maintaining static weights for the irrelevant class.
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PubMed arXiv

#Training 115,776 197,650
#Validation 6,584 6,435
#Testing 6,620 6,439
Avg. # Tokens in doc. 2,768 3,913
Avg. # Tokens in summary 205 203
Avg. # Sentences in doc. 89 133
Avg. # Sentences in summary 8 7

Table 3: Datasets statistics.

Correlation between optimized weight and Rougel F1
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Figure 1: Effect of adaptive class weights on PubMed.

Training Time Table 4 shows the average exe-
cution time for GAT training on GraphLSS, using
our extractive labels. It also provides the average
number of nodes and edges for our constructed
document graphs on each dataset.

All experiments are based on PyTorch Geomet-
ric and conducted on an NVIDIA GeForce RTX
3050.

PubMed arXiv
L Nodes Edges Time Nodes Edges Time
1 1,193 min 1,365 min
2 2654 365.6 1,566 min 299.2  1146.0 1.912 min

Table 4: Average execution time for training. L indicates
the number of GAT layers used.

Libraries The experiments were conducted us-
ing the following libraries:

Library Version
nltk 3.8.1
pytorch 2.2.1
transformers 4.38.2
rouge 1.0.1
scikit-learn 1.3.0
torchmetrics 1.2.1
torch_geometric 2.5.0

Table 5: Libraries and versions.
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