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ABSTRACT

Generative adversarial networks (GANs) are a powerful framework for genera-
tive tasks. However, they are difficult to train and tend to miss modes of the true
data generation process. Although GANs can learn a rich representation of the
covered modes of the data in their latent space, the framework misses an inverse
mapping from data to this latent space. We propose Invariant Encoding Genera-
tive Adversarial Networks (IVE-GANs), a novel GAN framework that introduces
such a mapping for individual samples from the data by utilizing features in the
data which are invariant to certain transformations. Since the model maps indi-
vidual samples to the latent space, it naturally encourages the generator to cover
all modes. We demonstrate the effectiveness of our approach in terms of gener-
ative performance and learning rich representations on several datasets including
common benchmark image generation tasks.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) emerged as a powerful frame-
work for training generative models in the recent years. GANs consist of two competing (adversar-
ial) networks: a generative model that tries to capture the distribution of a given dataset to map from
an arbitrary latent space (usually drawn from a multi-variate Gaussian) to new synthetic data points,
and a discriminative model that tries to distinguish between samples from the generator and the true
data. Iterative training of both models ideally results in a discriminator capturing features from the
true data that the generator does not synthesize, while the generator learns to include these features
in the generative process, until real and synthesized data are no longer distinguishable.
Experiments by Radford et al. (2016) showed that a GAN can learn rich representation of the data in
the latent space in which interpolations produce semantic variations and shifts in certain directions
correspond to variations of specific features of the generated data. However, due to the lack of an
inverse mapping from data to the latent space, GANs cannot be used to encode individual data points
in the latent space (Donahue et al., 2016).
Moreover, although GANs show promising results in various tasks, such as the generation of realis-
tic looking images (Radford et al., 2015; Berthelot et al., 2017; Sønderby et al., 2016) or 3D objects
(Wu et al., 2016), training a GAN in the aforementioned ideal way is difficult to set up and sensitive
to hyper-parameter selection (Salimans et al., 2016). Additionally, GANs tend to restrict themselves
on generating only a few major modes of the true data distribution, since such a so-called mode
collapse is not penalized in the GAN objective, while resulting in more realistic samples from these
modes (Che et al., 2016). Hence, the majority of the latent space only maps to a few regions in the
target space resulting in poor representation of the true data.
We propose a novel GAN framework, Invariant-Encoding Generative Adversarial Networks (IVE-
GAN), which extends the classical GAN architecture by an additional encoding unit E to map sam-
ples from the true data x to the latent space z (compare Fig. 1). To encourage the encoder to learn a
rich representation of the data in the latent space, the discriminator D is asked to distinguish between
different predefined transformations T(x) of the input sample and generated samples G(E(x)) by
taking the the original input as condition into account. While the discriminator has to learn what
the different variations have in common with the original input, the encoder is forced to encode the
necessary information in the latent space so that the generator can fool the discriminator by gener-
ating samples which are similar to the original samples. Since the discriminator is invariant to the
predefined transformations, the encoder can ignore these variations in the input space and learn a
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Figure 1: Illustration of the IVE-GAN architecture.

rich and to such transformations invariant representation of the data. The variations of the generated
samples are modeled by an additional latent vector z′ (drawn from a multi-variate Gaussian). Thus,
the encoded samples condition the generator G(z′, E(x)). Moreover, since the discriminator learns
to distinguish between generated samples and variations of the original for each individual sample x
in the data, the latent space can not collapse to a few modes of the true data distribution since it will
be easy for the discriminator to distinguish generated samples from original ones if the mode is not
covered by the generator. Thus, the proposed IVE-GAN learns a rich and to certain transformations
invariant representation of a dataset and naturally encourages the generator to cover all modes of the
data distribution.
To generate novel samples, the generator G(z) can be fed with an arbitrary latent representation
z ∼ Pnoise.

In summary, we make the following contributions:

• We derive a novel GAN framework for learning rich and transformation invariant represen-
tation of the data in the latent space.

• We show that our GANs reproduce samples from a data distribution without mode collaps-
ing issues.

• We demonstrate robust GAN training across various data sets and showcase that our GAN
produces very realistic samples.

2 RELATED WORK

Generative Adversarial Networks (Goodfellow et al., 2014) (GANs) are a framework for training
generative models. It is based on a min-max-game of two competing (adversarial) networks. The
generator G tries to map an arbitrary latent space z ∼ PZ(z) (usually drawn from a multi-variate
Gaussian) to new synthetic data points by training a generator distribution PG(x) that matches the
true data distribution Pdata(x). The training is performed by letting the generator compete against
the second network, the discriminator D. The discriminator aims at distinguishing between samples
from the generator distribution PG(x) and real data points from Pdata(x) by assigning a probability
y = D(x) ∈ [0, 1]. The formal definition of the objective of this min-max-game is given by:

min
G

max
D

V (D,G) = Ex∼Pdata [log(D (x)] + Ez∼PZ
[log (1−D (G (z)))] (1)

However, training a GAN on this objective usually results in a generator distribution PG(x) where
large volumes of probability mass collapse onto a few major modes of the true data generation
distribution Pdata(x) (Che et al., 2016). This issue, often called mode collapsing, has been subject of
several recent publications proposing new adjusted objectives to reward a model for higher variety
in data generation.

A straightforward approach to control the generated modes of a GAN is to condition it with ad-
ditional information. Conditional Generative Adversarial Nets (Mirza & Osindero, 2014) utilize
additional information such as class-labels to direct the data generation process. The conditioning is
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done by additionally feeding the information y into both generator and discriminator. The objective
function Eq. (1) becomes:

min
G

max
D

V (D,G) = Ex∼Pdata [log(D (x,y)] + Ez∼PZ
[log (1−D (G (z,y) ,y))] (2)

Obviously, such a conditioning is only possible if additional information y is provided.

Che et al. (2017) proposed a framework which adds two regularizers to the classical GAN. The
metric regularizer trains in addition to the generator G(z) : Z → X an encoder E(x) : X → Z
and includes the objective Ex∼Pdata [d(x, G ◦ E(x))] in the training. This additional objective forces
the generated modes closer to modes of the true data. As distance measure d they proposed e.g.
the pixel-wise L2 distance or the distance of learned features by the discriminator (Dumoulin et al.,
2016). To encourage the generator to also target minor modes in the proximity of major modes the
objective is extended by a mode regulizer Ex∼Pdata [logD(G ◦ E(x))].

Another proposed approach addressing the mode collapsing issue are unrolled GANs (Metz et al.,
2016). In practice GANs are trained by simultaneously updating V (D,G) in Eq. (1), since explicitly
updating G for the optimal D for every step is computational infeasible. This leads to an update for
the generator which basically ignores the max-operation for the calculation of the gradients and
ultimately encourages mode collapsing. The idea behind unrolled GANs is to update the generator
by backpropagating through the gradient updates of the discriminator for a fixed number of steps.
This leads to a better approximation of Eq. (1) and reduces mode collapsing.

Another way to avoid mode collapse is the Coulomb GAN, which models the GAN learning problem
as a potential field with a unique, globally optimal nash equlibrium (Unterthiner et al., 2017).

Work has also been done aiming at introducing an inverse mapping from data x to latent space z.
Bidirectional Generative Adversarial Networks (BiGANs) (Donahue et al., 2016) and Adversarially
Learning Inference (Dumoulin et al., 2016) are two frameworks based on the same idea of extending
the GAN framework by an additional encoderE and to train the discriminator on distinguishing joint
samples (x, E(x)) from (G(z), z) in the data space (x versus G(z)) as well as in the latent space
(E(x) versus z)). Also the inverse mapping (E(G(z)) is never explicitly computed, the authors
proved that in an ideal case the encoder learns to invert the generator almost everywhere (E = G−1)
to fool the discriminator.
However, upon visual inspection of their reported results (Dumoulin et al., 2016), it appears that the
similarity of the original x to the reconstructions G(E(x) is rather vague, especially in the case of
relative complex data such as CelebA (compare appendix A). It seems that the encoder concentrates
mostly on prominent features such as gender, age, hair color, but misses the more subtle traits of the
face.

3 PROPOSED METHOD

Consider a subset S of the domain D that is setwise invariant under a transformation T : D → D
so that x ∈ S ⇒ T (x) ∈ S. We can utilize different elements x ∈ S to train a discriminator on
learning the underlying concept of S by discriminating samples x ∈ S and samples x 6∈ S. In an
adversarial procedure we can then train a generator on producing samples x ∈ S.
S could be e.g. a set of higher-level features that are invariant under certain transformation. An
example for a dataset with such features are natural images of faces. High-level features like facial
parts that are critical to classify and distinguish between different faces are invariant e.g. to small
local shifts or rotations of the image.
We propose an approach to learn a mapping from the data to the latent space by utilizing such in-
variant features S of the data. In contrast to the previous described related methods, we learn the
mapping from the data to the latent space not by discriminating the representations E(x) and z
but by discriminating generated samples conditioned on encoded original samples G(z′, E(x) and
transformations of an original sample T (x) by taking the original sample as additional information
into account. In order to fool the discriminator, the encoder has to extract enough features from the
original sample so that the generator can reconstruct samples which are similar to the original one,
apart from variations T . The discriminator, on the other hand, has to learn which features samples
T (x) have in common with the original sample x to discriminate variations from the original sam-
ples and generated samples. To fool a perfect discriminator the encoder has to extract all individual
features from the original sample so that the generator can produce perfect variants of the original.
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Figure 2: Density plots of eight mixtures of Gaussians arranged in a ring. Panel (a) shows the true
data and panels (b-g) show the generator distribution at different iteration steps of training.

To generate novel samples, we can draw samples z ∼ PZ as latent space. To learn a smooth repre-
sentation of the data, we also include such generated samples and train an additional discriminator
D′ on discriminating them from true data as in the classical GAN objective Eq. (1).

Hence, the objective for the IVE-GAN is defined as a min-max-game:

min
G,E

max
D,D′

V (D,D′, G,E) = Ex∼Pdata [log(D(T (x),x) + log(D′(x))+

Ez′∼PZ′ [log(1−D(G (z′, E(x)) ,x))]]+ (3)

Ez∼PZ ,z′∼PZ′ [log (1−D′ (G (z′, E(x))))]

One thing to consider here is that by introducing an invariance in the discriminator with respect
to transformations T , the generator is no longer trying to exactly match the true data generating
distribution but rather the distribution of the transformed true data. Thus, one has to carefully decide
which transformation T to chose, ideally only such describing already present variations in the data
and which are not affecting features in data that are of interest for the representation.

4 EXPERIMENTS AND RESULTS

To evaluate the IVE-GAN with respect to quality of the generated samples and learned representa-
tions we perform experiments on 3 datasets: a synthetic dataset, the MNIST dataset and the CelebA
dataset.

4.1 SYNTHETIC DATASET

To evaluate how well a generative model can reproduce samples from a data distribution without
missing modes, a synthetic dataset of known distribution is a good way to check if a the model
suffers from mode collapsing (Metz et al., 2016).
Following Metz et al. (2016), we evaluate our model on a synthetic dataset of a 2D mixture of eight
Gaussians x ∼ N (µ, Σ) with covariance matrix Σ, and means µk arranged on a ring. As invariant
transformation T (x) we define small shifts in both dimensions:

T (x) := x + t , t ∼ N (0, (Σ/2)), (4)

so that the discriminator becomes invariant to the exact position within the eight Gaussians.
Fig. 2 shows the distribution of the generated samples of the model over time compared to the true
data generating distribution. The IVE-GAN learns a generator distribution which converges to all
modes of the true data generating distribution while distributing its probability mass equally over all
modes.

4.2 MNIST

As a next step to increase complexity we evaluate our model on the MNIST dataset. As invariant
transformations T (x) we define small random shifts (up to 4 pixels) in both width- and height-
dimension and small random rotations up to 20◦.
Fig. 3 shows novel generated samples from the IVE-GAN trained on the MNIST dataset as a result
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Figure 3: Random samples generated by an IVE-GAN trained on the MNIST dataset. The latent
representation (16 dimensions) was randomly drawn from a uniform distribution z ∼ Pnoise.

Figure 4: Three rows of MNIST samples. First row: original samples x from the MNIST training
dataset. Second row: generated reconstructionsG(E(x)) of the original samples x from a IVE-GAN
with 16-dimensional latent space. Third row: generated reconstructions G(E(x)) of the original
samples x from a IVE-GAN with 3-dimensional latent space.

of randomly sampling the latent representation from a uniform distribution z ∼ Pnoise. Fig. 4 shows
for different samples x from the MNIST dataset the generated reconstructions G(z′, E(x)) for a
model with a 16-dimensional as well as a 3-dimensional latent space z. As one might expect, the
model with higher capacity produces images of more similar style to the originals and makes less
errors in reproducing digits of unusual style. However, 3 dimensions still provide enough capacity
for the IVE-GAN to store enough information of the original image to reproduce the right digit class
in most cases. Thus, the IVE-GAN is able to learn a rich representation of the MNIST dataset in
3 dimensions by utilizing class-invariant transformations. Fig. 5 shows the learned representation
of the MNIST dataset in 3 dimensions without using further dimensionality reduction methods. We
observe distinct clusters for the different digit classes.

4.3 CELEBA

As a last experiment we evaluate the proposed method on the more complex CelebA dataset (Liu
et al., 2015), centrally cropped to 128×128 pixel. As in the case of MNIST, we define invariant trans-
formation T (x) as small random shifts (here up to 20 pixel) in both width- and height-dimension as
well as random rotations up to 20◦. Additionally, T (x) performs random horizontal flips and small
random variations in brightness, contrast and hue.
Fig. 6 shows for different images x from the CelebA dataset some of the random transformation
T (x) and some of the generated reconstructed images G(z′, E(x)) with random noise z′. The re-
constructed images show clear similarity to the original images not only in prominent features but
also subtle facial traits.
Fig. 7 shows novel generated samples from the IVE-GAN trained on the CelebA dataset as an result
of randomly sampling the latent representation from a uniform distribution z ∼ Pnoise. To illustrate
the influence of the noise component z′, the generation was performed with the same five noise
components for each image respectively. We observe that altering the noise component induces a
similar relative transformation in each image.
To visualize the learned representation of the trained IVE-GAN we encode 10.000 samples from the
CelebA dataset into the 1024-dimensional latent space and projected it into two dimensions using
t-Distributed Stochastic Neighbor Embedding (t-SNE) (Maaten & Hinton, 2008).
Fig. 8(a) shows this projection of the latent space with example images for some high density re-
gions. Since the CelebA dataset comes with labels, we can evaluate the representation with respect
to its ability to clusters images of same features. Fig. 8(b)-Fig. 8(e) shows the t-SNE embedding
of both the latent representation and the original images for a selection of features. Observing the
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Figure 5: Representation of the MNIST dataset using the 3-dimensional latent space learned by the
IVE-GAN. The colors correspond to the digit labels.

𝑇(𝑥) 𝑥 G 𝐸(𝑥)

Figure 6: Original samples x from the CelebA dataset, their random transformation T (x) and the
generated reconstructions G(E(x)).
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Figure 7: Generated samples with same randomly drawn latent representation z ∼ Pnoise vertically
and same randomly drawn noise component z′ ∼ Pnoise horizontally.

visualization of the latent space, we can make out distinct clusters of images sharing similar style
and features. Images that are close together in the latent space, share similar visual attributes. It
is noteworthy that even images of people wearing normal eyeglasses are separated from images of
people wearing sunglasses. By comparing the embedding of the learned representation with the
embedding of the original images we observe a clear advantage of the representation learned by the
IVE-GAN in terms of clustering images with the same features.
We also evaluate whether smooth interpolation in the learned feature space can be performed. Since
we have a method at hand that can map arbitrary images from the dataset into the latent space,
we can also interpolate between arbitrary images of this dataset. This is in contrast to Radford et
al.(2016), who could only show such interpolations between generated ones.
Fig. 9 shows generated images based on interpolation in the latent representation between two orig-
inal images. The intermediate images, generated from the interpolated latent representations are
visually appealing and show a smooth transformation between the images. This finding indicates
that the IVE-GAN learns a smooth latent space and can generate new realistic images not only from
latent representations of training samples.

5 CONCLUSION

With this work we proposed a novel GAN framework that includes a encoding unit that maps data to
a latent representation by utilizing features in the data which are invariant to certain transformations.
We evaluate the proposed model on three different dataset and show the IVE-GAN can generate
visually appealing images of high variance while learning a rich representation of the dataset also
covering subtle features.
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Figure 8: Visualization of the 2-dimensional t-SNE of the 1024-dimensional latent representation of
10.000 CelebA images. (a): Example images for some of the high-density regions of the embedding.
(b): t-SNE embedding of the latent representation colored accordingly to some labels from the
CelebA dataset. red: eyeglasses, green: wearing hat, blue: bangs, yellow: blond hair. (c): t-SNE
embedding of the original CelebA raw data, same color code as in panel (b). (d): t-SNE embedding
of the latent representation colored accordingly to the gender. Red: male. (e): t-SNE embedding of
the original CelebA raw data, same color code as in panel (d).

Figure 9: Illustration of interpolation in the latent space between 3 pairs of original images re-
spectively. The first and the last image in each row are original images from the CelebA dataset.
The intermediate images are generated reconstructions based on step-wise interpolating between the
latent representation of the respective original images.
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A GENERATED IMAGES BY ADVERSARIALLY LEARNED INFERENCE
(ALI)

Figure 10: Samples and reconstructions on the CelebA dataset by ALI. Odd columns are original
samples and even columns are corresponding reconstructions. Images taken from the original paper
(Dumoulin et al., 2016).

Figure 11: Latent space interpolations on the CelebA dataset by ALI. Images taken from the original
paper (Dumoulin et al., 2016).
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B NETWORK ARCHITECTURE AND HYPERPARAMETERS

Table 1: Network architecture and hyperparameters for the synthetic dataset experiment.

Unit Operation Num Neurons Activation
E(x)

Dense 128 Tanh
Dense 2 Tanh

G(z′E(x))
Concatenate z′ and z = E(x)
Dense 128 Tanh
Dense 2 Tanh

D(x, ·)
Concatenate x and T (x) respectively G(E(x))
Dense 128 Tanh
Dense 1 Tanh

D′(Denc(·))
Dense 128 Tanh
Dense 1 Tanh

z′-dimensions 4
z-dimensions 3
OptimizerG Adam (α = 2 · 10−4, β1 = 0.7, β2 = 0.999, ε = 10−8)
OptimizerD Adam (α = 1 · 10−4, β1 = 0.7, β2 = 0.999, ε = 10−8)
Batch size 1024
Epochs 50000
LReLU slope 0.2
Weight initialization LReLU-layer: He, else: Xavier
Bias initialization Constant zero
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Table 2: Network architecture and hyperparameters for the MNIST experiment.

Unit Operation Kernel Strides Num Filter BN? Activation
E(x)

Conv 5x5 2x2 64 3 LReLU
Conv 3x3 2x2 128 3 LReLU
Conv 3x3 2x2 256 3 LReLU
Conv 3x3 2x2 256 3 LReLU
Conv 2x2 1x1 256 3 LReLU
Flatten
Dense 1024 7 Tanh

G(z′E(x))
Concatenate z′ and z = E(x)
Dense 4096 3 LReLU
Reshape to [Batch Size, 4, 4, 256]
Conv transposed 3x3 2x2 256 3 LReLU
Conv transposed 3x3 2x2 128 3 LReLU
Conv transposed 5x5 2x2 64 7 LReLU
Conv transposed 5x5 1x1 1 7 Sigmoid

Denc(·)
Conv 5x5 2x2 64 3 LReLU
Conv 3x3 2x2 128 3 LReLU
Conv 3x3 2x2 256 3 LReLU
Conv 3x3 2x2 256 3 LReLU
Conv 2x2 1x1 256 3 LReLU
Flatten
Dense 3 7 LReLU

D(x,Denc(·))
Concatenate Denc(x) and Denc(·)
Dense 128 7 LReLU
Dense 64 7 LReLU
Dense 16 7 LReLU
Dense 1 7 Linear

D′(Denc(·))
Dense 64 7 LReLU
Dense 1 7 Linear

z′-dimensions 4
z-dimensions 3
OptimizerG Adam (α = 2 · 10−4, β1 = 0.7, β2 = 0.999, ε = 10−8)
OptimizerD Adam (α = 1 · 10−4, β1 = 0.7, β2 = 0.999, ε = 10−8)
Batch size 512
Epochs 100
LReLU slope 0.2
Weight initialization LReLU-layer: He, else: Xavier
Bias initialization Constant zero
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Table 3: Network architecture and hyperparameters for the CelebA experiment.

Unit Operation Kernel Strides Num Filter BN? Activation
E(x)

Conv 5x5 2x2 128 3 LReLU
Conv 5x5 2x2 128 3 LReLU
Conv 5x5 2x2 256 3 LReLU
Conv 3x3 2x2 256 3 LReLU
Conv 3x3 2x2 512 3 LReLU
Conv 3x3 2x2 512 3 LReLU
Conv 2x2 1x1 1024 3 LReLU
Flatten
Dense 1024 7 Tanh

G(z′E(x))
Concatenate z′ and z = E(x)
Dense 4096 3 LReLU
Reshape to [Batch Size, 2, 2, 1024]
Conv transposed 2x2 2x2 512 3 LReLU
Conv transposed 2x2 1x1 512 3 LReLU
Conv transposed 3x3 2x2 256 3 LReLU
Conv transposed 3x3 1x1 256 3 LReLU
Conv transposed 3x3 2x2 256 3 LReLU
Conv transposed 3x3 1x1 256 3 LReLU
Conv transposed 5x5 2x2 128 3 LReLU
Conv transposed 5x5 1x1 128 3 LReLU
Conv transposed 5x5 2x2 128 3 LReLU
Conv transposed 5x5 1x1 128 7 LReLU
Conv transposed 5x5 2x2 64 7 LReLU
Conv transposed 5x5 1x1 3 7 Sigmoid

Denc(·)
Conv 5x5 2x2 128 3 LReLU
Conv 5x5 2x2 128 3 LReLU
Conv 5x5 2x2 256 3 LReLU
Conv 3x3 2x2 256 3 LReLU
Conv 3x3 2x2 512 3 LReLU
Conv 3x3 2x2 512 3 LReLU
Conv 2x2 1x1 1024 3 LReLU
Flatten
Dense 1024 7 LReLU

D(x,Denc(·))
Concatenate Denc(x) and Denc(·)
Dense 1024 7 LReLU
Dense 512 7 LReLU
Dense 128 7 LReLU
Dense 1 7 Linear

D′(Denc(·))
Dense 128 7 LReLU
Dense 1 7 Linear

z′-dimensions 16
z-dimensions 1024
OptimizerG Adam (α = 2 · 10−4, β1 = 0.5, β2 = 0.999, ε = 10−8)
OptimizerD Adam (α = 1 · 10−4, β1 = 0.5, β2 = 0.999, ε = 10−8)
Batch size 64
Epochs 16
LReLU slope 0.2
Weight initialization LReLU-layer: He, else: Xavier
Bias initialization Constant zero
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