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ABSTRACT

High-fidelity multi-singer singing voice synthesis is challenging
for neural vocoder due to the singing voice data shortage, limited
singer generalization, and large computational cost. Existing open
corpora could not meet requirements for high-fidelity singing voice
synthesis because of the scale and quality weaknesses. Previous
vocoders have difficulty in multi-singer modeling, and a distinct
degradation emerges when conducting unseen singer singing voice
generation. To accelerate singing voice researches in the commu-
nity, we release a large-scale, multi-singer Chinese singing voice
dataset OpenSinger. To tackle the difficulty in unseen singer mod-
eling, we propose Multi-Singer, a fast multi-singer vocoder with
generative adversarial networks. Specifically, 1) Multi-Singer uses a
multi-band generator to speed up both training and inference pro-
cedure. 2) to capture and rebuild singer identity from the acoustic
feature (i.e., mel-spectrogram), Multi-Singer adopts a singer condi-
tional discriminator and conditional adversarial training objective.
3) to supervise the reconstruction of singer identity in the spectrum
envelopes in frequency domain, we propose an auxiliary singer
perceptual loss. The joint training approach effectively works in
GANSs for multi-singer voices modeling. Experimental results verify
the effectiveness of OpenSinger and show that Multi-Singer im-
proves unseen singer singing voices modeling in both speed and
quality over previous methods. The further experiment proves that
combined with FastSpeech 2 as the acoustic model, Multi-Singer
achieves strong robustness in the multi-singer singing voice syn-
thesis pipeline.
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1 INTRODUCTION

Singing voice synthesis (SVS) aims to synthesize high-quality and
expressive singing voices based on musical score information. Singing
voice synthesis (SVS) systems [2, 14, 22] take music score and lyric
information as input to generate singing voices, and these systems
have been widely deployed in music softwares, music boxes, and
so on. SVS systems could generate singing voices with compara-
ble quality to reference songs, which attract widespread research
interest.

Following the essential components similar to TTS systems, SVS
systems generally adopt an acoustic model [5, 23] to convert the
musical scores into acoustic features, and a vocoder [2, 21] to gen-
erate audio waveform from acoustic features. Neural vocoders can
synthesize natural-sounding speech, which generally determines
the upper bound of generated sound quality. In this paper, we con-
centrate on waveform modeling in vocoder.

Unlike traditional TTS [3, 32-34, 44], there are several challenges
to build a multi-singer SVS system: 1) Open source and high-quality
singing voice data. Unlike speech, high-quality singing voices are
commonly produced by professional singers. Because of the high
cost of recording and labeling songs, researchers hardly have ac-
cess to large and open-source singing voice corpora. 2) Fast audio
synthesis against limited computation resource. For application
deployment, generation speed and computational cost need further
consideration. 3) Multi-singer modeling. Timbres could be wildly
different among groups while singing voices vary from expression
and style. When applying SVS systems for unseen singer modeling,
there comes distinct degradation in synthetic singing voice quality.

In the past few years, researchers work to address the challenges
above in singing voices modeling, while some problems emerge:
1) SVS systems like DeepSinger [35] mine data from the web, but
processed data with noise still could not meet requirements for
high-fidelity SVS synthesis. Further, although several singing voice
datasets such as MIR-1K dataset [15] and JukeBox [7] have been
released for research purposes, but the corpora are not so large as
expected for multiple tasks. 2) Several parallel generation meth-
ods [40, 42] have been proposed to speed up waveforms synthe-
sis. However, existing multi-band architectures do not consider
characteristic differences among frequency bands, so a powerful
frequency-adapted multi-band technique is required. 3) Researchers
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investigate ways to generate high-quality waveforms during multi-
singer modeling. Previous multi-speaker data training strategy [8]
increases model generalization. Unfortunately, without explicitly
adopting architecture for singer identity reconstruction, vocoders
would be data-hungry, and generalization restriction still comes.
Giving additional information during generation would be another
strategy. Speaker Conditional WaveRNN [28] takes speaker embed-
dings as additional input, while extra embedding would be some-
times hard-earned during inference procedure and slows down
generation as well.

To accelerate SVS research, we assemble an open-source, large-
scale, and multi-singer singing voice corpus OpenSinger. To the
best of our knowledge, OpenSinger is the first open-source Chinese
singing voice dataset. We have attached part of OpenSinger to the
supplementary materials, and we will release the entire dataset after
paper publication. To overcome afore problems in this paper, we
propose Multi-Singer, which achieves computational efficiency and
keeps powerful capability for multi-singer singing voices modeling.
To be more specific, 1) we introduce a novel multi-band generator,
which speeds up singing voice generation and improves the audio
quality of different frequency bands. 2) Then we introduce the
singer conditional discriminator with conditional loss function for
high quality and similarity multi-singer singing voice generation.
3) To further reconstruct singer representations in the frequency
domain, we propose an auxiliary singer perceptual loss based on
embeddings extracted from a pre-trained speaker encoder. The
proposed training method effectively works in GANs for multi-
singer singing voice modeling.

Experimental results show that Multi-Singer can generate high-
fidelity multi-singer singing voices and achieve the best mean opin-
ion score (MOS) among existing neural vocoders. Combined with
FastSpeech 2 as an acoustic model, Multi-Singer shows strong ro-
bustness in singing voice synthesis systems. Multi-Singer is sub-
stantially faster than most neural vocoders, and it samples 125
times faster than real-time on single NVIDIA 2080Ti GPU with
comparable quality to an autoregressive counterpart.

2 RELATED WORKS

In this section, we overview existing datasets, provide a singing
voice synthesis background and briefly review several variations of
vocoders.

2.1 Dataset

Training TTS and SVS systems both require a significant amount
of annotated data[9, 10, 15]. The rapid increase in the amount of
multimedia content on the Internet in recent years makes data much
more important. Researchers have released speech and singing
voice corpora, varying from languages, speakers, and so on.

2.1.1 Speech.

For speech synthesis, various datasets are available for different
tasks. LSSED [11] is a challenging large-scale English speech emo-
tion dataset, which has data collected from 820 subjects to simulate
real-world distribution. AISHELL-3 [36] contains roughly 85 hours
of emotion-neutral recordings spoken by 218 native Chinese speak-
ers, which could be applied for multi-speaker speech synthesis.
Data could be collected with different methods, including mining

from webs automatically, recording manually, and so on. The read
English speech LibriSpeech corpus [27] is derived from audiobooks.
Japanese multi-speaker singing-voice corpus JVS-MuSiC [37] is
produced in a recording studio, and the recordings were controlled
by a professional sound director.

2.1.2  Singing voices.

Singing voice data differs greatly from speech. Our preliminary
research concludes that the main differences between singing voices
and speech lie in phoneme duration and pitch (i.e., fundamental
frequency), which we would discuss in appendix A in the supple-
mentary materials. Unlike TTS with sufficient transcribed data, SVS
suffers from data shortage due to its high recording and annotation
cost and stricter copyright issues in the music domain. Limited
singing datasets of different sizes and annotated contents are avail-
able for research purposes, and here we introduce a few singing
voice datasets for comparison in Table 1.

The MIR-1K dataset [15] establish the first comprehensive and
publicly available dataset for singing voice separation, which does
not contain segmentation on the word level. The proposal of multi-
singer NUS-48E corpus [10] is an ongoing effort toward a compre-
hensive, well-annotated dataset for singing voice related research.
But NUS-48E dataset includes 48 songs with reasonably balanced
phoneme distribution, which is not large enough for SVS systems
training. JukeBox [7] contains 467 hours of singing audio data
sampled at 16 kHz, which has been downloaded from the Inter-
net Archive (IA) with a wide variety of acoustic environments
and recording apparatus. Hence, it is not suitable for high-quality
singing voice synthesis.

To conclude, the above data could not meet our requirements for
singing voice synthesis research in terms of quality and quantity.
Here in this paper, we propose an open-source, large-scale, and
multi-singer singing voice corpus OpenSinger.

2.2 Singing voice synthesis

Singing voice synthesis (SVS) is a generative task that produces
acoustic waveforms of singing given lyrics and music score in-
put. A typical singing voice synthesis system consists of an acous-
tic model to convert musical scores into acoustic features and a
vocoder to generate audio waveforms from acoustic features. Previ-
ous works have conducted studies on SVS from multiple aspects.
DeepSinger [35] is a multi-lingual SVS system built from scratch
using singing training data mined from music websites. Choi at
all [6] build a Korean singing voice synthesis system using an auto-
regressive algorithm that generates spectrogram with the boundary
equilibrium GAN objective. Chen at all [2] introduce multi-scale ad-
versarial training in both the acoustic model and vocoder to improve
singing modeling. As the papers say, these previous SVS systems
could generate natural singing voices. However, because vocoders
in such SVS systems are not designed towards multiple singers,
there would be a distinct degradation in quality when generating
unseen singers’ voices.

2.3 Vocoder

With the powerful model assumption and the solid theoretical
ground, autoregressive vocoders have dominated singing voice
modeling for a long time. WaveRNN [18] is an autoregressive model



Name Task Language
NUS-48E corpus  singing voice research English
MIR-1K dataset  singing voice separation Chinese

JukeBox singer recognition 18 different languages
OpenSinger singing voice synthesis Chinese

Table 1: Usage and language of datasets.

regularly adopted to synthesize waveform in SVS systems. Non-
autoregressive vocoder Parallel WaveNet [25] provides a fast wave-
form generation method based on a teacher-student framework
with probability density distillation. Besides, WaveGlow [29] is an-
other non-autoregressive vocoder, which consumes an enormous
computation cost during training. More recently, researchers pro-
pose diffusion-based models WaveGrad [4] and Diff Wave [20] for
waveform generation, which are built on prior work of score match-
ing and diffusion probabilistic models.

To avoid the sample-by-sample causal inference or the use of
teacher models, researchers have adopted the idea of the generative
adversarial network (GAN) to train neural vocoders. MelGAN [21]
is a light non-autoregressive vocoder pioneering based on a gen-
erative adversarial network, which is free from distillation. HiFi-
GAN [19] consists of small sub-discriminators obtaining specific
periodic parts of raw waveforms, achieving higher computational
efficiency and sample quality. VocGAN [41] applies the joint condi-
tional and unconditional objective, which is inspired by successful
results in high-resolution image synthesis. Although these vocoders
could be applied in SVS systems, distinct degradations occur when
generalizing those systems to unseen singers.

3 CONSTRUCTION OF OPENSINGER

OpenSinger contains pop songs collected from 93 singers, and
singing utterances are saved in wav format, sampled at 24 kHz, and
quantized by 16 bits. OpenSinger consists of 50 hours of singing
voices recorded in a professional recording studio, including 30
hours from 41 females and 20 hours from 25 males apart from the
person-of-interest (POI). Figures in appendix A in the supplemen-
tary materials summarize the distribution of pitch, sentence-level
duration, and phoneme-level duration of utterances. The major
features of OpenSinger include:

e Open source. Lack of data could obstruct the construction of
SVS systems, so we release our corpus to accelerate research
in the community.

e Large scale. Data-hungry singing voice systems need a sig-
nificant amount of data in the training process. To our best
knowledge, OpenSinger is the most extensive Chinese multi-
singer singing voice corpus.

e High quality. Similar to text-to-speech, high-quality audios
without noise or background sound are essential for high-
fidelity singing voice synthesis. Professional singers and
studios both ensure high-quality utterances in OpenSinger.

3.1 Data Collection

Collection Procedure In the data collection procedure, we se-
lect Chinese traditional and pop songs, and organize a group of
93 professional singers to record 80 hours of singing voices. The

recording takes place in a private recording studio. The songs are
saved in wav format, sampled at 24 kHz, and quantized by 16 bits.
Data labeling A professional annotation team annotates the
utterances in each song. Each utterance is annotated with the name
of the song, singer, and reference text, which is the official Latinized
notation for marking Chinese pronunciations. Further, We use open
source tools pypinyin! to convert Chinese lyrics into phonemes.

3.2 Processing

After data collection, the singing voice corpus still could not meet
high-quality singing voice generation requirements for the follow-
ing aspects: 1) Most vocoders need data in the form of relatively
short utterances usually up to a few seconds in length, each with
corresponding text during training procedures. 2) Pauses and re-
sulting silences commonly remain in raw songs, which would hurt
adversarial stability and bring unnecessary calculations. Our pro-
cessing procedure consists of several stages to fix the issues we
listed above for high-quality singing voice generation, including
segmentation, silence trimming, and alignment.

Silence trimming After data division, there still usually be
some long-term silences in singing voices. Voice Activation De-
tection (VAD) has been used to remove silent segments, and thus
we detect and discard the non-vocal segments using VAD. During
silence trimming, each utterance has been manually verified to
discard audio samples that do not contain singing vocals every
100ms. Cutting these silence segments could significantly shorten
the audios as exceedingly speeds up the alignment formation.

Segmentation Obviously, singing voices with lengthy audio
clips are not suitable for memory-limited GPU computation, so
we fragment them into many small files. Following the Lyrics-to-
Singing alignment in [35], we split the whole song into aligned
lyrics and audio. We segment an audio by the frames that are aligned
to the separation marks in raw lyrics, making sure each processed
sentence’s duration is limited to 0-11 seconds.

Alignment For more precise alignment, we adopt Montreal
Forced Aligner? and take an orthographic transcription of an audio
file and generate a time-aligned version. In Montreal Forced Aligner,
an annotation for phonemes is generated by aligning the manually-
labeled phone strings of the sung lyrics using training conventional
Gaussian Mixture Model (GMM) - Hidden Markov Model (HMM)
system. The annotated phonemes support us for broad and pre-
liminary observations about the phoneme-level duration of the
corpus.

3.3 Statistics

After the data collection and processing procedure, we check for
audio quality and conduct statistical evaluation, including sentence-
level and phoneme-level duration distribution, pitch distribution
and speaker similarity.

Sentence-Level Duration Distribution We have segmented
the songs into sentence-level singing voices during audio process-
ing. We plot the sentence-level duration distribution of the male and
female singing voices separately. As shown in appendix A in the
supplementary materials, sentence durations between genders are

!https://github.com/mozillazg/python-pinyin
2https://github.com/MontrealCorpusTools/Montreal-Forced- Aligner
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Figure 1: UMAP projection of 10 utterances for each of the
10 singers. Different colors represent different singers.

similar with some small variations due to our manual segmentation
in advance.

Phoneme-Level Duration Distribution We align the phoneme
sequence to the singing audio frames using MFA mentioned above
and visualize distribution in appendix A in the supplementary ma-
terials. Phoneme durations of male and female singing voices have
a similar distribution, mainly scatters around 10 ms to 500 ms.

Pitch Distribution We extract pitch from the audio using Parsel-
mouth?® and show statistical distribution. Obviously, due to the
diversity of timbre and pronunciation habits among genders, the
drawn pitch distribution figures differ greatly. Female singing voices
exhibit a larger pitch range, trending toward high frequency more
significantly. In other words, there are more high-frequency parts
in female singing voices.

Speaker Similarity To learn about speaker identity differences
among singers in OpenSinger, we visualize the speaker represen-
tations in Figure 1 using Resemblyzer®. 10 utterances of 10 ran-
domly sampled speakers are chosen, each is converted into a 256-
dimensional embedding and reduced to 2-dimensional with Uni-
form Manifold Approximation and Projection (UMAP). It has pre-
sented a large inter-speaker distance among singers and demon-
strated the singer diversity in OpenSinger.

3.4 Speech and Singing voices

Several characteristic differences exist between singing voice and
speech generation: 1) Singing voices include richer emotional infor-
mation, which varies from singing expression and style. 2) Singing
voices have longer continuous pronunciations and contain more
high-frequency parts. To verify our thinking, we conduct statis-
tical analysis on the Chinese speech dataset CSMSC® and plot
the phoneme-level duration as well as pitch distribution. Because
sentences are cut and segmented manually, we haven’t consid-
ered sentence-level discrepancies. Table 2 come a few interesting
phenomena: 1) Since singing voices are more various and diverse,
statistic distributions of singing voices become broader with large
variance. 2) Pitch and phoneme-level duration in speech corpus are
lower than that in singing voices on average, demonstrating the
longer continuous pronunciation and more high-frequency parts
in singing voices.

3https://github.com/YannickJadoul/Parselmouth
*https://github.com/resemble-ai/Resemblyzer
Shttps://github.com/mozillazg/python-pinyin

Pitch (Hz) Phoneme duration (ms)
Ttem
mean std mean std
Singing Voice (OpenSinger) 280.36 94.56 186.15 143.92
Speech (CSMSC) 250.97 60.63 128.85 78.45

Table 2: Statistics for pitch and phoneme-level duration.

To conclude, the characteristic differences between speech and
singing voice we analyze above have brought additional challenges
for singing voices synthesis researches, and reduce researchers’
enthusiasm to assemble singing voice corpora. To our best knowl-
edge, OpenSinger is the largest open-source, multi-singer, Chinese
singing voice corpus, and we hope that the release of OpenSinger
could contribute to the community.

4 MULTI-SINGER

4.1 Motivation

4.1.1  Multi-band generartion.

In recent years, state-of-the-art vocoders have significantly im-
proved the singing voice quality and spawned SVS systems de-
ployments. However, due to the high computational cost and time-
consumed generation, real-time applications could become chal-
lenges. Researchers have adopted multi-band generation such as
Multiband-WaveRNN [42], Multiband-MelGAN [40] to speed up
waveform modeling. Related multi-band vocoders generate each
sub-band of waveform, and then conduct bands splicing using
Pseudo Quadrature Mirror Filter Bank (PQMF) [24]. Nevertheless,
previous multi-band techniques are designed towards fast gener-
ation and lack considering the characteristic differences among
frequency bands (e.g., short-period high-frequency band and long-
period low-frequency band), usually resulting in the limitation of
synthetic singing voice quality. This paper proposes the frequency-
adaptive multi-band generation technique to adjust singing voice
synthesis in both speed and quality.

4.1.2  Multi-singer modeling.

Sufficient singer generalization means that the vocoder could
generate high-fidelity audio in various singer domains, regardless
of whether the input has been encountered during training or has
come from an out-of-domain singer. Researchers have investigated
ways to supervise vocoders for learning singer identity in multi-
singer modeling.

Multi-speaker data Training on data of multiple speakers could
probably improve model generalization. Using multi-speaker data,
researchers [8] demonstrate better performance in speaker similar-
ity for multi-speaker speech synthesis. However, without explicitly
adopting architecture for speaker identity reconstruction, vocoders
would be data-hungry and encounter generalization restriction. A
distinct degradation emerges when we adapt these vocoders to the
unseen speakers modeling.

Extra embedding input Taking embedding as additional in-
puts could be another way to handle singer generalization. Transfer
learning from speaker verification to multi-speaker text-to-speech
synthesis [17] takes the speaker verification network as the speaker
encoder and concatenates the generated speaker embedding to
each encoder time step. Speaker Conditional WaveRNN [28] takes
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speaker embeddings extracted from a pre-trained speaker verifica-
tion model as additional input and exploits extra speaker informa-
tion. However, extra embeddings would sometimes be hard-earned
in SVS systems during the inference process. Worse still, it takes a
higher computation cost and reduces inference speed intolerably.

To maintain feasibility and improve generalization towards the
unseen singers, we have better explore how to teach vocoders
explicitly capture singer identity embed in the acoustic feature (i.e.,
mel-spectrogram) without additional computational cost during
singing voice synthesis.

4.2 Overview

Generative adversarial network based vocoder jointly trains a pow-
erful generator G, and convolutional neural network (CNN) dis-
criminator D, to generate time-domain waveform from the corre-
sponding input mel-spectrogram. We have introduced a technique
to improve inference speed and quality of synthetic waveform in
adaptation to the unseen singer: 1) Firstly, to speed up waveforms
modeling, we introduce a multi-band generator, which synthesizes
sub-band signals adapted to the frequencies. 2) For multi-singer
singing voice generation, Multi-Singer adopts a singer conditional
discriminator to judge whether the singer identity of input voices
has been properly constructed. 3) For training objective, we intro-
duce joint adversarial training of conditional and unconditional
loss and propose singer perceptual loss to penalize the generator
for synthesizing singing voices with singer identification bias. The
joint training method effectively works in GANs for raw audio
generation.

4.3 Generator

To develop high-fidelity waveform generation in parallel, we in-
troduce a multi-band generator. It is acknowledged that waveform
signals’ characteristics vary in different frequency bands, so we
model them separately. The multi-band generator transforms the
input noise drawn from a Gaussian distribution to the output wave-
form in parallel, and the multi-band generation process has been
shown in Figure 2. We divide waveform into four frequency bands
including two high-frequency bands and two low-frequency bands,
and the waveform generation in high and low frequency bands is
conducted separately using two distinct frequency-adapted models,
respectively. The synthetic sub-band waveforms are merged into
the final singing voices through the PQMF filter.

As shown in Figure 2, the generator consists of WaveNet blocks,
whose architecture has been discussed in appendix E in the supple-
mentary materials. Specifically, receptive fields and the number of
WaveNet blocks vary in these two frequency-adapted models, and
they are carefully designed towards different acoustic characteris-
tics among frequency bands. The generator is non-autoregressive
and capable of adjusting singing voice synthesis in both speed and
quality.

4.4 Discriminator

The architecture of Discriminators has been shown in Figure 2(c),
where p1 and p2 denotes the possibility of the sample generated by
conditional and unconditional discriminator, respectively. Condi-
tional input has been applied for high-resolution image synthesis

tasks and produced successful results [43], and conditional adver-
sarial networks have been widely acknowledged for stable perfor-
marnce in image-to-image translation [16]. Previous vocoder studies
have further demonstrated the efficiency of conditional input in dis-
criminators. VocGAN [41] introduces the hierarchically-nested JCU
discriminator, which learns intermediate representations directly
conditioned on the input mel-spectrogram. GAN-TTS[1] proposes
conditional DBlock, where the embedding of the linguistic features
are added after the first convolution.

To better supervise the singer identity reconstruction in multi-
singer singing voice generation, we adopt a singer conditional dis-
criminator. The singer conditional discriminator judges whether the
singer identity of input voices has been properly constructed, and
the generator is trained to fool the singer conditional discriminator
by increasing the real possibility of the generated sample.

The singer conditional discriminator(p1) first adopts a 256x
downsampled block, which is performed using strided average
pooling with kernel size 4 and done in 4 stages of 8x, 8x, 2x, and
2x downsampling. After passing through the downsampled block,
raw waveforms are converted into 256-dimension vectors. Because
singer identifications keep stable in the long-term waveforms, we
feed these 256-dimension representations in LSTM layers and ob-
tain steady identity in the final output. We conduct element-wise
addition operation between high-level singer identities and refer-
ence singer embeddings, and project them to possibility with a
linear layer and ReLU activation function.

The unconditional discriminator(p2) consists of ten layers of
non-causal dilated 1-D convolutions. The strides are set to one
and linearly increasing dilations are applied for the 1-D convolu-
tions starting from one to eight except for the first and last layers.
Channels and kernel sizes are set to 64 and 5, respectively.

4.5 Training Loss

Training objectives should be carefully designed for stable train-
ing and faster convergence. In this section, we first describe Joint
adversarial conditional and unconditional loss, and then we
propose an auxiliary training loss named Singer Perceptual Loss.
Finally, we adopt multi-resolution STFT loss as additional auxil-
iary loss and decide our final loss function.

Joint adversarial conditional and unconditional (JCU) loss
In contrast to conventional adversarial loss, JCU loss combines the
conditional and unconditional adversarial losses as Eq. 1. Previous
work like VocGAN [41] has demonstrated the efficiency of JCU
loss for adversarial training. Here our adversarial conditional loss
is significantly different from that in VocGAN. For multi-singer
modeling, our proposed conditional loss is conducted by combating
between generator and singer conditional discriminator, leading
generator to better capture singer identity embed in the acoustic
feature input (i.e., mel-spectrogram). The adversarial unconditional
loss enhances the generator to synthesize more natural singing
voices by classifying ground truth samples to 1 and the synthetic
samples to 0. The JCU loss is defined in Eq. 1 and Eq. 2.

Lago(D:G) = 2B [(D(x) = 1)* + D(y)*] +

B [(D(5) - D2+ Dy (3, 9)7],
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Lago(G:D) = 8y [(D(y) = V2] + By, [(Ds(5) - V] @

where x, y and s denote the ground truth and synthetic singing
voices, and the singer embedding respectively. G is the multi-band
generator, D is the unconditional discriminator, D; is the singer
conditional discriminator.

Singer Perceptual Loss In this work, we propose an auxiliary
loss function that could improve the vocoder performance for multi-
singer singing voice modeling. Perceptual loss is introduced in style
reconstruction by Gratys et al. [12] for the first time, and many
studies have taken the ideas behind perceptual loss to improve the
quality of the outputs generated by a deep-learning-based model.
Here we introduce a new loss objective named singer perceptual
loss, which enables the generator to sense singer bias and optimize
speaker similarity between ground truth and synthetic waveforms
in the frequency domain during training.

Singer perceptual loss depends on high-level hidden states ex-
tracted from the pre-trained speaker encoder, which we will dis-
cuss in appendix C in the supplementary materials. We judge mel-
spectrogram in the frequency domain to calculate singer perceptual
loss. It is acknowledged that the spectrum envelope of waveforms
could provide singer representations, and hence envelope recon-
struction in the frequency domain is also the procedure of singer
identity reconstruction. Singer perceptual loss supervises singer
identification reconstruction more efficiently, and it is defined as
follows:

L
Lopt(x.) = ) (|l (Mel() - ¢ (Mel))], )
j=1
where Ly, (x,y) denotes singer perceptual loss, | - ||z denotes

the L2 norms, and let #j(Mel(x)) be the j-th layer hidden state of
LSTM in the pre-trained speaker encoder ¢ when processing the
mel-spectrogram of signal x.

Multi-resolution STFT Loss To further stabilize the adversar-
ial training process, Multi-Singer adopts a multi-resolution STFT(Short
Time Fourier Transform) auxiliary loss. Similar to the previous
work [39], we define the STFT loss as follows:

|| STFT(x) — STFT(y)||F
| STFT(x)||F ’

Lin_sc(x, y) =

Lm_mag(x,y) = %ll log(STFT(x)) — log(STFT(y))ll1,

where || - ||r and || - ||; denote the Frobenius and L1 norms; STFT(-)
and N denote the STFT magnitude of the m-th STFT parameter
set and the number of elements in the magnitude, respectively.
Lm_sc and Ly_maq denote the spectral convergence and log STFT
magnitude, respectively.

The final multi-resolution STFT loss is the sum of M losses with
different analysis parameters (i.e., FFT size, window size, and hop
size), which is represented as follows:

M
l m m
Lupr(x) = 51 2 (ke (5.9) + Ll hag (x.3) )

m=1
Final loss As mentioned above, our auxiliary loss consists of the
singer perceptual loss and multi-resolution STFT loss as follows:

5

1
Lawe(©) = By | (L) + L0

where Ly; 7, (x, y) denotes the multi-resolution STFT loss, and Laux (G)
denotes the auxiliary loss of generator.

To conclude, our final loss function for the generator is defined
as a linear combination of the auxiliary loss, adversarial loss:

LG = Laux (G) + ALyq, (G; D),

where A denotes the hyperparameter balancing loss terms and we
set A = 10. By jointly optimizing the waveform-domain adversarial
loss and auxiliary loss including singer perceptual loss and multi-
resolution STFT loss, the generator can learn the distribution of the
realistic speech waveform effectively.

5 EXPERIMENT

In this section, we first describe the experimental setup including
dataset and model configurations. Then we report experimental
results and conduct some analyses.

5.1 Experimental Setup

We randomly choose 340 utterances for validation and 60 utterances
from 6 singers as the seen singer test set. To evaluate the model
generalization to unseen singers, we prepare 5 utterances from
each singer including five males and five females as the additional
unseen singer test set. The seen singer test set helps judge if the
neural vocoder could synthesize high-fidelity singing voices, and



the unseen singer test set helps measure the model’s generalization
to singer out of domain. At the same time, we take Chinese speech
dataset CSMSC for comparison and choose 60 utterances as the test
set.

5.2 Model training

Speaker encoder We train the speaker encoder with a few large
scale multi-speaker datasets following the guidance in [17]: 1) Lib-
riSpeech Other, which contains 461 hours of speech from a set of
1,166 speakers; 2) VoxCeleb and VoxCeleb2 which contain 139K
utterances from 1,211 speakers, and 1.09M utterances from 5,994
speakers, respectively. 3) OpenSinger. We further fine-tune the
speaker encoder on the singing voice corpus to ensure it has learned
about the distribution of singing voices. Speaker encoder has been
trained until convergence (around 50k iterations) as shown in ap-
pendix C in the supplementary materials.

Multi-Singer The generator in Multi-Singer takes 80-band mel-
spectrograms as input, which are extracted in params (FFT:512, hop
size:128, window size:512). At the training stage, a multi-resolution
STFT loss would be computed by the sum of three different STFT
losses as described in appendix D in the supplementary materials.
Multi-Singer is trained for 40k steps with RAdam optimizer to sta-
bilize training. Note that we apply pre-training on the generator for
the first 100k steps, after which generator and discriminators are
jointly trained. When training previous vocoders such as WaveRNN,
MelGAN, and Parallel WaveGAN from scratch, GitHub implemen-
tations are used for reproducibility and the configurations follow
their original papers.

5.3 Corpus Verification

In order to validate the audio quality of OpenSinger, we train sev-
eral state-of-the-art neural vocoders such as WaveRNN [18], Mel-
GAN [21] and Parallel WaveGAN [39]. We then conduct evaluations
on synthetic seen singer samples®, and the evaluation matrix has
been discussed in appendix B in the supplementary materials.

Our further evaluation lies on the corpus scale. It’s well-known
that high-fidelity TTS is data-hungry and hence model pre-training
is essential in practice. Researchers [8] used to perform the warm-
start strategy to overcome data shortage. To explore the effective-
ness of additional speech data in SVS training, we pre-train vocoder
on a large speech corpus CSMSC (200k steps) and fine-tune the
model on OpenSinger until convergence (500k steps).

Corpus verification results have been introduced in Table 3, and
we come to the following conclusions:

e OpenSinger simulates the real-world singing voice distribu-
tion, and state-of-the-art neural vocoders perform as well as
previous papers say. Robust models could be trained using
OpenSinger, demonstrating the effectiveness of this dataset.

o A slight performance drop appears when using the speech
pre-train strategy, which indicates that additional speech
data is not needed since OpenSinger is large enough for
high-quality singing voice modeling.

% Audio samples are available at https://Multi-Singer.github.io/

Model Dataset MOS FDSD

WaveRNN Singing Voice 3.59+0.15 0.385
MelGAN Singing Voice 3.24+0.10  0.864
Parallel WaveGAN Singing Voice 3.52+0.12  0.484

Parallel WaveGAN  Speech + Singing Voice  3.49+0.10  0.488

Table 3: MOS results with 95% confidence intervals and FDSD
for corpus verification.

5.4 Multi-band generation

To verify the effectiveness of the proposed multi-band generator in
Multi-Singer, we conduct comparison with competing multi-band
architectures such as multiband-MelGAN and multiband-WaveRNN.
For fair comparison, we train these models from scratch under
the setting in section 5.1 and implement MOS assessments and
real-time factor (RTF) evaluation. From the experimental results
in Table 4, we draw the following conclusions: 1) Due to the auto-
regressive architecture, Multi-band WaveRNN achieves the best
performance and generates the most natural sounds, which limits
overall generation speed on the other hand. 2) Multi-band Mel GAN
could achieve fast singing voice synthesis, while a distinct quality
degradation in audio comes. 3) as for Multi-Singer, because of the
multi-band architecture adapted towards characteristic differences
among frequency bands, the non-autoregressive generator could
adjust singing voice synthesis in both speed and quality

Model MOS RTF

Multi-band Mel GAN 3.21+£0.10  0.002
Multi-band WaveRNN  3.58+0.13  0.350
Multi-Singer 3.98+£0.06 0.008
Table 4: MOS results with 95% confidence intervals and real-
time factor (RTF) of each multi-band generation methods.

5.5 Multi-singer modeling

To perform Multi-Singer’s better generalization to multiple unseen
singers, we evaluate on the synthetic singing voices and compare
them with competing architectures. For a fair comparison, we train
these vocoders on our proposed multi-singer dataset OpenSinger
and use the same experiment setup described in Section 5.1. We
implement MOS assessments and present objective evaluations
such as Fréchet Deep Speech Distances (FDSD), and speaker cosine
similarity as shown in Table 5. We have attached the concrete
matrix in appendix B in the supplementary materials. Note that
the quality of the added out-of-domain unseen singer recordings is
lower than that of seen speaker recordings. Therefore we do not
conduct meaningless evaluation across seen and unseen singer test
set.

Experimental results represent the robustness of Multi-Singer
and its outperform capability of unseen singer modeling. We come
to conclusions as follows: 1) Architectures such as MelGAN and
Parallel WaveGAN haven'’t explicitly introduced methods for multi-
singer adaptation, thus an unavoidable degradation occurs when
modeling singing voices of unseen singers. 2) Singer Conditional
WaveRNN (SC-WaveRNN) introduces singer-embedding as addi-
tional information to control the singer identity during inferences,
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Model

Train FDSD

Seen test singer

Unseen test singer

MOS Cosine similarity MOS Cosine similarity
WaveRNN (autoregressive) 0.385 3.53+0.12 0.923 3.59+0.15 0.931
SC-WaveRNN (autoregressive) 0.525 3.59+0.13 0.958 3.63+0.13 0.970
MelGAN 0.864 3.22+0.12 0.964 3.24+0.10 0.943
Parallel WaveGAN 0.484 3.51+0.12 0.934 3.52+0.12 0.944
Multi-Singer 0.412 3.96+0.09 0.959 3.98+0.06 0.967

Table 5: MOS results with 95% confidence intervals, FDSD and cosine similarity for multi-singer modeling. Note that the quality
of the added out-of-domain unseen singer recordings is lower than that of seen speaker recordings. Therefore we do not

conduct evaluation across seen and unseen singer test set.

Model

Train FDSD  RTF

Seen test singer

Unseen test singer

MOS Cosine similarity MOS Cosine similarity
w/0 MB-generator 0.432 0.031  3.97+0.07 0.958 4.00+0.08 0.966
w/o SCD 0.445 0.008  3.68+0.09 0.952 3.70+0.08 0.964
w/o SPL 0.461 0.008  3.81%0.10 0.951 3.83+£0.09 0.963
Baseline (Multi-Singer) 0.412 0.008  3.96+0.09 0.959 3.98+0.06 0.968

Table 6: MOS results with 95% confidence intervals, FDSD and cosine similarity for ablation study of each component.

while the large computational cost slows down generation and
increase the difficulty of further application; and 3) as for Multi-
Singer, with the prominent capability to perceive singer identity
without extra computation during generation, it adjusts singing
voice synthesis in both speed and quality.

5.6 Ablation study

We conduct ablation studies under the settings in Section 5.1 to
verify the effectiveness of several components in Multi-Singer, in-
cluding 1) multi-band generator; 2) singer conditional discrimina-
tor; and 3) singer perceptual loss. Table 6 shows the mean opinion
score of audio quality as assessed via human listening tests and
objective evaluation results. Our analysis leads to the following
conclusions: Replacing multi-band generator with a full band
generator causes a significant decrease in generation speed, and
we observe that the quality of the synthetic singing voices drops
slightly at the same time. The absence of Singer Conditional
Discriminator (SCD) results in decreased cosine similarity scores
on unseen singers, which suggests that the modified vocoder has
difficulties in capturing singer identity. Because abundant singer
representations are embedded in the spectrum envelope of singing
voices, removing the frequency-domain auxiliary objective Singer
Perceptual Loss (SPL) could weaken vocoder in the reconstruc-
tion of singer representations. Our ablation study shows that the
baseline model Multi-Singer can speed up waveforms generation
and efficiently reestablish the singer identity of unseen singers in
singing voices.

5.7 Singing voice synthesis system

To verify the effectiveness of Multi-Singer in singing voice syn-
thesis systems, we adopt a modified FastSpeech 2 as an acoustic
model to convert the words of songs into acoustic features and
build an overall system. We have attached the modified FastSpeech
2 in appendix F in the supplementary materials. During training,
the configuration follows prior work [31]. Since the F0 and dura-
tion are usually known in singing voice synthesis, we remove the

Model MOS
FastSpeech 2 + Multi-Singer ~ 3.95+0.07
Recording 4.03+0.09

Table 7: The MOS results with 95% confidence intervals on
each Singing voice synthesis system.

pitch and duration prediction, taking the real FO and phoneme dura-
tion as input. FastSpeech 2 converts lyrics, F0, duration and singer
embedding into the mel-spectrogram, Multi-Singer converts the
mel-spectrogram into singing voices. We perform a MOS scoring
test for synthetic audio and get results in Table 7. Experimental
results show that Multi-Singer combined with FastSpeech 2 could
generate high-quality singing voices and demonstrate the strong
robustness of Multi-Singer in the singing voice synthesis system.

6 CONCLUSION

We released OpenSinger, a large-scale, multi-singer Chinese singing
voice dataset. To our best knowledge, OpenSinger was the first Chi-
nese open dataset towards high-fidelity singing voice synthesis,
which we hope would accelerate singing voice synthesis research
in the community. To speed up waveforms generation and enhance
the capability of vocoder in multi-singer modeling, we proposed
Multi-Singer, a fast multi-singer singing voice vocoder. We attached
singer conditional discriminator and conditional adversarial train-
ing objective to improve singer identity reconstruction. To assist
Multi-Singer sense singer bias between the synthetic and reference
singing voices and supervise singer representations reconstruction,
we introduced singer perceptual loss as auxiliary loss function. The
corpus evaluation demonstrated the effectiveness of OpenSinger
for singing voice synthesis researches. Further experimental results
showed that Multi-Singer could speed up the generation and syn-
thesize high-fidelity singing voices of unseen singers. Our further
experiments proved that Multi-Singer achieved strong robustness
in the singing voice synthesis system. For future work, we will
continue to study model generalization to different emotions.
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A STATISTICS

As shown in Github pages’, there come differences between speech
data and singing voice data. To be more specific, 1) Singing voices
vary from expression and style, including richer emotional infor-
mation. 2) Singing voices usually have a high sampling rate, which
causes a wider spectrogram band in the frequency domain and
more high-frequency parts.

B EVALUATION

B.1 Mean Opinion Scores

All our Mean Opinion Score (MOS) tests are crowdsourced and
conducted by native speakers. We refer to the rubric for MOS scores
in [30], and the scoring criteria has been included in Table ?? for
completeness. The samples are presented and rated one at a time
by the testers.

Rating Naturalness Definition
1 Bad Very annoying and objectionable dist.
2 Poor Annoying but not objectionable dist.
3 Fair Perceptible and slightly annoying dist
4 Good Just perceptible but not annoying dist.
5 Excellent Imperceptible distortions

Table 8: Ratings that have been used in evaluation of speech
naturalness of synthetic and ground truth samples.

B.2 Fréchet Deep Speech Distances

Fréchet Deep Speech Distances (FDSD) judges the quality of syn-
thetic audio samples based on their distance to a reference set. These
distances are conceptually similar to the FID (Fréchet Inception
Distance). The energy distance can be combined with GAN-based
learning, further improving on either individual technique. As the
paper [13] says, FDSD is a proper scoring rule with respect to the
distribution over spectrograms of the generated waveform audio.

B.3 Cosine similarity

Cosine similarity is an objective metric that measures speaker sim-
ilarity among multi-singer audio. cos_sim(A, B) = m. We
also compute the average cosine similarity between embeddings
extracted from synthetic speech and the ground truth embeddings
to measure the speaker similarity performance objectively. Em-
beddings of utterances from the same speaker have high cosine
similarity, while those from different speakers are far apart in the
embedding space.

C SPEAKER ENCODER

Speaker verification verifies the speaker identity and tells if the rep-
resentations come from a related speaker. A speaker-discriminative
neural encoder [38] on a speaker verification (SV) task using a
state-of-the-art generalized end-to-end loss. After training on a
large amount of data, the speaker encoder could attain robust repre-
sentations that capture an ample singer identity space. As a result,
speaker encoders are usually used for feature extraction, which
effectively captures the audio’s long-term speaker identity.

7Statistical results are available at https://Multi-Singer.github.io/
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Figure 3: Architectures.

Inspired by previous work that has reported the effectiveness
of combining a well-trained d-vector model with a TTS model, we
build a speaker encoder that projects the mel-spectrogram from
the speech utterance to a 256-dimensional. Generalized end-to-
end loss (GE2E) makes the training of speaker verification models
more efficient than the previous tuple-based end-to-end (TE2E) loss
function. During the training process as shown in appendix C in
the supplementary materials, the speaker encoder could reduce
intra-speaker variance and separate different speakers apart.

D MULTI-RESOLUTION STFT LOSS DETAILS

Here we introduce details of the multi-resolution STFT loss.

FFT size Frame shift Window size

1024 600 120
2048 120 250
512 240 50

Table 9: The details of the multi-resolution STFT loss. A han-
ning window was applied before the FFT process.

E WAVENET BLOCK

The architecture of WaveNet block [26] in generator has been
shown in Figure 3. X and Mel denote noise and mel-spectrogram,
respectively. Noise passes through the dilated convolution layers,
and X, Mel are divided into xa, xb and sa, sb, respectively. After the
sigmoid-tanh calculation, the processed feature passes through two
fully-connected networks and output H and X, which would be fed
into the next dilated convolution layer.

F MODIFIED FASTSPEECH 2

As shown in Figure 3, our modified FastSpeech 2 converts lyrics,
F0, duration, and singer embedding into the mel-spectrogram, af-
ter which Multi-Singer converts the mel-spectrogram into singing
voices.
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