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Abstract

Matrix trace estimation is ubiquitous in machine learning applications and has tra-
ditionally relied on Hutchinson’s method, which requires O(log(1/δ)/ε2) matrix-
vector product queries to achieve a (1± ε)-multiplicative approximation to tr(A)
with failure probability δ on positive-semidefinite input matrices A. Recently, the
Hutch++ algorithm was proposed, which reduces the number of matrix-vector
queries from O(1/ε2) to the optimal O(1/ε), and the algorithm succeeds with
constant probability. However, in the high probability setting, the non-adaptive
Hutch++ algorithm suffers an extraO(

√
log(1/δ)) multiplicative factor in its query

complexity. Non-adaptive methods are important, as they correspond to sketching
algorithms, which are mergeable, highly parallelizable, and provide low-memory
streaming algorithms as well as low-communication distributed protocols. In this
work, we close the gap between non-adaptive and adaptive algorithms, showing that
even non-adaptive algorithms can achieve O(

√
log(1/δ)/ε + log(1/δ)) matrix-

vector products. In addition, we prove matching lower bounds demonstrating that,
up to a log log(1/δ) factor, no further improvement in the dependence on δ or ε is
possible by any non-adaptive algorithm. Finally, our experiments demonstrate the
superior performance of our sketch over the adaptive Hutch++ algorithm, which is
less parallelizable, as well as over the non-adaptive Hutchinson’s method.

1 Introduction

The problem of implicit matrix trace estimation arises naturally in a wide range of applications [1].
For example, during the training of Gaussian Process, a popular non-parametric kernel-based method,
the calculation of the marginal log-likelihood contains a heavy-computation term, i.e., the log
determinant of the covariance matrix, log(det(K)), where K ∈ Rn×n, and n is the number of data
points. The canonical way of computing log(det(K)) is via Cholesky decomposition on K, whose
time complexity is O(n3). Since log(det(K)) =

∑n
i=1 log(λi), where λi’s are the eigenvalues of

K, one can compute tr(log(K)) instead. Trace estimation combined with polynomial approximation
(e.g., the Chebyshev polynomial or Stochastic Lanczos Quadrature) to log [2], or trace estimation
combined with maximum entropy estimation [3] provide fast ways of estimating tr(log(K)) for
large-scale data. Other popular applications of implicit trace estimation include counting triangles and
computing the Estrada Index in graphs [4, 5], approximating the generalized rank of a matrix [6], and
studying non-convex loss landscapes from the Hessian matrix of large neural networks (NNs) [7, 8].
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To define the problem, we consider the matrix-vector product model as formalized in [9, 10], where
there is a real symmetric input matrix A ∈ Rn×n that cannot be explicitly presented but one has
oracle access to A via matrix-vector queries, i.e., one can obtain Aq for any desired query vector
q ∈ Rn. For example, due to a tremendous amount of trainable parameters of large NNs, it is often
prohibitive to compute or store the entire Hessian matrix H with respect to some loss function from
the parameters [7], which is often used to study the non-convex loss landscape. However, with
Pearlmutter’s trick [11] one can compute Hq for any chosen vector q. The goal is to efficiently
estimate the trace of A, denoted by tr(A), up to ε error, i.e., to compute a quantity within (1±ε)tr(A).
For efficiency, such algorithms are randomized and succeed with probability at least 1 − δ. The
minimum number of queries q required to solve the problem is referred to as the query complexity.

Computing matrix-vector products Aq through oracle access, however, can be costly. For exam-
ple, computing Hessian-vector products Hq on large NNs takes approximately twice the time of
backpropagation. When estimating the eigendensity of H , one computes tr(f(H)) for some density
function f , and needs repeated access to the matrix-vector product oracle. As a result, even with
Pearlmutter’s trick and distributed computation on modern GPUs, it takes 20 hours to compute
the eigendensity of a single Hessian H with respect to the cross-entropy loss on the CIFAR-10
dataset [12], from a set of fixed weights for ResNet-18 [13] which has approximately 11 million
parameters [7]. Thus, it is important to understand the fundamental limits of implicit trace estimation
as the query complexity in terms of the desired approximation error ε and the failure probability δ.

Hutchinson’s method [14], a simple yet elegant randomized algorithm, is the ubiquitous work force
for implicit trace estimation. Letting Q = [q1, . . . ,qq] ∈ Rn×q be q vectors with i.i.d. Gaussian
or Rademacher (i.e., ±1 with equal probability) random variables, Hutchinson’s method returns an
estimate of tr(A) as 1

q

∑q
i=1 qTi Aqi = 1

q tr(QTAQ). Although Hutchinson’s method dates back to
1990, it is surprisingly not well-understood on positive semi-definite (PSD) matrices. It was originally
shown that for PSD matrices A with the qi being Gaussian random variables, in order to obtain
a multiplicative (1 ± ε) approximation to tr(A) with probability at least 1 − δ, O(log(1/δ)/ε2)
matrix-vector queries suffice [15].

A recent work [16] proposes a variance-reduced version of Hutchinson’s method that shows only
O(1/ε) matrix-vector queries are needed to achieve a (1± ε)-approximation to any PSD matrix with
constant success probability, in contrast to theO(1/ε2) matrix-vector queries needed for Hutchinson’s
original method. The key observation is that the variance of the estimated trace in Hutchinson’s
method is largest when there is a large gap between the top few eigenvalues and the remaining
ones. Thus, by splitting the number of matrix-vector queries between approximating the top O(1/ε)
eigenvalues, i.e., by computing a rank-O(1/ε) approximation to A, and performing trace estimation
on the remaining part of the spectrum, one needs only O(1/ε) queries in total to achieve a (1± ε)
approximation to tr(A). Furthermore, [16] shows Ω(1/ε) queries are in fact necessary for any trace
estimation algorithm, up to a logarithmic factor, for algorithms succeeding with constant success
probability. While [16] mainly focuses on the improvement on ε in the query complexity with
constant failure probability, we focus on the dependence on the failure probability δ.

Algorithm 1 Hutch++: Stochastic trace estima-
tion with adaptive matrix-vector queries
1: Input: Matrix-vector multiplication oracle for

PSD matrix A ∈ Rn×n. Number m of queries.
2: Output: Approximation to tr(A).
3: Sample S ∈ Rn×m

3 and G ∈ Rn×m
3 with i.i.d.

N (0, 1) entries.
4: Compute an orthonormal basis Q ∈ Rn×m

3 for
the span of AS via QR decomposition.

5: return t = tr(QTAQ) + 3
m
tr(GT (I −

QQT )A(I −QQT )G).

Algorithm 2 NA-Hutch++: Stochastic trace esti-
mation with non-adaptive matrix-vector queries
1: Input: Matrix-vector multiplication oracle for

PSD matrix A ∈ Rn×n. Number m of queries.
2: Output: Approximation to tr(A).
3: Fix constants c1, c2, c3 such that c1 < c2 and c1 +

c2 + c3 = 1.
4: Sample S ∈ Rn×c1m, R ∈ Rn×c2m, and G ∈

Rn×c3m, with i.i.d. N (0, 1) entries.
5: Z = AR, W = AS
6: return t = tr((STZ)†(W TZ)) +

1
c3m

(tr(GTAG)− tr(GTZ(STZ)†W TG)).

Achieving a low failure probability δ is important in applications where failures are highly undesirable,
and the low failure probability regime is well-studied in related areas such as compressed sensing
[17], data stream algorithms [18, 19], distribution testing [20], and so on. While one can always
reduce the failure probability from a constant to δ by performingO(log(1/δ)) independent repetitions
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and taking the median, this multiplicative overhead of O(log(1/δ)) can cause a huge slowdown in
practice, e.g., in the examples above involving large Hessians.

Two algorithms were proposed in [16]: Hutch++ (Algorithm 1), which requires adaptively chosen
matrix-vector queries and NA-Hutch++ (Algorithm 2) which only requires non-adaptively chosen
queries. We call the matrix-vector queries adaptively chosen if subsequent queries are dependent
on previous queries q and observations Aq, whereas the algorithm is non-adaptive if all queries
can be chosen at once without any prior information about A. Note that Hutchinson’s method
uses only non-adaptive queries. [16] shows that Hutch++ can use O(

√
log(1/δ)/ε + log(1/δ))

adaptive matrix-vector queries to achieve (1± ε) approximation with probability at least 1− δ, while
NA-Hutch++ can use O(log(1/δ)/ε) non-adaptive queries. Thus, in many parameter regimes the
non-adaptive algorithm suffers an extra

√
log(1/δ) multiplicative factor over the adaptive algorithm.

It is important to understand the query complexity of non-adaptive algorithms for trace estimation
because the advantages of non-adaptivity are plentiful: algorithms that require only non-adaptive
queries can be easily parallelized across multiple machines while algorithms with adaptive queries
are inherently sequential. Furthermore, non-adaptive algorithms correspond to sketching algorithms
which are the basis for many streaming algorithms with low memory [21] or distributed protocols
with low-communication overhead (for an example application to low rank approximation, see [22]).
We note that there are numerous works on estimating matrix norms in a data stream [23, 24, 25, 26],
most of which use trace estimation as a subroutine.

1.1 Our Contributions

Improving the Non-adaptive Query Complexity. We give an improved analysis of the query
complexity of the non-adaptive trace estimation algorithm NA-Hutch++ (Algorithm 2), based on a
new low-rank approximation algorithm and analysis in the high probability regime, instead of applying
an off-the-shelf low-rank approximation algorithm as in [16]. Instead of O(log(1/δ)/ε) queries as
shown in [16], we show that O(

√
log(1/δ)/ε + log(1/δ)) non-adaptive queries suffice to achieve

a multiplicative (1 ± ε) approximation of the trace with probability at least 1 − δ, which matches
the query complexity of the adaptive trace estimation algorithm Hutch++. Since our algorithm is
non-adaptive, it can be used in subroutines in streaming and distributed settings for estimating the
trace, with lower memory than was previously possible for the same failure probability.
Theorem 1.1 (Restatement of Theorem 3.1). Let A be any PSD matrix. If NA-Hutch++ is im-

plemented with m = O

(√
log(1/δ)

ε + log(1/δ)

)
matrix-vector multiplication queries, then with

probability 1− δ, the output t of NA-Hutch++ satisfies (1− ε)tr(A) ≤ t ≤ (1 + ε)tr(A).

The improved dependence on δ is perhaps surprising in the non-adaptive setting, as simply repeating
a constant-probability algorithm would give an O(log(1/δ)/ε) dependence. Our non-adaptive
algorithm is as good as the best known adaptive algorithm, and much better than previous non-
adaptive algorithms [16, 14]. The key difference between our analysis and the analysis in [16] is in
the number of non-adaptive matrix-vector queries we need to obtain an O(1)-approximate rank-k
approximation to A in Frobenius norm.

Specifically, to reduce the total number of matrix-vector queries, our queries are split between (1)
computing Ã, a rank-k approximation to the matrix A, and (2) performing trace estimation on A−Ã.
Let Ak = minrank-kA ‖A−Ak‖F be the best rank-k approximation to A in Frobenius norm. For our
algorithm to work, we require ‖A− Ã‖ ≤ O(1)‖A−Ak‖F with probability 1− δ. Previous results
from [27] show the number of non-adaptive queries required to compute Ã is O(k log(1/δ)), where
each query is an i.i.d. Gaussian or Rademacher vector. We prove O(k + log(1/δ)) non-adaptive
Gaussian query vectors suffice to compute Ã. Low rank approximation requires both a so-called
subspace embedding and an approximate matrix product guarantee (see, e.g., [28], for a survey on
sketching for low rank approximation), and we show both hold with the desired probability, with
some case analysis, for Gaussian queries. A technical overview can be found in Section 3.

The improvement on the number of non-adaptive queries to achieve O(1)-approximate rank-k
approximation has many other implications, which can be of an independent interest. For example,
since low-rank approximation algorithms are extensively used in streaming algorithms suitable for
low-memory settings, this new result directly improves the space complexity of the state-of-the-art
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streaming algorithm for Principle Component Analysis (PCA) [29] from O(d · (k log(1/δ))) to
O(d · (k + log(1/δ))) for constant approximation error ε, where d is the dimension of the input.

Lower Bound. Previously, no lower bounds were known on the query complexity in terms of δ in a
high probability setting. In this work, we give a novel matching lower bound for non-adaptive (i.e.,
sketching) algorithms for trace estimation, with novel techniques based on a new family of hard input
distributions, showing that our improved O(

√
log(1/δ)/ε+ log(1/δ)) upper bound is optimal, up

to a log log(1/δ) factor, for any ε ∈ (0, 1). The methods previously used to prove an Ω(1/ε) lower
bound with constant success probability (up to logarithmic factors) in [16] do not apply in the high
probability setting. Indeed, [16] gives two lower bound methods based on a reduction from two
types of problems: (1) a communication complexity problem, and (2) a distribution testing problem
between clean and negatively spiked random covariance matrices. Technique (1) does not apply since
there is not a multi-round lower bound for the Gap-Hamming communication problem used in [16]
that depends on δ. One might think that since we are proving a non-adaptive lower bound, we could
use a non-adaptive lower bound for Gap-Hamming (which exists, see [18]), but this is wrong because
even the non-adaptive lower bound in [16] uses a 2-round lower bound for Gap-Hamming, and there
is no such lower bound known in terms of δ. Technique (2) also does not apply, as it involves a
1/ε × 1/ε matrix, which can be recovered exactly with 1/ε queries; further, increasing the matrix
dimensions would break the lower bound as their two cases would no longer need to be distinguished.
Thus, such a hard input distribution fails to show the additive Ω(log(1/δ)) term in the lower bound.

Our starting point for a hard instance is a family of Wigner matrices (see Definition 2.1) shifted by an
identity matrix so that they are PSD. However, due to strong concentration properties of these matrices,
they can only be used to provide a lower bound of Ω(

√
log(1/δ)/ε) when ε < 1/

√
log(1/δ). Indeed,

setting δ to be a constant in this case recovers the Ω(1/ε) lower bound shown in [16] but via a
completely different technique. For larger ε, we consider a new distribution testing problem between
clean Wigner matrices and the same distribution with a large rank-1 noisy PSD matrix, and then
argue with probability roughly δ, all non-adaptive queries have unusually tiny correlation with this
rank-1 matrix, thus making it indistinguishable between the two distributions. This gives the desired
additive Ω(log(1/δ)) lower bound, up to a log log(1/δ) factor.

Theorem 1.2 (Restatement of Theorem 4.1). SupposeA is a non-adaptive query-based algorithm that
returns a (1±ε)-multiplicative estimate to tr(A) for any PSD matrix A with probability at least 1−δ.

Then, the number of matrix-vector queries must be at least m = Ω

(√
log(1/δ)

ε + log(1/δ)
log(log(1/δ))

)
.

1.2 Related Work

A summary of prior work on the query complexity of trace estimation of PSD matrices is given in
Table 1. For the upper bounds, prior to the work of [30], the analysis of implicit trace estimation
mainly focused on the variance of estimation with different types of query vectors. [30] gave the
first upper bound on the query complexity. The work of [15] improved the bounds in [30]. On the
lower bound side, although [15] gives a necessary condition on the query complexity for Gaussian
query vectors, this condition does not directly translate to a bound on the minimum number of query
vectors. The work of [16] gives the first lower bound on the query complexity in terms of ε but only
works for constant failure probability.

Upper Bounds
Prior Work Query Complexity Query Vector Type Failure Probability Algorithm Type

[30] O(log(1/δ)/ε2) Gaussian δ non-adaptive
[30] O(log(rank(A)/δ)/ε2) Rademacher δ non-adaptive
[15] O(log(1/δ)/ε2) Gaussian, Rademacher δ non-adaptive
[16] O(

√
log(1/δ)/ε+ log(1/δ)) Gaussian, Rademacher δ adaptive

[16] O(log(1/δ)/ε) Gaussian, Rademacher δ non-adaptive
This Work O(

√
log(1/δ)/ε+ log(1/δ)) Gaussian δ non-adaptive

Lower Bounds
[16] Ω(1/(ε log(1/ε))) — constant adaptive
[16] Ω(1/ε) — constant non-adaptive

This Work Ω(
√

log(1/δ)/ε+ log(1/δ)
log log(1/δ) ) — δ non-adaptive

Table 1: Upper and lower bounds on the query complexity for trace estimation of PSD matrices.
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2 Problem Setting

Notation. A matrix A ∈ Rn×n is symmetric positive semi-definite (PSD) if it is real, symmetric
and has non-negative eigenvalues. Hence, x>Ax ≥ 0 for all x ∈ Rn. Let tr(A) =

∑n
i=1 Aii

denote the trace of A. Let ‖A‖F = (
∑n
i=1

∑n
j=1 A

2
ij)

1/2 denote the Frobenius norm and ‖A‖op =

sup‖v‖2=1 ‖Av‖2 denote the operator norm of A. Let N (µ, σ2) denote the Gaussian distribution
with mean µ and variance σ2. Our analysis extensively relies on the following facts:

Definition 2.1 (Gaussian and Wigner Random Matrices). We let G ∼ N (n) denote an n×n random
Gaussian matrix with i.i.d. N (0, 1) entries. We let W ∼ W(n) = G + GT denote an n× n Wigner
matrix, where G ∼ N (n).

Fact 2.1 (Rotational Invariance of a standard Gaussian). Let R ∈ Rn×n be an orthornormal matrix.
Let g ∈ Rn be a random vector with i.i.d. N (0, 1) entries. Then Rg has the same distribution as g.

Fact 2.2 (Upper and Lower Gaussian Tail Bounds). Letting Z ∼ N (0, 1) be a univariate Gaussian
random variable, for any t > 0, Pr[|Z| ≥ t] = Θ(t−1 exp(− t

2

2 )).

3 An Improved Analysis of NA-Hutch++

Suppose we are trying to compute a sketch so as to estimate the trace of a matrix A up to a
(1 ± ε)-factor with success probability at least 1 − δ. Note that we focus on the case where we
make matrix-vector queries non-adaptively. For any algorithm that accomplishes this with small
constant failure probability, one can simply repeat this procedure O(log(1/δ)) times to amplify the
success probability to 1− δ. Since these queries are non-adaptive and must be presented before any
observations are made, it seems intuitive that the number of non-adaptive queries of NA-Hutch++
(Algorithm 2) should be O(log(1/δ)/ε) as shown in [16]. In this section, we give a proof sketch
as to why this can be reduced to O(

√
log(1/δ)/ε+ log(1/δ)) as stated in Theorem 3.1. All proof

details are provided in the supplementary material.

Theorem 3.1. Let A be a PSD matrix. If NA-Hutch++ is implemented with m = O(
√

log(1/δ)/ε+
log(1/δ)) matrix-vector multiplication queries, then with probability 1−δ, the output of NA-Hutch++,
denoted by t, satisfies (1− ε)tr(A) ≤ t ≤ (1 + ε)tr(A).

NA-Hutch++ splits its matrix-vector queries between computing an O(1)-approximate rank-k ap-
proximation Ã and performing Hutchinson’s estimate on the residual matrix A− Ã containing the
small eigenvalues. The trade-off between the rank k and the number l of queries spent on estimating
the small eigenvalues is summarized in Theorem 3.2.

Theorem 3.2 (Theorem 4 of [16]). Let A ∈ Rn×n be PSD, δ ∈ (0, 12 ), l ∈ N, k ∈ N. Let Ã
and ∆ be any matrices with tr(A) = tr(Ã) + tr(∆) and ‖∆‖F ≤ O(1)‖A − Ak‖F where
Ak = arg minrank k Ak

‖A−Ak‖F . Let Hl(M) denote Hutchinson’s trace estimator with l queries
on matrix M . For fixed constants c, C, if l ≥ c log( 1

δ ), then with probability 1 − δ, for Z =

tr(Ã) +Hl(∆), we have |Z − tr(A)| ≤ C
√

log(1/δ)
kl · tr(A).

The total number of matrix-vector queries directly depends on the number of non-adaptive queries
required to compute an O(1)-approximate rank-k approximation Ã. Consider S ∈ Rn×c1m,R ∈
Rn×c2m for some constants c1, c2 > 0 as defined in Algorithm 2, and set our low rank approximation
of A to be Ã = AR(STAR)†(AS)T . The standard analysis [16] applies a result from streaming
low-rank approximation in [27], which requires m = O(k log(1/δ)) to get ‖A− Ã‖F ≤ O(1)‖A−
Ak‖F with probability 1− δ. [16] then sets k = O(1/ε) and l = O(log(1/δ)/ε) in Theorem 3.2 to
get a (1 ± ε) approximation to tr(A). However, the right-hand side of Theorem 3.2 suggests the
optimal split between k and l should be k = l. The reason [16] cannot achieve such an optimal split
is due to a large number m of queries to compute the O(1)-approximate rank k-approximation. We
give an improved analysis of this result, which may be of independent interest.

To get O(1) low rank approximation error, we need the non-adaptive query matrices S, R to satisfy
two properties: the subspace embedding property (see Lemma 3.3), and an approximate matrix
product for orthogonal subspaces (see Lemma 3.4). While it is known that m = O(k + log(1/δ))
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suffices to achieve the first property, we show that m = O(k + log(1/δ)) suffices to achieve the
second property when S,R are matrices with i.i.d. Gaussian random variables, stated in Lemma 3.4.

Lemma 3.3 (Subspace Embedding (Theorem 6 of [28])). Given δ ∈ (0, 12 ) and ε ∈ (0, 1). Let
S ∈ Rr×n be a random matrix with i.i.d. Gaussian random variables N (0, 1r ). Then for any fixed
d-dimensional subspace A ∈ Rn×d, and for r = O((d + log( 1

δ ))/ε2), the following holds with
probability 1− δ simultaneously for all x ∈ Rd, ‖SAx‖2 = (1± ε)‖Ax‖2
Lemma 3.4 (Approximate Matrix Product for Orthogonal Subspaces). Given δ ∈ (0, 12 ), let
U ∈ Rn×k,W ∈ Rn×p be two matrices with orthonormal columns such that UTW = 0,
p ≥ max(k, log(1/δ)), rank(U) = k and rank(W ) = p. Let S ∈ Rr×n be a random matrix
with i.i.d. Gaussian random variables N (0, 1r ). For r = O(k + log( 1

δ )), the following holds with
probability 1− δ, ‖UTSTSW ‖F ≤ O(1)‖W ‖F .

Note that we will apply the above two lemmas with constant ε. The proof intuition is as follows:
consider a sketch matrix S of size r with i.i.d. N (0, 1r ) random variables as in Lemma 3.4. The
range of U ∈ Rn×k corresponds to an orthonormal basis of a rank-k low rank approximation to
A, and the range of W ∈ Rn×p is the orthogonal complement. Note that both SU and SW are
random matrices consisting of i.i.d. N (0, 1r ) random variables and thus the task is to bound the size,
in Frobenius norm, of the product of two random Gaussian matrices with high probability. Intuitively,
the size of the matrix product is proportional to the rank k and inversely proportional to our sketch
size r. The overall failure probability δ, however, is inversely proportional to k, since as k grows, the
matrix product involves summing over more squared Gaussian random variables, i.e., χ2 random
variables, and thus becomes even more concentrated. We show that for k ≥ log(1/δ), a sketch size
of O(k) suffices since the failure probability for each χ2 random variable is small enough to pay a
union bound over k terms. On the other hand, when k < log(1/δ), we show that r = O(log(1/δ))
suffices for the union bound. Combining the two cases gives r = O(k + log(1/δ)).

Having shown the above, we next show that the low rank approximation error, i.e., ‖A− Ã‖F , is
upper bounded by: 1) the inflation in eigenvalues by applying a sketch matrix S as in Lemma 3.3;
and 2) the approximate product of the range of a low rank approximation to A and its orthogonal
complement, as in Lemma 3.4. Together these show that m = O(k + log(1/δ)) suffices for
Ã to be an O(1)-approximate rank-k approximation to A with probability 1 − δ, as stated in
Theorem 3.5. Note that in both Lemma 3.3 and Lemma 3.4, the entries of the random matrix are
scaled Gaussian random variables N (0, 1r ). However, when one sets the low rank approximation
as Ã = AR(STAR)†(AS)T , the scale cancels and one can choose standard Gaussians in the
sketching matrix for convenience as in Theorem 3.5.

Theorem 3.5. Let A ∈ Rn×n be an arbitrary PSD matrix. Let Ak = arg minrank-kAk
‖A−Ak‖F

be the optimal rank-k approximation to A in Frobenius norm. If S ∈ Rn×m and R ∈ Rn×cm are
random matrices with i.i.d. N (0, 1) entries for some fixed constant c > 0 withm = O(k+log(1/δ)),
then with probability 1 − δ, the matrix Ã = (AR)(STAR)†(AS)T satisfies ‖A − Ã‖F ≤
O(1)‖A−Ak‖F .

This improved result enables us to choose k = l = O(
√

log(1/δ)/ε) in Theorem 3.2, and combined
with Theorem 3.5, this shows that only O(

√
log(1/δ)/ε + log(1/δ)) matrix-vector queries are

needed to output a number in (1± ε)tr(A) with probability 1− δ, as we conclude in Theorem 3.1.

4 Lower Bounds

In this section, we show that our upper bound on the query complexity of non-adaptive trace estimation
is tight, up to a factor of O(log log(1/δ)).

Theorem 4.1 (Lower Bound for Non-Adaptive Queries). Let ε ∈ (0, 1). Any algo-
rithm that accesses a real PSD matrix A through matrix-vector multiplication queries
Aq1,Aq2, . . . ,Aqm, where q1, . . . ,qm are real-valued, non-adaptively chosen vectors, requires

m = Ω

(√
log(1/δ)

ε + log(1/δ)
log log(1/δ)

)
queries to output an estimate t such that with probability at least

1− δ, (1− ε)tr(A) ≤ t ≤ (1 + ε)tr(A).
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Our lower bound hinges on two separate cases: we first show an Ω(
√

log(1/δ)/ε) lower bound in
Section 4.1 whenever ε = O(1/

√
log(1/δ)). Second, we show an Ω( log(1/δ)

log log(1/δ) ) lower bound in

Section 4.2 that applies to any ε ∈ (0, 1). Observe that for ε < 1/
√

log(1/δ), the first lower bound
holds; for ε ≥ 1/

√
log(1/δ), our second lower bound dominates. Therefore, combining both lower

bounds implies that for every ε and δ, the query complexity of O(
√

log(1/δ)/ε + log(1/δ)) for
non-adaptive trace estimation is tight, up to a log log(1/δ) factor.

We now give a proof sketch of the two lower bounds. All details are in the supplementary material.
Our lower bounds crucially make use of rotational invariance of the Gaussian distribution (see
Fact 2.1) to argue that the first q queries are, w.l.o.g., the standard basis vectors e1, ..., eq. Note that
our queries can be assumed to be orthonormal. Both lower bounds use the family of n× n Wigner
matrices (see Definition 2.1) with shifted mean, i.e., W + C · I for some C > 0 depending on
‖W ‖op, as part of the hard input distribution. The mean shift ensures that our ultimate instance is
PSD with high probability.

4.1 Case 1: Lower Bound for Small ε

The first lower bound is based on the observation that due to rotational invariance, the not-yet-queried
part of W is distributed almost identically to W , up to some mean shift, conditioned on the queried
known part, no matter how the queries are chosen. The sum of diagonal entries of the not-yet-queried
part is Gaussian, and this still has too much deviation to determine the overall trace of the input up to
a (1± ε) factor when n =

√
log(1/δ)/ε and ε < 1/

√
log(1/δ).

Theorem 4.2 (Lower Bound for Small ε). For any PSD matrix A and all ε = O(1/
√

log(1/δ)),
any algorithm that succeeds with probability at least 1 − δ in outputting an estimate t such that
(1− ε)tr(A) ≤ t ≤ (1 + ε)tr(A), requires m = Ω(

√
log(1/δ)/ε) matrix-vector queries.

4.2 Case 2: Lower Bound for Every ε

The second lower bound presented in Theorem 4.3 is shown via reduction to a distribution testing
problem between two distributions presented in Problem 4.4.
Theorem 4.3 (Lower Bound on Non-adaptive Queries for PSD Matrices). Let ε ∈ (0, 1). Any
algorithm that accesses a real, PSD matrix A through matrix-vector queries Aq1,Aq2, . . . ,Aqm,
where q1, . . . ,qm are real-valued non-adaptively chosen vectors, requires m = Ω( log(1/δ)

log log(1/δ) ) to
output an estimate t such that with probability at least 1− δ, (1− ε)tr(A) ≤ t ≤ (1 + ε)tr(A).

In the distribution testing problem, we consider Wigner matrices W ∼ W(log(1/δ)) shifted by
Θ(
√

log(1/δ))I . The problem requires an algorithm for distinguishing between a sample Q from
this Wigner distribution and a sample P from this distribution shifted by a random rank-1 PSD matrix.
The rank-1 matrix is the outer product of a random vector with itself and is chosen to provide a
constant factor gap between the trace of P and Q.
Problem 4.4 (Hard PSD Matrix Distribution Test). Given δ ∈ (0, 12 ), set n = log(1/δ). Choose
g ∈ Rn to be an independent random vector with i.i.d. N (0, 1) entries. Consider two distributions:

• Distribution P on matrices
{
C log3/2( 1

δ ) · 1
‖g‖22

ggT + W + 2
√

log( 1
δ )I
}

, for some fixed
constant C > 1.

• Distribution Q on matrices
{
W + 2

√
log( 1

δ )I
}

.

where W ∼ W(n) as in Definition 2.1. Let A be a random matrix drawn from either P or Q with
equal probability. Consider any algorithm which, for a fixed query matrix Q ∈ Rn×q , observes AQ,
and guesses if A ∼ P or A ∼ Q with success probability at least 1− δ.

We then show in Lemma 4.5 that any algorithm which succeeds with probability 1− δ in distinguish-
ing P from Q requires Ω( log(1/δ)

log log(1/δ) ) non-adaptive matrix-vector queries.

Due to rotational invariance and since queries are non-adaptive, the first q queries are the first q
standard unit vectors. By Fact 2.2, with probability at least 1

log(1/δ) , however, a single coordinate of g
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has absolute value at most 1
log(1/δ) . By independence, with probability at least ( 1

log(1/δ) )
q , all of the

first q coordinates of g are simultaneously small, and thus give the algorithm almost no information
to distinguish P from Q; this probability is δ if q = O( log(1/δ)

log log(1/δ) ).

Lemma 4.5 (Hardness of Problem 4.4). For a non-adaptive query matrix Q ∈ Rn×q as in Prob-
lem 4.4, given δ ∈ (0, 12 ), for n = log(1/δ), if q = o( log(1/δ)

log log(1/δ) ), no algorithm can solve Prob-
lem 4.4 with success probability 1− δ.

5 Experiments
1Part I: Comparison of Failure Probability and Running Time We give sequential and parallel
implementations of the non-adaptive trace estimation algorithm NA-Hutch++ (Algorithm 2), the
adaptive algorithm Hutch++ (Algorithm 1) and Hutchinson’s method [14]. We specifically explore
the benefits of the non-adaptive algorithm in a parallel setting, where all algorithms have parallel
access to a matrix-vector oracle. All the code is included in the supplementary material and will be
publicly released.

Metrics. We say an estimate failed if on input matrix A, the estimate t returned by an algorithm
falls into either case: t < (1− ε)tr(A) or t > (1 + ε)tr(A). We measure the performance of each
algorithm by: 1) the number of failed estimates across 100 random trials, 2) the total wall-clock time
to perform 100 trials with sequential execution, and 3) the total wall-clock time to perform 100 trials
with parallel execution.

Datasets and Applications. We consider different applications of trace estimation from synthetic
to real-world datasets. In many applications, trace estimation is used to estimate not only tr(A),
but also tr(f(A)) for some function f : R→ R. Letting A = V ΣV T be the eigendecomposition
of A, we have f(A) := V f(Σ)V T , where f(Σ) denotes applying f to each of the eigenvalues.
Due to the expensive computation of eigendecompositions of large matrices, the matrix-vector
multiplication f(A)v is often estimated by polynomials implicitly computed via an oracle algorithm
for a random vector v. The Lanczos algorithm is a very popular choice due to its superior performance
(e.g. [31, 2, 7]). We compare the performance of our trace estimation algorithms on the following
applications and datasets, and use the Lanczos algorithm as the matrix-vector oracle on a random
vector v in some particular cases.

• Fast Decay Spectrum. We first consider a synthetic dataset of size 5000 with a fast
decaying spectrum, following [16], which is a diagonal matrix A with i-th diagonal entry
Aii = 1/i2. Matrices with fast decaying spectrum will cause high variance in the estimated
trace of Huthinson, but low variance for Hutch++ and NA-Hutch++. The matrix-vector
oracle is simply Av.

• Graph Estrada Index. Given a binary adjacency matrix A ∈ {0, 1}n×n of a graph, the
Graph Estrada Index is defined as tr(exp(A)), which measures the strength of connectivity
within the graph. Following [16], we use roget’s Thesaurus semantic graph2 with 1022
nodes, which was originally studied in [5], and use the Lanczos algorithm with 40 steps to
approximate exp(A)v as the matrix-vector oracle.

• Graph Triangle Counting. Given a binary adjacency matrix A ∈ {0, 1}n×n of a graph,
the number of triangles in the graph is 1/6 · tr(A3). This is an important graph summary
with numerous applications in graph-mining and social network analysis (e.g. [32, 33]). We
use arxiv_cm, the Condense Matter collaboration network dataset from arXiv 3. This is a
common benchmark graph with 23, 133 nodes and 173, 361 triangles. The matrix-vector
oracle is A3v. Note that A3 in this case is not necessarily a PSD matrix.

• Log-likelihood Estimation for Gaussian Process. When performing maximum likelihood
estimation (MLE) to optimize the hyperparameters of a kernel matrix A for Gaussian
Processes, one needs to compute the gradient of the log-determininant of A, which involves
estimating tr(A−1) [2]. Following [2], we use the precipitation4 dataset, which consists

1Our code is available at: https://github.com/11hifish/OptSketchTraceEst
2http://vlado.fmf.uni-lj.si/pub/networks/data/
3https://snap.stanford.edu/data/ca-CondMat.html
4https://catalog.data.gov/dataset/u-s-hourly-precipitation-data
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of the measured amount of precipitation during a day collected from 5,500 weather stations
in the US in 2010. We sample 1,000 data points, and construct a covariance matrix A using
the RBF kernel with length scale 1. We use the Lanczos algorithm with 40 steps as in [2] to
approximate A−1v as the matrix-vector oracle.

Figure 1: The performance comparison of Hutch++, NA-Hutch++ and Huthinson over 4 datasets
(mean ± 1 std. across 10 random runs). The approximation error for all settings is set at ε = 0.01.
Both Hutch++ and NA-Hutch++ outperform Hutchinson in terms of failed estimates. The parallel
version of the non-adaptive NA-Hutch++ is significantly faster than the adaptive Hutch++, making it
more practical in real-world applications. Legend: Hutch++ is —F—, NA-Hutch++ is —N—, and
Hutchinson is —•—.

Implementation. We use random vectors with i.i.d. N (0, 1) entries as the query vectors for all
algorithms. NA-Hutch++ requires additional hyperparameters to specify how the queries are split
between random matrices S,R,G (see Algorithm 2). We set c1 = c3 = 1

4 and c2 = 1
2 as [16]

suggests. For each setting, we conduct 10 random runs and report the mean number of failed
estimates across 100 trials and the mean total wall-clock time (in seconds) conducting 100 trials
with one standard deviation. For all of our experiments, we fix the error parameter ε = 0.01 and
measure the performance of each algorithm with {10, 30, 50, . . . , 130, 150} queries on synthetic,
roget and precipitation, and with {100, 200, . . . , 700, 800} queries on arxiv_cm which has a
significantly larger size. The parallel versions are implemented using Python multiprocessing5

package. Due to the large size of arxiv_cm, we use sparse_dot_mkl6, a Python wrapper for Intel
Math Kernel Library (MKL) which supports fast sparse matrix-vector multiplications, to implement
the matrix-vector oracle for this dataset. During the experiments, we launch a pool of 40 worker
processes in our parallel execution. All experiments are conducted on machines with 40 CPU cores.

Results and Discussion. The results of Hutch++, NA-Hutch++ and Hutchinson over the 4 datasets
are presented in Figure 1. The performance of all algorithms is consistent across different datasets
with different matrix-vector oracles, and even on a non-PSD instance from arxiv_cm. Given the
same number of queries, Hutch++ and NA-Hutch++ both give significantly fewer failed estimates
than Hutchinson, particularly on PSD instances. It is not surprising to see that Hutchinson fails to

5https://docs.python.org/3/library/multiprocessing.html
6https://github.com/flatironinstitute/sparse_dot
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Figure 2: The eigenspectrum of the two datasets and the performance comparison of Hutch++,
NA-Hutch++ and Hutchinson on maximum entropy estimation based log determinant estimation.

achieve a (1±ε)-approximation to the trace most of the time due to the high variance in its estimation,
given a small number of queries and a high accuracy requirement (ε = 0.01).

For computational costs, the difference in running time of all algorithms is insignificant in our
sequential execution. In our parallel execution, however, Hutch++ becomes significantly slower
than the other two, NA-Hutch++ and Hutchinson, which have very little difference in their parallel
running time. Hutch++ suffers from slow running time due to its adaptively chosen queries, despite
the fact that Hutch++ consistently gives the least number of failed estimates.

It is not hard to see that NA-Hutch++ gives the best trade-off between a high success probability in
estimating an accurate trace with only a few number of queries, and a fast parallel running time due
to the use of non-adaptive queries, which makes NA-Hutch++ more practical on large, real-world
datasets. We remark that although the Lanczos algorithm is adaptive itself, even with a sequential
matrix-vector oracle, our non-adaptive trace estimation can still exploit much more parallelism than
adaptive methods, as shown by our experiments.

Part II: Comparison of Performance on Log Determinant Estimation We give an additional
experiment to compare the performance of Hutch++, NA-Hutch++ and Hutchinson on estimating
log(det(K)) = tr(log(K)), for some covariance matrix K. Estimating log(det(K)) is required
when computing the marginal log-likelihood in large-scale Gaussian Process models. Recently, [3]
proposed a maximum entropy estimation based method for log determinant estimation, which uses
Hutchinson’s trace estimation as a subroutine to estimate up to the k-th moments of the eigenvalues,
given a fixed k. The i-th moment of the eigenvalues is E[λi] = 1

n tr(Ki), where K is an n × n
PSD matrix, and λ is the vector of eigenvalues. [3] shows that their proposed approach outperforms
traditional Chebyshev/Lanczos polynomials for computing log(det(K)) in terms of absolute value of
the relative error, i.e., abs (estimated log determinant - true log determinant)/abs(true log determinant).

We compare the estimated log determinant of a covariance matrix with different trace estimation
subroutines for estimating the moments of the eigenvalues. We use 2 PSD matrices from the UFL
Sparse Matrix Collection7: bcsstk20 (size 485 × 485) and bcsstm08 (size 1074 × 1074), with
varying max moments {10, 15, . . . , 30} and 30 matrix-vector queries. We repeated each run 100
times and reported the mean estimated log determinant with each trace estimation subroutine. While
an improved estimate of the eigenvalue moments does not necessarily lead to an improved estimate of
the log determinant, it is not hard to show that an accurate moment estimation does lead to improved
log determinant estimation in extreme cases where the eigenspectrum of K contains a few very large
eigenvalues. Such a case will cause Hutchinson’s method to have very large variance, while our
method reduces the variance by first removing the large eigenvalues. The eigenspectrums of both
input matrices and the results are presented in Figure 2.

6 Conclusion

We determine an optimal Θ(
√

log(1/δ)/ε+ log(1/δ)) bound on the number of queries to achieve
(1± ε) approximation of the trace with probability 1− δ for non-adaptive trace estimation algorithms,
up to a log log(1/δ) factor. This involves both designing a new algorithm, as well as proving a new
lower bound. We conduct experiments on synthetic and real-world datasets and confirm that our
non-adaptive algorithm has a higher success probability compared to Hutchinson’s method for the
same sketch size, and has a significantly faster parallel running time compared to adaptive algorithms.

7https://sparse.tamu.edu/
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