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ABSTRACT

Learning a natural language interface for database tables is a challenging task that
involves deep language understanding and multi-step reasoning. The task is often
approached by mapping natural language queries to logical forms or programs that
provide the desired response when executed on the database. To our knowledge,
this paper presents the first weakly supervised, end-to-end neural network model
to induce such programs on a real-world dataset. We enhance the objective func-
tion of Neural Programmer, a neural network with built-in discrete operations, and
apply it on WikiTableQuestions, a natural language question-answering dataset.
The model is trained end-to-end with weak supervision of question-answer pairs,
and does not require domain-specific grammars, rules, or annotations that are key
elements in previous approaches to program induction. The main experimental
result in this paper is that a single Neural Programmer model achieves 34.2% ac-
curacy using only 10,000 examples with weak supervision. An ensemble of 15
models, with a trivial combination technique, achieves 37.7% accuracy, which is
competitive to the current state-of-the-art accuracy of 37.1% obtained by a tradi-
tional natural language semantic parser.

1 BACKGROUND AND INTRODUCTION

Databases are a pervasive way to store and access knowledge. However, it is not straightforward
for users to interact with databases since it often requires programming skills and knowledge about
database schemas. Overcoming this difficulty by allowing users to communicate with databases
via natural language is an active research area. The common approach to this task is by semantic
parsing, which is the process of mapping natural language to symbolic representations of meaning.
In this context, semantic parsing yields logical forms or programs that provide the desired response
when executed on the databases (Zelle & Mooney, 1996). Semantic parsing is a challenging problem
that involves deep language understanding and reasoning with discrete operations such as counting
and row selection (Liang, 2016).

The first learning methods for semantic parsing require expensive annotation of question-program
pairs (Zelle & Mooney, 1996; Zettlemoyer & Collins, 2005). This annotation process is no longer
necessary in the current state-of-the-art semantic parsers that are trained using only question-answer
pairs (Liang et al., 2011; Kwiatkowski et al., 2013; Krishnamurthy & Kollar, 2013; Pasupat & Liang,
2015). However, the performance of these methods still heavily depends on domain-specific gram-
mar or pruning strategies to ease program search. For example, in a recent work on building semantic
parsers for various domains, the authors hand-engineer a separate grammar for each domain (Wang
et al., 2015).

Recently, many neural network models have been developed for program induction (Andreas et al.,
2016; Jia & Liang, 2016; Reed & Freitas, 2016; Zaremba et al., 2016; Yin et al., 2015), despite
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Figure 1: Neural Programmer is a neural network augmented with a set of discrete operations. The
model runs for a fixed number of time steps, selecting an operation and a column from the table at
every time step. The induced program transfers information across timesteps using the row selector
variable while the output of the model is stored in the scalar answer and lookup answer variables.

the notorious difficulty of handling discrete operations in neural networks (Joulin & Mikolov, 2015;
Kaiser & Sutskever, 2016). Most of these approaches rely on complete programs as supervision
(Jia & Liang, 2016; Reed & Freitas, 2016) while others (Zaremba et al., 2016; Yin et al., 2015)
have been tried only on synthetic tasks. The work that is most similar to ours is that of Andreas
et al. (2016) on the dynamic neural module network. However, in their method, the neural network
is employed only to search over a small set of candidate layouts provided by the syntactic parse
of the question, and is trained using the REINFORCE algorithm (Williams, 1992). Hence, their
method cannot recover from parser errors, and it is not trivial to adapt the parser to the task at hand.
Additionally, all their modules or operations are parametrized by a neural network, so it is difficult
to apply their method on tasks that require discrete arithmetic operations. Finally, their experiments
concern a simpler dataset that requires fewer operations, and therefore a smaller search space, than
WikiTableQuestions which we consider in our work. We discuss other related work in Section 4.

Neural Programmer (Neelakantan et al., 2016) is a neural network augmented with a set of discrete
operations. It produces both a program, made up of those operations, and the result of running the
program against a given table. The operations make use of three variables: row selector, scalar
answer, and lookup answer, which are updated at every timestep. lookup answer and scalar answer
store answers while row selector is used to propagate information across time steps. As input, a
model receives a question along with a table (Figure 1). The model runs for a fixed number of
time steps, selecting an operation and a column from the table as the argument to the operation
at each time step. During training, soft selection (Bahdanau et al., 2014) is performed so that the
model can be trained end-to-end using backpropagation. This approach allows Neural Programmer
to explore the search space with better sample complexity than hard selection with the REINFORCE
algorithm (Williams, 1992) would provide. All the parameters of the model are learned from a weak
supervision signal that consists of only the final answer; the underlying program, which consists of
a sequence of operations and of selected columns, is latent.

2



Published as a conference paper at ICLR 2017

In this work, we develop an approach to semantic parsing based on Neural Programmer. We show
how to learn a natural language interface for answering questions using database tables, thus inte-
grating differentiable operations that are typical of neural networks with the declarative knowledge
contained in the tables and with discrete operations on tables and entries. For this purpose, we make
several improvements and adjustments to Neural Programmer, in particular adapting its objective
function to make it more broadly applicable.

In earlier work, Neural Programmer is applied only on a synthetic dataset. In that dataset, when
the expected answer is an entry in the given table, its position is explicitly marked in the table.
However, real-world datasets certainly do not include those markers, and lead to many ambiguities
(e.g., (Pasupat & Liang, 2015)). In particular, when the answer is a number that occurs literally
in the table, it is not known, a priori, whether the answer should be generated by an operation
or selected from the table. Similarly, when the answer is a natural language phrase that occurs
in multiple positions in the table, it is not known which entry (or entries) in the table is actually
responsible for the answer. We extend Neural Programmer to handle the weaker supervision signal
by backpropagating through decisions that concern how the answer is generated when there is an
ambiguity.

Our main experimental results concern WikiTableQuestions (Pasupat & Liang, 2015), a real-world
question-answering dataset on database tables, with only 10,000 examples for weak supervision.
This dataset is particularly challenging because of its small size and the lack of strong supervision,
and also because the tables provided at test time are never seen during training, so learning requires
adaptation at test time to unseen column names. A state-of-the-art, traditional semantic parser that
relies on pruning strategies to ease program search achieves 37.1% accuracy. Standard neural net-
work models like sequence-to-sequence and pointer networks do not appear to be promising for this
dataset, as confirmed in our experiments below, which yield single-digit accuracies. In compari-
son, a single Neural Programmer model using minimal text pre-processing, and trained end-to-end,
achieves 34.2% accuracy. This surprising result is enabled primarily by the sample efficiency of
Neural Programmer, by the enhanced objective function, and by reducing overfitting via strong reg-
ularization with dropout (Srivastava et al., 2014; Iyyer et al., 2015; Gal & Ghahramani, 2016) and
weight decay. An ensemble of 15 models, even with a trivial combination technique, achieves 37.7%
accuracy.

2 NEURAL PROGRAMMER

In this section we describe in greater detail the Neural Programmer model and the modifications
we made to the model. Neural Programmer is a neural network augmented with a set of discrete
operations. The model consists of four modules:

• Question RNN that processes the question and converts the tokens to a distributed repre-
sentation. We use an LSTM network (Hochreiter & Schmidhuber, 1997) as the question
RNN.

• A list of discrete operations such as counting and entry selection that are manually defined.
Each operation is parameterized by a real-valued vector that is learned during training.

• A selector module that induces two probability distributions at every time step, one over
the set of operations and another over the set of columns. The input to the selector is
obtained by concatenating the last hidden state of the question RNN, the hidden state of the
history RNN from the current timestep, and the attention vector obtained by performing
soft attention (Bahdanau et al., 2014) on the question using the history vector. Following
Neelakantan et al. (2016), we employ hard selection at test time.

• History RNN modeled by a simple RNN (Werbos, 1990) with tanh activations which re-
members the previous operations and columns selected by the model. The input to the
history RNN at each timestep is the result of concatenating the weighted representations of
operations and columns with their corresponding probability distributions produced by the
selector at the previous timestep.

A more detailed description of the basic model can be found in Neelakantan et al. (2016). The model
runs for fixed total of T timesteps. The parameters of the operations, selector module, question and
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history RNNs are all learned with backpropagation using a weak supervision signal that consists
of the final answer. Below, we discuss several modifications to the model to make it more broadly
applicable, and easier to train.

2.1 OPERATIONS

We use 15 operations in the model that were chosen to closely match the set of operations used in the
baseline model (Pasupat & Liang, 2015). All the operations except select and most frequent entry
operate only on the set of selected rows which is given by the row selector variable. Before the first
timestep, all the rows in the table are set to be selected. The built-in operations are:

• count returns the number of selected rows in row selector.
• select and most frequent entry are operations which are computed only once for every

question and output a boolean tensor with size same as the size of the input table. An
entry in the output of the select operation is set to 1 if the entry matches some phrase in
the question. The matched phrases in the question are anonymized to prevent overfitting.
Similarly, for most frequent entry, it is set to 1 if the entry is the most frequently occurring
one in its column.

• argmax, argmin, greater than, less than, greater than or equal to, less than or equal to are
all operations that output a tensor with size same as the size of the input table.

• first, last, previous and next modify the row selector.
• print operation assigns row selector on the selected column of lookup answer.
• reset resets row selector to its initial value. This operation also serves as no-op when the

model needs to induce programs whose complexity is less than T .

All the operations are defined to work with soft selection so that the model can be trained with
backpropagation. The operations along with their definitions are discussed in the Appendix.

2.2 OUTPUT AND ROW SELECTOR

Neural programmer makes use of three variables: row selector, scalar answer and lookup answer
which are updated at every timestep. The variable lookup answer stores answers that are selected
from the table while scalar answer stores numeric answers that are not provided in the table.1 The
induced program transfers information across timesteps using the row selector variable which con-
tains rows that are selected by the model.

Given an input table Π, containing M rows and C columns (M and C can vary across examples),
the output variables at timestep t are given by:

scalar answert = αop
t (count)outputt(count),

lookup answert [i][j] = αcol
t (j)αop

t (print)row selectt−1 [i],∀(i, j)i = 1, 2, . . . ,M, j = 1, 2, . . . , C

where αop
t (op) and αcol

t (j) are the probabilities assigned by the selector to operation op and column
j at timestep t respectively and outputt(count) is the output of the count operation at timestep t.
The row selector variable at timestep t is obtained by taking the weighted average of the outputs of
the remaining operations and is discussed in the Appendix. lookup answerT [i][j] is the probability
that the element (i, j) in the input table is in the final answer predicted by the model.

2.3 TRAINING OBJECTIVE

We modify the training objective of Neural Programmer to handle the supervision signal available
in real-world settings. In previous work, the position of the answers are explicitly marked in the
table when the answer is an entry from the table. However, as discussed in Section 1, in real-world
datasets (e.g., (Pasupat & Liang, 2015)) the answer is simply written down introducing two kinds
of ambiguities. First, when the answer is a number and if the number is in the table, it is not known

1It is possible to extend the model to generate natural language responses using an RNN decoder but it is
not the focus of this paper and we leave it for further work.
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whether the loss should be computed using the scalar answer variable or the lookup answer variable.
Second, when the answer is a natural language phrase and if the phrase occurs in multiple positions
in the table, we again do not know which entry (or entries) in the table is actually responsible for
generating the answer. We extend Neural Programmer to handle this weaker supervision signal
during training by computing the loss only on the prediction that is closest to the desired response.

For scalar answers we compute the square loss:

Lscalar(scalar answerT , y) =
1

2
(scalar answerT − y)2

where y is the ground truth answer. We divide Lscalar by the number of rows in the input table and
do not backpropagate on examples for which the loss is greater than a threshold since it leads to
instabilities in training.

When the answer is a list of items y = (a1, a2, . . . , aN ), for each element in the list (ai, i =
1, 2, . . . , N ) we compute all the entries in the table that match that element, given by Si =
{(r, c), ∀ (r, c) Π[r][c] = ai}. We tackle the ambiguity introduced when an answer item occurs
at multiple entries in the table by computing the loss only on the entry which is assigned the highest
probability by the model. We construct g ∈ {0, 1}M×C , where g[i, j] indicates whether the element
(i, j) in the input table is part of the output. We compute log-loss for each entry and the final loss is
given by:

Llookup(lookup answerT , y) =

N∑
i=1

min(r,c)∈Si
(− log(lookup answerT [r, c]))

− 1

MC

M∑
i=1

C∑
j=1

[g[i, j] == 0] log(1− lookup answerT [i, j])

where [cond] is 1 when cond is True, and 0 otherwise.

We deal with the ambiguity that occurs when the ground truth is a number and if the number also oc-
curs in the table, by computing the final loss as the soft minimum of Lscalar and Llookup. Otherwise,
the loss for an example is Lscalar when the ground truth is a number and Llookup when the ground
truth matches some entries in the table. The two loss functions Lscalar and Llookup are in different
scales, so we multiply Llookup by a constant factor which we set to 50.0 after a small exploration in
our experiments.

Since we employ hard selection at test time, only one among scalar answer and lookup answer is
modified at the last timestep. We use the variable that is set at the last timestep as the final output of
the model.

3 EXPERIMENTS

We apply Neural Programmer on the WikiTableQuestions dataset (Pasupat & Liang, 2015) and
compare it to different non-neural baselines including a natural language semantic parser devel-
oped by Pasupat & Liang (2015). Further, we also report results from training the sequence-to-
sequence model (Sutskever et al., 2014) and a modified version of the pointer networks (Vinyals
et al., 2015). Our model is implemented in TensorFlow (Abadi et al., 2016) and the model takes ap-
proximately a day to train on a single Tesla K80 GPU. We use double-precision format to store the
model parameters since the gradients become undefined values in single-precision format. Our code
is available at https://github.com/tensorflow/models/tree/master/neural_
programmer.

3.1 DATA

We use the train, development, and test split given by Pasupat & Liang (2015). The dataset contains
11321, 2831, and 4344 examples for training, development, and testing respectively. We use their
tokenization, number and date pre-processing. There are examples with answers that are neither
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Method Dev Accuracy Test Accuracy
Baselines from Pasupat & Liang (2015)

Information Retrieval System 13.4 12.7
Simple Semantic Parser 23.6 24.3

Semantic Parser 37.0 37.1
Neural Programmer

Neural Programmer 34.1 34.2
Ensemble of 15 Neural Programmer models 37.5 37.7

Oracle Score with 15 Neural Programmer models 50.5 -

Table 1: Performance of Neural Programmer compared to baselines from (Pasupat & Liang, 2015).
The performance of an ensemble of 15 models is competitive to the current state-of-the-art natural
language semantic parser.

number answers nor phrases selected from the table. We ignore these questions during training but
the model is penalized during evaluation following Pasupat & Liang (2015). The tables provided in
the test set are unseen at training, hence requiring the model to adapt to unseen column names at test
time. We train only on examples for which the provided table has less than 100 rows since we run
out of GPU memory otherwise, but consider all examples at test time.

3.2 TRAINING DETAILS

We use T = 4 timesteps in our experiments. Words and operations are represented as 256 dimen-
sional vectors, and the hidden vectors of the question and the history RNN are also 256 dimensional.
The parameters are initialized uniformly randomly within the range [-0.1, 0.1]. We train the model
using the Adam optimizer (Kingma & Ba, 2014) with mini-batches of size 20. The ε hyperparam-
eter in Adam is set to 1e-6 while others are set to the default values. Since the training set is small
compared to other datasets in which neural network models are usually applied, we rely on strong
regularization:

• We clip the gradients to norm 1 and employ early-stopping.

• The occurrences of words that appear less than 10 times in the training set are replaced by
a single unknown word token.

• We add a weight decay penalty with strength 0.0001.

• We use dropout with a keep probability of 0.8 on input and output vectors of the RNN, and
selector, operation and column name representations (Srivastava et al., 2014).

• We use dropout with keep probability of 0.9 on the recurrent connections of the question
RNN and history RNN using the technique from Gal & Ghahramani (2016).

• We use word-dropout (Iyyer et al., 2015) with keep probability of 0.9. Here, words in the
question are randomly replaced with the unknown word token while training.

We tune the dropout rates, regularization strength, and the ε hyperparameter using grid search on the
development data, we fix the other hyperparameters after a small exploration during initial experi-
ments.

3.3 RESULTS

Table 1 shows the performance of our model in comparison to baselines from Pasupat & Liang
(2015). The best result from Neural Programmer is achieved by an ensemble of 15 models. The
only difference among these models is that the parameters of each model is initialized with a differ-
ent random seed. We combine the models by averaging the predicted softmax distributions of the
models at every timestep. While it is generally believed that neural network models require a large
number of training examples compared to simpler linear models to get good performance, our model
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Method Dev Accuracy
Neural Programmer 34.1

Neural Programmer - anonymization 33.7
Neural Programmer - match feature 31.1

Neural Programmer - {dropout,weight decay} 30.3

Table 2: Model ablation studies. We find that dropout and weight decay, along with the boolean
feature indicating a matched table entry for column selection, have a significant effect on the perfor-
mance of the model.

achieves competitive performance on this small dataset containing only 10,000 examples with weak
supervision.

We did not get better results either by using pre-trained word vectors (Mikolov et al., 2013) or by
pre-training the question RNN with a language modeling objective (Dai & Le, 2015). A possible
explanation is that the word vectors obtained from unsupervised learning may not be suitable to
the task under consideration. For example, the learned representations of words like maximum and
minimum from unsupervised learning are usually close to each other but for our task it is counter-
productive. We consider replacing soft selection with hard selection and training the model with the
REINFORCE algorithm (Williams, 1992). The model fails to learn in this experiment, probably be-
cause the model has to search over millions of symbolic programs for every input question making
it highly unlikely to find a program that gives a reward. Hence, the parameters of the model are not
updated frequently enough.

3.3.1 NEURAL NETWORK BASELINES

To understand the difficulty of the task for neural network models, we experiment with two neural
network baselines: the sequence-to-sequence model (Sutskever et al., 2014) and a modified version
of the pointer networks (Vinyals et al., 2015). The input to the sequence-to-sequence model is a
concatenation of the table and the question, and the decoder produces the output one token at a time.
We consider only examples whose input length is less than 400 to make the running time reasonable.
The resulting dataset has 8, 857 and 1, 623 training and development examples respectively. The
accuracy of the best model on this development set after hyperparameter tuning is only 8.9%. Next,
we experiment with pointer networks to select entries in the table as the final answer. We modify
pointer networks to have two-attention heads: one to select the column and the other to select entries
within a column. Additionally, the model performs multiple pondering steps on the table before
returning the final answer. We train this model only on lookup questions, since the model does not
have a decoder to generate answers. We consider only examples whose tables have less than 100
rows resulting in training and development set consisting of 7, 534 and 1, 829 examples respectively.
The accuracy of the best model on this development set after hyperparameter tuning is only 4.0%.
These results confirm our intuition that discrete operations are hard to learn for neural networks
particularly with small datasets in real-world settings.

3.4 ANALYSIS

3.4.1 MODEL ABLATION

Table 2 shows the impact of different model design choices on the final performance. While
anonymizing phrases in the question that match some table entry seems to have a small positive
effect, regularization has a much larger effect on the performance. Column selection is performed
in Neelakantan et al. (2016) using only the name of a column; however, this selection procedure is
insufficient in real-world settings. For example the column selected in question 3 in Table 3 does
not have a corresponding phrase in the question. Hence, to select a column we additionally use a
boolean feature that indicates whether an entry in that column matches some phrase in the question.
Table 2 shows that the addition of this boolean feature has a significant effect on performance.
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ID Question Step 1 Step 2 Step 3 Step 4
1 what is the total number of

teams?
Operation - - - count
Column - - - -

2 how many games had more
than 1,500 in attendance?

Operation - - >= count
Column - - attendance -

3 what is the total number
of runner-ups listed on the
chart?

Operation - - select count

Column - - outcome -
4 which year held the most

competitions?
Operation - - mfe print
Column - - year year

5 what opponent is listed last
on the table?

Operation last - last print
Column - - - opponent

6 which section is longest?? Operation - - argmax print
Column - - kilometers name

7 which engine(s) has the least
amount of power?

Operation - - argmin print
Column - - power engine

8 what was claudia roll’s
time?

Operation - - select print
Column - - swimmer time

9 who had more silver medals,
cuba or brazil?

Operation argmax select argmax print
Column nation nation silver nation

10 who was the next appointed
director after lee p. brown?

Operation select next last print
Column name - - name

11 what team is listed previous
to belgium?

Operation select previous first print
Column team - - team

Table 3: A few examples of programs induced by Neural Programmer that generate the correct
answer in the development set. mfe is abbreviation for the operation most frequent entry. The model
runs for 4 timesteps selecting an operation and a column at every step. The model employs hard
selection during evaluation. The column name is displayed in the table only when the operation
picked at that step takes in a column as input while the operation is displayed only when it is other
than the reset operation. Programs that choose count as the final operation produce a number as the
final answer while programs that select print as the final operation produce entries selected from the
table as the final answer.
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Operation Program in Table 3 Amount (%)
Scalar Answer

Only Count 1 6.5
Comparison + Count 2 2.1

Select + Count 3 22.1
Scalar Answer 1,2,3 30.7

Lookup Answer
Most Frequent Entry + Print 4 1.7

First/Last + Print 5 9.5
Superlative + Print 6,7 13.5

Select + Print 8 17.5
Select + {first, last, previous, next, superlative} + Print 9-11 27.1

Lookup Answer 4-11 69.3

Table 4: Statistics of the different sequence of operations among the examples answered correctly
by the model in the development set. For each sequence of operations in the table, we also point
to corresponding example programs in Table 3. Superlative operations include argmax and argmin,
while comparison operations include greater than, less than, greater than or equal to and less than
or equal to. The model induces a program that results in a scalar answer 30.7% of the time while
the induced program is a table lookup for the remaining questions. print and select are the two most
common operations used 69.3% and 66.7% of the time respectively.

3.4.2 INDUCED PROGRAMS

Table 3 shows few examples of programs induced by Neural Programmer that yield the correct
answer in the development set. The programs given in Table 3 show a few characteristics of the
learned model. First, our analysis indicates that the model can adapt to unseen column names at test
time. For example in Question 3, the word outcome occurs only 8 times in the training set and is
replaced with the unknown word token. Second, the model does not always induce the most efficient
(with respect to number of operations other than the reset operation that are picked) program to solve
a task. The last 3 questions in the table can be solved using simpler programs. Finally, the model
does not always induce the correct program to get the ground truth answer. For example, the last 2
programs will not result in the correct response for all input database tables. The programs would
produce the correct response only when the select operation matches one entry in the table.

3.4.3 CONTRIBUTION OF DIFFERENT OPERATIONS

Table 4 shows the contribution of the different operations. The model induces a program that results
in a scalar answer 30.7% of the time while the induced program is a table lookup for the remaining
questions. The two most commonly used operations by the model are print and select.

3.4.4 ERROR ANALYSIS

To conclude this section, we suggest ideas to potentially improve the performance of the model.
First, the oracle performance with 15 Neural Programmer models is 50.5% on the development set
while averaging achieves only 37.5% implying that there is still room for improvement. Next, the
accuracy of a single model on the training set is 53% which is about 20% higher than the accuracy
in both the development set and the test set. This difference in performance indicates that the model
suffers from significant overfitting even after employing strong regularization. It also suggests that
the performance of the model could be greatly improved by obtaining more training data. Neverthe-
less, there are limits to the performance improvements we may reasonably expect: in particular, as
shown in previous work (Pasupat & Liang, 2015), 21% of questions on a random set of 200 exam-
ples in the considered dataset are not answerable because of various issues such as annotation errors
and tables requiring advanced normalization.
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4 OTHER RELATED WORK

While we discuss in detail various semantic parsing and neural program induction techniques in
Section 1, here we briefly describe other relevant work. Recently, Kocisky et al. (2016) develop
a semi-supervised semantic parsing method that uses question-program pairs as supervision. Con-
currently to our work, Liang et al. (2016) propose neural symbolic machine, a model very similar
to Neural Programmer but trained using the REINFORCE algorithm (Williams, 1992). They use
only 2 discrete operations and run for a total of 3 timesteps, hence inducing programs that are much
simpler than ours. Neural networks have also been applied on question-answering datasets that do
not require much arithmetic reasoning (Bordes et al., 2014; Iyyer et al., 2014; Sukhbaatar et al.,
2015; Peng et al., 2015; Hermann et al., 2015; Kumar et al., 2016). Wang & Jiang (2016) use a neu-
ral network model to get state-of-the-art results on a reading comprehension task (Rajpurkar et al.,
2016).

5 CONCLUSION

In this paper, we enhance Neural Programmer to work with weaker supervision signals to make
it more broadly applicable. Soft selection during training enables the model to actively explore
the space of programs by backpropagation with superior sample complexity. In our experiments,
we show that the model achieves performance comparable to a state-of-the-art traditional semantic
parser even though the training set contains only 10,000 examples. To our knowledge, this is the
first instance of a weakly supervised, end-to-end neural network model that induces programs on a
real-world dataset.
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Type Operation Definition

Aggregate count countt =
M∑
i=1

row selectt−1 [i]

Superlative argmax maxt[i][j] = max(0.0, row selectt−1 [i ]−∑M
k=1([Π[i][j] < Π[k][j]]× row selectt−1 [k ])), i = 1, . . . ,M, j = 1, . . . , C

argmin mint[i][j] = max(0.0, row selectt−1 [i ]−∑M
k=1([Π[i][j] > Π[k][j]]× row selectt−1 [k ])), i = 1, . . . ,M, j = 1, . . . , C

Comparison

> g[i][j] = Π[i][j] > pivotg ,∀(i, j), i = 1, . . . ,M, j = 1, . . . , C
< l[i][j] = Π[i][j] < pivotl ,∀(i, j), i = 1, . . . ,M, j = 1, . . . , C
≥ ge[i][j] = Π[i][j] ≥ pivotge , ∀(i, j), i = 1, . . . ,M, j = 1, . . . , C
≤ le[i][j] = Π[i][j] ≤ pivotle , ∀(i, j), i = 1, . . . ,M, j = 1, . . . , C

Table Ops

select s[i][j] = 1.0 if Π[i][j] appears in question else 0.0,
∀(i, j), i = 1, . . . ,M, j = 1, . . . , C

mfe mfe[i][j] = 1.0 if Π[i][j] is the most common entry in column j else 0.0,
∀(i, j), i = 1, . . . ,M, j = 1, . . . , C

first ft[i] = max(0.0, row selectt−1 [i ]−
∑i−1

j=1 row selectt−1 [j ]),
i = 1, . . . ,M

last lat[i] = max(0.0, row selectt−1 [i ]−
∑M

j=i+1 row selectt−1 [j ]),
i = 1, . . . ,M

previous pt[i] = row selectt−1 [i + 1 ], i = 1, . . . ,M − 1 ; pt[M ] = 0
next nt[i] = row selectt−1 [i − 1 ], i = 2, . . . ,M ; nt[1] = 0

Print print lookup answer t[i][j] = row selectt−1 [i ],∀(i, j)i = 1, . . . ,M, j = 1, . . . , C

Reset reset rt [i ] = 1, ∀i = 1, 2, . . . ,M

Table 5: List of all operations provided to the model along with their definitions. mfe is abbreviation
for the operation most frequent entry. [cond] is 1 when cond is True, and 0 otherwise. Comparison,
select, reset and mfe operations are independent of the timestep while all the other operations are
computed at every time step. Superlative operations and most frequent entry are computed within a
column. The operations calculate the expected output with the respect to the membership probabili-
ties given by the row selector so that they can work with probabilistic selection.

APPENDIX

OPERATIONS

Table 5 shows the list of operations built into the model along with their definitions.

ROW SELECTOR

As discussed in Section 2.3, the output variables scalar answer and lookup answer are calculated us-
ing the output of the count operations and print operation respectively. The row selector is computed
using the output of the remaining operations and is given by,

row selectort [i] =

C∑
j=1

{αcol
t (j)αop

t (>)g [i][j] + αcol
t (j)αop

t (<)l [i][j]

+ αcol
t (j)αop

t (≥)ge[i][j] + αcol
t (j)αop

t (≤)le[i][j],

+ αcol
t (j)αop

t (argmax)maxt [i][j] + αcol
t (j)αop

t (argmint)min[i][j],

+ αcol
t (j)αop

t (select)s[i][j] + αcol
t (j)αop

t (mfe)mfe[i][j]}
+ αop

t (previous)pt [i] + αop
t (next)nt [i] + αop

t (reset)rt [i]

+ αop
t (first)ft [i] + αop

t (last)lat [i]

∀i, i = 1, 2, . . . ,M

where αop
t (op) and αcol

t (j) are the probabilities assigned by the selector to operation op and column
j at timestep t respectively.
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