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ABSTRACT

Graph Coarsening (GC) is a prominent graph reduction technique that compresses
large graphs to enable efficient learning on graphs. However, existing GC methods
generate only one coarsened graph per run and must recompute from scratch for
each new coarsening ratio, resulting in unnecessary overhead. Moreover, most
prior approaches are tailored to homogeneous graphs and fail to accommodate
the semantic constraints of heterogeneous graphs, which comprise multiple node
and edge types. To overcome these limitations, we introduce a novel framework
that combines Locality-Sensitive Hashing (LSH) with Consistent Hashing (CH) to
enable adaptive graph coarsening. Leveraging hashing techniques, our method is
inherently fast and scalable. For heterogeneous graphs, we propose a type-isolated
coarsening strategy that ensures semantic consistency by restricting merges to
nodes of the same type. Our approach is the first unified framework to support both
adaptive and heterogeneous coarsening. Extensive evaluations on 23 real-world
datasets including homophilic, heterophilic, homogeneous, and heterogeneous
graphs demonstrate that our method achieves superior scalability while preserving
the structural and semantic integrity of the original graph. Our code is available
here.

1 INTRODUCTION

Graphs are ubiquitous and have emerged as a fundamental data structure in numerous real-world
applications Kataria et al. (2025); Fout et al. (2017); Wu et al. (2020). Broadly, graphs can be
categorized into two types: (a) Homogeneous graphs Shchur et al. (2018); Wang et al. (2020), which
consist of a single type of nodes and edges. For instance, in a homogeneous citation graph, all
nodes represent papers, and all edges represent the “cite” relation between them; (b) Heterogeneous
graphs Liu et al. (2023a); Yang et al. (2020); Lv et al. (2021), which involve multiple types of
nodes and/or edges, enabling the modeling of richer and more realistic interactions. For example,
in a recommendation system, a heterogeneous graph may contain nodes of different types, such as
users, items, and categories, and edge types such as “(user, buys, item)”, “(user, views, item)”, and
“(item, belongs-to, category)”. Although many real-world datasets are inherently heterogeneous, early
research in graph machine learning predominantly focused on homogeneous graphs due to their
modeling simplicity, availability of standardized benchmarks, and theoretical tractability Dwivedi
et al. (2023); Lim et al. (2021). However, the limitations of homogeneous representations in capturing
rich semantic information have shifted attention toward heterogeneous graph modeling Yang et al.
(2020); Zhang et al. (2019).

As real-world networks continue to grow rapidly in size and complexity, large-scale graphs have
become increasingly common across various domains Kong et al. (2023); Zeng et al. (2019); Bhatia
et al. (2016). This surge in scale poses significant computational and memory challenges for learning
and inference tasks on such graphs. This underscores the growing importance of developing efficient
and effective methodologies for processing large-scale graph data. To address the issue, an expanding
line of research investigates graph reduction methods that compress structures without compromising
essential properties. Most existing graph reduction techniques, including pooling Bianchi et al.
(2020), sampling-based Dhillon et al. (2007), condensation Jin et al. (2021b), and coarsening-based
methods Kumar et al. (2023); Kataria et al. (2024); Loukas (2019). Coarsening methods have
demonstrated effectiveness in preserving structural and semantic information Loukas (2019); Kumar
et al. (2023); Kataria et al. (2024), this study focuses on graph coarsening (GC) as the primary
reduction strategy. Despite advancements in existing GC frameworks, two key challenges remain:
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Figure 1: AH-UGC consists of three modules: (a) Mysu constructs an augmented feature matrix by combining
node features and structural context using a heterophily-aware factor «, enabling support for both homophilic
and heterophilic graphs. Inspired by UGC Kataria et al. (2024), we use LSH projections to compute node
hash indices via z/)(h“”“)ll) (see Section 3); (b) Mcy applies consistent hashing to merge nodes clockwise
based on a target coarsening ratio 7, yielding the coarsening matrix C; (c) the coarsened graph G, is obtained
via A, = CT AC. The framework is inherently adaptive— i.e., once an intermediate coarsening is obtained,
further reduction can be applied incrementally using Mcy and already calculated coarsening matrix C, enabling
efficient multi-resolution processing.

* Lack of “Adaptive Reduction”. Many applications, such as interactive visualization and real-time
recommendations, benefit from multi-resolution graph representations. These scenarios often
require dynamically adjusting the coarsening ratio based on user interaction or task demands.
However, most existing methods generate a single fixed-size coarsened graph and must recompute
from scratch for each new ratio, incurring high overhead. This highlights the need for adaptive
coarsening frameworks that enable efficient, progressive refinement without redundant computation.

* Lack of “Heterogeneous Graph Coarsening” Framework. Existing methods typically assume
homogeneous node types, making them unsuitable for heterogeneous graphs with semantically
distinct nodes. This can result in invalid supernodes for example, merging an author with a paper
node in a citation graph thus violating type semantics. Moreover, node types often have different
feature dimensions, which standard coarsening techniques are not designed to handle.

Key Contribution. To address the dual challenges of adaptive reduction and heterogeneous GC, we
propose AH-UGC, a unified framework for Adaptive and Heterogeneous Universal Graph Coarsening.
We integrate locality-sensitive hashing (LSH) Datar et al. (2004) with consistent hashing (CH) Karger
et al. (1997). While LSH ensures that similar nodes are coarsened together based on their features and
connectivity Kataria et al. (2023; 2024), CH—a technique originally developed for load balancing
Chen et al. (2021), enables us to design a coarsening process that supports multi-level adaptive
coarsening without reprocessing the full graph. To handle heterogeneous graphs, AH-UGC enforces
type-isolated coarsening, wherein nodes are first grouped by their types, and coarsening is applied
independently within each type group. This ensures that nodes and edges of incompatible types are
never merged, preserving the semantic structure of the original heterogeneous graph. Additionally,
AH-UGC is naturally suited for streaming or evolving graph settings, where new nodes and edges
arrive over time. Our LSH- and CH-based method allows new nodes to be integrated into the existing
coarsened structure with minimal recomputation. To summarize, AH-UGC is a general-purpose graph
coarsening framework that supports adaptive, streaming, expanding, heterophilic, and heterogeneous
graphs.

2 BACKGROUND
Definition 1 (Graph) A graph is represented as G(V, A, X), where V. = {v1,...,un} is the
set of N nodes, A € RN*N g the adjacency matrix, and X € RN s the node fea-

ture matrix with each row X; € R? denoting the feature vector of node v;. An edge be-
tween nodes v; and vj is indicated by A;; > 0. Let D € RNXN be the degree matrix with
D;; = Zj Ajj then L = D — A denotes the Laplacian matrix. L € Sp, where S; =
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{L € RVXN ‘ Lij = Lj; <0fori#j; Ly = — Zj# Lij} . For i # j, the matrices are related

by A;; = —L;;, and A;; = 0. Hence, the graph G(V, A, X) may equivalently be denoted G(L, X),
and we use either form as contextually appropriate.

Definition 2 (Heterogeneous graph) A heterogeneous graph can be represented in two equivalent
forms, with either representation utilized as required within the paper.

» Entity-based: A heterogeneous graph extends the standard graph structure by incorporating
multiple types of nodes and/or edges. Formally, a heterogeneous graph is defined as G(V, E, ®, V),
where ® : V. — Ty and V¥ : E — Ty are node-type and edge-type mapping functions, respectively
Lv et al. (2021). Here, Ty and Tg denote the sets of possible node types and edge types. When the
total number of node types | Ty | and edge types |Tg| is equal to 1, the graph degenerates into a
standard homogeneous graph (Definition ).

o Type-based: Alternatively, —a  heterogeneous graph can be described as
G ({Xnode_rype) }» { Atedge-type) }» {Ytargerrype) } ), Where  feature matrices X, adjacency matri-
ces A, and target labels y are grouped and indexed by their corresponding node, edge, and target
types Gao et al. (2024).

Definition 3 (Graph Coarsening) Following Loukas (2019); Kataria et al. (2024); Kumar et al.
(2023), The Graph Coarsening (GC) problem involves learning a coarsening matrix C € RN*™,
which linearly maps nodes from the original graph G to a reduced graph G, i.e., V — V. This linear
mapping should ensure that similar nodes in G are grouped into the same super-node in G, such that
the coarsened feature matrix is given by X = CTX. Each non-zero entry C;; denotes the assignment
of node v; to super-node v;. The matrix C must satisfy the following structural constraints:
S={CeRY™ ¢ {01}, |Gl =1, (C].C])=0Vi#j, (C.Cl) =dy, IC] o =1}

iy
where dy; means the number of nodes in the 1" _supernode. The condition (CF, C]T> = 0 ensures
that each node of G is mapped to a unique super-node. The constraint ||CI ||o > 1 requires that each
super-node contains at least one node.

2.1 PROBLEM FORMULATION AND RELATED WORK
We formalize the problem through two key objectives: Goal 1. Adaptive Coarsening and Goal 2.
Graph Coarsening for Heterogeneous Graphs.

1: Model-Agnostic 2: Linear Time 3: Heterophilic 4: Heterogeneous 5: Adaptive 6: Streaming

Goal 1. The objective is to compute multiple coarsened
graphs {Qér) }2 | from input graph G(V, A, X ), where each
g corresponds to a target coarsening ratio r € (0, 1], with-

out recomputing from scratch for each resolution. Formally,
the goal is to construct a family of coarsening matrices

{c ¢ RNX”(T)} such that

Total Capabilities Supported (out of 6)

X = (C(T))TX, Al = (C(T))TAC(T)7 Figure 2: Comparison of capability support
across existing GC methods.
with the constraint that all C(") are derived from a single,
shared projection s = HASH(X), thereby ensuring consistency across coarsening levels and enabling
adaptive GC.

Goal 2. The objective is to learn a coarsening matrix C € RN*™ such that the resulting coarsened
graph G.(V, E, ®, ) satisfies the following constraints:
(v;) = d(vy), Vi; € V,Vo; € m (1),
(05, 0%) = Te(iy 1) onlyif 3(vs,v) € E st w(v;) =1;, w(v1) = Uk,
where 1 V — V is the node-to-supernode mapping induced by C. These constraints guarantee

that: a) nodes of different types are not merged into the same supernode, and b) edge types between
supernodes are consistent with the original heterogeneous schema.
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Related Work. Graph reduction methods have been extensively studied and can be broadly catego-
rized into optimization-based and GNN-based approaches. Among optimization-driven heuristics,
Loukas’s spectral coarsening methods Loukas (2019) including edge-based (LVE) and neighborhood-
based (LVN) variants, preserve the spectral properties of the original graph. Other techniques, such
as Heavy Edge Matching (HEM)Dhillon et al. (2007); Ron et al. (2010), Algebraic DistanceChen &
Safro (2011), Affinity Livne & Brandt (2011), and Kron reduction Dorfler & Bullo (2013), rely on
topological heuristics or structural similarity principles. FGC Kumar et al. (2023) incorporates node
features to learn a feature-aware reduction matrix. Despite their diverse designs, a common drawback
of these methods is that they are computationally demanding, often with time complexities ranging
from O(n?) to O(n?), and are not well suited for large-scale or adaptive graph reduction settings.
UGC Kataria et al. (2024), a recent LSH-based framework, addresses these challenges by operating
in linear time and supporting heterophilic graphs. However, it produces only a single coarsened graph
and must recompute reductions for different coarsening levels, limiting its adaptability. GNN-based
condensation methods like GCond Jin et al. (2021a) and SFGC Zheng et al. (2024) learn synthetic
graphs through gradient matching but require full supervision, are model-specific, and lack scalability.
HGCond Gao et al. (2024) is the only approach designed for heterogeneous graphs, yet it inherits the
inefficiencies of condensation-based techniques. While some methods are model-agnostic, others
offer partial support for heterophilic or streaming graphs. Yet, no existing approach simultaneously
addresses all these challenges: model-agnostic, adaptability, and support for heterophilic, heteroge-
neous, and streaming graphs. As illustrated in Figure 2, AH-UGC is the first framework to meet all
six criteria comprehensively. For details on LSH and consistent hashing, see Appendix B.

Remark 1 We provide additional details on the practical applications of graph coarsening in the
Appendix C.

3 THE PROPOSED FRAMEWORK: ADAPTIVE AND HETEROGENEOUS

UNIVERSAL GRAPH COARSENING
In this section we propose our framework AH-UGC to address the issues of adaptive and heteroge-
neous graph coarsening. Figure 1 shows the outline of AH-UGC.

3.1 ADAPTIVE GRAPH COARSENING(GOAL 1)

The AH-UGC pipeline closely follows the recently proposed structure of UGC Kataria et al. (2024)
but incorporates consistent hashing principles to enable adaptive, i.e., multi-level coarsening. Our
framework introduces an innovative and flexible approach to graph coarsening that removes the
UGC’s dependency on fixed bin widths and enables the generation of multiple coarsened graphs.
AH-UGC employs an augmented representation to jointly encode both node attributes and graph
topology. For a given graph G(V, A, X)), we compute a heterophily factor « € [0, 1], which quantifies
the relative emphasis on structural information based on label agreement between connected nodes

ie,a = % This factor is then used to blend node features X; and adjacency vectors

A;. For each node v; we calculate F; = (1 — «) - X; ® a - A; where @ denotes concatenation.
This hybrid representation ensures that both local attribute similarity and topological proximity are
captured before the coarsening process. Importantly, this design enables our framework to handle
heterophilic graphs robustly by incorporating structural properties beyond mere feature similarity.

Adaptive Coarsening via Consistent and LSH Hashing. Let F; € R? denote the augmented feature
vector for node v;. AH-UGC applies [ random projection functions using a projection matrix
W € R4 and bias vector b € R!, both sampled from a p-stable distribution Indyk & Motwani
(1998). The scalar hash score for each projection for i*" node is given by:
hY =Wy - Fi+by, Vke{l,...,1}
UGC relies on a bin-width parameter () to control the coarsening ratio (R), but determining
appropriate bin-widths for different target ratios can be computationally expensive. In contrast,
AH-UGC eliminates the need for bin width by leveraging consistent hashing. Once the hash scores
(h;) across projections are computed, AH-UGC enables efficient construction of coarsened graphs
at multiple coarsening ratios without requiring reprocessing, making it well-suited for adaptive
settings. We define an AGGREGATE function to combine projection scores across multiple random
projectors. For each node i, the final score h; is computed as:
1
_ AU k
hi = AGGREGATE ({hf},_,) = 7 >_ h}
k=1



Under review as a conference paper at ICLR 2026

Alternative aggregation functions such as max, median, or weighted averaging can also be used,
depending on the design objectives. After computing the scalar hash scores {h;} for all nodes
v; € V, we sort the nodes in increasing order of h; to form an ordered list £, represented as a list of
super-node and mapped nodes: £ = [{uy : {vi}}, {ua : {ve}}, ..., {un : {vn}}], where each key
u,; denotes a super-node index, and the associated value is the set of nodes currently assigned to that

super-node. Initially, each node is its own super-node, and the number of super-nodes is |Vc(0) |=|V|.
At each iteration ¢, a super-node u; is randomly selected from the current list £®) and merged with
its immediate clockwise neighbor u ;1. The updated super-node entry is given by:

L] = {uy : LOTug] U LD 4]},

followed by the removal of u;; from the list. This reduces the number of super-nodes by one:

|Vc(t+1)| = |Vc(t)| — 1. The process is repeated until the desired coarsening ratio is reached: r = ‘I“//C\‘ .

Furthermore, this coarsening strategy is inherently adaptive, enabling transitions between any two
coarsening ratios r — t directly from the sorted list without reprocessing.

Construction of Coarsening Matrix C. Given the score-based node assignments 7 : V — V, where
[v;] is the super-node index of v;, the binary coarsening matrix C € {0, 1}V *" is defined such that
Ci;j = 1if m[v;] = v, and C;; = 0 otherwise. Each entry C;; of the coarsening matrix is set to 1 if
node v; is assigned to super-node v;. Since each node receives a unique hash value h;, it is exclusively
mapped to a single super-node. This one-to-one assignment guarantees that every super-node has at
least one associated node. As a result, each row of C contains exactly one non-zero entry, ensuring
that its columns are mutually orthogonal. The matrix C therefore adheres to the structural properties
defined in Equation 3. The adaptiveness of C stems from its sensitivity to local projection scores
rather than fixed bin constraints.

Construction of the Coarsened Graph G.. The final coarsened graph G, = (\7, E F ) is constructed
from the coarsening matrix C. Two super-nodes v; and 0; are connected if there exists at least one
edge (u,v) € E withu € 771(7;) and v € 7~1(v;). The weighted adjacency matrix is obtained
via matrix multiplication: A = CTAC. The super-node features are computed as the average of
the features of the original nodes merged into the super-node: F; = W 2 uern—1(5;) Fu- This
ensures that the coarsened representation preserves the aggregate semantic and structural content of
its constituent nodes. Since each super-edge aggregates multiple edges from the original graph, Ais

significantly sparser than A, leading to lower memory and computation requirements downstream.
Algorithm | in Appendix G outlines the sequence of steps in our AH-UGC framework.

3.2 HETEROGENEOUS GRAPH COARSENING
In this section, we present AH-UGC’s capability to handle heterogeneous graphs. Given a heteroge-
neous graph,

g (A{A(author, write, paper) » A(reader, read, paper) }’7 X{X(author) ) X(reader) ) X(paper) }7 Y{y(paper) }) )

AH-UGC proceeds by first partitioning G by node type and independently applying the coarsening
framework to each subgraph. This ensures that only semantically similar nodes are grouped into
supernodes and that type-specific structure and features are preserved. Our approach naturally
supports varying feature dimensions and allows different coarsening ratios 7;ype across node types.
Figure 7 in Appendix H illustrates this process, highlighting how AH-UGC preserves semantic
meaning compared to other GC methods that merge heterogeneous nodes indiscriminately.

Construction of the Coarsened Heterogeneous Graph G.. The output of AH-UGC consists of a set of
coarsening matrices

Cy = {C(t) e {0, 1}|V<t>‘><“7(t)|}t€7_7

each of which maps original nodes of type ? i.e., V|4 to their corresponding super-nodes 17@). Using
these mappings, we construct the coarsened graph

gc (Z{g(author, write, paper) s g(reader, read, paper)}v X{X(author)v X(reader)v X(paper)}a ?{g(paper)}) ;

For each node type ¢, the coarsened feature matrix is computed as: X t) = Ca) - X(1), where rows
of C(;) are row-normalized so that super-node features represent the average of their constituent
nodes. The label matrix (paper) is computed by majority voting over the labels of nodes merged
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into each super-node. To compute the coarsened edge matrices, for each edge type 7. € Tg, we
consider the interaction between supernodes of types node-type; and node-type,, corresponding to

the edge relation e = (node-type,, 7¢, node-type,) € E. The coarsened adjacency matrix A is
then computed as:

T T

A(e) = Cuodertype;)  Ae) * Clnode-type,)-
This formulation accumulates the edge weights between the original nodes to define the inter-
supernode connections, thereby preserving the structural connectivity patterns between different
node-types of the original graph. Since each edge type is coarsened independently based on
the mappings from its corresponding node types, G. preserves the heterogeneous semantics and
topological relationships of the original graph G. Algorithm 2 in Appendix G outlines the sequence
of steps in our AH-UGC framework.

3.3 JUSTIFICATION FOR LSH—CH SUPERNODE CONSTRUCTION.

Since the list £ is constructed using locality-sensitive hashing (LSH) principles Indyk & Motwani
(1998), i.e., similar nodes are positioned adjacently. Theorem 3.1 shows that nodes that are close
in feature space are mapped to nearby positions under our LSH-based projections, while Lemma 1
bounds the probability that a distant point appears between two such neighbors in the sorted projection
order. Hence, when we merge a node with its immediate clockwise neighbor following CH principles,
we are merging similar nodes (with high probability) to form a supernode. This locality-preserving
merge yields semantically coherent supernodes and provides the algorithmic justification for the CH
step. For completeness, we also include an ablation that replaces the immediate neighbor with the k™
rightward neighbor; see Section 4.3. Results show that when a node is asked to look to its right and
merge, it is likely to find a similar neighbor and not a random or noisy one.

Theorem 3.1 Let 2,y € RY and let the projection function be defined as: h(xr) =
ST, r; ~ N(0,1;) i.i.d. Then the difference h(x) — h(y) ~ N(0, ||z — y||?), and for any

j=1"J
e>0:

Pr(|h(z) — h(y)| < ] = exf <@|lw—yll>

Proof: The proof is deferred in Appendix D.
This gives the probability that two nodes, initially close in the feature space, are projected within an
e-range in the projection space.

Lemma 1 Let x,y, 2 € R with ||z — y|| < ||x — z||. Then the probability that a distant point z
lies between x and y after projection is:

Iz —yl
Pr[h(z) < h(z) < h(y)] < ® (
Vlz — 2|
where ® is the cumulative distribution function (CDF) of the standard normal distribution. This
result ensures that distant nodes rarely interrupt merge candidates that are close in feature space,
preserving the structural consistency of coarsened regions.

Proof: The proof is deferred in Appendix E.

By leveraging consistent hashing, our method ensures balanced supernode formation. Theorem 3.2
provides a probabilistic upper bound on the number of nodes mapped to any supernode.

Theorem 3.2 (Explicit Load Balance via Random Rightward Merges) Let n nodes be sorted ac-
cording to the consistent hashing scores defined earlier. Let k supernodes be formed by performing
n — k random rightward merges in the sorted list. Then, for any constant ¢ > 0, the maximum
number of nodes in any supernode S; satisfies:

log k
Pr |max g < ™ 4 o8k +0)

> _—C
k k z1-e

Proof: The proof is deferred in Appendix F.
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4 EXPERIMENTS

We conduct comprehensive experiments to evaluate the effectiveness of AH-UGC. First, we validate
its ability to perform adaptive graph coarsening. Second, we assess the quality of coarsened graphs
using node classification accuracy and spectral similarity. Finally, we demonstrate AH-UGC’s
generalizability by evaluating its performance on heterogeneous graphs. These datasets enable us to
evaluate all six key components outlined in Section 2.1. For detailed dataset statistics and System
Specifications, refer to Table 6 in Appendix A.

Table 1: Total time (in seconds) to generate coarsened graphs at multiple resolutions, targeting a set of
coarsening ratios of R = {0.55,0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.20, 0.15, 0.10}. The best and the second-
best accuracies in each row are highlighted by dark and lighter shades of , respectively. “OOT” indicates
out-of-time or memory errors.

Dataset VAN VAE  VAC HE aJC aGS Kron FGC LAGC UGC ‘ AH-UGC
PubMed 166 224 510 213 231 2351 155 ooT  OO0T 137 29
CS 174 237 343 216 256 1811 204 Oo0oT OO0T 233 23
Physics 411 798 943 705 906 9341 755 ooT  O0T 331 54
Chameleon 31 17 104 20 32 82 15 ooT 00T 21 6.73
Squirrel 384 61 398 66 342 1113 68 o0oT  OO0T 53 4.69
Film 64 34 255 36 44 257 30 ooT  OO0T 92 11
Flickr 1199 2301 24176 2866 3421 59585 2858 ooT  OO0T 187 51
ogbn-arxiv O0T 00T 00T O0T OOT 00T O0T 00T OO0T 1394 185
Reddit Oo0oT 00T 00T O0T 00T OO0T Oo0T 00T OO0T 1595 290
Yelp OooT 00T OO0T ooT 00T OO0T Oo0oT O0T OO0T 6904 1374

4.1 ADAPTIVE COARSENING RUN-TIME.

Given a graph G, we evaluate AH-UGC'’s ability to adaptively coarsen it to multiple resolutions,
targeting a set of coarsening ratios R = {0.55,0.50,0.45,...0.10}. As described in Section 3, AH-
UGC leverages LSH and consistent hashing to group similar nodes into supernodes, enabling the
construction of multiple coarsened graphs in a single pass. This adaptivity significantly reduces
computational overhead compared to existing methods, which typically require reprocessing the entire
graph for each target resolution. The computational advantages of our approach are evident in Table 1
and Table 8 in App. I, where AH-UGC outperforms all baseline methods by a significant margin,
achieving the lowest coarsening time across all datasets and coarsening ratios, while maintaining
scalability even on large-scale graphs where other methods fail.

4.2 SPECTRAL PROPERTIES PRESERVATION.

Following the experimental setup of Kumar et al. (2023); Kataria et al. (2024); Loukas (2019) we
use Hyperbolic Error (HE), Reconstruction Error (RcE) and Relative Eigen Error (REE) to indicate
the structural similarity between G and G.. A more detailed discussion about these properties is
included in Appendix J. Across three spectral evaluation metrics AH-UGC delivers performance that
is comparable to, and in several cases surpasses, state-of-the-art methods, see Table 2. While there
are minor dips in performance on a few datasets, this trade-off can be justified given the significant
computational efficiency and scalability gains offered by our framework. These results underscore that
AH-UGC achieves strong structural fidelity without compromising on runtime, making it especially
suitable for large-scale or adaptive coarsening scenarios.

4.3 LSH AND CH RESULTS.

We empirically validate Theorem 3.1,
see Figure 3 (left). As € increases,
Pr[|h(z) — h(y)| < €] approaches 1,
consistent with the theoretical erf-
based bound. These results justify
the use of consistent hashing, where €
each node is merged with its nearest (a) )

clockwise neighbor. Theorem 3.1 and

Figure 3 (left) guarantee that simi- Figure 3: Validation of the LSH-CH design: (a) empirical evidence
lar nodes are projected to nearby loca- that nearby feat_ure vectors remain closg aftey LSH projec;tion; (b)
node-classification accuracy when merging with the k-th rightward
neighbor—performance is best at k=1 and degrades as k increases.

Prl|z] = €]

tions and are thus highly likely to be
merged into a supernode. We ablate
the “merge the k-th rightward neighbor”. As seen from Figure 3 (right), performance degrades as
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Table 2: Illustration of spectral properties preservation, including HE, RcE and REE at 0.5 coarsening ratio.

Dataset VAN VAE VAC HE alC aGS Kron UGC AH-UGC

HE DBLP 2.20 2.07 221 221 2.12 2.06 2.24 2.10 1.99
Error Pubmed 2.49 3.33 3.46 3.19 277 2.48 2.74 1.72 1.53
Squirrel 4.17 2.61 272 1.52 1.92 2.01 1.87 0.69 0.82

ReC DBLP 4.94 4.89 5.03 506 5.03 4.73 5.08 5.24 5.11
Error Pubmed 4.48 5.13 5.14 508 5.03 4.78 4.99 4.60 4.43
Squirrel 1036 9.90 10.31 9.13  9.88 10.00 9.39 9.09 9.07

REE DBLP 0.10 0.05 0.13 0.07  0.06 0.03 0.18 0.44 0.32
Error Pubmed 0.05 0.97 0.88 0.71  0.48 0.06 0.42 0.31 0.21
Squirrel 0.88 0.58 0.42 044 034 0.36 0.48 0.05 0.07

Table 3: Node classification accuracy across various datasets and models at 0.5 coarsening ratio.

Dataset Model VAN VAE VAC HE aJC aGS Kron UGC AH-UGC ‘ Base
PubMed GCN 85.73 86.74  86.66 = 87.60 86.11 86.08  86.11 84.66 85.47 87.60
GIN 81.98 82.07 8278  60.11 79.03 8296  81.49 82.42 83.97 85.75
GAT 8432 69.78  81.11 50.60 7599 84.23  83.90 84.66 84.63 87.39
Physics GCN 9475  94.62 9457 9473 9439 9475 94.40 95.20 94.88 95.79
GIN 9490 9456 9478 9449 9379 9479  92.65 94.41 94.94 | 95.66
GAT 9497  95.01 95.00  94.65 9536  94.60  94.85 96.02 95.10 | 94.28
Chameleon  SGC 38.60 51.58 4579 54091 52.63  53.15 54.39 58.60 59.65 57.46
Mixhop 40.53 5140 4333 5035 4982 4930 54.39 58.25 58.60 63.16
GPR-GNN  40.53 4632 41.05 39.64 4035 43.68  51.05 54.74 52.28 55.04
Penn9%4 SGC 6293  62.33 62.23  62.13 6352 63.03 63.52 75.74 75.87 66.78
Mixhop 71.71 69.62  69.35 6836 6798 6840 67.98 73.36 72.13 80.28
GPR-GNN  68.18 68.19 6836 6820 67.77 68.15 68.11 67.93 68.55 79.43

k increases, aligning with the proposition, i.e., when k=1, the merged node pairs are most likely
to be semantically similar, resulting in the highest accuracy and best quality coarsened graph. As
k increases, we merge less similar nodes, degrading the representational quality of the graph; this
validates Lemma 1.

4.4 NODE CLASSIFICATION AND LINK PREDICTION ACCURACY

Graph Neural Networks (GNNs) are widely used for node classification tasks, where the goal is
to predict labels for nodes based on both node features and the underlying graph structure. In
this context, we evaluate the effectiveness of AH-UGC by examining how well it preserves predic-
tive performance when downstream models are trained on coarsened graphs Huang et al. (2021).
Specifically, we train several GNN models on the coarsened version of the original graph while
evaluating their performance on the original graph’s test nodes. Following established practice in the
literature, we employ different GNN backbones tailored to each graph type. For “homophilic”
datasets, we use GCN Kipf & Welling (2016), Sage Hamilton et al. (2017), GAT Velickovic
et al. (2018), GIN Xu et al. (2018a) and APPNP Huang et al. (2021), which are well-suited to
leverage dense neighborhood similarity. For “heterophilic” datasets, we adopt GPRGNN Chien
et al. (2020), MixHop Abu-El-Haija et al. (2019), H2GNN Zhu et al. (2020b), GCN-II Chen
et al. (2020), GatJK Xu et al. (2018b) and SGC Wu et al. (2019), which are designed to han-
dle weak or inverse homophily. For “heterogeneous” graphs, we use HeteroSGC, HeteroGCN,
HeteroGCN2 Gao et al. (2024) models that respect node and edge types during message passing.
Complete architectural and hyperparameter details are pro-

vided in Appendix K. Table 3 reports node classification Table 4: Link prediction accuracy (%).
accuracy for homophilic and heterophilic graphs on a rep-

resentative subset of datasets and GNN models. Please  pajacet  AH-UGC UCG VAN HE Kron

refer to Table 11 in Appendix K for comprehensive re-

It dditional datasets and architect The PBLP 88.63  87.48 89.14 8836 88.12
sults across additional datasets and architectures. € pubmed 9184 9278 9181 9145 9205
AH-UGC framework consistently delivers results that are  squirrel 91.15  91.09 91.03 9345 9241
either on par with or exceed the performance of existing = Chameleon ~ 90.17 ~ 90.96 89.45 9241 92.84

coarsening methods. As shown in Table 3, the framework
is independent of any particular GNN architecture, highlighting its robustness and model-agnostic
characteristics. AH-UGC is not limited to a single downstream task. To further validate the quality of
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Table 5: Node classification accuracy (%) for heterogeneous datasets at 0.30 coarsening ratio.

Dataset Model VAN VAE VAC HE aJ]C aGS Kron UGC AH-UGC \ Base
IMDB  HeteroSGC 30.53 27.82 2742 2742 2742 2730 2742 49.61 51.46 66.74
HeteroGCN 3540 36.36 35.82 3546 357 35.7 3593 47.84 5291 61.72
HeteroGCN2 36.13 36.15 3582 3582 3582 3582 3582 44.13 52.58 63.47
DBLP  HeteroSGC 28.33 2833 2943 53.07 54.65 29.43 2943 53.92 @ 56.60 94.10
HeteroGCN 32.07 31.08 3275 3275 33 3546 31.28 58.82 63.13 84.18
HeteroGCN2 31.33 3135 31.77 3325 31.12 32.01 32.63 58.18 62.71 79.33
ACM HeteroSGC 7425 44.66 OOT 3454 4231 3454 4231 60.33 53.82 92.06
HeteroGCN  36.33 37.65 OOT 35.7 35.2 35.53 35.1 39.27 @ 85.16 92.72
HeteroGCN2 36.76 34.64 OOT 36.19 37.35 35.04 3735 49.62 84.36 92.72

the coarsened graph, we employ the coarsened graph to train a GNN model for the link prediction
task. Link prediction accuracy (%) across four datasets; results are summarized in Table 4.
Performance on Heterogeneous Graphs: As outlined in Section 3, conventional graph coarsening
techniques struggle with preserving the semantic integrity of heterogeneous graphs. In contrast,
AH-UGC explicitly enforces type-aware coarsening, ensuring that supernodes are composed of nodes
from a single type, thus maintaining the heterogeneity semantics. Table 5 presents node classification
accuracies across various heterogeneous GNN models.

AH-UGC consistently outperforms other meth-
ods due to its ability to preserve type purity
within supernodes. This structural consistency
enables all tested GNN architectures to achieve -~
significantly higher classification performance.  *
Figure 5 illustrates the degree of supernode im-
purity for each method. Each bar corresponds to
a supernode and depicts the percentage distribu-
tion of node types within it. While supernodes
generated by AH-UGC are entirely type-pure,
those produced by baseline methods exhibit sub-
stantial cross-type mixing, leading to semantic drift and reduced model performance. Figure 4
analyzes the effect of increasing coarsening ratios on node classification accuracy. As expected,
all methods experience performance degradation with aggressive coarsening. However, the drop is
exponential for existing approaches due to rising impurity levels. In contrast, AH-UGC maintains
structural purity across coarsening levels, resulting in a gradual, near-linear decline in accuracy.
This robustness demonstrates AH-UGC’s superior capacity to coarsen heterogeneous graphs while
preserving their semantic and structural fidelity.

30
050 015 010 035 030 02 020 015 0l 050 015 010 035 030 025 020 015 010
Coarsening Ratio ing Rati

Coarsening Ratio

Figure 4: Node classification accuracy on hDBLP under
decreasing coarsening ratios for two heteroGNN models:
HeteroGCN and HeteroGCN2.
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Figure 5: Supernode impurity across AH-UGC (left), UGC (center) and VAN (right) on IMDB dataset. Different
colors represent different node types(Movie, Director, Actor).

5 CONCLUSION

In this paper, we propose AH-UGC, a unified framework for adaptive and heterogeneous graph
coarsening. By integrating Locality-Sensitive Hashing (LSH) with Consistent Hashing, AH-UGC
efficiently produces multiple coarsened graphs with minimal overhead. Additionally, its type-
aware design ensures semantic preservation in heterogeneous graphs by avoiding cross-type node
merges. The framework is model-agnostic, scalable, and capable of handling both heterophilic and
heterogeneous graphs. We demonstrate that AH-UGC preserves key spectral properties, making it
applicable across diverse graph types. Extensive experiments on 23 real-world datasets with various
GNN architectures show that AH-UGC consistently outperforms existing methods in scalability,
classification accuracy, and structural fidelity.
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A DATASETS

We experiment on 24 widely-used benchmark datasets grouped into four categories: (a) Homophilic:
Cora ,Citeseer, Pubmed Yang et al. (2016), CS, Physics (Shchur et al., 2018), DBLP (Fu et al., 2020);
(b) Heterophilic: Squirrel, Chameleon, Texas, Cornell, Film, Wisconsin Zhu et al. (2020a); Pei et al.
(2020); Zhu et al. (2021); Du et al. (2022), Penn49, deezer-europe, Amherst41, John Hopkins55,
Reed98 Lim et al. (2021); (c¢) Heterogeneous: IMDB, DBLP, ACM Liu et al. (2023a); Gao et al.
(2024); and (d) Large-scale: Flickr, Yelp, Zeng et al. (2019) ogbn-arxiv Wang et al. (2020) , Reddit
Hamilton et al. (2017). These datasets enable us to evaluate all six key components outlined in
Section 2.1. Please refer to Table 6 and 7 for detailed dataset statistics and characteristics.

System Specifications: All experiments are conducted on a server equipped with two NVIDIA RTX
A6000 GPUs (48 GB memory each) and an Intel Xeon Platinum 8360Y CPU with 1 TB RAM.

Table 6: Summary of the datasets.

Category Data Nodes Edges Feat. Class H.R(«)
Cora 2,708 5,429 1,433 7 0.19
Citeseer 3,327 9,104 3,703 6 0.26
Homonhilic DBLP 17,716 52,867 1,639 4 0.18
dat 2 " CS 18,333 163,788 6,805 15 0.20
atase PubMed 19,717 44338 500 3 0.20
Physics 34,493 247,962 8415 5 0.07
Texas 183 309 1703 5 0.91
Cornell 183 295 1703 5 0.70
Heterophilic Film 7600 33544 931 5 0.78
dat P ¢ Squirrel 5201 217073 2089 5 0.78
atasel Chameleon 2277 36101 2325 5 0.75
Penn94 41,554  1.36M 5 2 0.53
Deezer-europe 28,281 185.5k  31.24k 2 -
Ambherst41 2235 181.9k 1193 3
John-Hopkin55 41,554 2.7M 4,814 3
Reed98 962 37.6k 745 3
Flickr 89,250 899,756 500 7
Large dataset Reddit 232,965 11.60M 602 41
Ogbn-arxiv 169,343 1.16M 128 40
Yelp 716,847 13.95M 300 100
Table 7: Summary of Heterogeneous graph datasets
Dataset Nodes Edges Features Classes
Movie - 4278 (Movie, to, Director) - 4278
Director - 2081 (Movie, to, Actor) - 12828 .
IMDB  “pctor-5257  (Director, to, Movie) - 4278 3061 Movie: 3
(Actor, to, Movie) - 12828
(Author, to, Paper) - 19645
Author - 4057 (Paper, to, Author) - 19645 Author - 334
Paper - 4231 (Paper, to, Term) - 85810 Paper - 4231 .
DBLP Term - 7723 (Paper, to, Conference) - 14328 Term - 50 Author: 4
Conference - 50 (Term, to, Paper) - 85810 Conference - NA
(Conference, to, Paper) - 14328
(Paper, cite, Paper) - 5343
(Paper, ref, Paper) - 5343
Paper - 3025 (Paper, to, Author) - 9949
Author - 5959 (Author, to, Paper) - 9949
ACM  Subject- 56 (Paper, (o, Subjec) - 3025 A1l exeept lem - 1902 pper: 3
Term - 1902 (Subject, to, Paper) - 3025

(Paper, to, Term) - 255619
(Term, to, Paper) - 255619

B LOCALITY-SENSITIVE HASHING AND CONSISTENT HASHING

Locality-Sensitive Hashing (LSH) is a technique for hashing high-dimensional data points so that
similar items are more likely to collide (i.e., hash to the same bucket) Indyk & Motwani (1998);
Kulis & Grauman (2009); Buhler (2001). It is commonly used in approximate nearest neighbor
search, dimensionality reduction, and randomized algorithms Chum et al. (2007). For example,
a hash function h(-) is locality-sensitive with respect to a similarity measure s(-, -) if Pr[h(z) =
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Figure 6: Consistent Hashing (CH): Objects and bins are hashed to a unit circle; each object is assigned to the
next bin in clockwise order.

h(y)] increases with s(z, y). Gaussian LSH schemes, such as those using random projections, are
particularly effective for preserving Euclidean distances Kataria et al. (2023; 2024).

In the consistent hashing (CH) Karger et al. (1997); Chen et al. (2021) scheme, objects/requests are
hashed to random bins/servers on the unit circle, as shown in Figure 6. Objects are then assigned
to the closest bin in the clockwise direction. CH was originally proposed for load balancing in
distributed systems; it maps data points to buckets such that small changes in input (e.g., adding
or removing an object) do not drastically affect the overall assignment. We aim to employ CH for
adaptive graph coarsening, as it enables stable and scalable grouping of similar objects/nodes. When
combined with LSH, consistent hashing offers a powerful mechanism for adaptive graph reduction.

C PRACTICAL IMPACTS OF GRAPH COARSENING.

We would like to emphasize that graph coarsening is not solely motivated by GPU memory reduction
during GNN training. Instead, coarsening serves as a fundamental preprocessing technique that
enables scalable, interpretable, and efficient graph learning in large-scale and dynamic settings. While
memory reduction is one practical application, our use of node classification serves as a proxy task to
evaluate the structural quality of the coarsened graphs. Some of the key benefits of graph coarsening
and other graph reduction techniques are as follows:

1. Neural Architecture Search (NAS): Graph coarsening/reduction reduces dataset size, enabling
faster NAS by minimizing the need to train on full large-scale graphs. This accelerates model
selection and lowers compute costs Yang et al. (2023).

2. Continual Learning: Informative coarsened graphs act as memory-efficient replay buffers that
mitigate catastrophic forgetting in continual learning. For example, CaT Liu et al. (2023b) uses
graph reduction for task updates.

3. Visualization and Explanation: Smaller graphs are easier to visualize and interpret. Coarsening
enables faster and more human-friendly multilevel graph visualization pipelines Zhao et al. (2018).

4. Privacy Preservation: Reduced graphs offer inherent privacy benefits by obfuscating fine-grained
details. Methods like coarsening/sparsification have been shown to approximate differential
privacy while preserving utility Dong et al. (2022).

5. Graph Data Augmentation: Coarsening at multiple levels produces diverse graph views, useful
for augmentation. For example, HARP generates multi-resolution embeddings via progressive
coarsening Zhao et al. (2022).

6. Low-Memory Deployment: Compact coarsened graphs can be used to train or infer with GNNs
on memory-constrained devices, facilitating edge deployment and mobile graph learning.

7. Coarsening Applications in Different Domains:

* Biology: Coarsening has been effectively used to analyze massive single-cell datasets in
genomics and cytometry, where full-resolution graphs are computationally prohibitive Kataria
et al. (2025).

* Chemistry: By reducing the size of high-fidelity quantum datasets through locality-sensitive
hashing, graph coarsening techniques enable the efficient development of accurate ML potentials
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for complex chemical systems, significantly lowering the cost of quantum chemical simulations
Anmol et al. (2025).

Due to these wide-ranging benefits, graph coarsening and other reduction techniques remain an
active and evolving area of research. We refer the reviewer to the comprehensive survey Hashemi
et al. (2024) for further details.

D PROOF OF THEOREM 3.1

Theorem D.1 (Projection Proximity for Similar Points) Let 2,y € RY, and define the projection
function:

4
h(z)=>_rlz, rj~N(0,1y)iid

j=1
Then the difference h(x) — h(y) ~ N(0, ||z — y||?), and for any £ > 0:

Pr{|h(z) — h(y)| < €] = erf (M)

Proof Let z = x — y € R?. Then:
¢ ¢ ¢ ¢

T T T T
h(z) — h(y) = er x—er y = er (x—y) = er z
j=1 j=1 j=1 j=1
Each term roz is a linear projection of a standard Gaussian vector, hence:

rj 2~ N, [121%) = N (O, o = y*)
Since the r; are independent, the sum of £ such independent variables is:
h(w) = h(y) ~ N0, lllz = y[*)

Now consider the probability:

Pri[a(z) = h(y)| < €]
This is the cumulative probability within ¢ of a zero-mean Gaussian with variance £||x — y||?. Let
0% = l||z — yl||?. Then:

el < =t (o) et (o)

as required.

E PROOF OF LEMMA 1

Lemma Let z,y, 2 € RY, with ||z — y|| < ||z — z||. Then the probability that a distant point z lies
between z and y after projection is:

Pr[h(z) < h(z) < h(y)] < ® (\)M)

where ® is the cumulative distribution function (CDF) of the standard normal distribution. This
result ensures that distant nodes rarely interrupt merge candidates that are close in feature space,
preserving the structural consistency of coarsened regions.

Proof We analyze the chance that a far-away point z lies between two close points x and y in the

projected order.

Let:
a=h(z)= Zr;x, b= h(y), c = h(z2).

Define the difference d = h(y) — h(x) ~ N(0, {||z — y||?).
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Assume without loss of generality that h(z) < h(y). Then:
Pr [h(z) < h(z) < h(y)] = Prc—a € (0,d]].

Since h(z) — h(z) ~ N(0, £]|lz — z||?), we compute:

Pr[0 < h(z) — h(x) < d] _/Odmexp<_m> dt < (D<\/Z||j—z|>'

Taking expectation over (d), this gives the desired bound.

F PROOF OF THEOREM 3.2

Theorem F.1 (Explicit Load Balance via Random Rightward Merges) Let n nodes be sorted ac-
cording to the consistent hashing scores defined earlier. Let k supernodes be formed by performing
n — k random rightward merges in the sorted list. Then, for any constant ¢ > 0, the maximum
number of nodes in any supernode S; satisfies:

ny n(logk + ¢)

>1_¢°
k k =17€

Pr |max|S;| <
7

Proof Let Uy, ...,Ur_1 ~ Uniform(0,1) and let Uy < --- < Ug—1) be their order statistics.
Define the spacings:

IliU(l)*O, IQZU(Q)*U(U, ey IkilfU(k_l)
Then (I3, ..., I;;) form a random partition of the unit interval [0, 1]. It is a classical result (e.g., David
& Nagaraja (2004)) that:
* The vector (I3, ...,I}) ~ Dirichlet(1,...,1),
* Each individual spacing I; ~ Beta(1,k — 1).

Tail bound on /;. The PDF of I; is:
f)=(k-1)1 -2 telo1]

and its tail probability is:
Pr[l; > t] = (1 —t)F!

Choose t = %. Then:

1
Pr[l; > t] <exp(—(logk +¢)) = Eefc

Union bound. Over all k intervals:

logk + ¢ 1 logk + ¢

Pr |maxI; > ’ Sk-%e_cze_C@Pr max I; < >1—e¢
2 K2

Scaling to n nodes. We model the sorted list of n nodes as uniformly spaced over [0,1]. Each
spacing I, then corresponds to a fraction of the list, and multiplying by n yields the expected number
of nodes in that supernode:

n  n(logk +c)

k+ k

|S;| =n-I; = max|S;| =n-maxI; <
This completes the proof.
G ALGORITHMS

Algorithm 1 and 2 outlines the sequence of steps for both adaptive and heterogeneous graph
coarsening.
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Algorithm 1 AH-UGC: Adaptive Universal Graph Coarsening

Require: Input G(V, A, X), | < Number of Projectors

1: a= W « is heterophily factor, y; € R” is node labels, E denotes edge list

2: F:{ (1-w) -X®a~A}

3 S« F - WH+bSeR™ // compute projections
4 WeR™ beR ~D() // sample projections
5. S« F-W+b Se R /I compute projections
6: si + AGGREGATE({S; 1 }\_1) = 7 S Sk Vie{l,...,n} // mean aggregation
7: L « sort ({v;}i—1) by ascending s; /I ordered node list
8: L [{ur:{vi}},{uz: {va}}, ..., {un: {vn}}] // initial super-nodes
9: while |L£|/|V| > r do
10:  w; ~ Uniform(L) // sample a super-node
11: Lluy] + Llu;] U Llujya] // merge with right neighbor
122 L+ L\ A{uj+1} // remove right neighbor

13: end while

14: C e {0,1)1exIVI, ¢, J 1 1T € Llu]

0 otherwise

// partition matrix

15: C « row-normalize(C) // normalize rows: >, Ci; = 1
16: F «+ CF ; A+ CACT // coarsened features and adjacency

17: return G. = (V, A, F), C

Algorithm 2 Heterogeneous Graph Coarsening

Require: Graph G ({X (node.type) }+ { A (edge-type) }» {Y(targetype) } ) » cCOmpression ratio n

Ensure: Condensed graph G, ({5( (node.type) }» {A(edguype)}, {2largel,lype)})
1: for each node type t do

20 ren- |V

3: gf”me, Ct < AH-UGC(Xt, At7 Tt)

4: X < node features from G;°*"*°

5:  if t is target type then

6: yt|i] « majority vote of y; for v; € Ctli]
7:  endif

8: end for

9:

for each edge type e = (t1,2) do
10:  Initialize A, € RIVialxIVez!
11:  for each (v;,v;) € Ac do

12: u <— super-node index of v; via Cy,
13: v 4— super-node index of v; via Cy,
14: Aclu,v] + Acfu,v] +1

15:  end for

16: end for

17: return gc ({)’Z(node,lype) }7 {g(edge,type) }7 {i}(larget,lype) })

H HETEROGENOUS GRAPH COARSENING

Figure 7 illustrates this process, highlighting how AH-UGC preserves semantic meaning compared

to other GC methods that merge heterogeneous nodes indiscriminately.

I RUN TIME RESULTS
J SPECTRAL PROPERTIES

1. Relative Eigen Error (REE): REE used in Kumar et al. (2023); Kataria et al. (2024); Loukas
(2019) gives the means to quantify the measure of the eigen properties of the original graph G that

are preserved in coarsened graph G..
Definition 4 REE is defined as follows:
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Figure 7: This figure illustrates this process, highlighting how AH-UGC preserves semantic meaning compared
to other GC methods that merge heterogeneous nodes indiscriminately.

Table 8: Total time (in seconds) to generate coarsened graphs at multiple resolutions, targeting a set of
coarsening ratios of R = {0.55, 0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.20,0.15, 0.10}. The best and the second-
best accuracies in each row are highlighted by dark and lighter shades of , respectively. “OOT” indicates
out-of-time or memory errors.

Dataset VAN VAE VAC HE alC aGS Kron FGC LAGC UGC | AH-UGC

Cora 19 13 29 9 13 30 9 O0T OOT 30 7
Citeseer 28 23 37 21 22 31 20 o0oT  OO0T 28 6
DBLP 162 138 388 204 206 1270 184 o0oT  OO0T 131 20
Texas 1.59 091  2.66 0.77 096 132 0.8 Oo0oT  OO0T 11 0.73
Cornell 1.76 099 272 0.86 1.11 1.35 0.68 Oo0oT  OO0T 0.79

-

1 S\,
REB(L Lo k) = + 3 A
=1

X2

ey

where \; and \; are top k eigenvalues of original graph Laplacian (L) and coarsened graph
Laplacian (L.) matrix, respectively.

2. Hyperbolic error (HE): HE Bravo Hermsdorff & Gunderson (2019) indicates the structural
similarity between G and G, with the help of a lifted matrix along with the feature matrix X of the
original graph.

Definition 5 HE is defined as follows:

(L — L) X |71 X%
2trace(XTLX)trace(XT LinX)

HE = arccosh( +1) )

where L is the Laplacian matrix and X € R*4 is the feature matrix of the original input graph,
Ly is the lifted Laplacian matrix defined in Loukas (2019) as Lyjz = CL.CT where C € RN*™ is
the coarsening matrix and L. is the Laplacian of G..

3. Reconstruction Error (RcE)
Definition 6 Let L be the original Laplacian matrix and Ly be the lifted Laplacian matrix, then
the reconstruction error (RE) Liu et al. (2018); Kumar et al. (2023) is defined as:

RcE = ||L — Lygl|7 (3)

K NODE CLASSIFICATION ACCURACY
Graph Neural Networks (GNNGs), designed to operate on graph data Kataria et al. (2024); Malik et al.
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Table 9: This table illustrates spectral properties including HE, RcE, REE across datasets and methods at 50%
coarsening ratio. AH-UGC achieves competitive performance across most datasets.

Dataset VAN  VAE VAC HE aJC aGS Kron UGC  AH-UGC
Cora 2.04 2.08 2.14 219 213 1.95 2.14 1.96 2.03
DBLP 2.20 2.07 221 221 212 2.06 2.24 2.10 1.99
Pubmed 2.49 3.33 3.46 319 277 2.48 274 1.72 1.53
HE Squirrel 4.17 2.61 2.72 .52 192 2.01 1.87 0.69 0.82
Error Chameleon 277 2.55 2.99 1.80 1.86 1.97 1.86 1.28 1.71
Deezer-Europe 1.90 1.97 2.04 1.95 190 1.62 1.90 1.76 1.61
Penn94 1.96 1.52 1.65 1.57 151 1.43 1.55 1.05 1.09
Cora 3.78 3.83 3.90 395 391 3.71 3.92 4.07 4.14
DBLP 4.94 4.89 5.03 506  5.03 4.73 5.08 5.24 5.11
ReC Pubmed 4.48 5.13 5.14 5.08 5.03 4.78 4.99 4.60 443
Error Squirrel 1036 9.90 1031 9.13 988 10.00  9.39 9.09 9.07
Chameleon 7.90 7.72 8.05 755 152 7.58 7.13 7.40 7.16
Deezer-Europe 5.08 5.06 5.19 504 5.04 4.68 5.01 8.03 8.05
Penn94 7.77 7.71 7.717 773 173 7.63 7.76 7.71 7.74
Cora 0.09 0.07 0.05 0.04 0.11 0.09 0.03 0.64 0.66
DBLP 0.10 0.05 0.13 0.07  0.06 0.03 0.18 0.44 0.32
REE Pubmed 0.05 0.97 0.88 071 048 0.06 0.42 0.31 0.21
Error Squirrel 0.88 0.58 0.42 044 034 0.36 0.48 0.05 0.07
Chameleon 0.76 0.69 0.67 038 038 0.35 0.52 0.09 0.12
Deezer-Europe 0.48 0.29 0.47 025 021 0.02 0.19 0.35 0.35
Penn94 0.31 0.02 0.05 0.02  0.09 0.05 0.08 0.22 0.23

Table 10: Summary of GNN architectures used in our experiments. Each model is described by its layer
composition, hidden units, activation functions, dropout strategy, and notable characteristics.

Model | Layers | Hidden Units | Activation | Dropout | Learningrate | Decay | Epoch
GCN 3 x GCNConv 64 — 64 — Output ReLU Yes (intermediate layers) 0.003 0.0005 500
APPNP Linear — Linear — APPNP 64 — 64 — 10 — Output ReLU Yes (before Linear layers) 0.003 0.0005 500
GAT 2 x GATv2Conv 64 x 8 — Output ELU Yes (p=0.6) 0.003 0.0005 500
GIN 2 x GATv2Conv 64 x 8 — Output ELU Yes (p=0.6) 0.003 0.0005 | 500
GraphSAGE 2 x SAGEConv 64 — Output ReLU Yes (after first layer) 0.003 0.0005 500

(2025), have demonstrated strong performance across a range of applications Li & Goldwasser (2019);
Paliwal et al. (2019); Pfaff et al. (2020); Ying et al. (2018). Nevertheless, their scalability to large
graphs remains a significant bottleneck. Motivated by recent efforts in scalable learning Huang et al.
(2021), we explore how our graph coarsening framework can improve the efficiency and scalability
of GNN training, enabling more effective processing of large-scale graph data. Specifically, we
train several GNN models on the coarsened version of the original graph while evaluating their
performance on the original graph’s test nodes. As discussed earlier in 4.4, our experimental setup
spans a diverse collection of datasets, each with distinct structural characteristics. For homophilic
graph settings, we follow the architectural configurations proposed in UGC Kataria et al. (2024),
see Table 10. For heterophilic graphs, the GNN model designs are based on the implementations
introduced in Lim et al. (2021). The heterogeneous GNN architectures are adopted directly from Gao
et al. (2024).

Table 11 reports node classification accuracy for homophilic and Table 12 reports node classification
accuracy for heterophilic graphs. The AH-UGC framework consistently delivers results that are
either on par with or exceed the performance of existing coarsening methods. As shown in Table 3,
the framework is independent of any particular GNN architecture, highlighting its robustness and
model-agnostic characteristics. We further include node-classification accuracies of recent Graph
Transformer models like Nodeformer Wu et al. (2022) and SGFormer Wu et al. (2023), see Table 13.
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Table 11: Node classification accuracy (%) for homophilic datasets

Dataset  Model VAN VAE VAC HE alC aGS Kron UGC AH-UGC Base
DBLP GCN 79.65 80.36 80.55 79.99 80.55 79.26 79.40 ' 85.75 80.27 84.00
SAGE 80.58 80.07 80.16 80.81 80.61 @ 81.57 79.48 68.56 68.31 84.08
GIN 7940 79.20 £ 80.38 78.83 7796 78.18 78.01 73.95 79.82 83.26
GAT 7443 7832 7649 7756 7897 77.51 7593 7793 7948 82.25
APPNP 8425 83.80 83.63 83.60 8329 8425 84.05 84.84 85.18 85.75
CS GCN 91.63 92.01 91.19 92.03 9141 8726 9255 92.66 9247 93.51
SAGE 9432 94.19 9457 9424 9394 9370 94.02 89.17 89.83 94.82
GIN 89.80 89.69 89.83 90.70 89.61 88.00 90.64 86.77 81.07 83.50
GAT 9198 9152 9231 91.57 90.67 91.19 89.50 89.83 90.48 91.84
Citescer GCN 6622 6772 67.12 68.02 6727 6592 66.67 6531 65.46 70.12
SAGE 64.71 7252 70.87 6396 6606 7237 7342 61.71 64.26 74.47
GIN 68.17 69.82 68.77 70.57 69.70 67.87 68.02 64.41 63.66 71.62
GAT 71.17 7087 71.02 7207 71.17 68.92 7147 6576 69.21 71.32
APPNP 7042 @ 71.32 7027 68.02 71.17 71.32 69.82 68.61 69.06 73.12
PubMed GCN 8573 86.74 86.66 87.60 86.11 86.08 86.11 84.66 85.47 87.60
SAGE 87.40 86.11 87.15 6645 86.49 8745 8773 87.34 72.16 88.28
GIN 81.98 82.07 8278 60.11 79.03 8296 8149 82.42 83.97 85.75
GAT 84.32 69.78 81.11 50.60 75.99 84.23 83.90 | 84.66 84.63 87.39
APPNP 86.89 87.20 @ 88.21 87.70 87.12 86.84 87.22 85.64 85.80 87.88
Physics  GCN 9475 94.62 9457 9473 9439 9475 9440 ' 95.20 94.88 95.79
SAGE 96.26 96.04 96.08 9597 96.04 96.18 96.01 9521 95.78 96.44
GIN 9490 9456 9478 9449 9379 9479 92.65 9441 9494 95.66
GAT 9497 9501 95.00 94.65 9536 94.60 94.85  96.02 95.10 94.28
APPNP 9620 96.20 1 96.28 96.11 9597 96.07 96.21 96.17 96.10 96.28
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Table 12: Node classification accuracy (%) for heterophilic datasets.

Dataset Model VAN VAE VAC HE alC aGS Kron UGC AH-UGC

Film SGC 2936 27.84 | 2995 26.15 26.89 2574 2774 2147 21.68

Mixhop 28.21 30.68 29.84 29.52 29.10 29.15 31.15 21.57 21.79
GCN2 26.15 2847 28.00 2694 27.63 2584 2942 1947 20.42
GPR-GNN  26.52 2795 27.10 27.74 26.78 2836 2826 20.68 21.31
GatJK 26.11 2589 2579 25.10 2531 2531 26.63 2242 21.21
deezer-europe SGC 54.55 5531 5450 5538 5448 54.69 55.15 5449 55.06
Mixhop 5842 59.10 5848 5882 5834 5738 58.80 59.78 60.98
GCN2 5779 5834 57776 5834 57.15 57.57 5825 58.00 58.46
GPR-GNN  56.30 56.85 56.70 56.77 5573 5555 5631 5844 58.46
GatJK 5521 57.50 54.63 5576 5531 56.03 56.87 @ 57.01 57.33
Ambherst41 SGC 61.42 63.19 59.06 60.83 63.39 6299 63.78 | 78.74 73.82
Mixhop 59.25 5846 57.68 58.66 59.06 63.78 58.66 @ 69.29 64.37
GCN2 6299 62.01 60.63 59.25 58.66 60.63 56.50 @ 71.06 68.50
GPR-GNN 5945 5886 58.07 5591 57.68 59.25 5571 66.73 63.98
GatJK 5748 63.58 6024 6299 61.61 6476 62.60 64.37 67.72
Johns Hopkins55 SGC 62.72 69.19 68.77 6935 68.85 70.28 69.19 @ 73.80 72.96
Mixhop 63.64 6574 68.18 6490 6222 6490 63.73 @ 69.94 67.25
GCN2 66.16 67.51 6742 6423 6549 6574 6440 @ 71.12 65.24
GPR-GNN 62.05 63.06 6230 6280 6037 6196 61.71 66.33 63.31
GatJK 62.80 69.10 67.34 6641 6599 6558 67.00 69.77 65.32
Reed98 SGC 5346 57.14 5392 5207 5530 58.06 5392 57.60 57.60
Mixhop 50.69 5899 49.77 4885 5530 59.45 5346 | 60.37 52.53
GCN2 56.68 5945 51.61 50.69 5161 56.68 50.69 | 61.75 57.14
GPR-GNN 4839 57.60 4839 45.62 5576 58.06 5346 57.60 54.84
GatJK 5530 5899 53.00 51.61 51.61 5622 53.92 | 62.67 60.83
Squirrel SGC 31.97 33.13 3098 36.66 3497 3659 35.59 | 40.89 39.51
Mixhop 36.28 30.21 24.60 3490 2844 2790 37.05 46.12 43.97
GCN2 39.74 4228 39.20 41.74 3797 39.12 4151 4312 4435
GPR-GNN 2936 25.67 2882 28.82 2644 27.06 30.59 45.12 43.74
GatJK 3144 3743 3282 46.12 3836 37.89 46.81 40.89 39.43
Chameleon SGC 38.60 51.58 4579 5491 52.63 53.15 5439 58.60 59.65
Mixhop 40.53 5140 4333 5035 49.82 4930 5439 5825 58.60
GCN2 4737 5211 56.84 5930 59.65 5895 59.12 51.40 49.82
GPR-GNN 40.53 4632 41.05 39.64 4035 43.68 51.05 54.74 52.28
GatJK 4140 5246 3649 60.00 5649 5596 62.63 54.39 55.44
Cornell SGC 6724 67.09 6826 68.02 6835 69.02 68.33 | 76.68 76.08
Mixhop 66.79 67.67 67.14 66.07 6645 66.71 6641 70.64 71.61
GCN2 66.31 66.83 6698 67.64 67.17 6291 6650 72.71 70.90
GPR-GNN 6498 6427 65.17 65.00 6355 63.67 6348 69.66 68.00
GatJK 63.48 6531 6828 66.00 6740 6621 66.64 70.09 70.35
Penn9%4 SGC 6293 6233 6223 62.13 6352 63.03 6352 7574 75.87
Mixhop 71.71 69.62 69.35 6836 6798 6840 6798 | 73.36 72.13
GCN2 71.79  69.55 70.75 69.52 69.61 71.41 69.61 71.85 72.07
GPR-GNN 68.18 68.19 6836 6820 67.77 68.15 68.11 67.93 68.55
GatJK 67.94 67.05 66.73 6621 6634 66.06 6633 69.23 69.26

Table 13: Node classification accuracy (%) for select datasets in transformer based GNNs.

Dataset Model AH-UGC UGC VAN VAE
DBLP Nodeformer 76.07 71.05 73.53 71.33
SGFormer 72.74  68.25 | 79.59 74.21
Physics Nodeformer 79.98 90.00 90.89 49.95
SGFormer 92.18 93.65 9497 94.00
Squirrel Nodeformer 2490 | 37.89 2797 2451
SGFormer 31.20 43.65 37.66 3143
Chameleon Nodeformer 36.14  46.49 35.61 42.98
SGFormer 4736 4929 4730 50.17
Cornell Nodeformer 6595 5744 19.14 70.21
SGFormer 4893 3191 51.06 59.57
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