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Abstract
Heterogeneous graph neural networks have re-001
cently gained attention for long document sum-002
marization, modeling the extraction as a node003
classification task. Although effective, these004
models often require external tools or addi-005
tional machine learning models to define graph006
components, producing highly complex and007
less intuitive structures. We present GraphLSS,008
a heterogeneous graph for long document ex-009
tractive summarization, incorporating Lexical,010
Structural, and Semantic features. It defines011
two levels of information (words and sentences)012
and four types of edges (sentence semantic sim-013
ilarity, sentence occurrence order, word in sen-014
tence, and word semantic similarity) without015
requiring auxiliary learning models. Experi-016
ments on two benchmark datasets show that017
GraphLSS is competitive with top-performing018
graph-based methods, outperforming recent019
non-graph models. We release our code on020
<anonymized>.021

1 Introduction022

Extractive document summarization condenses023

documents into concise summaries by selecting024

only the most relevant sentences with key infor-025

mation to retain. One intuitive way for doing026

so is to model cross-sentence relations by using027

graphs. While some methods considered homoge-028

neous graphs (Tixier et al., 2017; Xu et al., 2020),029

heterogeneous graph constructions have recently030

gained attention, showing high effectiveness on the031

task (Wang et al., 2020; Jia et al., 2020). Such032

graphs define more complex relationships between033

multiple semantic units and capture long-distance034

dependencies. Despite these graph structures have035

proven successful for long documents like scientific036

papers, many efforts have been made to propose037

more effective graph constructions. These methods038

differ in their definition of nodes, often requiring039

external tools or additional machine learning mod-040

els (Cui et al., 2020), and in their definitions of041

edges, which despite being effective, may produce 042

highly complex structures that reduce the intuitive- 043

ness of the resulting graphs (Zhang et al., 2022). 044

This paper introduces GraphLSS, a graph con- 045

struction that avoids the need for external learning 046

models to define nodes or edges. GraphLSS uti- 047

lizes Lexical, Structural, and Semantic features, 048

incorporating two types of nodes (sentences and 049

words) and four types of edges (sentence order, 050

sentences semantic similarity, words semantic sim- 051

ilarity, and word–sentence associations). We limit 052

word nodes to nouns and verbs for their high seman- 053

tic richness. Our document graphs are processed 054

with GAT (Veličković et al., 2018) models on two 055

summary benchmarks, PubMed and arXiv, which 056

are preprocessed and labeled by us. 057

Our contributions are: i. A new effective het- 058

erogeneous graph construction incorporating lex- 059

ical, structural, and semantic features, ii. State- 060

of-the-art results on both summary benchmarks 061

compared to previous graph strategies and recent 062

non-graph methods, iii. The preprocessed and la- 063

beled datasets, including the graph construction 064

method, are shared on <anonymized> for repro- 065

ducibility and collaboration. 066

2 Previous Work 067

Graph Structure Developing an effective graph 068

structure for summarization has been challenging, 069

leading to a proliferation of diverse approaches. 070

Wang et al. (2020) proposed using word nodes to 071

connect sentence nodes, with each word defining 072

undirected associations with the sentences contain- 073

ing it. In turn, Jia et al. (2020) extended this by 074

introducing named entity nodes and three other 075

types of edges: directed edges for tracking the next 076

named entity and word mentioned in a sentence, 077

directed edges for entities and words occurring in 078

a sentence, and undirected edges for sentence pairs 079

with trigram overlap. 080
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Topic-GraphSum (Cui et al., 2020) was one of081

the first attempts to apply graph strategies to long082

document extractive summarization. It integrated a083

joint neural topic model to discover latent topics in084

a document, defining these as intermediate nodes085

to capture inter-sentence relationships across vari-086

ous genres and lengths. SSN (Cui and Hu, 2021)087

defined a sliding selector network with dynamic088

memory. SSN splits a given document into mul-089

tiple segments, encodes them with BERT (Devlin090

et al., 2019), and selects salient sentences. Instead091

of representing the document as a graph, it uses a092

graph-based memory module, updated iteratively093

with a GAT (Veličković et al., 2018), to allow in-094

formation to flow across different windows. Heter-095

GraphLongSum (Phan et al., 2022) utilized words,096

sentences, and passages as nodes, while consider-097

ing undirected edges for words in sentences, and098

directed edges for words in passages and passage to099

sentences. Instead of using pre-trained embeddings,100

it used CNNs and bidirectional LSTMs for node101

encoding, yielding outstanding results. MTGNN-102

SUM (Doan et al., 2022) achieved similar results by103

capturing both inter and intra-sentence information104

when combining a homogeneous graph of sentence105

nodes with a heterogeneous graph of words and106

sentences, as in Wang et al. (2020).107

Recent studies underscore the importance of108

structural information in long document summa-109

rization. HEGEL (Zhang et al., 2022) represented110

documents as hypergraphs with hyperedges joining111

multiple vertices, incorporating semantic connec-112

tions such as keyword coreference, section struc-113

ture, and latent topics. CHANGES (Zhang et al.,114

2023) introduced a sentence–section hierarchical115

graph, creating fully connected subgraphs for sen-116

tences and sections, and linking sentence nodes to117

their respective section nodes.118

Sentence Labeling Most previous work (Jia119

et al., 2020; Zhang et al., 2022; Wang et al., 2024)120

adopted the greedy labeling approach from Nallap-121

ati et al. (2017) without specifying the used n-gram122

level for the ROUGE metric. Since ROUGE can123

be computed for measuring the matching of uni-124

grams, bigrams, or longest common subsequences,125

different settings can significantly affect the perfor-126

mance of the sentence classifier. Some methods127

(Wang et al., 2020; Doan et al., 2022; Zhang et al.,128

2023) followed Liu and Lapata (2019), which se-129

lected sentences that maximize the ROUGE-2 score130

against the gold summary. Other works (Cui et al.,131

2020; Cui and Hu, 2021; Phan et al., 2022) used 132

pre-labeled benchmarks (Xiao and Carenini, 2019), 133

where labels were assigned by greedily optimizing 134

ROUGE-1. Conversely, Cho et al. (2022) selected 135

sentences that maximize the average of ROUGE-1 136

and ROUGE-2 F1-scores. 137

3 GraphLSS 138

Inspired by previous work, we propose a heteroge- 139

neous model using sentences and words as nodes, 140

with four edge types to capture Lexical, Structural, 141

and Semantic features. Our graphs are processed 142

by a heterogeneous GAT (Veličković et al., 2018), 143

followed by a sentence node classifier. 144

Graph Construction We represent a document 145

as an undirected graph G = (V,E), where the node 146

set is defined as V = Vs ∪ Vw, and the edge set 147

E = {Ess, Ens, Ews, Eww}. Here, Vs corresponds 148

to the n sentences in the document, and Vw denotes 149

the set of m unique words of the document, limited 150

to the most pertinent ones in terms of semantic rich- 151

ness, nouns and verbs. Conversely, Ess includes 152

sentence pair edges, weighted by cosine similarity, 153

within a predefined window size to account for lo- 154

cal similarity and prevent dense graphs. Boolean 155

edges Ens indicate the sentence occurrence order 156

in documents. Ews denotes words in sentences via 157

tf-idf weighted edges, and Eww captures weighted 158

edges for word pairs using cosine similarity. 159

Extractive Labels There is no consensus on how 160

to effectively generate extractive ground truth la- 161

bels. We label the data by greedily optimizing the 162

ROUGE-1 score, a simple and intuitive method 163

widely adopted in previous work. This method 164

allows us to label more sentences as relevant com- 165

pared to other strategies. Instead of using the data 166

published by Xiao and Carenini (2019), we prepro- 167

cess and label the datasets from scratch. 168

Adaptive Class Weights Since the extractive 169

ground truth labels for long documents are highly 170

imbalanced, we optimize the GAT model using 171

weighted cross-entropy loss. We assign initial class 172

weights to relevant and irrelevant sentences, em- 173

ploying adaptive class weights for the relevant class 174

and static weights for non-summary sentences as: 175

λi+1 = λi −
(
τ − τ

log(τ)

)
, (1) 176

where τ corresponds to the portion of sentences 177

predicted as relevant for the summary in relation to 178
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the total number of existing sentences.179

4 Experiments180

Datasets We use two publicly available bench-181

marks for long document summarization, PubMed182

and arXiv (Cohan et al., 2018). PubMed comprises183

biomedical scientific papers, while arXiv covers184

various scientific domains. Both datasets contain185

English articles, and are widely used by previous186

work (Table 1). Their statistics and preprocessing187

details are provided in Appendix A. Our data and188

code are available on <anonymized>.189

Comparison Methods For a more detailed com-190

parative analysis with the models that achieved191

the best benchmark results (Topic-GraphSum,192

SSN, and HeterGraphLongSum), we also exe-193

cuted our model using the preprocessed data and194

sentence-level relevance labels provided by Xiao195

and Carenini (2019). Additionally, we include re-196

sults from recent non-graph extractive summarizers197

in Table 1 for reference; Lodoss (Cho et al., 2022)198

learns sentence representations through simulta-199

neous summarization and section segmentation,200

Topic-Hierarchical-Sum (Wang et al., 2024) uses201

local topic information and hierarchical extraction202

modules, and LOCOST (Le Bronnec et al., 2024)203

is an abstractive summarization model based on204

state-space models for conditional text generation.205

Experimental Setup We trained a GAT model206

(Veličković et al., 2018) with 4 attention heads,207

varying the number of hidden layers between 1208

and 2. We applied Dropout after every GAT layer209

with a retention probability of 0.7. The final rep-210

resentation is fed into a sigmoid classifier. We ini-211

tialized word nodes using GloVe Wiki-Gigaword212

300-dim. embeddings (Pennington et al., 2014) and213

pre-trained SBERT (All-MiniLM-L6-v2) embed-214

dings for sentence nodes (Reimers and Gurevych,215

2019). Notably, our word nodes are restricted to the216

top 50,000 most frequent words in the respective217

dataset’s vocabulary. All experiments used a batch218

size of 64 samples and were trained for a maximum219

of 20 epochs using Adam optimization with an ini-220

tial learning rate of 10−3. The training was stopped221

if the validation loss did not improve for 7 con-222

secutive iterations. The objective function of each223

model was to minimize the binary cross-entropy224

loss using class weights, as described in Equation 1225

(more details in Appendix B). All experiments are226

based on PyTorch Geometric and conducted on an227

NVIDIA GeForce RTX 3050. 228

5 Results & Analysis 229

Table 1 presents the results of different models 230

on both datasets. The first section includes graph- 231

based summarization models, including the Oracle 232

results reported in Xiao and Carenini (2019). The 233

second section includes non-graph summarizers 234

as reference, and the third section includes our 235

results. ROUGE is used as the evaluation metric, 236

including ROUGE-1/-2/-L F1-score for measuring 237

the informativeness and fluency of the summaries. 238

Summarization Results GraphLSS significantly 239

outperforms all compared approaches in ROUGE- 240

1/-2/-L scores on PubMed and arXiv, showing effec- 241

tiveness in identifying relevant sentences in highly 242

imbalanced settings (Equation 1). These results 243

are based on our own preprocessing and labeling. 244

Table 1 also shows the Oracle results using our 245

labels, which greatly exceed those achieved with 246

the labels of Xiao and Carenini (2019). Yet, when 247

using those labels, GraphLSS does not achieve the 248

best results, but still remains competitive, particu- 249

larly in terms of ROUGE-L. This means that the 250

summaries generated by GraphLSS closely match 251

the gold summaries in terms of the longest com- 252

mon subsequence. Such results also suggest that 253

GraphLSS, even when trained over previously la- 254

beled data, obtains better results than recently pro- 255

posed non-graph models. Although other graph 256

methods may show better results, they are included 257

for reference only, as they are not directly compa- 258

rable due to the use of different sentence labeling 259

strategies in part requiring extrinsic resources. 260

Preprocessing and Labeling Table 1 shows that 261

ROUGE scores can vary significantly depending 262

not only on the graph construction and model, but 263

also on the strategy used for generating extractive 264

labels. This crucial aspect has been overlooked 265

in related work, which often focuses on ROUGE 266

results without considering whether the correspond- 267

ing methods are using the same labeling approach. 268

Moreover, preprocessing steps prior to label calcu- 269

lation can also affect the results. Although Xiao 270

and Carenini (2019) and our study both aimed to 271

maximize the ROUGE-1 score, our labels differ 272

significantly. Comparable setups are a requirement 273

to accurately assess the advantages of models. 274

GraphLSS Learning Table 2 shows that a two- 275

layer heterogeneous GAT yields better results com- 276
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PubMed arXiv

Model R-1 R-2 R-L R-1 R-2 R-L

Graph-based Strategies

Oracle (Xiao and Carenini, 2019) 55.05 27.48 38.66 53.88 23.05 34.90
Topic-GraphSum (Cui et al., 2020) † 48.85 21.76 35.19 46.05 19.97 33.61
SSN (Cui and Hu, 2021) † 46.73 21.00 34.10 45.03 19.03 32.58
HeterGraphLongSum (Phan et al., 2022) † 48.86 22.63 44.19 47.36 19.11 41.47
MTGNN-SUM (Doan et al., 2022) 48.42 22.26 43.66 46.39 18.58 40.50
HEGEL (Zhang et al., 2022) 47.13 21.00 42.18 46.41 18.17 39.89
CHANGES (Zhang et al., 2023) 46.43 21.17 41.58 45.61 18.02 40.06

Non-graph Strategies

Lodoss (Cho et al., 2022) 49.38 23.89 44.84 48.45 20.72 42.55
Topic-Hierarchical-Sum (Wang et al., 2024) 46.49 20.52 42.06 45.84 19.03 40.36
LOCOST (Le Bronnec et al., 2024) 45.70 20.10 42.00 43.80 17.00 39.70

GraphLSS

- Our Oracle 60.58 36.91 55.32 63.57 30.40 54.10
- GraphLSS + Labels by Xiao and Carenini (2019) † 47.85 21.74 42.22 45.91 18.35 40.07
- GraphLSS + Our labels ⋆51.42 ⋆24.32 ⋆49.48 ⋆55.14 ⋆23.00 ⋆50.83

Table 1: ROUGE F1 summarization results. Scores are obtained from the respective papers. Models marked with †
used sentence-level labels from Xiao and Carenini (2019), making them directly comparable. We highlight the best
results in bold and underline the second-best. GraphLSS results are reported by averaging 3 runs.

pared to a single-layer GAT, indicating the advan-277

tage of message passing across multiple semantic278

units in an extended neighborhood. This applies for279

both datasets. Additionally, previous work has not280

adequately addressed the balance between preci-281

sion and recall, focusing solely on reporting the F1282

score without analyzing the individual values and283

their implications. Our results show that precision284

and recall are similar for the experiments on the285

PubMed dataset, achieving a good match between286

generated summaries and gold summaries for both287

ROUGE-1 and ROUGE-2. In contrast, on the arXiv288

dataset, the recall is significantly higher than pre-289

cision, indicating that while our model retrieves290

valuable information, the generated summaries are291

contaminated with additional text. This effect is292

more pronounced when using two layers for the293

GAT. In such cases, while the precision does not294

improve compared to using only one GAT layer, the295

recall increases considerably. This means that more296

text is correctly retrieved for the summary, but the297

exactness of these summaries remains unchanged.298

Interestingly, this discrepancy is not observed when299

applying GraphLSS to the previously labeled data300

by Xiao and Carenini (2019), where precision and301

recall are balanced. This suggests that the observed302

differences are due to artifacts in the data labeling303

procedure rather than the graph construction pro-304

posed here, or the trained GAT model, emphasizing305

our earlier discussion.306

ROUGE-1 ROUGE-2

Dataset L P R F1 P R F1

PubMed
1 49.75 50.00 49.92 22.61 24.71 23.17
2 52.59 50.11 51.42 23.91 23.82 24.32
2∗ 46.43 49.42 47.85 22.42 21.14 21.74

arXiv
1 45.66 66.68 54.23 17.14 30.20 22.31
2 45.20 71.04 55.14 17.02 35.74 23.00
2∗ 44.88 47.04 45.91 19.96 16.99 18.35

Table 2: GraphLSS precision (P) and recall (R) using
our labels. L indicates the number of GAT layers used,
and the mark ∗ indicates the results obtained by using
data from Xiao and Carenini (2019).

6 Conclusions 307

We introduced GraphLSS, a heterogeneous graph 308

for long document extractive summarization incor- 309

porating lexical, structural, and semantic features. 310

Our experiments on PubMed and arXiv datasets 311

highlight the impact of extractive labels due to their 312

inherent imbalance. GraphLSS demonstrates com- 313

petitiveness with top-performing graph-based meth- 314

ods and outperforms recent non-graph models by 315

employing a greedy labeling strategy and adaptive 316

weights during training. Future work will explore 317

integrating an abstractive summarizer based on our 318

extractive results to potentially enhance summa- 319

rization outcomes. 320

4



Limitations321

While we showed the impact and potential of322

GraphLSS for long document extractive summa-323

rization, there are some points to keep in mind.324

Storing document graphs as a data structure ob-325

tained from the original documents (texts) involves326

significant additional disk usage. Previous strate-327

gies create such structures on the fly while training328

the underlying GNN models, and others opt for329

storing such graphs on disk to speed up model330

training. We follow the latter strategy. Therefore,331

the training time reported does not consider the332

creation of the underlying graphs.333

Furthermore, our proposal was only validated334

on English datasets. Applying GraphLSS to other335

languages may yield significantly different results,336

since pre-trained word and sentence embeddings337

are required for node initialization and thus, train-338

ing the heterogeneous GAT model. Analyzing this339

aspect would be particularly interesting for low-340

resource languages. Additionally, our experiments341

focus on scientific papers. Although they cover342

multiple scientific domains, exploring other kinds343

of long document, e.g., narrative and legal docu-344

ments, is encouraged. Also, additional data collec-345

tions should be analyzed in order to generalize our346

findings to broader domains.347

Ethics Statement348

While extractive summaries are less prone to hal-349

lucinated content, in some instances, they may be350

misleading due to missing context. Another con-351

cern is that of possible bias during the content selec-352

tion. Depending on the graph construction applied,353

a GAT model may favor certain types of content354

over others, such as popular sentences and entities355

with high degrees, as they might receive more atten-356

tion. Thus, special care must be taken when relying357

on summaries to make high-stakes decisions, for358

example in the legal or medical domains.359

Summarizing articles often involves extracting360

information related to trending topics, institutions,361

people, and other entities. Balancing the delivery362

of valuable summaries while respecting the privacy363

of these entities is essential. One strategy to allevi-364

ate such concern is anonymization, which ensures365

that the summary content does not reveal sensitive366

features. In our study, we conduct all experiments367

on publicly available scientific articles, and hence368

have forgone such anonymization.369
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A Datasets 518

For the data prepossessing, we removed instances 519

of empty summaries and instances where the article 520

is shorter than the summarization, and split the 521

documents via NLTK’s sentence tokenizer. 522

Since the sentence tokenizer splits text based 523

on punctuation, this can often result in meaning- 524

less generated sentences. For example, the sen- 525

tence “Neptune masses can be excluded by our 526

limits determinations (fig.1)" results in a head sen- 527

tence Sh =“Neptune masses can be excluded by 528

our limits determinations (fig." and a tail sentence 529

St =“1).". In such cases, we merged tail sentences 530

with the preceding ones to maintain text coherence. 531

B Further Experiment Details 532

Adaptive Class Weights Figure 1 illustrates how 533

the adaptive class weights evolve across epochs 534

during training. Specifically, we update the weights 535

solely for the relevant class (summary sentences), 536

maintaining static weights for the irrelevant class. 537
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PubMed arXiv

#Training 115,776 197,650
#Validation 6,584 6,435
#Testing 6,620 6,439

Avg. # Tokens in doc. 2,768 3,913
Avg. # Tokens in summary 205 203
Avg. # Sentences in doc. 89 133
Avg. # Sentences in summary 8 7

Table 3: Datasets statistics.

Figure 1: Effect of adaptive class weights on PubMed.

Training Time Table 4 shows the average exe-538

cution time for GAT training on GraphLSS, using539

our extractive labels. It also provides the average540

number of nodes and edges for our constructed541

document graphs on each dataset.542

All experiments are based on PyTorch Geomet-543

ric and conducted on an NVIDIA GeForce RTX544

3050.545

PubMed arXiv

L Nodes Edges Time Nodes Edges Time

1
265.4 365.6

1,193 min
299.2 1146.0

1,365 min
2 1,566 min 1,912 min

Table 4: Average execution time for training. L indicates
the number of GAT layers used.

Libraries The experiments were conducted us-546

ing the following libraries:547

Library Version

nltk 3.8.1
pytorch 2.2.1
transformers 4.38.2
rouge 1.0.1
scikit-learn 1.3.0
torchmetrics 1.2.1
torch_geometric 2.5.0

Table 5: Libraries and versions.

7


	Introduction
	Previous Work
	GraphLSS
	Experiments
	Results & Analysis
	Conclusions
	Datasets
	Further Experiment Details

