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Abstract

We introduce Dynamic Spectral-Parsing Graph Neural Network (DspGNN), a
novel model that introduces spectral-designed graph convolution for representation
learning and edge regression on Discrete Time Dynamic Graphs (DTDGs). Our
first contribution is the optimization of spectral-designed methods for capturing
evolving spectral information on DTDGs. In addition, we propose an efficient
technique, Active Node Mapping, to address the computational challenge of eigen-
decomposition on large DTDGs. Our model consistently outperforms baseline
models on three publicly available datasets for edge regression tasks.

1 Introduction and related works

Thanks to the ability of graphs to represent topological structures through nodes and edges, more
and more problems in daily life are being modeled using static graphs, extended to dynamic graphs
in cases where structures evolve over time [1, 2, 3]. In these networks, nodes represent users/items,
and edges reflect temporal relationships with numerical attributes such as transaction volumes [4]
and rating scores [5, 6], so accurate prediction is essential for various practical applications. Current
research [1, 7, 8] categorizes dynamic graphs into Discrete Time Dynamic Graphs (DTDGs), which
represent network states with snapshots, and Continuous Time Dynamic Graphs (CTDGs), which
represent network events with timestamped edges. Despite some studies applied on CTDGs [9, 10],
there is a scarcity of studies focusing on edge attribute regression on DTDGs, signifying a substantial
potential awaiting exploration in this field.

This paper addresses the edge attribute regression problem in DTDGs. We present a novel approach,
Dynamic spectral-parsing Graph Neural Network (DspGNN), which is, to the best of our knowledge,
the first application of spectral-designed graph convolution networks to DTDGs. We also propose
Active Node Mapping, a simple yet efficient technique for eigendecomposition on large sparse
DTDGs. Empirical validation on three real-world datasets - Bitcoin-Alpha [11, 12], Bitcoin-OTC
[11, 12], and MovieLens [13] - shows not only the efficiency achieved by our approach but also a
significant improvement over the baseline models [14, 15], demonstrating its promising potential.

Spectral-Designed Graph Convolution on Static Graphs Graph convolution is a core concept
within graph neural networks and falls into two main categories: spatial-based and spectral-based
[16], which are explained in detail in appendix A.1. Spatial convolution focuses on local neighbors,
aggregating information from reachable neighbors. A spatial convolution layer can be expressed as
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H′ = σ
(∑

s C
(s)HW(s)

)
[17], where H and H′ represent the input and output node hidden state

matrices, σ is the activation function, C(s) represents convolutional kernels (e.g., adjacency matrix
A), and W is the trainable parameter matrix mapping hidden states from dimension dH to dH′ .
Spectral convolution filters the signals on the graph in the Fourier domain by the eigendecomposition
of the (normalized) Laplacian matrix Lnorm = D− 1

2AD− 1
2 = UΛUT. A spectral convolution layer

can be represented as H′ = Ug(Λ)UTH, where Λ is a diagonal matrix of the eigenvalues, U is the
eigenvector matrix, and g(·) is the filter function(s) that controls the frequency response.

Subsequent research has theoretically analyzed that existing spatial GNNs act as low-pass filters
in the spectral domain, and by adding high-pass and/or band-pass filters, their performance can be
improved [18]. Building upon this insight, Spectral-designed Graph Convolution (DSGCN) [17]
derives convolutional kernels through the eigenvalue filtering of the Laplacian matrix (refer to Eq. 1).
Bridging the gap between spectral and spatial graph convolution, DSGCN empirically demonstrates
performance beyond spectral-based and spatial-based GNNs.

H′ = σ

(∑
s

C(s)HW(s)

)
, Cs = UΦs(Λ)UT (1)

Discrete Time Dynamic Graph Neural Networks (DTDGNNs) A DTDG is represented by a
sequence of static graphs (G1, G2, ..., GT ). Each snapshot Gt is represented by the adjacency matrix
At, with optional Xnode

t or Xedge
t representing node or edge attributes. Tasks on DTDG generally

predict attributes or connectivity for the future snapshot(s) based on past K snapshots [14, 15].
Benefiting from the ability to encode each snapshot with static graph encoder [1], early DTDGNNs
[19, 20] employ static GNNs fG to sequentially encode the hidden states for each snapshot and
then propagate information across K snapshots using a time module fT , such as Recurrent Neural
Networks (RNNs), as shown in Eq. 2. CoEvoGNN [15], an early contributor to the node regression
task on transaction networks, follows this paradigm with residual connected GraphSage as fG.

H′
k = fG(Ak,Hk), k ∈ [t−K, t− 1], Ht = fT (H

′
t−K:t−1) (2)

Another category of DTDGNNs aims at convolving graph snapshots differently at each time step
to better capture graph dynamics [21]. EvolveGCN [14], as a representative example, dynamically
updates the GCN weight parameter ΘfG for each snapshot via a RNN. Despite various research on
DTDGNNs, to the best of our knowledge, the architecture design and performance analysis of the
spectral-designed method on DTDGs are still largely unexplored.

2 Dynamic Spectral-Parsing Graph Neural Network (DspGNN)

Recent studies have shown that the evolving spectrums of DTDG have some ability to represent
dynamic graphs for anomaly detection [22, 23]. Considering the superiority of DSGCN as a static
graph encoder, it is intuitive to believe that replacing the graph convolution module in DTDGNN with
DSGCN may improve performance. In this section, we delve into this hypothesis and elaborate on
how to optimize it for DTDGs. In subsection 2.1, we introduce our model DspGNN, which exploits
the advantages of the spectral-designed GNN in DTDGNN. Following that, in subsection 2.2, we
present an original technique to overcome the challenges of eigendecomposition on DTDGs.

2.1 Spectral-Designed GNN Goes Dynamic

Our model adheres to the common workflow, taking as input the adjacency matrices A[t−K, t−1] ∈
RK×N×N and node hidden states H[t−K, t− 1] ∈ RK×N×d of the past K snapshots. These are
processed by DspGNN to encode the hidden states H ∈ RN×d for the current time step, as shown in
Fig. 1 (right). A decision layer then performs the regression task and outputs Ŷ ∈ RN×dpred .

In the Spectral Parsing Module, the spectral-designed convolutional kernels are obtained as in
DSGCN [17]. In each snapshot, the eigenvalues of Lnorm are filtered by S distinct spectral filters.
These filtered spectrums are then inverse-transformed by UT to produce various convolutional
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Figure 1: Left: The Spectral Parsing Module, where a set of spectral-designed convolutional kernels
are employed to propagate the information. They are then merged with learnable weights to reduce
the dimension from d ∗ 6 to d. The propagated information is finally concatenated to the input Ht and
passed to a linear layer. Right: The overall architecture of DspGNN involves encoding the hidden
states of the past K snapshots by Spectral Parsing Module. This sequence of hidden states is then
encoded by a temporal readout function, e.g. LSTM, to obtain the hidden state for the current time
step. Predictions can then be computed using a linear layer.

kernels Cs = Ugs(Λ)UT. Each kernel focuses on different spectral frequencies tied to distinct
substructures in the graph topology, which can also be thought of as weighted adjacency matrices for
spatial convolution. Drawing inspiration from DSGCN [17], our design encompasses a diverse set of
filters including a low-pass, a high-pass, and multiple band-pass filters, with center frequency λc and
bandwidth γ as adjustable parameters. Their frequency responses are shown in appendix A.2.

Our note-worthy improvement to the current DSGCN model involves learning how to combine
multiple filters, eliminating the need for manual filter selection across different datasets. While
DSGCN manually selects different filters for various datasets, we introduce a linear layer with an
activation function to learn the non-linear combination of the outputs from each filter and to reduce
the dimensions from d× S to d. This enables the model to theoretically learn the importance of each
filter during the training phase, thus automating the filter selection process.

The final graph encoder architecture, as shown in Fig. 1 (left), not only gains the ability to convolve
graph signals from the spectral domain but also automatically combines the information of different
spectral domain frequencies. Therefore, we have named it Spectral Parsing Module, which acts as
the fG in the overall architecture of DspGNN. A temporal encoder, LSTM, then passes information
across multiple snapshots to encode the output hidden states.

2.2 Computing Spectral-Designed Convolutional Kernels on DTDGs

The computational complexity of eigendecomposition poses a major challenge for computing spectral-
designed convolutional kernels on Dynamic graphs. The time complexity is O(N3) per snapshot
when using traditional methods where N represents the number of total nodes1. To address this issue,
we propose a simple yet efficient technique called Active Node Mapping (ANM). This technique
maps active nodes in each snapshot to a reduced graph represented by adjacency matrix Ãt, shrinking
the shape from N ×N to Nt×Nt, where Nt represents the number of nodes which have links at time
t (i.e., active nodes of the snapshot), as shown in Fig. 2. ANM significantly improves computational
speed and reduces RAM usage, especially when the number of active nodes Nt is low compared
to N . The concrete procedure can be found in appendix A.4, theoretical and experimental speedup
results are presented in appendix A.5.

1Although improved methods for eigendecomposition on sparse matrices exist, such as the Lanczos method
[24] which can reduce the time complexity to O(dN2), where d is the average number of nonzero elements in a
row, these approaches still do not address the challenges posed by an exceedingly large number of nodes N .
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Figure 2: Upper part: eigendecomposition performs on the complete adjacency matrix with N nodes.
Lower part: By adding two mapping operations, performed with matrices Mt and MT

t, Active Node
Mapping applies the eigendecomposition on Nt active nodes instead of total N nodes. Consequently,
the theoretical time consumption is reduced to (Nt

N )3 of the initial time required.

3 Experiments

Experiments are conducted on three publicly available datasets: Bitcoin-Alpha [11, 12], Bitcoin-OTC
[11, 12], and MovieLens-100K [13], see Table 1. The task is to predict the edge attributes in a
snapshot, given the adjacency matrices from the previous snapshot(s) as input. In the Bitcoin datasets,
which span the interactions of Bitcoin users in anonymous transaction networks, users rate the trust
level of others from -10 to +10. In the MovieLens 100K dataset, the edge attributes represent the
score with which users rate movies, ranging from 0.5 to 5.0.

Table 1: Datasets

Name # Nodes # Average active nodes # Edges # Time steps Time step split
per snapshot Train / Valid / Test

Bitcoin-Alpha 3,783 106 24,173 137 95 / 14 / 28
Bitcoin-OTC 5,881 148 35,588 136 95 / 13 / 28
MovieLens-100K 9,811 740 100,836 90 63 / 9 / 18

The mean and standard deviation of the results after the min-max normalization from five runs with
different seeds are shown in Table 2. For all three datasets, DspGNN outperforms the baseline models
CoEvoGNN and EvolveGCN. Moreover, despite the variability in parameter and node hidden states
initialization, DspGNN exhibits much smaller standard deviation margins across the five seeds. These
results align with our theoretical expectations, suggesting that our spectral-designed approach can
outperform methods based solely on spatial convolution for snapshot encoding.

Table 2: Edge regression performance, showing the mean and standard deviation of the normalized
scores for the five seeds, with the best and second best results highlighted in bold and italics.

Bitcoin-Alpha Bitcoin-OTC MovieLens-100K

RMSE MAE RMSE MAE RMSE MAE

CoEvoGNN* 0.1171 (0.0097) 0.0879 (0.0100) 0.1638 (0.0066) 0.1145 (0.0106) 0.2381 (0.0058) 0.1834 (0.0048)
CoEvoGNN 0.1231 (0.0033) 0.0928 (0.0030) 0.1671 (0.0073) 0.1176 (0.0064) 0.2372 (0.0059) 0.1894 (0.0067)
EvolveGCN 0.1173 (0.0187) 0.0903 (0.0216) 0.1556 (0.0049) 0.1025 (0.0067) 0.2404 (0.0134) 0.1944 (0.0160)
DspGNN 0.0968 (0.0002) 0.0637 (0.0006) 0.1471 (0.0009) 0.0831 (0.0019) 0.2293 (0.0000) 0.1812 (0.0000)

4 Conclusion

In this work, we presented DspGNN, a model based on static graph spectral-designed convolution [17],
and inspired by both CoEvoGNN’s architecture for dynamic graph regression [15] and EvolveGCN’s
adaptive graph convolution [14]. Our approach offers three main novelties: 1) it adapts spectral-
designed methods for enhanced compatibility with DTDGs 2) it improves upon the existing DSGCN
model by combining the information of different kernels with a learnable linear layer, and 3) it
innovatively solves the challenge of eigendecomposition on DTDGs with Active Node Mapping.
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