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Abstract

We introduce a new family of techniques to post-process (“wrap") a black-box
classifier in order to reduce its bias. Our technique builds on the recent analysis
of improper loss functions whose optimization can correct any fwist in prediction,
unfairness being treated as a twist. In the post-processing, we learn a wrapper
function which we define as an a-tree, which modifies the prediction. We provide
two generic boosting algorithms to learn a-trees. We show that our modification
has appealing properties in terms of composition of a-trees, generalization, in-
terpretability, and KL divergence between modified and original predictions. We
exemplify the use of our technique in three fairness notions: conditional value-
at-risk, equality of opportunity, and statistical parity; and provide experiments on
several readily available datasets.

1 Introduction

The social impact of Machine Learning (ML) has seen a dramatic increase over the past decade
— enough so that the bias of model outputs must be accounted for alongside accuracy [, |14, 35].
Considering the various number of fairness targets [20]] and the energy and CO2 footprint of ML
[19, 28], the combinatorics of training accurate and fair models is non-trivial. This is especially so
given the inherit incompatibilities of fairness constraints [17] and the underlying tension of satisfying
fairness whilst maintaining accuracy. One trend in the field "decouples" the two constraints by
post-processing pretrained (accurate) models to achieve fairer outputs [35]]. Post-processing may be
the only option if we have no access to the model’s training data / algorithm / hyperparameters (etc.).

Within the post-processing approach, three trends have emerged: learning a new fair model close to
the black-box, tweaking the output subject to fairness constraints, and exploiting sets of classifiers. If
the task is class probability estimation [24]], the estimated black-box is an accurate but potentially
unfair posterior n, : X — [0, 1] which neither can be opened nor trained further. The goal is then to
learn a fair posterior 1; from it. In addition to the black-box constraint, a number of desiderata can
be considered for post-processing. Ideally in correcting a black-box, we would want the approach
to have (flexibility) in satisfying substantially different fairness criteria, (proximity) of the learnt
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Figure 1: Summary of using different a-correction wrappers to obtain different fairness criteria
guarantees. See Sections [5]and [6] for full details on guarantees.
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1; to the original 1,, and meaningful (composability) properties if, e.g., Ny was later treated as a
new black-box to be post-processed. To facilitate a specific style of correction, we may also want
the representation of the correction to facilitate (explainability) for auditing the post-processing
procedure and bounds on the increased model (complexity) of the final classifier n;. In training the
correction, algorithmically we would also want guarantees for (convergence).

Our contribution satisfies the aforementioned desiderata in its correction, representation, and algo-
rithmic guarantees. By leveraging recent theory in improper loss functions, we utilize a universal
correction of black-box posteriors defined by the a-loss. This allows for a flexible correction which
yields convenient divergence bounds between 1; and 1, a convenient form for the Rademacher com-
plexity of the class of n;, and a simple composability property. Representation-wise, the corrections
we learn are easy-to-interpret tree-shaped functions that we define as a-trees. Algorithmically speak-
ing, we provide two formal boosting algorithms to learn a-trees building upon seminal results [[15].
We demonstrate our algorithm for conditional value-at-risk (CVAR) [32], equality of opportunity
(EOO), and statistical parity; as depicted in Fig.[I. Experiments are provided against five baselines
on readily available datasets. All proofs and more experiments are in an Appendix denoted as SI.

2 Related Work

Post-processing models to achieve fairness is one of three different categories in tackling the ML
+ fairness challenge [35, Section 6.2]. Although other notions exist, e.g. individual fairness [[12],
we limit our analysis to group fairness, which concerns itself with ensuring that statistics of sub-
populations are similar. We further segment this cluster into three subsets: (I) approaches learning a
new model with two constraints: being close to the pretrained model and being fair [[16,122}|31}134]; (IT)
approaches biasing the output of the pretrained model at classification time, modifying observations
for fairer outcomes [[1, 114} 18} 21,133}|34]; and (IIT) techniques consisting of exploiting sets of models
to achieve fairness [[L1]]. None of these approaches formulates substantial guarantees on all of the
desiderata in the introduction. Some bring contributions with the (flexibility) of being applicable to
more than two fairness notions [7} 131, [11, 34]. Two of which provide the convenience of analytic
conditions on new fairness notions to fit in the approach [31l [11]. However, for all of them, the
algorithmic price-tag is unclear [7, [11] or heavily depends on convex optimization routines [31].
[LL}34] provide strong guarantees regarding (proximity), w.r.t. consistency and generalization. To
our knowledge, our approach of correcting prediction unfairness through improper losses [29] is new.

3 Setting and Motivating Example

Let X be a domain of observations, Y = {—1,1} be labels and S is a sensitive attribute in . We
assume that the modalities of .S induce a partition of X. We further let D denote the joint measure
over X x Y, M denote the marginal measure over X, and m = P[Y = 1] being the prior. We denote
conditioning of M through a subscript, e.g., M for s € S denotes M conditioned on a sensitive
attribute subgroup S = s. We leave the o-algebra to be implicit (which is assumed to be the same
everywhere). As is often assumed in ML, sampling is i.i.d.; we make no notational distinction
between empirical and true measures to simplify exposition — most of our results apply for both.

Consider the task of learning a function 1 € [0, 1]* to estimate the true posterior n*(z) = P[Y =
1]X = ] in binary classification. For instance, we may want to predict the probability of hiring an
applicant for a company. Given the pointwise loss L (1(X),n*(X)), which determines the loss of a
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Figure 2: Improving CVAR for a toy hiring task with a-trees. An a-tree (left) transforms the posterior
via (3) (middle); resulting in an input-dependent fairness correction of the posterior 1, (right).

single example, the (fotal) risk is defined as
LMm;M,n*) = Exon [L((X),1n"(X))] (1)

(with slight abuse of notation). A low risk corresponds to good classification performance. In this
paper, we consider the risk determined by the log-loss:

L(n;M,n*) = B M*(X) - —logn(X) + (1 —=m*(X)) - —log(1 —n(X))] . (2)

We now consider a simple fairness problem, centered around the example of Fig.[2| Suppose that we
are given a black-box 1, which predicts hiring probabilities without considering fairness. Although
the minimized total risk of (1) might be small, there can be discrepancies in the performance between
different subgroups. Instead of considering the total risk, the predictive performance of specific
subgroups can be examined through the subgroup risk L(n,; M,,n*), for a subgroup s € S. For
instance, we might want to examine the discrepancy of subgroup risks among the age of applications.
A natural fairness task would be to improve the worst performing subgroup, say s, € S.

To post-process unfairness, we want to learn a function o : X — R which “wraps” 1, and lowers the
worst subgroup risk. We propose the following “wrapping”, inspired by improper loss functions [29]

. Nu(2)*™

@) = e o m@ee < 0 @
Notice when a(x) = 1 the resulting posterior is the original 11, (). Importantly, (3] is flexible enough
to transform any input black-box 1), to any needed 1);. Looking at Fig. [2] (left and middle), intuitively
by setting different () values, (yellow, o > 1), “dampens” (blue, 0 < o < 1), or
“polarity reverses” (red, & < 0) the original posterior 1,. To improve fairness, we need a combination
of these corrections to accommodate different subsets of the input domain (thus learning «(.) as a
function). We specifically learn «(.) to be a tree structure, which allows an interpretable correction
alongside other formal properties (Section [3).

Definition 1. An a-tree is a rooted, directed binary tree, with internal nodes labeled with observation
variables. Outgoing arcs are labeled with tests over the nodes’ variable. Leaves are real valued.
A(T) is the leafset of a-tree Y. An a-tree induces a correction over posteriors as per @) with a = Y.

Our fairness problem is now learning an a-tree 1 which provides a corresponding correction that
improves the worst subgroup risk, i.e., L(1,; M, ,n*) > L(ng; M, ,n*). The entirety of Fig. |Z
presents such a process. In this hiring task example, the ground truth hiring rate is constant w.r:f.
the inputs, n*(x) = 0.7. Despite this, the black-box 1,(.) unfairly depends on the age of applicants
and incorrectly depends on a noise feature Z. By choosing a(x) as per Fig. E(left), the correction
changes 1, to be closer to *, improving the risk of the worst subgroup (alongside the other subgroup
in this example): the worse-case loss improves from 1.09 to 0.62.

Although the fairness criteria discussed might be considered simple, the procedure of iteratively
minimizing the worse performing subgroup can be used to improve the conditional value-at-risk
(lower is better) fairness criteria [32]:

CVARg(ne) = Es[L(nsMs,n®) | L(ngs Ms,n™) > Lg], “4)



Algorithm 1 TopDOWN (M,,n,, Yo, B)
Input mixture M,, posterior 1, a-tree Yo, B € R ,;

Step 1: T « Yo; .// N
Step 2 : while stopping condition not met do \. = O Q
Step 2.1 : pick leaf \* € A(Y); // i.e. heaviest leaf To Fairness criteria
Step 2.2 : h* < argmingeqc H(Y(A*, h); My, 1,); Ao orom o] [ag]
Step 2.3 : YT < Y(A*, h*); // split using h* at A\* i
Step 3 : label leaves VA € A(T):
L (1+eMy,n,) Figure 3: Picking Y a stump on the
T =1 ( 2 » [ a-value (3) fairness attribute allows to finely tune

growths of sub-a-trees to the fairness
Output T; criterion at hand.

where Ly is the risk value for the 8 quantile among subgroups, which is user-defined. The difference
is that CVAR 3 not only considers the worse case subgroup, but all subgroups above the Lg risk
value (let these subgroups be 8z). One can simply iteratively improve all s € 83, as done in the
example of Fig.[2| Indeed, in the example, CVAR 3 with 3 = 0.9 improves from 1.09 to 0.62 (which
is equivalent to worse-case loss in this case).

4 Growing Alpha-Trees

We now introduce the procedure to grow an a-tree via a boosting algorithm TOPDOWN, Algorithm|T}
ToPDOWN can be thought of as a generalization of the standard decision tree induction used for
classification [15]. We first introduce relevant concepts from decision tree induction to explain
TorPDOWN. We contextualize TOPDOWN through its application in improving the CVAR criteria.
We first introduce a technical assumption for the black-box 1, to be post-processed:

Assumption 1. The black-box prediction is bounded away from the extremes: 3B > 0 such that
Im(n,) €I = [(1+exp(B)~" (1+exp(=B))"'] (as.). (6)

Compliance with Assumption [I]can be done by clipping the black-box’s output with a user-fixed B
or making sure it is calibrated and then finding B.

Entropy-based updates for fairness: An important component in standard decision tree induction
is the edge function, which measures the label purity (proportion of positive examples) of a decision
tree node. We introduce a generalization which considers the alignment purity of a black-box.
Definition 2. Let t(u) = log(u/(1 — u)) the logit of u € (0,1) and {(u) = (u)/B a normalization
which satisfies 1(1) = [—1, 1]. The alignment edge of M, and 1, is defined as,

e(Mtvnl) = E(X,Y)ND( [Yz(nu(x))} ) (7)
where D, is the joint measure induced by M, and .. With Assumption|l} e(M,n,) € [-1,1].

By replacing the normalized logit t with a constant 1, (7)) reduces to a measure of label purity used
in regular classification. In our case, measures how well the black-box n, “aligns” with the
true labels Y through the logit. This also takes into account the “confidence” of the black-box’s
predictions: for a high alignment purity, predictions not only need be correct but also to be highly
confident (1, close to the endpoints of I). Similar to how the splits of a decision tree classifier are
determined by the entropy of a tree’s label purity, an a-tree splits based on its alignment entropy.

Definition 3. Given an a-tree Y with leafset A, when Assumption|[l]is satisfied, the entropy of Y is:

H(Y;Mon) = ExMy [H1 (A M) ®)
where H(q) = —qlog(q) — (1 —¢q)log(1 — q), Hi(A; My, ) = H((1 + e(My,n,))/2), My is M,
conditioned to leaf A € A(Y), and My (v is a measure induced on A(Y) by leaf weights on M,.
Theorem 1. For any M,,n,, let Y’s leaves follow (3). Then L(ng; M,,m,) < H(Y; M,,n,).

Algorithm [T can now be explained by repeatedly leveraging Theorem[I. Suppose that we have a
hypothesis set of possible splits H to grow our a-tree. Denote T (A, h) as the a-tree T split at leaf



A € A(Y) using test h. The inner loop within Step 2 is the process of finding the best possible leaf
splits which helps to minimize the a-tree’s entropy and to reduce the risk as per Theorem[I. The
a-values of (5)) calculated in step 3 are those used to ensure Theorem[I|holds. By setting M, - M
and 1, < N*, Algorithm|l improves CVAR by iteratively improving the a-tree’s worst subgroup
entropy H(Y'; M, ,n*), which as a surrogate improves the worst subgroup risk L (n,; M;_,n*). To
accommodate for different 5 quantiles values for CVAR, TOPDOWN can be run repeatedly (replacing
the initial input tree Y) to progressively improve all s € 85. Hence, to reduce CVAR, we basically

[ use TOPDOWN with M, <— M; (s € 8) and n, < 1™. (CVAR)]

As alluded to by the notation used to instantiate TOPDOWN, the inputs of the algorithm can be
instantiated to optimize for fairness criteria beyond CVAR. This is discussed in Section[6. In the
usual ML setting, M, 1, can be estimated from a training sample (see Section [7).

Initialization: In the procedure of improving CVAR, the worst subgroups can be iteratively
improved. However, we also need to make sure that improvement of a subgroup does not adversely
affect another subgroup (which could potentially harm CVAR instead). As such, we introduce an
additional structure to the a-tree T by tweaking the initial tree structure Y used in TOPDOWN.
Since the fairness attribute S partitions the dataset, a convenient choice of initializing the a-tree is to
split by the subgroup modalities, as depicted in Fig.[3, As such, we grow separate sub-a-trees for
each of the sensitive modalities. For CVAR, this allows the subgroup risk of individual subgroups to
be tweaked without adversely affecting other subgroups.

5 Formal Properties

We move to the formal properties of our approach. We first detail the background of improper loss
functions which motivates our correction given in Section [3| We then present the formal properties of
this correction. The useful properties of having «(.) represented by a tree structure is then discussed.
Finally, we present a convergence analysis of Algorithm |l{and an alternative boosting scheme.

Can n; as per (3) correct (any) potential unfairness? Yes. In short, this comes from recent theory
in improper loss functions for class probability estimation (CPE) [29]. We are interested in the
pointwise minimizer (eventually set-valued) of:

tem) = arg inf L(u,m). 9

u€[0,1]

Dubbed as the Bayes tilted estimate of a loss ¢ [29], t,(n) is the set of optimal “responses” given
a ground truth (pointwise) posterior 1. Common loss functions are proper: the ground truth value
N € t¢(n) is an optimal response. However, in the case where 1 cannot be trusted (for instance when
it is unfair), we may not want to default to imitating n1. In addition we also want to make sure that
the Bayes tilted estimate can fit to any desired (in our context, fair) target. The so-called a-loss /¢,
which generalizes the (proper) log-loss, is a good candidate parameterized by a variable «. Its Bayes
tilted estimate is the pointwise version of (3)), for & ¢ {0, 00} andn # 1/2:

tiem) = M/ + 1@ -1)")}. (10)
Importantly for a-losses, for any n ¢ {0,1/2,1} and any 1’ € (0, 1), there exists « € R in such
that tso () = {n’}. This property, called twist-properness [29], allows for any pointwise correction.
By extending « to a function (of & € X, as per (3)), twist-properness ensures that given an initial
unfair posterior an appropriately learned «(.) can correct any unfairness. This allows for (flexible)
fairness post-processing — different « functions can be learned for different criteria (i.e., Fig.[I).

Why use the Log-Loss? As per Section |3, we minimize the log-loss. We choose the log-loss for
two reasons: @ it is strictly proper and so minimizing L (1¢; M,,1,) (i.e., via TOPDOWN) “pushes”
1 towards target 1; and @ it is the a-loss for & = 1, so we are guaranteed that for the minimizer
N — Ny <= « — 1. With alternative (i.e. non-strictly proper) loss, we might have only “=-"".

Do we have guarantees on some proximity of 1; with respect ton,? Yes, with light assumptions.
We examine the (proximity) of black-box and post-processed posteriors with the KL divergence [2]:

KL M) = Egxv)wp, [log (dD.((X,Y)) /dDi((X,Y)))] . (11)
where D, Dy are the product measures defined from M and their respective posteriors. To bound the
proximity (11), we present setting (S1).



(S1) Assumption|[I]holds for some 0 < B < 3 and function « satisfies |a(z) — 1| < 1/B (a.s.).

This setting lead to the following data independent proximity bound.
Theorem 2. For any M, (S1) implies KL(M,,ni; M) < 72/(6 - (2 + exp(B) + exp(—B))).

As an example, fix B = 3 for (S1). In this case, we want «(.) € [2/3,4/3] (a.s.) which is a
reasonable sized interval centered at 1. The clamped black-box posterior’s interval is approximately
[0.04,0.96], which is quite flexible and the distortion is upperbounded as KL(n,,1; M) < 7.5F — 2.

Is the composition of transformations meaningful? Yes. The analytical form in (3) brings the
following easy-to-check (composability) property.

Lemma 1. The composition of any two wrapping transformations 1, \% s ,‘1_; n; following is
equivalent to the single transformation n, a,‘_”;’ ;.

This gives an invertibility condition — wrapping 1; with o’ = 1/« recovers the original black-box 1,,.

Given some capacity parameter for n,, can we easily compute that of 11;? Yes, e.g., for decision
trees. Such a question is particularly relevant for generalization. As we are using the log-loss (2)),
a relevant capacity notion to assess the uniform convergence of risk minimization for the whole
wrapped model is the Rademacher (complexity) [3]. We examine the following set of functions:

:H:f = {T]f : nf(m) given by with O, Ty V(C‘hﬂu)} ) (12)

where we assume known the set of functions from which 1, was trained. We now assume we have
a m-training sample 8 = {(x;,y;) ~ D} ;. The empirical Rademacher complexity of a set of
functions H from X to R, Rs (H) = E, supj,cqc Ei[o;h(x;)] (sampling uniform with o; € {—1,1}),
is a capacity parameter that yields efficient control of uniform convergence when the loss used is
Lipschitz [3, Theorem 7], which is the case of the log-loss. To see how the a-tree affects the
Rademacher complexity of classification using 1; instead of 1, suppose real-valued prediction based
on 1, is achieved via logit mapping, t o 1, (12). Such mappings are common for decision trees [26].

Lemma 2. Suppose {n,} is the set of decision trees of depth < d and denote Rg(DT(d)) the
empirical Rademacher complexity of decision trees of depth < d [3]] and d’ the maximum depth
allowed for a-trees. Then we have for H; in (12): Rs(H;) < Rs(DT(d + d')).

The proof is straightforward once we remark that elements in J; can be represented as decision trees,
where we plug at each leaf of 1, a copy of the a-tree Y.

Does Algorithm|1|have any convergence properties? Yes, it is a boosting algorithm. Following
a similar blueprint to classical decision tree induction, it comes with no surprise that TOPDOWN can
achieve boosting compliant convergence. To show that TOPDOWN is a boosting algorithm, we need
a Weak Hypothesis Assumption (WHA ), which postulates informally that each chosen split brings a
small edge over random splits for a tailored distribution.

Definition 4. Ler A € A(Y) and D,y be the product measure on X x Y conditioned on \. The

balanced product measure D, at leaf X is defined as (z = (x,y) for short):

1—e(Mx,n0) - yi(nu(z))
1- e(M)\vn()z

D:A(z) -Dix(2). (13)

We check that f A\ dD/ » = 1 because of Def. [2l Our balanced distribution is named after [15]’s: ours
indeed generalizes theirs. The key difference comes from the change in setting, where we consider
the alignment purity of a leaf and not its label purity. The “fairness-free case” where i(.) is replaced
by constant 1 yields the original balanced distribution [15]. We now state our WHA.

Assumption 2. Let h : X — Y be the function splitting leaf \. Fory > 0, then h y-witnesses the
Weak Hypothesis Assumption (WHA) at \ iff

M| E [Yim.X) AX)]|>y; @eMyn)- E [(1-Pm(X))-h(X)] <0
(X,Y)~D{, (X,Y)~Drx

Intuitively, (i) gives a condition on the split h’s correlation with unfair posterior 1, agreement
with labels and (ii) does the same for the confidence of 1, predictions. Similarly to the balanced
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Figure 4: Left: Difference between the per-leaf bounds on risk L (n,; M, n,) using (8) and Theorem
(conservative scoring) and (audacious scoring). Details in the proof of Lemma[3. Right: A
representation of the (p, §)-pushup of n*, where n(p) = infn*(X,,) < 1/2 (Def. [A). All posteriors in
[n(p),1/2 + 6] are mapped to 1/2 + 4; others do not change. New posterior 1y 5 eventually reduces
the accuracy of classification for observations whose posterior lands in the thick red interval (z-axis).

distribution, in the fairness-free case where we only care about the label purity of splits, the WHA
simplified to that of [[15]’s — i.e., only (i) matters. A further discussion on our balanced distribution
and WHA is in the SI, Section [[I} We now state TOPDOWN’s boosting compliant (convergence).

Theorem 3. Suppose (a) Assumption[I|holds, (b) we pick the heaviest leaf to split at each iteration
in Step 2.1 of TOPDOWN and (c) 3y > 0 such that each split h* (Step 2.2) in Y y-witnesses the
WHA. Then there exists a constant ¢ > 0 such that Ve > 0, if the number of leaves of Y satisfies

|A(T)| > (1/5)01°g(§)/y2, then n; crafted from (3) using TOPDOWN’s T achieves L(1;; M, 1) < e.
Are there alternative ways of growing a-trees? Yes. Let us call conservative the scoring scheme

in (3). There is an alternative scoring scheme, which can lead to substantially larger corrections in
absolute values, hence the naming, and yields better entropic bounds for the a-tree.

Definition 5. For any mixture M, and posteriors 1,1, let e (M, 1,) and e~ (M,,1,) be defined by

e (M,n) = Exv)up, max{0, £Yi(n,(X))}]. (14)
The audacious scoring schemes at the leaves of the a-tree replaces (5) in Step 3 by:
(M
0 = (e
e+(M>\7nl) + e (M)w nt)

Theorem 4. Suppose Assumption|l holds and let Ho(q) = H(q)/log 2 (€ [0,1]), H being defined
in Definition E] For any leaf A € A(Y), denote for short:

> , VA e A(Y).

+

Ho (A M) = log(2) - <1 +(ef +ey)- (H2 (ﬁ) - 1)) :

ey te,
where let €4 = e®(My, ), Vb € {+, —}. Using audacious scoring, we get instead of Theorem lll
L(nﬁ MnTh) < ]EANMA(T) [HZ()\; Mnﬂt)] . (15)

While upperbounds in Theorem [I]and Theorem 4] may look incomparable, it takes a simple argument
to show that is never worse and can be much tighter.

Lemma 3. Va-tree T, ExMy [Ho (A M, 1)] < H(T; My, ny).

It thus comes at no surprise that using the audacious scoring also results in a boosting result for
TOPDOWN guaranteeing the same rates as in Theorem 3] It also takes a simple picture to show that
the per-leaf slack in Lemma|[3 can be substantial, a slack which can be represented using a simple
picture, see Figure ] (left), following from the use of Jensen’s inequality in the Lemma’s proof.

As audacious scoring is better boosting-wise, is conservative scoring useful? Yes. If we only
cared about accuracy, we would barely have any reason to use the conservative correction. Even
thinking about generalization, the Rademacher complexity of decision trees is a function of their
depth so faster the convergence, the better [3, Section 4.1]. Adding fairness substantially changes the
picture: some constraints, like equality of opportunity (Section[6) can antagonize accuracy to some
extent. In such a case, using the conservative correction can keep posteriors 1, and 1, close enough
(Theorem 2)) so that fairness can be achieved without substantial sacrifice on accuracy.



6 Fairness and Societal Considerations

In this section, we present the fairness guarantees TOPDOWN can achieve. In particular, we provide a
discussion about how Theorem [3|can guarantee minimization of the CVAR criteria. Furthermore, we
provide alternative inputs to TOPDOWN which allows for EOO to be targeted as a fairness criteria. In
the SI Section [lI} we further present a treatment of statistical parity. Lastly, we discuss how using
a-trees provides explainable corrections and how utilization of the sensitive attribute (as per Fig. [3)
can be circumvented.

Guarantees on CVaR: As discussed in previous sections, one way to improve the CVAR fairness
criteria (as per (4)) is to focus optimization on the worst treated subgroups. Given a specified quantile
group 3 and the set of worse subgroups 83, we can repeat until CVAR (1)) gets below a
threshold or (more specifically) its worst tread group gets a risk below a threshold (i.e., a stopping
criterion). Importantly, TheoremEprovides a guarantee: to ensure CVARg is below €, we simply
need to boost for |S| times the tree size bound [A(Y)| given in Theorem 3]

Guarantees on EOO: EOO requires to smooth discrimination within an “advantaged” group,
modeled by the label Y = 1 [14]]. We say that 1; achieves e-equality of opportunity iff a mapping h
of n; to Y (e.g. using the sign of its logit t) satisfies

max XEPPS [(X) =1] — ggleps (X)) =1] < ¢ (16)
where P, is the positive observations’ measure conditioned to value S = s for the sensitive attribute.
It is clear that EOO can be antagonistic to accuracy: the rate of advantage in the data D may not be
equal among the subgroups. As such, unlike CVAR, we do not want to target the Bayes posterior
1. ¢ n* for EOO. Instead, we target a skewed posterior which aims to improve the least advantaged
subgroup, i.e., increasing s° € argminges Pxp, [h:(X) = 1]. Our strategy consists of picking a
target posterior which skews part of the original 1* to be more advantaged, thus reducing the LHS of
until is satisﬁe For this, we create a (p, 6)-pushup of n*, defined in SI Appendix

Fig. [ (right) presents an example of a pushup map. Notice that the pushup only changes the predicted
probability of example which do not have a “confident prediction” (the interval [n(p),1/2 + J]).
Intuitively, p controls how many examples are corrected and § controls how much the correction
“pushes up” advantage, further discussion in SI Appendix [[. We then run TOPDOWN using as
mixture the positive measure conditioned to S = s° and p = Px.p_. [u(X) = 1] +¢/(K —1),0 =
Ke/(K — 1), with K > 1 user-fixed. Thus, we do

[ Use TOPDOWN with M, <= P and n, <=1 5 . (EOO) ]

Theorem 5. If TOPDOWN is run until L(ng; M,,1,) < (¢%/2) + Exom, [HM(X))], then after the
run we observe Px..p_, [h(X) = 1] = Pxp_o [1e(X) =1] <e.

In the full context of EOQ, in the optimization we should not wait to get the bound on L (n¢; M,, 11,).
Rather, we should make sure (a) we update arg minge s Px..p, [2:(X) = 1] (and thus s°) after each
split in the a-tree and (b) we keep arg maxscs Px.wp, [h:(X) = 1] as is, to prevent switching targets
and eventually composing pushup transformations for the same S = s°, which would not necessarily
comply with our theory. Notably, the guarantee presented in Theorem [5 depends on the mapping
h¢ and not the direct posterior 1, as typically considered [[14]. When taking a threshold (sign of the
logit), h¢ can be interpreted as forcing the original posterior to be extreme values of O or 1.

Unlike the CVAR case, EOO (as per (17), SI) requires an explicit approximation of n*. In practice,
we find that taking a simple approximation of n* still can yield fairness gains. However, if one does
not want to make such an approximation, one can adapt the statistical parity approach (detailed in SI,
Section[[I). Similarly, if wants to consider the typical EOO definitions depending on posterior values,
the target measure can be replaced (i.e., swapping measure M, with the positive examples P).

Explainability: a-trees using the initialization proposed in Section |4 (and Fig. [3) allows for
(explainability) properties similar to that of decision tree classifiers. Fixing a sensitive attribute

'If we instead reduce arg maxses Px~p, [h(X) = 1] we get a symmetric strategy. The application informs
which to use: if positive class implies money spending (e.g. loan prediction), then our strategy implies spending
more money; while the latter aims to reduce money lent to achieve fairness.
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Figure 5: ACS 2015 with Binary Sensitive Attribute and Random Forest Black-box: Evaluation
of TOPDOWN over boosting iterations (x-axis) for different fairness criteria. ‘c’ on the x-axis denotes
the clipped black-box. ‘x’ denote when a subgroup’s a-tree is initiated (over any fold). The shade
denotes =+ a standard deviation from the mean, this disappears when folds have early stopping.

S = s, the corresponding sub-a-tree T can be examined to scrutinize the correction done for the
corresponding subgroup. If the splits of the a-tree are simple, similarly to standard decision tree
classifiers, corresponding partitions of the input domain can be examined. Furthermore, the type of
corrections can also be examined, as discussed in Section [3; where corrections can be classified as

CLINT3

“sharpening”, “dampening”, or “polarity flipping” depending on the leaves’ a-values.

Usage of sensitive attribute: Post-processing methods have been flagged in the context of fair
classification for the fact that they require explicit access to the sensitive feature at classification time
135l § 6.2.3]. Our basic approach to the induction of a-trees falls in this category (Fig. [3), but there
is a simple way to mask the use of the sensitive attribute and the polarity of disparate treatment it
induces: it consists in first inducing a decision tree to predict the sensitive feature based on the other
features and use this decision tree as an alternative initialization to naively splitting on subgroups.
We thus also redefine sensitive groups based on this decision tree — thus alleviating the need to use
the sensitive attribute in the a-tree. The use of proxy sensitive attributes in a similar manner has seen
ample use in a various domain such as health care [6,15] and finance [13]. We however note that its
application in post-process and a-trees may not be appropriate across all domains [8].

7 Experiments

To evaluate TOPDOW we consider three datasets presenting a range of different size / feature
types, Bank and German Credit (preprocessed by AIF360 [4]) and the American Community Survey
(ACS) dataset preprocessed by Folktable [9]. The SI (pg @) presents all results at length
(including considerations on proxy sensitive attributes, distribution shift, and interpretability), along
with the different black-boxes considered (random forests and neural nets). We concentrate in the
Section on the ACS dataset for income prediction in the state of CA and evaluate TOPDOWN’s
application to various fairness criteria (as per Section [6 and SI pg[I5) with Random Forests (RF).
For these experiments, we consider age as a binary sensitive attribute with a bin split at 25 (a trinary
modality is deferred to the SI). For the black-box, we consider a clipped (Assumption[T|with B = 1)
random forest (RF) from scikit-learn calibrated using Platt’s method [23]]. The RF consists of
an ensemble of 50 decision trees with a maximum depth of 4 and a random selection of 10% of the
training samples per decision tree. Data is split into 3 subsets for black-box training, post-processing
training, and testing; consisting of 40:40:20 splits in 5 fold cross validation. For EOO, we utilize an
out-of-the-box Gaussian Naive Bayes classifier from scikit-learn to approximate 1*.

Multiple fairness criteria We evaluate TOPDOWN for CVAR, equality of opportunity EOO, and
statistical parity SP. The complete treatment of SP is pushed to SI (Sections|II} [XTI). SP aims to make
subgroup’s expected posteriors similar and is popular in a various post-processing methods [31} [1]].
The definition can be found in SI (pg[I5) along with the strategy used in TOPDOWN. Conservative
and audacious updates rules are also tested. For each of these TOPDOWN configurations, we boost
for 32 iterations. The initial a-tree is initialized as in Fig.

We compare against 5 baseline approaches. For CVAR we consider the in-processing approach
(INCVAR) presented in [32]. For EOO, we consider a derived predictor (DEREOO) [14)]. Our

*Implementation public at: https://github.com/alexandersoen/alpha-tree-fair-wrappers
*Public at: https://github.com/zykls/folktables
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SP baselines include an optimized score transformation approach (OST) [31]; a derived predictor
modified for SP (DERSP) [14]; and a randomized threshold optimizer approach (RTO) [L]. We
denote the clipped black-box as BBOX. The experiments for CVAR and EOO are summarized in
Fig.[5; the full plot with SP is presented at SI Fig.[I0. For clarity we only plot the baselines and
wrappers which are directly associated to each fairness criteria. We also plot the posterior mean
difference between the data and debiased posteriors MD (0/1 loss) to examine the effects on accuracy.

For CVAR, both conservative and audacious approaches decreases CVAR, which results in better
CVAR values than both the original BBOX and in-processing baseline INCVAR — which is good news
since INCVAR directly optimizes CVAR. We note that there are cases in which the in-processing
approach is better than ours (trinary sensitive attributes in SI), but this is expected given INCVAR’s
optimization goal. Interestingly, the audacious update is superior in both CVAR and MD than the
conservative update. This is also consistent for trinary sensitive attributes. Thus, the audacious
update is desirable when optimizing CVAR. Another observation is that only one sensitive attribute
subgroup’s a-tree is initialized (only one ‘x’). This indicates that after 32 iterations the worse case
subgroup does not change in the binary case.

For EOO, there is a huge difference between conservative and audacious updates as the former gets
to the most fair outcomes of all baselines. Even if we used early stopping or pruning of the a-tree
(taking an earlier iterations) the audacious update would fail at producing outcomes as fair as its
conservative counterpart. Furthermore, the audacious update comes with a significant degradation of
accuracy MD. Furthermore, by looking at the iterations in which subgroup a-trees are initialized, the
audacious update causes large (primarily bad) jumps in performance. This rejoins our remark on the
interest of having a conservative update in Section[5] When compared to DEREOO, we find that the
conservative TOPDOWN approach produces lower EOO. However, DEREOO tend to have better
accuracy scores in MD. These observations are consistent with the trinary sensitive attribute (SI).

For SP, we can observe fairness results that can be on par with contenders for the conservative
update, but observe a substantial degradation of MD. This, we believe, follows from a simple plug-in
instantiation of M, 1), for the fairness notion in SI Section [[I} resulting in potentially harsh updates. In
SI (pg[13)), we discuss an alternative approach using ties with optimal transport.

8 Limitations and Conclusion

Given the context of fairness, it is important to highlight possible limitations of our approach and
the potential social harm from such misuse. We highlight two of these for our TOPDOWN approach.
Firstly, our approach has shown to have failure cases in small data cases. This can be seen in the
experiments on German Credit dataset (SI, Section [XIIIJXV). This, we believe, has a formal basis
in our approach. For instances, EOO requires accurate data posterior estimation which may be
difficult in small data regimes. Secondly, TOPDOWN is of course not unilaterally better than all
other post-processing fairness approaches — there is No Free Lunch. As such, we do not claim that
our instantiation of TOPDOWN is optimal in CVAR, EOO, or SP. However, considering that such
different fairness models instantiated in the same algorithm can lead to competitive results with
the respective state of the art, the avenue for improved instantiations or accurate extensions to new
fairness constraints appears promising. We leave these for future work.
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