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ABSTRACT

Graph Coarsening (GC) is a prominent graph reduction technique that compresses
large graphs to enable efficient learning on graphs. However, existing GC methods
generate only one coarsened graph per run and must recompute from scratch for
each new coarsening ratio, resulting in unnecessary overhead. Moreover, most
prior approaches are tailored to homogeneous graphs and fail to accommodate
the semantic constraints of heterogeneous graphs, which comprise multiple node
and edge types. To overcome these limitations, we introduce a novel framework
that combines Locality-Sensitive Hashing (LSH) with Consistent Hashing (CH) to
enable adaptive graph coarsening. Leveraging hashing techniques, our method is
inherently fast and scalable. For heterogeneous graphs, we propose a type-isolated
coarsening strategy that ensures semantic consistency by restricting merges to
nodes of the same type. Our approach is the first unified framework to support both
adaptive and heterogeneous coarsening. Extensive evaluations on 23 real-world
datasets including homophilic, heterophilic, homogeneous, and heterogeneous
graphs demonstrate that our method achieves superior scalability while preserving
the structural and semantic integrity of the original graph. Our code is available
here.

1 INTRODUCTION
Graphs are ubiquitous and have emerged as a fundamental data structure in numerous real-world
applications Kataria et al. (2025); Fout et al. (2017); Wu et al. (2020). Broadly, graphs can be
categorized into two types: (a) Homogeneous graphs Shchur et al. (2018); Wang et al. (2020), which
consist of a single type of nodes and edges. For instance, in a homogeneous citation graph, all
nodes represent papers, and all edges represent the “cite” relation between them; (b) Heterogeneous
graphs Liu et al. (2023a); Yang et al. (2020); Lv et al. (2021), which involve multiple types of
nodes and/or edges, enabling the modeling of richer and more realistic interactions. For example,
in a recommendation system, a heterogeneous graph may contain nodes of different types, such as
users, items, and categories, and edge types such as “(user, buys, item)”, “(user, views, item)”, and
“(item, belongs-to, category)”. Although many real-world datasets are inherently heterogeneous, early
research in graph machine learning predominantly focused on homogeneous graphs due to their
modeling simplicity, availability of standardized benchmarks, and theoretical tractability Dwivedi
et al. (2023); Lim et al. (2021). However, the limitations of homogeneous representations in capturing
rich semantic information have shifted attention toward heterogeneous graph modeling Yang et al.
(2020); Zhang et al. (2019).
As real-world networks continue to grow rapidly in size and complexity, large-scale graphs have
become increasingly common across various domains Kong et al. (2023); Zeng et al. (2019); Bhatia
et al. (2016). This surge in scale poses significant computational and memory challenges for learning
and inference tasks on such graphs. This underscores the growing importance of developing efficient
and effective methodologies for processing large-scale graph data. To address the issue, an expanding
line of research investigates graph reduction methods that compress structures without compromising
essential properties. Most existing graph reduction techniques, including pooling Bianchi et al.
(2020), sampling-based Dhillon et al. (2007), condensation Jin et al. (2021b), and coarsening-based
methods Kumar et al. (2023); Kataria et al. (2024); Loukas (2019). Coarsening methods have
demonstrated effectiveness in preserving structural and semantic information Loukas (2019); Kumar
et al. (2023); Kataria et al. (2024), this study focuses on graph coarsening (GC) as the primary
reduction strategy. Despite advancements in existing GC frameworks, two key challenges remain:
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Figure 1: AH-UGC consists of three modules: (a)MLSH constructs an augmented feature matrix by combining
node features and structural context using a heterophily-aware factor α, enabling support for both homophilic
and heterophilic graphs. Inspired by UGC Kataria et al. (2024), we use LSH projections to compute node
hash indices via ψ(h(Pk)

l
1) (see Section 3); (b)MCH applies consistent hashing to merge nodes clockwise

based on a target coarsening ratio r, yielding the coarsening matrix C; (c) the coarsened graph Gc is obtained
via Ac = C⊤AC. The framework is inherently adaptive— i.e., once an intermediate coarsening is obtained,
further reduction can be applied incrementally usingMCH and already calculated coarsening matrix C, enabling
efficient multi-resolution processing.

• Lack of “Adaptive Reduction”. Many applications, such as interactive visualization and real-time
recommendations, benefit from multi-resolution graph representations. These scenarios often
require dynamically adjusting the coarsening ratio based on user interaction or task demands.
However, most existing methods generate a single fixed-size coarsened graph and must recompute
from scratch for each new ratio, incurring high overhead. This highlights the need for adaptive
coarsening frameworks that enable efficient, progressive refinement without redundant computation.

• Lack of “Heterogeneous Graph Coarsening” Framework. Existing methods typically assume
homogeneous node types, making them unsuitable for heterogeneous graphs with semantically
distinct nodes. This can result in invalid supernodes for example, merging an author with a paper
node in a citation graph thus violating type semantics. Moreover, node types often have different
feature dimensions, which standard coarsening techniques are not designed to handle.

Key Contribution. To address the dual challenges of adaptive reduction and heterogeneous GC, we
propose AH-UGC, a unified framework for Adaptive and Heterogeneous Universal Graph Coarsening.
We integrate locality-sensitive hashing (LSH) Datar et al. (2004) with consistent hashing (CH) Karger
et al. (1997). While LSH ensures that similar nodes are coarsened together based on their features and
connectivity Kataria et al. (2023; 2024), CH—a technique originally developed for load balancing
Chen et al. (2021), enables us to design a coarsening process that supports multi-level adaptive
coarsening without reprocessing the full graph. To handle heterogeneous graphs, AH-UGC enforces
type-isolated coarsening, wherein nodes are first grouped by their types, and coarsening is applied
independently within each type group. This ensures that nodes and edges of incompatible types are
never merged, preserving the semantic structure of the original heterogeneous graph. Additionally,
AH-UGC is naturally suited for streaming or evolving graph settings, where new nodes and edges
arrive over time. Our LSH- and CH-based method allows new nodes to be integrated into the existing
coarsened structure with minimal recomputation. To summarize, AH-UGC is a general-purpose graph
coarsening framework that supports adaptive, streaming, expanding, heterophilic, and heterogeneous
graphs.

2 BACKGROUND
Definition 1 (Graph) A graph is represented as G(V,A,X), where V = {v1, . . . , vN} is the
set of N nodes, A ∈ RN×N is the adjacency matrix, and X ∈ RN×d̃ is the node fea-
ture matrix with each row Xi ∈ Rd̃ denoting the feature vector of node vi. An edge be-
tween nodes vi and vj is indicated by Aij > 0. Let D ∈ RN×N be the degree matrix with
Dii =

∑
j Aij then L = D − A denotes the Laplacian matrix. L ∈ SL, where SL =

2
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{
L ∈ RN×N

∣∣∣Lij = Lji ≤ 0 for i ̸= j; Lii = −
∑

j ̸=i Lij

}
. For i ̸= j, the matrices are related

by Aij = −Lij , and Aii = 0. Hence, the graph G(V,A,X) may equivalently be denoted G(L,X),
and we use either form as contextually appropriate.

Definition 2 (Heterogeneous graph) A heterogeneous graph can be represented in two equivalent
forms, with either representation utilized as required within the paper.

• Entity-based: A heterogeneous graph extends the standard graph structure by incorporating
multiple types of nodes and/or edges. Formally, a heterogeneous graph is defined as G(V,E,Φ,Ψ),
where Φ : V → TV and Ψ : E → TE are node-type and edge-type mapping functions, respectively
Lv et al. (2021). Here, TV and TE denote the sets of possible node types and edge types. When the
total number of node types |TV | and edge types |TE | is equal to 1, the graph degenerates into a
standard homogeneous graph (Definition 1).

• Type-based: Alternatively, a heterogeneous graph can be described as
G ({X(node type)}, {A(edge type)}, {y(target type)}), where feature matrices X , adjacency matri-
ces A, and target labels y are grouped and indexed by their corresponding node, edge, and target
types Gao et al. (2024).

Definition 3 (Graph Coarsening) Following Loukas (2019); Kataria et al. (2024); Kumar et al.
(2023), The Graph Coarsening (GC) problem involves learning a coarsening matrix C ∈ RN×n,
which linearly maps nodes from the original graph G to a reduced graph Gc, i.e., V → Ṽ . This linear
mapping should ensure that similar nodes in G are grouped into the same super-node in Gc, such that
the coarsened feature matrix is given by X̃ = CTX . Each non-zero entry Cij denotes the assignment
of node vi to super-node ṽj . The matrix C must satisfy the following structural constraints:

S = {C ∈ RN×n, Cij ∈ {0, 1}, ∥Ci∥ = 1, ⟨CT
i , CT

j ⟩ = 0 ∀i ̸= j, ⟨CT
l , CT

l ⟩ = dṼl
, ∥CT

i ∥0 ≥ 1}

where dṼl
means the number of nodes in the lth-supernode. The condition ⟨CT

i , CT
j ⟩ = 0 ensures

that each node of G is mapped to a unique super-node. The constraint ∥CT
i ∥0 ≥ 1 requires that each

super-node contains at least one node.

2.1 PROBLEM FORMULATION AND RELATED WORK
We formalize the problem through two key objectives: Goal 1. Adaptive Coarsening and Goal 2.
Graph Coarsening for Heterogeneous Graphs.

Figure 2: Comparison of capability support
across existing GC methods.

Goal 1. The objective is to compute multiple coarsened
graphs {G(r)

c }Rr=1 from input graph G(V,A,X), where each
G(r)
c corresponds to a target coarsening ratio r ∈ (0, 1], with-

out recomputing from scratch for each resolution. Formally,
the goal is to construct a family of coarsening matrices
{C(r) ∈ RN×n(r)} such that

X̃(r) = (C(r))⊤X, Ã(r) = (C(r))⊤AC(r),

with the constraint that all C(r) are derived from a single,
shared projection s = HASH(X), thereby ensuring consistency across coarsening levels and enabling
adaptive GC.

Goal 2. The objective is to learn a coarsening matrix C ∈ RN×n, such that the resulting coarsened
graph Gc(Ṽ , Ẽ, Φ̃, Ψ̃) satisfies the following constraints:

Φ̃(ṽj) = Φ(vi), ∀ṽj ∈ Ṽ , ∀vi ∈ π−1(ṽj),

Ψ̃(ṽj , ṽk) = TE(i, l) only if ∃(vi, vl) ∈ E s.t. π(vi) = ṽj , π(vl) = ṽk,

where π : V → Ṽ is the node-to-supernode mapping induced by C. These constraints guarantee
that: a) nodes of different types are not merged into the same supernode, and b) edge types between
supernodes are consistent with the original heterogeneous schema.
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Related Work. Graph reduction methods have been extensively studied and can be broadly catego-
rized into optimization-based and GNN-based approaches. Among optimization-driven heuristics,
Loukas’s spectral coarsening methods Loukas (2019) including edge-based (LVE) and neighborhood-
based (LVN) variants, preserve the spectral properties of the original graph. Other techniques, such
as Heavy Edge Matching (HEM)Dhillon et al. (2007); Ron et al. (2010), Algebraic DistanceChen &
Safro (2011), Affinity Livne & Brandt (2011), and Kron reduction Dorfler & Bullo (2013), rely on
topological heuristics or structural similarity principles. FGC Kumar et al. (2023) incorporates node
features to learn a feature-aware reduction matrix. Despite their diverse designs, a common drawback
of these methods is that they are computationally demanding, often with time complexities ranging
from O(n2) to O(n3), and are not well suited for large-scale or adaptive graph reduction settings.
UGC Kataria et al. (2024), a recent LSH-based framework, addresses these challenges by operating
in linear time and supporting heterophilic graphs. However, it produces only a single coarsened graph
and must recompute reductions for different coarsening levels, limiting its adaptability. GNN-based
condensation methods like GCond Jin et al. (2021a) and SFGC Zheng et al. (2024) learn synthetic
graphs through gradient matching but require full supervision, are model-specific, and lack scalability.
HGCond Gao et al. (2024) is the only approach designed for heterogeneous graphs, yet it inherits the
inefficiencies of condensation-based techniques. While some methods are model-agnostic, others
offer partial support for heterophilic or streaming graphs. Yet, no existing approach simultaneously
addresses all these challenges: model-agnostic, adaptability, and support for heterophilic, heteroge-
neous, and streaming graphs. As illustrated in Figure 2, AH-UGC is the first framework to meet all
six criteria comprehensively. For details on LSH and consistent hashing, see Appendix B.

Remark 1 We provide additional details on the practical applications of graph coarsening in the
Appendix C.

3 THE PROPOSED FRAMEWORK: ADAPTIVE AND HETEROGENEOUS
UNIVERSAL GRAPH COARSENING

In this section we propose our framework AH-UGC to address the issues of adaptive and heteroge-
neous graph coarsening. Figure 1 shows the outline of AH-UGC.

3.1 ADAPTIVE GRAPH COARSENING(GOAL 1)
The AH-UGC pipeline closely follows the recently proposed structure of UGC Kataria et al. (2024)
but incorporates consistent hashing principles to enable adaptive, i.e., multi-level coarsening. Our
framework introduces an innovative and flexible approach to graph coarsening that removes the
UGC’s dependency on fixed bin widths and enables the generation of multiple coarsened graphs.
AH-UGC employs an augmented representation to jointly encode both node attributes and graph
topology. For a given graph G(V,A,X), we compute a heterophily factor α ∈ [0, 1], which quantifies
the relative emphasis on structural information based on label agreement between connected nodes
i.e., α = |{(v,u)∈E:yv=yu}|

|E| . This factor is then used to blend node features Xi and adjacency vectors
Ai. For each node vi we calculate Fi = (1 − α) · Xi ⊕ α · Ai where ⊕ denotes concatenation.
This hybrid representation ensures that both local attribute similarity and topological proximity are
captured before the coarsening process. Importantly, this design enables our framework to handle
heterophilic graphs robustly by incorporating structural properties beyond mere feature similarity.

Adaptive Coarsening via Consistent and LSH Hashing. Let Fi ∈ Rd denote the augmented feature
vector for node vi. AH-UGC applies l random projection functions using a projection matrix
W ∈ Rd×l and bias vector b ∈ Rl, both sampled from a p-stable distribution Indyk & Motwani
(1998). The scalar hash score for each projection for ith node is given by:

hk
i = Wk · Fi + bk, ∀k ∈ {1, . . . , l}

UGC relies on a bin-width parameter (r) to control the coarsening ratio (R), but determining
appropriate bin-widths for different target ratios can be computationally expensive. In contrast,
AH-UGC eliminates the need for bin width by leveraging consistent hashing. Once the hash scores
(hi) across projections are computed, AH-UGC enables efficient construction of coarsened graphs
at multiple coarsening ratios without requiring reprocessing, making it well-suited for adaptive
settings. We define an AGGREGATE function to combine projection scores across multiple random
projectors. For each node i, the final score hi is computed as:

hi = AGGREGATE
({

hk
i

}l

k=1

)
=

1

l

l∑
k=1

hk
i

4
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Alternative aggregation functions such as max, median, or weighted averaging can also be used,
depending on the design objectives. After computing the scalar hash scores {hi} for all nodes
vi ∈ V , we sort the nodes in increasing order of hi to form an ordered list L, represented as a list of
super-node and mapped nodes: L = [{u1 : {v1}}, {u2 : {v2}}, . . . , {un : {vn}}] , where each key
uj denotes a super-node index, and the associated value is the set of nodes currently assigned to that
super-node. Initially, each node is its own super-node, and the number of super-nodes is |V (0)

c | = |V |.
At each iteration t, a super-node uj is randomly selected from the current list L(t) and merged with
its immediate clockwise neighbor uj+1. The updated super-node entry is given by:

L(t+1)[j] = {uj : L(t)[uj ] ∪ L(t)[uj+1]},

followed by the removal of uj+1 from the list. This reduces the number of super-nodes by one:
|V (t+1)

c | = |V (t)
c | − 1. The process is repeated until the desired coarsening ratio is reached: r = |Vc|

|V | .

Furthermore, this coarsening strategy is inherently adaptive, enabling transitions between any two
coarsening ratios r → t directly from the sorted list without reprocessing.
Construction of Coarsening Matrix C. Given the score-based node assignments π : V → Ṽ , where
π[vi] is the super-node index of vi, the binary coarsening matrix C ∈ {0, 1}N×n is defined such that
Cij = 1 if π[vi] = ṽj , and Cij = 0 otherwise. Each entry Cij of the coarsening matrix is set to 1 if
node vi is assigned to super-node ṽj . Since each node receives a unique hash value hi, it is exclusively
mapped to a single super-node. This one-to-one assignment guarantees that every super-node has at
least one associated node. As a result, each row of C contains exactly one non-zero entry, ensuring
that its columns are mutually orthogonal. The matrix C therefore adheres to the structural properties
defined in Equation 3. The adaptiveness of C stems from its sensitivity to local projection scores
rather than fixed bin constraints.

Construction of the Coarsened Graph Gc. The final coarsened graph Gc = (Ṽ , Ã, F̃ ) is constructed
from the coarsening matrix C. Two super-nodes ṽi and ṽj are connected if there exists at least one
edge (u, v) ∈ E with u ∈ π−1(ṽi) and v ∈ π−1(ṽj). The weighted adjacency matrix is obtained
via matrix multiplication: Ã = CTAC. The super-node features are computed as the average of
the features of the original nodes merged into the super-node: F̃i =

1
|π−1(ṽi)|

∑
u∈π−1(ṽi)

Fu. This
ensures that the coarsened representation preserves the aggregate semantic and structural content of
its constituent nodes. Since each super-edge aggregates multiple edges from the original graph, Ã is
significantly sparser than A, leading to lower memory and computation requirements downstream.
Algorithm 1 in Appendix G outlines the sequence of steps in our AH-UGC framework.

3.2 HETEROGENEOUS GRAPH COARSENING
In this section, we present AH-UGC’s capability to handle heterogeneous graphs. Given a heteroge-
neous graph,

G
(
A{A(author, write, paper), A(reader, read, paper)}, X{X(author), X(reader), X(paper)}, Y {y(paper)}

)
,

AH-UGC proceeds by first partitioning G by node type and independently applying the coarsening
framework to each subgraph. This ensures that only semantically similar nodes are grouped into
supernodes and that type-specific structure and features are preserved. Our approach naturally
supports varying feature dimensions and allows different coarsening ratios ηtype across node types.
Figure 7 in Appendix H illustrates this process, highlighting how AH-UGC preserves semantic
meaning compared to other GC methods that merge heterogeneous nodes indiscriminately.

Construction of the Coarsened Heterogeneous Graph Gc. The output of AH-UGC consists of a set of
coarsening matrices

CH = {C(t) ∈ {0, 1}|V(t)|×|Ṽ(t)|}t∈T ,

each of which maps original nodes of type t i.e., V(t) to their corresponding super-nodes Ṽ(t). Using
these mappings, we construct the coarsened graph

Gc

(
Ã{Ã(author, write, paper), Ã(reader, read, paper)}, X̃{X̃(author), X̃(reader), X̃(paper)}, Ỹ {ỹ(paper)}

)
,

For each node type t, the coarsened feature matrix is computed as: X̃(t) = C(t) ·X(t), where rows
of C(t) are row-normalized so that super-node features represent the average of their constituent
nodes. The label matrix ỹ(paper) is computed by majority voting over the labels of nodes merged

5
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into each super-node. To compute the coarsened edge matrices, for each edge type Te ∈ TE , we
consider the interaction between supernodes of types node-type1 and node-type2, corresponding to
the edge relation e = (node-type1, Te, node-type2) ∈ Ẽ. The coarsened adjacency matrix Ã(e) is
then computed as:

Ã(e) = C(node-type1) ·A(e) · CT
(node-type2)

.

This formulation accumulates the edge weights between the original nodes to define the inter-
supernode connections, thereby preserving the structural connectivity patterns between different
node-types of the original graph. Since each edge type is coarsened independently based on
the mappings from its corresponding node types, Gc preserves the heterogeneous semantics and
topological relationships of the original graph G. Algorithm 2 in Appendix G outlines the sequence
of steps in our AH-UGC framework.

3.3 JUSTIFICATION FOR LSH–CH SUPERNODE CONSTRUCTION.
Since the list L is constructed using locality-sensitive hashing (LSH) principles Indyk & Motwani
(1998), i.e., similar nodes are positioned adjacently. Theorem 3.1 shows that nodes that are close
in feature space are mapped to nearby positions under our LSH-based projections, while Lemma 1
bounds the probability that a distant point appears between two such neighbors in the sorted projection
order. Hence, when we merge a node with its immediate clockwise neighbor following CH principles,
we are merging similar nodes (with high probability) to form a supernode. This locality-preserving
merge yields semantically coherent supernodes and provides the algorithmic justification for the CH
step. For completeness, we also include an ablation that replaces the immediate neighbor with the kth

rightward neighbor; see Section 4.3. Results show that when a node is asked to look to its right and
merge, it is likely to find a similar neighbor and not a random or noisy one.

Theorem 3.1 Let x, y ∈ Rd, and let the projection function be defined as: h(x) =∑ℓ
j=1 r

⊤
j x, rj ∼ N (0, Id) i.i.d. Then the difference h(x)− h(y) ∼ N (0, ℓ∥x− y∥2), and for any

ε > 0:

Pr [|h(x)− h(y)| ≤ ε] = erf

(
ε√

2ℓ∥x− y∥

)
Proof: The proof is deferred in Appendix D.
This gives the probability that two nodes, initially close in the feature space, are projected within an
ϵ-range in the projection space.

Lemma 1 Let x, y, z ∈ Rd, with ∥x − y∥ ≪ ∥x − z∥. Then the probability that a distant point z
lies between x and y after projection is:

Pr[h(x) < h(z) < h(y)] ≤ Φ

(
∥x− y∥√
ℓ∥x− z∥

)
where Φ is the cumulative distribution function (CDF) of the standard normal distribution. This
result ensures that distant nodes rarely interrupt merge candidates that are close in feature space,
preserving the structural consistency of coarsened regions.

Proof: The proof is deferred in Appendix E.

By leveraging consistent hashing, our method ensures balanced supernode formation. Theorem 3.2
provides a probabilistic upper bound on the number of nodes mapped to any supernode.

Theorem 3.2 (Explicit Load Balance via Random Rightward Merges) Let n nodes be sorted ac-
cording to the consistent hashing scores defined earlier. Let k supernodes be formed by performing
n − k random rightward merges in the sorted list. Then, for any constant c > 0, the maximum
number of nodes in any supernode Si satisfies:

Pr

[
max

i
|Si| ≤

n

k
+

n(log k + c)

k

]
≥ 1− e−c

Proof: The proof is deferred in Appendix F.

6
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4 EXPERIMENTS
We conduct comprehensive experiments to evaluate the effectiveness of AH-UGC. First, we validate
its ability to perform adaptive graph coarsening. Second, we assess the quality of coarsened graphs
using node classification accuracy and spectral similarity. Finally, we demonstrate AH-UGC’s
generalizability by evaluating its performance on heterogeneous graphs. These datasets enable us to
evaluate all six key components outlined in Section 2.1. For detailed dataset statistics and System
Specifications, refer to Table 6 in Appendix A.

Table 1: Total time (in seconds) to generate coarsened graphs at multiple resolutions, targeting a set of
coarsening ratios ofR = {0.55, 0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.20, 0.15, 0.10}. The best and the second-
best accuracies in each row are highlighted by dark and lighter shades of Green, respectively. “OOT” indicates
out-of-time or memory errors.

Dataset VAN VAE VAC HE aJC aGS Kron FGC LAGC UGC AH-UGC

PubMed 166 224 510 213 231 2351 155 OOT OOT 137 29
CS 174 237 343 216 256 1811 204 OOT OOT 233 23
Physics 411 798 943 705 906 9341 755 OOT OOT 331 54

Chameleon 31 17 104 20 32 82 15 OOT OOT 21 6.73
Squirrel 384 61 398 66 342 1113 68 OOT OOT 53 4.69
Film 64 34 255 36 44 257 30 OOT OOT 92 11

Flickr 1199 2301 24176 2866 3421 59585 2858 OOT OOT 187 51
ogbn-arxiv OOT OOT OOT OOT OOT OOT OOT OOT OOT 1394 185
Reddit OOT OOT OOT OOT OOT OOT OOT OOT OOT 1595 290
Yelp OOT OOT OOT OOT OOT OOT OOT OOT OOT 6904 1374

4.1 ADAPTIVE COARSENING RUN-TIME.
Given a graph G, we evaluate AH-UGC’s ability to adaptively coarsen it to multiple resolutions,
targeting a set of coarsening ratios R = {0.55, 0.50, 0.45, ...0.10}. As described in Section 3, AH-
UGC leverages LSH and consistent hashing to group similar nodes into supernodes, enabling the
construction of multiple coarsened graphs in a single pass. This adaptivity significantly reduces
computational overhead compared to existing methods, which typically require reprocessing the entire
graph for each target resolution. The computational advantages of our approach are evident in Table 1
and Table 8 in App. I, where AH-UGC outperforms all baseline methods by a significant margin,
achieving the lowest coarsening time across all datasets and coarsening ratios, while maintaining
scalability even on large-scale graphs where other methods fail.

4.2 SPECTRAL PROPERTIES PRESERVATION.
Following the experimental setup of Kumar et al. (2023); Kataria et al. (2024); Loukas (2019) we
use Hyperbolic Error (HE), Reconstruction Error (RcE) and Relative Eigen Error (REE) to indicate
the structural similarity between G and Gc. A more detailed discussion about these properties is
included in Appendix J. Across three spectral evaluation metrics AH-UGC delivers performance that
is comparable to, and in several cases surpasses, state-of-the-art methods, see Table 2. While there
are minor dips in performance on a few datasets, this trade-off can be justified given the significant
computational efficiency and scalability gains offered by our framework. These results underscore that
AH-UGC achieves strong structural fidelity without compromising on runtime, making it especially
suitable for large-scale or adaptive coarsening scenarios.

4.3 LSH AND CH RESULTS.

(a) (b)

Figure 3: Validation of the LSH–CH design: (a) empirical evidence
that nearby feature vectors remain close after LSH projection; (b)
node-classification accuracy when merging with the k-th rightward
neighbor—performance is best at k=1 and degrades as k increases.

We empirically validate Theorem 3.1,
see Figure 3 (left). As ϵ increases,
Pr [|h(x)− h(y)| ≤ ε] approaches 1,
consistent with the theoretical erf-
based bound. These results justify
the use of consistent hashing, where
each node is merged with its nearest
clockwise neighbor. Theorem 3.1 and
Figure 3 (left) guarantee that simi-
lar nodes are projected to nearby loca-
tions and are thus highly likely to be
merged into a supernode. We ablate
the “merge the k-th rightward neighbor”. As seen from Figure 3 (right), performance degrades as
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Table 2: Illustration of spectral properties preservation, including HE, RcE and REE at 0.5 coarsening ratio.

Dataset VAN VAE VAC HE aJC aGS Kron UGC AH-UGC

HE
Error

DBLP 2.20 2.07 2.21 2.21 2.12 2.06 2.24 2.10 1.99
Pubmed 2.49 3.33 3.46 3.19 2.77 2.48 2.74 1.72 1.53
Squirrel 4.17 2.61 2.72 1.52 1.92 2.01 1.87 0.69 0.82

ReC
Error

DBLP 4.94 4.89 5.03 5.06 5.03 4.73 5.08 5.24 5.11
Pubmed 4.48 5.13 5.14 5.08 5.03 4.78 4.99 4.60 4.43
Squirrel 10.36 9.90 10.31 9.13 9.88 10.00 9.39 9.09 9.07

REE
Error

DBLP 0.10 0.05 0.13 0.07 0.06 0.03 0.18 0.44 0.32
Pubmed 0.05 0.97 0.88 0.71 0.48 0.06 0.42 0.31 0.21
Squirrel 0.88 0.58 0.42 0.44 0.34 0.36 0.48 0.05 0.07

Table 3: Node classification accuracy across various datasets and models at 0.5 coarsening ratio.

Dataset Model VAN VAE VAC HE aJC aGS Kron UGC AH-UGC Base

PubMed GCN 85.73 86.74 86.66 87.60 86.11 86.08 86.11 84.66 85.47 87.60
GIN 81.98 82.07 82.78 60.11 79.03 82.96 81.49 82.42 83.97 85.75
GAT 84.32 69.78 81.11 50.60 75.99 84.23 83.90 84.66 84.63 87.39

Physics GCN 94.75 94.62 94.57 94.73 94.39 94.75 94.40 95.20 94.88 95.79
GIN 94.90 94.56 94.78 94.49 93.79 94.79 92.65 94.41 94.94 95.66
GAT 94.97 95.01 95.00 94.65 95.36 94.60 94.85 96.02 95.10 94.28

Chameleon SGC 38.60 51.58 45.79 54.91 52.63 53.15 54.39 58.60 59.65 57.46
Mixhop 40.53 51.40 43.33 50.35 49.82 49.30 54.39 58.25 58.60 63.16
GPR-GNN 40.53 46.32 41.05 39.64 40.35 43.68 51.05 54.74 52.28 55.04

Penn94 SGC 62.93 62.33 62.23 62.13 63.52 63.03 63.52 75.74 75.87 66.78
Mixhop 71.71 69.62 69.35 68.36 67.98 68.40 67.98 73.36 72.13 80.28
GPR-GNN 68.18 68.19 68.36 68.20 67.77 68.15 68.11 67.93 68.55 79.43

k increases, aligning with the proposition, i.e., when k=1, the merged node pairs are most likely
to be semantically similar, resulting in the highest accuracy and best quality coarsened graph. As
k increases, we merge less similar nodes, degrading the representational quality of the graph; this
validates Lemma 1.

4.4 NODE CLASSIFICATION AND LINK PREDICTION ACCURACY
Graph Neural Networks (GNNs) are widely used for node classification tasks, where the goal is
to predict labels for nodes based on both node features and the underlying graph structure. In
this context, we evaluate the effectiveness of AH-UGC by examining how well it preserves predic-
tive performance when downstream models are trained on coarsened graphs Huang et al. (2021).
Specifically, we train several GNN models on the coarsened version of the original graph while
evaluating their performance on the original graph’s test nodes. Following established practice in the
literature, we employ different GNN backbones tailored to each graph type. For “homophilic”
datasets, we use GCN Kipf & Welling (2016), Sage Hamilton et al. (2017), GAT Velickovic
et al. (2018), GIN Xu et al. (2018a) and APPNP Huang et al. (2021), which are well-suited to
leverage dense neighborhood similarity. For “heterophilic” datasets, we adopt GPRGNN Chien
et al. (2020), MixHop Abu-El-Haija et al. (2019), H2GNN Zhu et al. (2020b), GCN-II Chen
et al. (2020), GatJK Xu et al. (2018b) and SGC Wu et al. (2019), which are designed to han-
dle weak or inverse homophily. For “heterogeneous” graphs, we use HeteroSGC, HeteroGCN,
HeteroGCN2 Gao et al. (2024) models that respect node and edge types during message passing.

Table 4: Link prediction accuracy (%).

Dataset AH-UGC UCG VAN HE Kron

DBLP 88.63 87.48 89.14 88.36 88.12
Pubmed 91.84 92.78 91.81 91.45 92.05
Squirrel 91.15 91.09 91.03 93.45 92.41
Chameleon 90.17 90.96 89.45 92.41 92.84

Complete architectural and hyperparameter details are pro-
vided in Appendix K. Table 3 reports node classification
accuracy for homophilic and heterophilic graphs on a rep-
resentative subset of datasets and GNN models. Please
refer to Table 11 in Appendix K for comprehensive re-
sults across additional datasets and architectures. The
AH-UGC framework consistently delivers results that are
either on par with or exceed the performance of existing
coarsening methods. As shown in Table 3, the framework
is independent of any particular GNN architecture, highlighting its robustness and model-agnostic
characteristics. AH-UGC is not limited to a single downstream task. To further validate the quality of
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Table 5: Node classification accuracy (%) for heterogeneous datasets at 0.30 coarsening ratio.

Dataset Model VAN VAE VAC HE aJC aGS Kron UGC AH-UGC Base

IMDB HeteroSGC 30.53 27.82 27.42 27.42 27.42 27.30 27.42 49.61 51.46 66.74
HeteroGCN 35.40 36.36 35.82 35.46 35.7 35.7 35.93 47.84 52.91 61.72
HeteroGCN2 36.13 36.15 35.82 35.82 35.82 35.82 35.82 44.13 52.58 63.47

DBLP HeteroSGC 28.33 28.33 29.43 53.07 54.65 29.43 29.43 53.92 56.60 94.10
HeteroGCN 32.07 31.08 32.75 32.75 33 35.46 31.28 58.82 63.13 84.18
HeteroGCN2 31.33 31.35 31.77 33.25 31.12 32.01 32.63 58.18 62.71 79.33

ACM HeteroSGC 74.25 44.66 OOT 34.54 42.31 34.54 42.31 60.33 53.82 92.06
HeteroGCN 36.33 37.65 OOT 35.7 35.2 35.53 35.1 39.27 85.16 92.72
HeteroGCN2 36.76 34.64 OOT 36.19 37.35 35.04 37.35 49.62 84.36 92.72

the coarsened graph, we employ the coarsened graph to train a GNN model for the link prediction
task. Link prediction accuracy (%) across four datasets; results are summarized in Table 4.
Performance on Heterogeneous Graphs: As outlined in Section 3, conventional graph coarsening
techniques struggle with preserving the semantic integrity of heterogeneous graphs. In contrast,
AH-UGC explicitly enforces type-aware coarsening, ensuring that supernodes are composed of nodes
from a single type, thus maintaining the heterogeneity semantics. Table 5 presents node classification
accuracies across various heterogeneous GNN models.

Figure 4: Node classification accuracy on hDBLP under
decreasing coarsening ratios for two heteroGNN models:
HeteroGCN and HeteroGCN2.

AH-UGC consistently outperforms other meth-
ods due to its ability to preserve type purity
within supernodes. This structural consistency
enables all tested GNN architectures to achieve
significantly higher classification performance.
Figure 5 illustrates the degree of supernode im-
purity for each method. Each bar corresponds to
a supernode and depicts the percentage distribu-
tion of node types within it. While supernodes
generated by AH-UGC are entirely type-pure,
those produced by baseline methods exhibit sub-
stantial cross-type mixing, leading to semantic drift and reduced model performance. Figure 4
analyzes the effect of increasing coarsening ratios on node classification accuracy. As expected,
all methods experience performance degradation with aggressive coarsening. However, the drop is
exponential for existing approaches due to rising impurity levels. In contrast, AH-UGC maintains
structural purity across coarsening levels, resulting in a gradual, near-linear decline in accuracy.
This robustness demonstrates AH-UGC’s superior capacity to coarsen heterogeneous graphs while
preserving their semantic and structural fidelity.

Figure 5: Supernode impurity across AH-UGC (left), UGC (center) and VAN (right) on IMDB dataset. Different
colors represent different node types(Movie, Director, Actor).

5 CONCLUSION
In this paper, we propose AH-UGC, a unified framework for adaptive and heterogeneous graph
coarsening. By integrating Locality-Sensitive Hashing (LSH) with Consistent Hashing, AH-UGC
efficiently produces multiple coarsened graphs with minimal overhead. Additionally, its type-
aware design ensures semantic preservation in heterogeneous graphs by avoiding cross-type node
merges. The framework is model-agnostic, scalable, and capable of handling both heterophilic and
heterogeneous graphs. We demonstrate that AH-UGC preserves key spectral properties, making it
applicable across diverse graph types. Extensive experiments on 23 real-world datasets with various
GNN architectures show that AH-UGC consistently outperforms existing methods in scalability,
classification accuracy, and structural fidelity.
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A DATASETS
We experiment on 24 widely-used benchmark datasets grouped into four categories: (a) Homophilic:
Cora ,Citeseer, Pubmed Yang et al. (2016), CS, Physics (Shchur et al., 2018), DBLP (Fu et al., 2020);
(b) Heterophilic: Squirrel, Chameleon, Texas, Cornell, Film, Wisconsin Zhu et al. (2020a); Pei et al.
(2020); Zhu et al. (2021); Du et al. (2022), Penn49, deezer-europe, Amherst41, John Hopkins55,
Reed98 Lim et al. (2021); (c) Heterogeneous: IMDB, DBLP, ACM Liu et al. (2023a); Gao et al.
(2024); and (d) Large-scale: Flickr, Yelp, Zeng et al. (2019) ogbn-arxiv Wang et al. (2020) , Reddit
Hamilton et al. (2017). These datasets enable us to evaluate all six key components outlined in
Section 2.1. Please refer to Table 6 and 7 for detailed dataset statistics and characteristics.
System Specifications: All experiments are conducted on a server equipped with two NVIDIA RTX
A6000 GPUs (48 GB memory each) and an Intel Xeon Platinum 8360Y CPU with 1 TB RAM.

Table 6: Summary of the datasets.

Category Data Nodes Edges Feat. Class H.R(α)

Homophilic
dataset

Cora 2,708 5,429 1,433 7 0.19
Citeseer 3,327 9,104 3,703 6 0.26
DBLP 17,716 52,867 1,639 4 0.18

CS 18,333 163,788 6,805 15 0.20
PubMed 19,717 44,338 500 3 0.20
Physics 34,493 247,962 8,415 5 0.07

Heterophilic
dataset

Texas 183 309 1703 5 0.91
Cornell 183 295 1703 5 0.70

Film 7600 33544 931 5 0.78
Squirrel 5201 217073 2089 5 0.78

Chameleon 2277 36101 2325 5 0.75
Penn94 41,554 1.36M 5 2 0.53

Deezer-europe 28,281 185.5k 31.24k 2 -
Amherst41 2235 181.9k 1193 3 -

John-Hopkin55 41,554 2.7M 4,814 3 -
Reed98 962 37.6k 745 3 -

Large dataset
Flickr 89,250 899,756 500 7 -
Reddit 232,965 11.60M 602 41 -

Ogbn-arxiv 169,343 1.16M 128 40 -
Yelp 716,847 13.95M 300 100 -

Table 7: Summary of Heterogeneous graph datasets

Dataset Nodes Edges Features Classes

IMDB

Movie - 4278 (Movie, to, Director) - 4278

3061 Movie: 3Director - 2081 (Movie, to, Actor) - 12828
Actor - 5257 (Director, to, Movie) - 4278

(Actor, to, Movie) - 12828

DBLP

(Author, to, Paper) - 19645

Author: 4

Author - 4057 (Paper, to, Author) - 19645 Author - 334
Paper - 4231 (Paper, to, Term) - 85810 Paper - 4231
Term - 7723 (Paper, to, Conference) - 14328 Term - 50

Conference - 50 (Term, to, Paper) - 85810 Conference - NA
(Conference, to, Paper) - 14328

ACM

(Paper, cite, Paper) - 5343

All except term - 1902
Term - NA Paper: 3

(Paper, ref, Paper) - 5343
Paper - 3025 (Paper, to, Author) - 9949

Author - 5959 (Author, to, Paper) - 9949
Subject - 56 (Paper, to, Subject) - 3025
Term - 1902 (Subject, to, Paper) - 3025

(Paper, to, Term) - 255619
(Term, to, Paper) - 255619

B LOCALITY-SENSITIVE HASHING AND CONSISTENT HASHING
Locality-Sensitive Hashing (LSH) is a technique for hashing high-dimensional data points so that
similar items are more likely to collide (i.e., hash to the same bucket) Indyk & Motwani (1998);
Kulis & Grauman (2009); Buhler (2001). It is commonly used in approximate nearest neighbor
search, dimensionality reduction, and randomized algorithms Chum et al. (2007). For example,
a hash function h(·) is locality-sensitive with respect to a similarity measure s(·, ·) if Pr[h(x) =
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Figure 6: Consistent Hashing (CH): Objects and bins are hashed to a unit circle; each object is assigned to the
next bin in clockwise order.

h(y)] increases with s(x, y). Gaussian LSH schemes, such as those using random projections, are
particularly effective for preserving Euclidean distances Kataria et al. (2023; 2024).
In the consistent hashing (CH) Karger et al. (1997); Chen et al. (2021) scheme, objects/requests are
hashed to random bins/servers on the unit circle, as shown in Figure 6. Objects are then assigned
to the closest bin in the clockwise direction. CH was originally proposed for load balancing in
distributed systems; it maps data points to buckets such that small changes in input (e.g., adding
or removing an object) do not drastically affect the overall assignment. We aim to employ CH for
adaptive graph coarsening, as it enables stable and scalable grouping of similar objects/nodes. When
combined with LSH, consistent hashing offers a powerful mechanism for adaptive graph reduction.

C PRACTICAL IMPACTS OF GRAPH COARSENING.
We would like to emphasize that graph coarsening is not solely motivated by GPU memory reduction
during GNN training. Instead, coarsening serves as a fundamental preprocessing technique that
enables scalable, interpretable, and efficient graph learning in large-scale and dynamic settings. While
memory reduction is one practical application, our use of node classification serves as a proxy task to
evaluate the structural quality of the coarsened graphs. Some of the key benefits of graph coarsening
and other graph reduction techniques are as follows:

1. Neural Architecture Search (NAS): Graph coarsening/reduction reduces dataset size, enabling
faster NAS by minimizing the need to train on full large-scale graphs. This accelerates model
selection and lowers compute costs Yang et al. (2023).

2. Continual Learning: Informative coarsened graphs act as memory-efficient replay buffers that
mitigate catastrophic forgetting in continual learning. For example, CaT Liu et al. (2023b) uses
graph reduction for task updates.

3. Visualization and Explanation: Smaller graphs are easier to visualize and interpret. Coarsening
enables faster and more human-friendly multilevel graph visualization pipelines Zhao et al. (2018).

4. Privacy Preservation: Reduced graphs offer inherent privacy benefits by obfuscating fine-grained
details. Methods like coarsening/sparsification have been shown to approximate differential
privacy while preserving utility Dong et al. (2022).

5. Graph Data Augmentation: Coarsening at multiple levels produces diverse graph views, useful
for augmentation. For example, HARP generates multi-resolution embeddings via progressive
coarsening Zhao et al. (2022).

6. Low-Memory Deployment: Compact coarsened graphs can be used to train or infer with GNNs
on memory-constrained devices, facilitating edge deployment and mobile graph learning.

7. Coarsening Applications in Different Domains:
• Biology: Coarsening has been effectively used to analyze massive single-cell datasets in

genomics and cytometry, where full-resolution graphs are computationally prohibitive Kataria
et al. (2025).

• Chemistry: By reducing the size of high-fidelity quantum datasets through locality-sensitive
hashing, graph coarsening techniques enable the efficient development of accurate ML potentials
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for complex chemical systems, significantly lowering the cost of quantum chemical simulations
Anmol et al. (2025).

Due to these wide-ranging benefits, graph coarsening and other reduction techniques remain an
active and evolving area of research. We refer the reviewer to the comprehensive survey Hashemi
et al. (2024) for further details.

D PROOF OF THEOREM 3.1
Theorem D.1 (Projection Proximity for Similar Points) Let x, y ∈ Rd, and define the projection
function:

h(x) =

ℓ∑
j=1

r⊤j x, rj ∼ N (0, Id) i.i.d.

Then the difference h(x)− h(y) ∼ N (0, ℓ∥x− y∥2), and for any ε > 0:

Pr [|h(x)− h(y)| ≤ ε] = erf

(
ε√

2ℓ∥x− y∥

)
Proof Let z = x− y ∈ Rd. Then:

h(x)− h(y) =

ℓ∑
j=1

r⊤j x−
ℓ∑

j=1

r⊤j y =

ℓ∑
j=1

r⊤j (x− y) =

ℓ∑
j=1

r⊤j z

Each term r⊤j z is a linear projection of a standard Gaussian vector, hence:

r⊤j z ∼ N (0, ∥z∥2) = N (0, ∥x− y∥2)

Since the rj are independent, the sum of ℓ such independent variables is:

h(x)− h(y) ∼ N (0, ℓ∥x− y∥2)

Now consider the probability:
Pr [|h(x)− h(y)| ≤ ε]

This is the cumulative probability within ε of a zero-mean Gaussian with variance ℓ∥x− y∥2. Let
σ2 = ℓ∥x− y∥2. Then:

Pr [|Z| ≤ ε] = erf

(
ε√
2σ2

)
= erf

(
ε√

2ℓ∥x− y∥

)
as required.

E PROOF OF LEMMA 1
Lemma Let x, y, z ∈ Rd, with ∥x− y∥ ≪ ∥x− z∥. Then the probability that a distant point z lies
between x and y after projection is:

Pr[h(x) < h(z) < h(y)] ≤ Φ

(
∥x− y∥√
ℓ∥x− z∥

)
where Φ is the cumulative distribution function (CDF) of the standard normal distribution. This
result ensures that distant nodes rarely interrupt merge candidates that are close in feature space,
preserving the structural consistency of coarsened regions.

Proof We analyze the chance that a far-away point z lies between two close points x and y in the
projected order.

Let:
a = h(x) =

∑
j

r⊤j x, b = h(y), c = h(z).

Define the difference d = h(y)− h(x) ∼ N
(
0, ℓ∥x− y∥2

)
.
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Assume without loss of generality that h(x) < h(y). Then:

Pr
[
h(x) < h(z) < h(y)

]
= Pr

[
c− a ∈ (0, d]

]
.

Since h(z)− h(x) ∼ N
(
0, ℓ∥x− z∥2

)
, we compute:

Pr
[
0 < h(z)− h(x) < d

]
=

∫ d

0

1√
2π ℓ ∥x− z∥

exp

(
− t2

2ℓ∥x− z∥2

)
dt ≤ Φ

(
d√

ℓ ∥x− z∥

)
.

Taking expectation over (d), this gives the desired bound.

F PROOF OF THEOREM 3.2
Theorem F.1 (Explicit Load Balance via Random Rightward Merges) Let n nodes be sorted ac-
cording to the consistent hashing scores defined earlier. Let k supernodes be formed by performing
n − k random rightward merges in the sorted list. Then, for any constant c > 0, the maximum
number of nodes in any supernode Si satisfies:

Pr

[
max

i
|Si| ≤

n

k
+

n(log k + c)

k

]
≥ 1− e−c

Proof Let U1, . . . , Uk−1 ∼ Uniform(0, 1) and let U(1) < · · · < U(k−1) be their order statistics.
Define the spacings:

I1 = U(1) − 0, I2 = U(2) − U(1), . . . , Ik = 1− U(k−1)

Then (I1, . . . , Ik) form a random partition of the unit interval [0, 1]. It is a classical result (e.g., David
& Nagaraja (2004)) that:

• The vector (I1, . . . , Ik) ∼ Dirichlet(1, . . . , 1),
• Each individual spacing Ii ∼ Beta(1, k − 1).

Tail bound on Ii. The PDF of Ii is:

f(t) = (k − 1)(1− t)k−2, t ∈ [0, 1]

and its tail probability is:
Pr[Ii > t] = (1− t)k−1

Choose t = log k+c
k . Then:

Pr[Ii > t] ≤ exp (−(log k + c)) =
1

k
e−c

Union bound. Over all k intervals:

Pr

[
max

i
Ii >

log k + c

k

]
≤ k · 1

k
e−c = e−c ⇒ Pr

[
max

i
Ii ≤

log k + c

k

]
≥ 1− e−c

Scaling to n nodes. We model the sorted list of n nodes as uniformly spaced over [0, 1]. Each
spacing Ii then corresponds to a fraction of the list, and multiplying by n yields the expected number
of nodes in that supernode:

|Si| = n · Ii ⇒ max
i

|Si| = n ·max
i

Ii ≤
n

k
+

n(log k + c)

k

This completes the proof.

G ALGORITHMS
Algorithm 1 and 2 outlines the sequence of steps for both adaptive and heterogeneous graph
coarsening.
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Algorithm 1 AH-UGC: Adaptive Universal Graph Coarsening

Require: Input G(V,A,X), l← Number of Projectors
1: α = |{(v,u)∈E:yv=yu}|

|E| ; α is heterophily factor, yi ∈ RN is node labels, E denotes edge list
2: F =

{
(1− α) ·X ⊕ α ·A

}
3: S ← F · W + b;S ∈ Rn×l // compute projections
4: W ∈ Rd×l, b ∈ Rl ∼ D(·) // sample projections
5: S ← F · W + b; S ∈ Rn×l // compute projections
6: si ← AGGREGATE({Si,k}lk=1) =

1
l

∑l
k=1 Si,k ∀i ∈ {1, . . . , n} // mean aggregation

7: L ← sort ({vi}ni=1) by ascending si // ordered node list
8: L ← [{u1 : {v1}}, {u2 : {v2}}, . . . , {un : {vn}}] // initial super-nodes
9: while |L|/|V | > r do

10: uj ∼ Uniform(L) // sample a super-node
11: L[uj ]← L[uj ] ∪ L[uj+1] // merge with right neighbor
12: L ← L \ {uj+1} // remove right neighbor
13: end while

14: C ∈ {0, 1}|L|×|V |, Cij ←

{
1 if vj ∈ L[ui]

0 otherwise
// partition matrix

15: C ← row-normalize(C) // normalize rows:
∑

j Cij = 1

16: F̃ ← CF ; Ã← CACT // coarsened features and adjacency
17: return Gc = (Ṽ , Ã, F̃ ), C

Algorithm 2 Heterogeneous Graph Coarsening

Require: Graph G
(
{X(node type)}, {A(edge type)}, {y(target type)}

)
, compression ratio η

Ensure: Condensed graph Gc
(
{X̃(node type)}, {Ã(edge type)}, {Ỹ(target type)}

)
1: for each node type t do
2: rt ← η · |Vt|
3: Gcoarse

t , Ct ← AH-UGC(Xt, At, rt)

4: X̃t ← node features from Gcoarse
t

5: if t is target type then
6: ỹt[i]← majority vote of yj for vj ∈ Ct[i]
7: end if
8: end for
9: for each edge type e = (t1, t2) do

10: Initialize Ãe ∈ R|Ṽt1
|×|Ṽt2

|

11: for each (vi, vj) ∈ Ae do
12: u← super-node index of vi via Ct1
13: v ← super-node index of vj via Ct2
14: Ãe[u, v]← Ãe[u, v] + 1
15: end for
16: end for
17: return Gc

(
{X̃(node type)}, {Ã(edge type)}, {Ỹ(target type)}

)

H HETEROGENOUS GRAPH COARSENING
Figure 7 illustrates this process, highlighting how AH-UGC preserves semantic meaning compared
to other GC methods that merge heterogeneous nodes indiscriminately.

I RUN TIME RESULTS
J SPECTRAL PROPERTIES
1. Relative Eigen Error (REE): REE used in Kumar et al. (2023); Kataria et al. (2024); Loukas

(2019) gives the means to quantify the measure of the eigen properties of the original graph G that
are preserved in coarsened graph Gc.

Definition 4 REE is defined as follows:
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Figure 7: This figure illustrates this process, highlighting how AH-UGC preserves semantic meaning compared
to other GC methods that merge heterogeneous nodes indiscriminately.

Table 8: Total time (in seconds) to generate coarsened graphs at multiple resolutions, targeting a set of
coarsening ratios ofR = {0.55, 0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.20, 0.15, 0.10}. The best and the second-
best accuracies in each row are highlighted by dark and lighter shades of Green, respectively. “OOT” indicates
out-of-time or memory errors.

Dataset VAN VAE VAC HE aJC aGS Kron FGC LAGC UGC AH-UGC

Cora 19 13 29 9 13 30 9 OOT OOT 30 7
Citeseer 28 23 37 21 22 31 20 OOT OOT 28 6
DBLP 162 138 388 204 206 1270 184 OOT OOT 131 20

Texas 1.59 0.91 2.66 0.77 0.96 1.32 0.8 OOT OOT 11 0.73
Cornell 1.76 0.99 2.72 0.86 1.11 1.35 0.68 OOT OOT 9 0.79

REE(L,Lc, k) =
1

k

k∑
i=1

|λ̃i − λi|
λi

(1)

where λi and λ̃i are top k eigenvalues of original graph Laplacian (L) and coarsened graph
Laplacian (Lc) matrix, respectively.

2. Hyperbolic error (HE): HE Bravo Hermsdorff & Gunderson (2019) indicates the structural
similarity between G and Gc with the help of a lifted matrix along with the feature matrix X of the
original graph.
Definition 5 HE is defined as follows:

HE = arccosh(
||(L− Llift)X||2F ||X||2F

2trace(XTLX)trace(XTLliftX)
+ 1) (2)

where L is the Laplacian matrix and X ∈ RN×d is the feature matrix of the original input graph,
Llift is the lifted Laplacian matrix defined in Loukas (2019) as Llift = CLcCT where C ∈ RN×n is
the coarsening matrix and Lc is the Laplacian of Gc.

3. Reconstruction Error (RcE)
Definition 6 Let L be the original Laplacian matrix and Llift be the lifted Laplacian matrix, then
the reconstruction error (RE) Liu et al. (2018); Kumar et al. (2023) is defined as:

RcE = ∥L− Llift∥2F (3)

K NODE CLASSIFICATION ACCURACY
Graph Neural Networks (GNNs), designed to operate on graph data Kataria et al. (2024); Malik et al.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 9: This table illustrates spectral properties including HE, RcE, REE across datasets and methods at 50%
coarsening ratio. AH-UGC achieves competitive performance across most datasets.

Dataset VAN VAE VAC HE aJC aGS Kron UGC AH-UGC

Cora 2.04 2.08 2.14 2.19 2.13 1.95 2.14 1.96 2.03

HE
Error

DBLP 2.20 2.07 2.21 2.21 2.12 2.06 2.24 2.10 1.99
Pubmed 2.49 3.33 3.46 3.19 2.77 2.48 2.74 1.72 1.53
Squirrel 4.17 2.61 2.72 1.52 1.92 2.01 1.87 0.69 0.82

Chameleon 2.77 2.55 2.99 1.80 1.86 1.97 1.86 1.28 1.71
Deezer-Europe 1.90 1.97 2.04 1.95 1.90 1.62 1.90 1.76 1.61

Penn94 1.96 1.52 1.65 1.57 1.51 1.43 1.55 1.05 1.09

ReC
Error

Cora 3.78 3.83 3.90 3.95 3.91 3.71 3.92 4.07 4.14
DBLP 4.94 4.89 5.03 5.06 5.03 4.73 5.08 5.24 5.11

Pubmed 4.48 5.13 5.14 5.08 5.03 4.78 4.99 4.60 4.43
Squirrel 10.36 9.90 10.31 9.13 9.88 10.00 9.39 9.09 9.07

Chameleon 7.90 7.72 8.05 7.55 7.52 7.58 7.13 7.40 7.16
Deezer-Europe 5.08 5.06 5.19 5.04 5.04 4.68 5.01 8.03 8.05

Penn94 7.77 7.71 7.77 7.73 7.73 7.63 7.76 7.71 7.74

REE
Error

Cora 0.09 0.07 0.05 0.04 0.11 0.09 0.03 0.64 0.66
DBLP 0.10 0.05 0.13 0.07 0.06 0.03 0.18 0.44 0.32

Pubmed 0.05 0.97 0.88 0.71 0.48 0.06 0.42 0.31 0.21
Squirrel 0.88 0.58 0.42 0.44 0.34 0.36 0.48 0.05 0.07

Chameleon 0.76 0.69 0.67 0.38 0.38 0.35 0.52 0.09 0.12
Deezer-Europe 0.48 0.29 0.47 0.25 0.21 0.02 0.19 0.35 0.35

Penn94 0.31 0.02 0.05 0.02 0.09 0.05 0.08 0.22 0.23

Table 10: Summary of GNN architectures used in our experiments. Each model is described by its layer
composition, hidden units, activation functions, dropout strategy, and notable characteristics.

Model Layers Hidden Units Activation Dropout Learning rate Decay Epoch

GCN 3 × GCNConv 64 → 64 → Output ReLU Yes (intermediate layers) 0.003 0.0005 500
APPNP Linear → Linear → APPNP 64 → 64 → 10 → Output ReLU Yes (before Linear layers) 0.003 0.0005 500
GAT 2 × GATv2Conv 64 × 8 → Output ELU Yes (p=0.6) 0.003 0.0005 500
GIN 2 × GATv2Conv 64 × 8 → Output ELU Yes (p=0.6) 0.003 0.0005 500
GraphSAGE 2 × SAGEConv 64 → Output ReLU Yes (after first layer) 0.003 0.0005 500

(2025), have demonstrated strong performance across a range of applications Li & Goldwasser (2019);
Paliwal et al. (2019); Pfaff et al. (2020); Ying et al. (2018). Nevertheless, their scalability to large
graphs remains a significant bottleneck. Motivated by recent efforts in scalable learning Huang et al.
(2021), we explore how our graph coarsening framework can improve the efficiency and scalability
of GNN training, enabling more effective processing of large-scale graph data. Specifically, we
train several GNN models on the coarsened version of the original graph while evaluating their
performance on the original graph’s test nodes. As discussed earlier in 4.4, our experimental setup
spans a diverse collection of datasets, each with distinct structural characteristics. For homophilic
graph settings, we follow the architectural configurations proposed in UGC Kataria et al. (2024),
see Table 10. For heterophilic graphs, the GNN model designs are based on the implementations
introduced in Lim et al. (2021). The heterogeneous GNN architectures are adopted directly from Gao
et al. (2024).
Table 11 reports node classification accuracy for homophilic and Table 12 reports node classification
accuracy for heterophilic graphs. The AH-UGC framework consistently delivers results that are
either on par with or exceed the performance of existing coarsening methods. As shown in Table 3,
the framework is independent of any particular GNN architecture, highlighting its robustness and
model-agnostic characteristics. We further include node-classification accuracies of recent Graph
Transformer models like Nodeformer Wu et al. (2022) and SGFormer Wu et al. (2023), see Table 13.
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Table 11: Node classification accuracy (%) for homophilic datasets

Dataset Model VAN VAE VAC HE aJC aGS Kron UGC AH-UGC Base

DBLP GCN 79.65 80.36 80.55 79.99 80.55 79.26 79.40 85.75 80.27 84.00
SAGE 80.58 80.07 80.16 80.81 80.61 81.57 79.48 68.56 68.31 84.08
GIN 79.40 79.20 80.38 78.83 77.96 78.18 78.01 73.95 79.82 83.26
GAT 74.43 78.32 76.49 77.56 78.97 77.51 75.93 77.93 79.48 82.25
APPNP 84.25 83.80 83.63 83.60 83.29 84.25 84.05 84.84 85.18 85.75

CS GCN 91.63 92.01 91.19 92.03 91.41 87.26 92.55 92.66 92.47 93.51
SAGE 94.32 94.19 94.57 94.24 93.94 93.70 94.02 89.17 89.83 94.82
GIN 89.80 89.69 89.83 90.70 89.61 88.00 90.64 86.77 81.07 83.50
GAT 91.98 91.52 92.31 91.57 90.67 91.19 89.50 89.83 90.48 91.84

Citeseer GCN 66.22 67.72 67.12 68.02 67.27 65.92 66.67 65.31 65.46 70.12
SAGE 64.71 72.52 70.87 63.96 66.06 72.37 73.42 61.71 64.26 74.47
GIN 68.17 69.82 68.77 70.57 69.70 67.87 68.02 64.41 63.66 71.62
GAT 71.17 70.87 71.02 72.07 71.17 68.92 71.47 65.76 69.21 71.32
APPNP 70.42 71.32 70.27 68.02 71.17 71.32 69.82 68.61 69.06 73.12

PubMed GCN 85.73 86.74 86.66 87.60 86.11 86.08 86.11 84.66 85.47 87.60
SAGE 87.40 86.11 87.15 66.45 86.49 87.45 87.73 87.34 72.16 88.28
GIN 81.98 82.07 82.78 60.11 79.03 82.96 81.49 82.42 83.97 85.75
GAT 84.32 69.78 81.11 50.60 75.99 84.23 83.90 84.66 84.63 87.39
APPNP 86.89 87.20 88.21 87.70 87.12 86.84 87.22 85.64 85.80 87.88

Physics GCN 94.75 94.62 94.57 94.73 94.39 94.75 94.40 95.20 94.88 95.79
SAGE 96.26 96.04 96.08 95.97 96.04 96.18 96.01 95.21 95.78 96.44
GIN 94.90 94.56 94.78 94.49 93.79 94.79 92.65 94.41 94.94 95.66
GAT 94.97 95.01 95.00 94.65 95.36 94.60 94.85 96.02 95.10 94.28
APPNP 96.20 96.20 96.28 96.11 95.97 96.07 96.21 96.17 96.10 96.28
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Table 12: Node classification accuracy (%) for heterophilic datasets.

Dataset Model VAN VAE VAC HE aJC aGS Kron UGC AH-UGC Base

Film SGC 29.36 27.84 29.95 26.15 26.89 25.74 27.74 21.47 21.68 27.63
Mixhop 28.21 30.68 29.84 29.52 29.10 29.15 31.15 21.57 21.79 30.92
GCN2 26.15 28.47 28.00 26.94 27.63 25.84 29.42 19.47 20.42 28.36
GPR-GNN 26.52 27.95 27.10 27.74 26.78 28.36 28.26 20.68 21.31 29.73
GatJK 26.11 25.89 25.79 25.10 25.31 25.31 26.63 22.42 21.21 23.94

deezer-europe SGC 54.55 55.31 54.50 55.38 54.48 54.69 55.15 54.49 55.06 57.08
Mixhop 58.42 59.10 58.48 58.82 58.34 57.38 58.80 59.78 60.98 64.31
GCN2 57.79 58.34 57.76 58.34 57.15 57.57 58.25 58.00 58.46 60.88
GPR-GNN 56.30 56.85 56.70 56.77 55.73 55.55 56.31 58.44 58.46 56.97
GatJK 55.21 57.50 54.63 55.76 55.31 56.03 56.87 57.01 57.33 59.01

Amherst41 SGC 61.42 63.19 59.06 60.83 63.39 62.99 63.78 78.74 73.82 73.46
Mixhop 59.25 58.46 57.68 58.66 59.06 63.78 58.66 69.29 64.37 72.48
GCN2 62.99 62.01 60.63 59.25 58.66 60.63 56.50 71.06 68.50 71.74
GPR-GNN 59.45 58.86 58.07 55.91 57.68 59.25 55.71 66.73 63.98 60.93
GatJK 57.48 63.58 60.24 62.99 61.61 64.76 62.60 64.37 67.72 78.13

Johns Hopkins55 SGC 62.72 69.19 68.77 69.35 68.85 70.28 69.19 73.80 72.96 73.77
Mixhop 63.64 65.74 68.18 64.90 62.22 64.90 63.73 69.94 67.25 73.56
GCN2 66.16 67.51 67.42 64.23 65.49 65.74 64.40 71.12 65.24 73.45
GPR-GNN 62.05 63.06 62.30 62.80 60.37 61.96 61.71 66.33 63.31 64.95
GatJK 62.80 69.10 67.34 66.41 65.99 65.58 67.00 69.77 65.32 77.12

Reed98 SGC 53.46 57.14 53.92 52.07 55.30 58.06 53.92 57.60 57.60 68.79
Mixhop 50.69 58.99 49.77 48.85 55.30 59.45 53.46 60.37 52.53 62.43
GCN2 56.68 59.45 51.61 50.69 51.61 56.68 50.69 61.75 57.14 64.16
GPR-GNN 48.39 57.60 48.39 45.62 55.76 58.06 53.46 57.60 54.84 56.07
GatJK 55.30 58.99 53.00 51.61 51.61 56.22 53.92 62.67 60.83 69.94

Squirrel SGC 31.97 33.13 30.98 36.66 34.97 36.59 35.59 40.89 39.51 43.61
Mixhop 36.28 30.21 24.60 34.90 28.44 27.90 37.05 46.12 43.97 46.40
GCN2 39.74 42.28 39.20 41.74 37.97 39.12 41.51 43.12 44.35 50.72
GPR-GNN 29.36 25.67 28.82 28.82 26.44 27.06 30.59 45.12 43.74 34.39
GatJK 31.44 37.43 32.82 46.12 38.36 37.89 46.81 40.89 39.43 46.01

Chameleon SGC 38.60 51.58 45.79 54.91 52.63 53.15 54.39 58.60 59.65 57.46
Mixhop 40.53 51.40 43.33 50.35 49.82 49.30 54.39 58.25 58.60 63.16
GCN2 47.37 52.11 56.84 59.30 59.65 58.95 59.12 51.40 49.82 67.11
GPR-GNN 40.53 46.32 41.05 39.64 40.35 43.68 51.05 54.74 52.28 55.04
GatJK 41.40 52.46 36.49 60.00 56.49 55.96 62.63 54.39 55.44 71.05

Cornell SGC 67.24 67.09 68.26 68.02 68.35 69.02 68.33 76.68 76.08 72.78
Mixhop 66.79 67.67 67.14 66.07 66.45 66.71 66.41 70.64 71.61 76.49
GCN2 66.31 66.83 66.98 67.64 67.17 62.91 66.50 72.71 70.90 77.18
GPR-GNN 64.98 64.27 65.17 65.00 63.55 63.67 63.48 69.66 68.00 67.46
GatJK 63.48 65.31 68.28 66.00 67.40 66.21 66.64 70.09 70.35 78.37

Penn94 SGC 62.93 62.33 62.23 62.13 63.52 63.03 63.52 75.74 75.87 66.78
Mixhop 71.71 69.62 69.35 68.36 67.98 68.40 67.98 73.36 72.13 80.28
GCN2 71.79 69.55 70.75 69.52 69.61 71.41 69.61 71.85 72.07 81.75
GPR-GNN 68.18 68.19 68.36 68.20 67.77 68.15 68.11 67.93 68.55 79.43
GatJK 67.94 67.05 66.73 66.21 66.34 66.06 66.33 69.23 69.26 80.74

Table 13: Node classification accuracy (%) for select datasets in transformer based GNNs.

Dataset Model AH-UGC UGC VAN VAE

DBLP Nodeformer 76.07 71.05 73.53 71.33
SGFormer 72.74 68.25 79.59 74.21

Physics Nodeformer 79.98 90.00 90.89 49.95
SGFormer 92.18 93.65 94.97 94.00

Squirrel Nodeformer 24.90 37.89 27.97 24.51
SGFormer 31.20 43.65 37.66 31.43

Chameleon Nodeformer 36.14 46.49 35.61 42.98
SGFormer 47.36 49.29 47.30 50.17

Cornell Nodeformer 65.95 57.44 19.14 70.21
SGFormer 48.93 31.91 51.06 59.57
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