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ABSTRACT

We introduce CGNN, a framework to learn functional causal models as generative
neural networks. These networks are trained using backpropagation to minimize
the maximum mean discrepancy to the observed data. Unlike previous approaches,
CGNN leverages both conditional independences and distributional asymmetries
to seamlessly discover bivariate and multivariate causal structures, with or without
hidden variables. CGNN does not only estimate the causal structure, but a full and
differentiable generative model of the data. Throughout an extensive variety of
experiments, we illustrate the competitive results of CGNN w.r.t state-of-the-art
alternatives in observational causal discovery on both simulated and real data, in the
tasks of cause-effect inference, v-structure identification, and multivariate causal
discovery.

1 INTRODUCTION

Deep learning models have shown extraordinary predictive abilities, breaking records in image
classification (Krizhevsky et al., 2012), speech recognition (Hinton et al., 2012), language translation
(Cho et al., 2014), and reinforcement learning (Silver et al., 2016). However, the predictive focus
of black-box deep learning models leaves little room for explanatory power. In particular, current
machine learning paradigms offer no protection to avoid mistaking correlation by causation. For
example, consider that we are interested in predicting a target variable Y given a feature vector
(X1, X2). Assume that the generative process underlying (X1, X2, Y ) is described by the equations:

X1, EX2 , EY ∼ Uniform(0, 1),

Y ← 0.5X1 + EY ,

X2 ← Y + EX2
,

where (EX2
, Ey) are additive noise variables. These equations tell that the values of Y are computed

as a function of the values of X1, and that the values of X2 are computed as a function of the values
of Y . The “assignment arrows” emphasize the asymmetric relations between the three random
variables: we say that “X1 causes Y ”, and that “Y causes X2”. However, since X2 provides a
stronger signal-to-noise ratio for the prediction of Y , the least-squares solution to this problem is
Ŷ = 0.25X1 + 0.5X2, a typical case of inverse regression (Goldberger, 1984). Such least-squares
prediction would explain some changes in Y as a function of changes in X2. This is a wrong
explanation, since X2 does not cause the computation of Y . Even though there exists the necessary
machinery to detect all the cause-effect relations in this example (Hoyer et al., 2009), common
machine learning solutions will misunderstand how manipulating the values and distributions of
(X1, X2), or how changing the mapping from Y to X2, affect the values of Y . Mistaking correlation
by causation can be catastrophic for agents who must plan, reason, and decide based on observation.
Thus, discovering causal structures is of crucial importance.

The gold standard to discover causal relations is to perform experiments (Pearl, 2003). However,
experiments are in many cases expensive, unethical, or impossible to realize. In these situations,
there is a need for observational causal discovery, that is, the estimation of causal relations from
observation alone (Spirtes et al., 2000; Peters et al., 2017). The literature in observational causal
discovery is vast (see Appendix B for a brief survey), but lacks a unified solution. For instance,
some approaches rely on distributional asymmetries to discover bivariate causal relations (Hoyer
et al., 2009; Zhang & Hyvärinen, 2009; Daniusis et al., 2012; Stegle et al., 2010; Lopez-Paz et al.,
2015; Fonollosa, 2016), while others rely on conditional independence to discover structures on
three or more variables (Spirtes et al., 2000; Chickering, 2002). Furthermore, different algorithms
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rely on different but equally strong assumptions, such as linearity (Shimizu et al., 2006), additive
noise (Hoyer et al., 2009; Zhang & Hyvärinen, 2009), determinism (Daniusis et al., 2012), or a
large corpus of annotated causal relations (Lopez-Paz et al., 2015; Fonollosa, 2016). Perhaps the
most promising of the current approaches are score-based methods (Chickering, 2002). However,
score-based methods rely on an external score-function that must be powerful enough to detect diverse
causal relations. Moreover, most score-based methods only estimate the causal structure, ignoring
the full generative model of the data. Finally, most of these methods are not differentiable, and thus
unsuited for representation learning pipelines.

Contribution We propose Causal Generative Neural Networks (CGNN), a framework to model
functional causal models (Section 2) as generative neural networks, trained to minimize the Maximum
Mean Discrepancy (MMD) to the observed data (Section 3). CGNN is a unified solution to learn causal
models from data that leverages the representational power of deep generative models. By accounting
for both distributional asymmetries and conditional independences, CGNN works seamlessly on
bivariate and multivariate data, and is able to deal with the existence of hidden variables (confounders).
CGNN uses generative networks to estimate not only the causal graph underlying the data, but a
generative model. Unlike previous approaches, the generative networks used in CGNN allow non-
additive noise terms to model flexible conditional distributions. Being fully differentiable, CGNN
models can be trained using backpropagation, and embedded in deep learning architectures.

CGNN yields competitive results w.r.t state-of-the-art alternatives in a large variety of experiments
(Section 4), including cause-effect inference (Section 4.1), v-structure identification (Section 4.2), and
multivariate causal structure discovery (Section 4.3) with hidden variables (Section 4.4). Section 5
concludes with some perspectives for future work. Our code and data are available at http:
//anonymous.

2 THE LANGUAGE OF CAUSALITY: FUNCTIONAL CAUSAL MODELS

Our goal is to discover the Functional Causal Model (FCM) underlying a random variable vector
X = (X1, . . . , Xd). Formally, an FCM is a triplet C = (G, f,Q) producing the set of equations

Xi ← fi(XPa(i;G), Ei), Ei ∼ Q,
for all i = 1, . . . , d. In the previous equations, each Xi is one observed variable, with values
computed by applying a deterministic function fi with arguments XPa(i;G) ⊂ {X1, . . . , Xd} and Ei,
where Ei is a noise variable accounting for uncertainty.

In the language of causality, each of the previous equations expresses a direct causal relation from
the causes XPa(i;G) and noise Ei to the effect Xi, described by some causal mechanism fi. More
specifically, we assume the existence of a Directed Acyclic Graph (DAG) G of d nodes where, abusing
notation, each node is associated to one of the observed variables X1, . . . , Xd. Following standard
graph theory notation, the set Pa(i;G) ⊂ {1, . . . , d} contains the indices of the parents of the node
Xi in the graph. We say that there exists a direct causal relation from Xi to Xj , written Xi → Xj , if
there exists a directed edge from Xi to Xj in G. Figure 1 illustrates one such FCM.

E1 f1 X1

E2 f2 X2

E3 f3 X3

E4 f4 X4

E5

f5 X5

Ei ∼ Q(E)

X1 = f1(E1)

X2 = f2(X1, E2)

X3 = f3(X1, E3)

X4 = f4(E4)

X5 = f5(X3, X4, E5)

Figure 1: Example of causal graph and associated functional model for X = (X1, . . . , X5).

FCMs are generative models. We can draw a sample x = (x1, . . . , xd) from the distribution
P := P (X) by observing the FCM at play. First, draw ei ∼ Q for all i = 1, . . . , d. Second, construct
xi = fi(xPa(i;G), ei) in the topological order of G. Since this process observes but does not manipulate
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the equations of the FCM, we call x one observational sample from P , the observational distribution
of X . However, one FCM contains more information than the observational distribution alone,
since we can decide to manipulate any of its equations and obtain a new distribution. For instance,
we could decide to set and hold constant Xj = 0.1, hereby removing all the causal influences
Xk → Xj , for all k ∈ Pa(j;G). We denote by Pdo(Xj=0.1)(X) the corresponding interventional
distribution. Importantly, intervening is different from conditioning (correlation does not imply
causation). Understanding the effect of interventions requires the (partial) knowledge of the FCM.
This is why this work focuses on discovering such causal structures from data.

Formal definitions and assumptions Two random variables (X,Y ) are conditionally independent
given Z if P (X,Y |Z) = P (X|Z)P (Y |Z). Three of random variables (X,Y, Z) form a v-structure
iff their causal structure is X → Z ← Y . The random variable Z is a confounder (or common cause)
of the pair of random variables (X,Y ) if (X,Y, Z) have causal structureX ← Z → Y . The skeleton
U of a DAG G is obtained by replacing all the directed edges in G by undirected edges.

Discovering the causal structure of a random vector is a difficult task when considered in full
generality. Because of this reason, the literature in causal inference relies on a set of common
assumptions (Pearl, 2003). The causal sufficiency assumption states that there are no unobserved
confounders. The causal Markov assumption states that all the d-separations in the causal graph
G imply conditional independences in the observational distribution P . The causal faithfulness
assumption states that all the conditional independences in the observational distribution P imply
d-separations in the causal graph G. We call Markov equivalence class to the set of graphs containing
the same set of d-separations. When using the causal faithfulness assumption and conditional
independence information, we are able to recover the Markov equivalence class of the causal structure
underlying a random vector –which, in some cases contains one graph, the causal structure itself.
Markov equivalence classes are DAGs where some of the edges remain undirected.

Learning FCMs from data using score methods Consider a random vector X = (X1, . . . , Xd)
following the FCM C = (G, f,Q) with associated observational distribution P . Furthermore, assume
access to n samples drawn from P , denoted by D = {xi}ni=1, where xi = (xi,1, . . . , xi,d) ∈ Rd
for all i = 1, . . . , n. Given these data, the goal of observational causal discovery is to estimate the
underlying causal DAG G and the causal mechanisms f .

One family of methods for observational causal discovery are score-based methods (Chickering,
2002). In essence, score-based methods rely on some score-function S(G,D) to measure the fit
between a candidate set {G, f} and the observed data D. Then, we select the DAG on d variables
achieving the maximum score as measured by S. As an example of score-function, consider the
Bayesian Information Criterion (BIC): S(G,D) =∑n

i=1

∑d
j=1 log pθ̂j (xi,j |xi,Pa(j;G))−λ|G|, where

pθ̂j the maximum-likelihood estimate of a simple parametric family of conditional distributions pθ∈Θ

allowing efficient density evaluation. The term λ ∈ [0,∞) penalizes the number of edges (that is,
the model complexity assuming equal number of parameters per edge) in the graph. Finally, we
may associate each edge Xi → Xj in G to an importance or confidence score proportional to its
contribution to the overal loss: as VXi→Xj

= S(G,D)− S(G − {Xi → Xj},D).
A naı̈ve score-based method would enumerate all the DAGs of d variables and select the one
maximizing S. Unfortunately, the number of DAGs over d nodes is super-exponential in d. Thus, the
brute-force search of the best DAG is intractable, even for moderate d. Inspired by Tsamardinos et al.
(2006); Nandy et al. (2015), we assume in this paper known graph skeletons. Such a skeleton may
arise from expert knowledge or a feature selection algorithm algorithm (Yamada et al., 2014) under
standard assumptions such as causal Markov, faithfulness, and sufficiency. Given a skeleton with k
edges, causal discovery reduces to selecting one out of the O(2k) possible edge orientations.

3 CAUSAL GENERATIVE NEURAL NETWORKS

This section proposes a framework to learn FCMs from data by leveraging the representational power
of generative neural networks. In particular, we propose to estimate FCMs C as Ĉ = (Ĝ, f̂ , Q̂), with

X̂i ← f̂i(X̂Pa(i;Ĝ), Êi), Êi ∼ Q̂, (1)
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for all i = 1, . . . , d. Here, Ĝ is the estimated causal graph ofX , the functions f̂ = (f̂1, . . . , f̂d) are the
estimated causal mechanisms of X producing the estimated observed variables X̂ = (X̂1, . . . , X̂d),
and the estimated noise variables Ê = (Ê1, . . . , Êd) are sampled from a fixed distribution Q̂. Given
the estimated FCM (1), we can draw n samples from its observational distribution P̂ (see Section 2)
and construct the estimated observational samples D̂ = {x̂i}ni=1.

We parametrize the equations (1) as generative neural networks, also known as conditional generators
(Goodfellow et al., 2014). Without loss of generality, we assume that the independent noise variables
Ê are sampled from an univariate Normal distribution (Stegle et al., 2010). Then, we propose the
following score-function to measure the fit between a candidate structure Ĝ and data D:

S(Ĝ,D) = −M̂MDk(D, D̂)− λ|Ĝ|. (2)

where MMD is the Maximum Mean Discrepancy statistic (Gretton et al., 2007):

M̂MDk(D, D̂) =
∥∥∥µk(D)− µk(D̂)∥∥∥

Hk

=
1

n2

n∑
i,j

k(xi, xj) +
1

n2

n∑
i,j

k(x̂i, x̂j)−
2

n2

n∑
i,j

k(xi, x̂j).

The MMD statistic scores a graph Ĝ by measuring the discrepancy between the data observational
distribution P and the estimated observational distribution P̂ , on the basis of their samples. When
using a characteristic kernel k such as the Gaussian kernel k(x, x′) = exp(−γ‖x− x′‖22), MMD is
an well-defined score-function: it is zero if and only if P = P̂ as n→∞ (Gretton et al., 2007). Since
the computation of M̂MDk takes O(n2) time, our experiments will also consider an approximation
based on m random features (Lopez-Paz, 2016), denoted by M̂MD

m

k . Appendix A offers a brief
exposition on MMD. In a nutshell, CGNN implements Occam’s razor to prefer simpler models as
causal. Unlike previous methods, CGNN can seamlessly leverage both distributional asymmetries
(due to the representational power of generative networks) and conditional independences (due to the
joint minimization of those networks using MMD) to score both bivariate and multivariate graphs.

For a differentiable kernel k such as the Gaussian kernel, the score function (2) is differentiable and
therefore CGNN is trainable using backpropagation. CGNN is a directed acyclic graph of conditional
generator networks that result in a flexible generative model of the data causal structure.

Searching causal graphs with CGNN Using the CGNN score (2), we propose the following
greedy approach to orient a given skeleton:

1. Orient each Xi −Xj as Xi → Xj or Xj → Xi by selecting the 2-variable CGNN with the
best score.

2. Remove all cycles: all paths starting from a random set of nodes are followed iteratively
until all nodes are reached; an edge pointing towards an already visited node forms a cycle,
so is reversed.

3. For a number of iterations, reverse the edge that leads to the maximum improvement over a
d-variable CGNN, without creating a cycle .

Dealing with hidden confounders The search method above assumes the causal sufficiency as-
sumptions: or, the non-existence of hidden confounders. We address this issue in a variant of our
algorithm as follows. When assuming the existence of confounders, each edge Xi − Xj in the
skeleton is due to one out of three possibilities: either Xi → Xj , Xj ← Xi, or there exists an
unobserved variable Ei,j such that Xi ← Ei,j → Xj . Therefore, each equation in the FCM is
extended to: Xi ← fi(XPa(i;G), Ei,Ne(i;S), Ei), where Ne(i;S) ⊂ {1, . . . d} is the set of indices
of the variables adjacent to Xi in the skeleton. Here each Ei,j ∼ Q and denotes the hypothetical
unobserved common causes of Xi and Xj . For instance, if we hide X1 from the FCM described
in Figure 1, this would require considering a confounder E2,3. Finally, when considering hidden
confounders, the third step above considers three possible mutations of the graph: reverse, add, or
remove an edge. Here, the term λ|Ĝ| takes an active role and promotes simple graphs.
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original data, X → Y nh = 2 nh = 5 nh = 20

C
G

N
N

s
X
→

Y

nh = 100

C
G

N
N

s
X
←

Y

(a) Samples.

nh M̂MDX→Y M̂MDY→X Diff.

2 32.0 43.9 11.9
5 29.6 35.2 5.6
10 25.9 32.5 6.6
20 25.7 28.3 2.6
30 24.4 26.8 2.4
40 25.6 25.6 0.7
50 25.0 25.0 0.6
100 24.9 24.4 −0.5

(b) Losses.

Figure 2: Samples and MMDs for CGNN models of different complexities (number of neurons)
modeling the causal direction X → Y (top row) and the anticausal direction X ← Y (bottom row)
of a simple example. MMDs are averaged over 32 runs, underlined numbers indicate statistical
significance at α = 10−3.

4 EXPERIMENTS

We evaluate the performance of CGNN at discovering different types of causal structures. We study
the problems of discovering cause-effect relations (Section 4.1), v-structures (Section 4.2), and
multivariate causal structures without (Section 4.3) or with (Section 4.4) hidden variables.

Our experiments run at an Intel Xeon 2.7GHz CPU, and an NVIDIA 1080Ti GPU. MMD uses a
sum of Gaussian kernels with bandwidths γ ∈ {0.005, 0.05, 0.25, 0.5, 1, 5, 50}. CGNN uses one-
hidden-layer neural networks with nh ReLU units, trained with the Adam optimizer (Kingma &
Ba, 2014) and initial learning rate 0.01. According to preliminary experiments, using all data for
both training and evaluating models produces good results, since resampling noise variables conbats
overfitting. Also, our best results follow when using the whole data as a minibatch. We train CGNN
during ntrain = 1000 epochs and evaluate it on neval = 500 generated samples. We ensemble CGNN
training over nrun = 32 random initializations for M̂MDk and nrun = 64 for M̂MD

m

k .

Regarding CGNN model selection, the number of hidden units nh is the most sensitive hyper-
parameter, and should be cross-validated for every application. The number of hidden units nh relates
to the flexibility of the CGNN to model each of the causal mechanisms. For small nh, we may
miss some of the patterns in the data. For a large nh, we may find over-complicated explanations
from effects to causes. Therefore, our interest is to find the smallest nh explaining the data well.
We illustrate such Occam’s razor principle in Figure 2, where we learn two bivariate CGNNs of
different complexity (nh = 2, 5, 20, 100) using data from the FCM: X ∼ Uniform[−2, 2], Y ←
X + Uniform[0, 0.5]. Figure 2 shows the associated MMDs (averaged on 32 runs), confirming
the importance of capacity control (Zhang & Hyvärinen, 2009). On this illustrative case the most
discriminative value appears for nh = 2.

4.1 DISCOVERING CAUSE-EFFECT RELATIONS

Under the causal sufficiency assumption, the statistical dependence between two random variables X
and Y is due to a causal relation X → Y or due to a causal relation X ← Y (Pearl, 2003). Given
data from the observational distribution P (X,Y ), this section evaluates the performance of CGNN
to decide whether X → Y or X ← Y .

In the following, we use five cause-effect inference datasets, covering a wide range of associations.
CE-Cha contains 300 cause-effect pairs from the challenge of Guyon (2013). CE-Net contains 300
artificial cause-effect pairs generated using random distributions as causes, and neural networks as
causal mechanisms. CE-Gauss contains 300 artificial cause-effect pairs as generated by Mooij et al.
(2016), using random mixtures of Gaussians as causes, and Gaussian process priors as causal mecha-
nisms. CE-Multi contains 300 artificial cause-effect pairs built with random linear and polynomial
causal mechanisms. In this dataset, we simulate additive or multiplicative noise, applied before
or after the causal mechanism. CE-Tueb contains the 99 real-world scalar cause-effect pairs from
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the Tübingen dataset (Mooij et al., 2016), concerning domains such as climatology, finance, and
medicine. We set n ≤ 1, 500. See our implementation for details.

CGNN is compared to following algorithms: The Additive Noise Model, or ANM (Mooij et al.,
2016), with Gaussian process regression and HSIC independence test. The Linear Non-Gaussian
Additive Model, or LiNGAM (Shimizu et al., 2006), a variation of Independent Component Analysis
to identify linear causal relations. The Information Geometric Causal Inference, or IGCI (Daniusis
et al., 2012), with entropy estimator and Gaussian reference measure. The Post-Non-Linear model,
or PNL (Zhang & Hyvärinen, 2009), with HSIC test. The GPI method (Stegle et al., 2010), where
the Gaussian process regression with higher marginal likelihood is preferred as the causal direction.
The Conditional Distribution Similarity statistic, or CDS (Fonollosa, 2016), which prefers the causal
direction with lowest variance of conditional distribution variances. The award-winning method
Jarfo (Fonollosa, 2016), a random forest classifier trained on the ChaLearn Cause-effect pairs and
hand-crafted to extract 150 features, including the methods ANM, IGCI, CDS, and LiNGAM.

The code for ANM, IGCI, PNL, GPI, and LiNGAM is available at https://github.com/
ssamot/causality. We follow a leave-one-dataset-out scheme to select the best hyperpa-
rameters for each method. For CGNN, we search for the number of hidden neurons nh ∈
{5, 10, 15, 20, 25, 30, 35, 40, 50, 100}. The leave-one-dataset-out hyperparameter selection chooses
nh equal to 35, 35, 40, 30, 40 for the CE-Cha, CE-Net, CE-Gauss, CE-Multi and CE-Tueb datasets
respectively. For ANM, we search the Gaussian kernel bandwidth γ used in the Gaussian pro-
cess regression in {0.01, 0.1, 0.2, 0.5, 0.8, 1, 1.2, 1.5, 2, 5, 10}. For LiNGAM and IGCI, there are
no parameters to set. For PNL, we search for the significance level of the independence test
α ∈ {0.0005, 0.005, 0.01, 0.025, 0.04, 0.05, 0.06, 0.075, 0.1, 0.25, 0.5}. For GPI, we use the default
parameters from the original implementation. For CDS, we search for the best discretization of the
cause variable into {1, . . . , 10} levels. For Jarfo, we train the random forest using 4, 000 cause-effect
pairs generated in the same way as the proposed datasets, except the one used for testing.

Table 1 reports the Area Under the Precission/Recall Curve (AUPRC) associated to the binary
classification problem of deciding “X → Y ” or “X ← Y ” for each cause-effect pair, for all methods
and datasets. The table also shows the computational time (in both CPU and GPU), and computational
complexity for methods. The least performing methods are those based on linear regression. The
methods CDS and IGCI perform well on a few datasets. This indicates the existence of certain biases
(such as causes having always higher entropy than effects) on such datasets. ANM performs well
when the additive noise assumption holds (for instance, CE-Gauss), but badly otherwise. PNL, a
generalization of ANM, compares favorably to these methods. Jarfo, the method using thousands
of training cause-effect pairs to learn from data, performs well on artificial data but badly on real
examples. The generative methods GPI and CGNN show a good performance on most datasets,
including the real-world cause-effect pairs CE-Tueb. In terms of computation, generative methods
are the most expensive alternatives. Fortunately for CGNN, the approximation of MMD with random
features (see Appendix A) does not degrade performance, but reduces the computation time. Overall,
these results suggest that CGNN is competitive compared to the state-of-the-art on the cause-effect
inference problem, where it is necessary to discover distributional asymmetries.

4.2 DISCOVERING V-STRUCTURES

This section studies the performance of CGNN on the task of identifying the causal structure of
three random variables (A,B,C) with skeleton A − B − C. The four possible structures are the
chain A→ B → C, the reverse chain A← B ← C, the v-structure A→ B ← C, and the reverse
v-structure A← B → C. Other skeletons are not of interest, since the absence of an edge (statistical
independence) is easier to discover, and the remaining edge could be oriented using the bivariate
methods described in the previous section. Three of the possible structures (the chain, the reverse
chain, and the reverse v-structure) are Markov equivalent, and therefore indistinguishable from each
other using statistics alone. Therefore, the goal of this section is to use CGNN to determine whether
P (A,B,C) follows or not an FCM with causal graph: A→ B ← C.

This section considers an FCM with identity causal mechanisms and Normal noise variables; for
instance, B ← A+ EB , where EB ∼ N (0, 1). Therefore, the joint distribution of one cause and its
effect is symmetrical (a two-dimensional Gaussian), and the bivariate methods used in the previous
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Table 1: AUPRC for the cause-effect experiments. For the dataset Tueb, the weighted accuracy
(Mooij et al., 2016, c.f.) is shown in parenthesis.

method Cha Net Gauss Multi Tueb time complexity

Best fit 56.4 77.6 36.3 55.4 58.4 (44.9) < 1s CPU O(N3)
LiNGAM 54.3 43.7 66.5 59.3 39.7 (44.3) < 1s CPU O(N)
CDS 55.4 89.5 84.3 37.2 59.8 (65.5) < 1s CPU O(N)
IGCI 54.4 54.7 33.2 80.7 60.7 (62.6) < 1s CPU O(N)
ANM 66.3 85.1 88.9 35.5 53.7 (59.5) < 1s CPU O(N3)
PNL 73.1 75.5 83.0 49.0 68.1 (66.2) 23 min CPU O(N2)
Jarfo 79.5 92.7 85.3 94.6 54.5 (59.5) < 1s CPU O(N3)
GPI 67.4 88.4 89.1 65.8 66.4 (62.6) 32min CPU O(N3)

CGNN (M̂MDk) 73.6 89.6 82.9 96.6 79.8 (74.4) 24 min GPU O(N2)

CGNN (M̂MD
m

k ) 76.5 87.0 88.3 94.2 76.9 (72.7) 5 min GPU O(N)

Table 2: CGNN MMDs of all estimated structure (rows), versus true structures (columns). The score
of the v-structure (bold) discriminates this configuration from the chain structure and the reverse
v-structure.

chain reverse v-structure v-structure

score for chain 0.122 (0.009) 0.124 (0.007) 0.172 (0.005)
score for reverse chain 0.121 (0.006) 0.127 (0.008) 0.171 (0.004)
score for reverse v-structure 0.122 (0.007) 0.125 (0.006) 0.172 (0.004)
score for v-structure 0.202 (0.004) 0.180 (0.005) 0.127 (0.005)

section all fail to apply. To succeed at this task, a causal discovery method must reason about the
conditional independences between the three random variables at play.

Our protocol fits one CGNN for each of the four possible causal graphs with skeleton A−B − C.
Then, we evaluate MMD of each of the four CGNN models, and prefer the one achieving the lowest
MMD. Table 2 summarizes our results: CGNN assigns the lowest MMD to the v-structure hypothesis
on those datasets generated by v-structures, and assigns the largest MMD to the v-structure hypothesis
on those datasets not generated by v-structures. Sections 4.1 and 4.2 show the two complementary
properties of the CGNN: leveraging distributional asymmetries and conditional independences.

4.3 DISCOVERING MULTIVARIATE CAUSAL STRUCTURES WITHOUT HIDDEN CONFOUNDERS

Consider a random vector X = (X1, ..., Xd). Our goal is to find the FCM of X under the causal
Markov, faithfulness and causal sufficiency assumptions. At this point, we will assume known
skeleton, so the problem reduces to orienting every edge. To that end, all experiments provide all
algorithms the true graph skeleton, so their ability to orient edges is compared in a fair way. This
allows us to separate the task of orienting the graph from that of uncovering the skeleton. We draw
500 samples from four artificial causal graphs G2, G3, G4, and G5 on 20 variables. For i = {2, . . . , 5},
the variables in the graph Gi have a random number of parents between 1 and i. We build the graphs
with polynomial mechanisms, and additive/multiplicative noise.

We compare CGNN to the PC algorithm (Spirtes et al., 2000), the score-based method GES (Chicker-
ing, 2002), ANM, LiNGAM, and Jarfo. For PC, we employ the better-performing, order-independent
version of the PC algorithm proposed by Colombo & Maathuis (2014). PC needs the specification of
a conditional independence test. We compare PC-Gaussian, which employs a Gaussian conditional
independence test on Fisher z-transformations, and PC-HSIC, which uses the HSIC conditional
independence test with the Gamma approximation (Gretton et al., 2005). For both conditional inde-
pendence tests, the significance level achieving best results is α = 0.1. For GES, the best penalization
parameter is λ = 3.11. PC and GES are implemented in the pcalg package (Kalisch et al., 2012). For
CGNN, nh is set to 20. We also compare to pairwise methods presented in the last section : ANM,
LiNGAM, and Jarfo.
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Table 3: AUPRC on multivariate causal discovery for all methods and graphs.

method G2 G3 G4 G5 time

PC-Gaussian 82.3 ±4 80.0 ±7 88.1 ±10 92.5±4 1 to 10s CPU
PC-HSIC 93.4 ±3 93.0 ±4 98.9 ±2 96.7 ±2 2 to 15h CPU
GES 75.3 ±7 73.6 ±7 69.3±11 75.6 ±5 1 to 2s CPU
LiNGAM 64.4 ±4 71.1 ±1 71.6 ±7 72.1 ±1 1 to 2s CPU
ANM 72.9 ±9 72.5 ±4 79.9 ±5 71.8 ±2 5 to 20s CPU
Jarfo 69.9 ±9 87.3 ±3 88.5 ±5 70.2 ±7 10 to 30s CPU

CGNN (M̂MD
m

k ) 94.5 ±2 84.9 ±9 88.4 ±4 87.0 ±6 3 to 4 h GPU
CGNN (M̂MDk) 95.7 ±1 96.5 ±3 97.2 ±3 88.2 ±6 4 to 5 h GPU

Table 4: AUPRC for experiments on causal discovery with confounders.

method G2 G3 G4 G5 time

RFCI-Gaussian 53.4 ±11 49.0 ±10 51.1 ±13 63.6 ±11 10 to 30s CPU
RFCI-HSIC 76.2 ±11 65.2 ±7 73.1 ±6 72.9 ±6 3 to 18h CPU
Jarfo 64.1 ±11 62.1 ±7 72.2 ±7 64.9 ±4 10 to 30s CPU

CGNN ( ˆMMDk) 79.8 ±12 76.1 ±11 84.4 ±7 70.9 ±4 4 to 7 h GPU

Table 3 displays the performance of all algorithms measured from the area under the precision/recall
curve. Overall, the best performing method is PC-HSIC, followed closely by CGNN. The performance
of PC-HSIC is best for denser graphs. This is because the PC algorithm uses a majority voting rule to
decide each orientation, one strategy well suited to dense known skeletons, since one edge belongs to
multiple v-structures. However, CGNN offers the advantage to orient all the edges (while some edges
remain undirected by PC-HSIC) and to deliver a full generative model useful for simulation (while
PC-HSIC only gives the graph). To explore the scalability of our method, we were able to extend
the experiment on 5 graphs G3 with 100 variables, achieving an AUPRC of 85.5± 4, in 30 hours of
computation on four NVIDIA 1080Ti GPUs.

4.4 DISCOVERING MULTIVARIATE CAUSAL STRUCTURES WITH HIDDEN CONFOUNDERS

In real applications, some confounding variables may be unobserved. We propose to use the same data
from the previous section, but hide some of the 20 observed variables in the graph. More specifically,
we hide three random variables that cause at least two others in the same graph. Consequently, the
skeleton now includes additional edges X −Y for all pairs of variables (X,Y ) that are consequences
of the same hidden cause (confounder). The goal in this section is to orient the edges due to direct
causal relations, and to remove those edges due to confounding.

We compare CGNN to the RFCI algorithm (Colombo et al., 2012), which is a modification of the PC
algorithm that accounts for hidden variables. As done in the previous section, we compare variants
of RFCI based on Gaussian or HSIC (Zhang et al., 2012) conditional independence tests. We also
evaluate the performance of the data-driven method Jarfo, this time trained on the whole Kaggle
data of (Guyon, 2013; 2014), in order to classify relations into X → Y , X ← Y , or X ← Z → Y
(confounder). For CGNN, we penalize the objective function (2) with λ = 5× 10−5.

Table 4 shows that CGNN is robust to the existence of hidden confounders, achieving state-of-the-art
performance in this task. Interestingly, the true causal relations exhibit a high confidence score,
while edges due to confounding effects are removed or have low confidence scores. Overall, CGNN
performs best on the graphs G2,G3, and G4, and is slightly outperformed by RFCI-HSIC on the denser
graph G5. However, CGNN is the only approach providing a generative model of the data.
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5 CONCLUSION

We introduced a new framework to learn functional causal models based on generative neural
networks. We train these networks by minimizing the discrepancy between their generated samples
and the observed data. Such models are instances of the bigger family of FCMs for which each
function is a shallow neural network with nh hidden units.

We believe that our approach opens new avenues of research, both from the point of view of leveraging
the power of deep learning in causal discovery and from the point of view of building deep networks
with better structure interpretability. Once the model is learned, the CGNNs present the advantage
to be fully parametrized and may be used to simulate interventions on one or more variables of the
model and evaluate their impact on a set of target variables. This usage is relevant in a wide variety
of domains, typically among medical and sociological domains.

Five directions for future work are to i) lower the computational cost of CGNN, ii) extend CGNN to
deal with categorical data, iii) explore better heuristics for causal graph search, iv) adapt our methods
for temporal data and v) obtain theoretical guarantees for basic use cases.
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A THE MAXIMUM MEAN DISCREPANCY (MMD) STATISTIC

The Maximum Mean Discrepancy (MMD) statistic (Gretton et al., 2007) measures the distance
between two probability distributions P and P̂ , defined over Rd, as the real-valued quantity

MMDk(P, P̂ ) =
∥∥∥µk(P )− µk(P̂ )∥∥∥

Hk

.

Here, µk =
∫
k(x, ·)dP (x) is the kernel mean embedding of the distribution P , according to the

real-valued symmetric kernel function k(x, x′) = 〈k(x, ·), k(x′, ·)〉Hk
with associated reproducing

kernel Hilbert spaceHk. Therefore, µk summarizes P as the expected value of the features computed
by k over samples drawn from P .

In practical applications, we do not have access to the distributions P and P̂ , but to their respective sets
of samples D and D̂, defined in Section 3. In this case, we approximate the kernel mean embedding
µk(P ) by the empirical kernel mean embedding µk(D) = 1

|D|
∑
x∈D k(x, ·), and respectively for P̂ .

Then, the empirical MMD statistic is

M̂MDk(D, D̂) =
∥∥∥µk(D)− µk(D̂)∥∥∥

Hk

=
1

n2

n∑
i,j

k(xi, xj) +
1

n2

n∑
i,j

k(x̂i, x̂j)−
2

n2

n∑
i,j

k(xi, x̂j).

Importantly, the empirical MMD tends to zero as n → ∞ if and only if P = P̂ , as long as k is
a characteristic kernel (Gretton et al., 2007). This property makes the MMD an excellent choice
to model how close the observational distribution P is to the estimated observational distribution
P̂ . Throughout this paper, we will employ a particular characteristic kernel: the Gaussian kernel
k(x, x′) = exp(−γ‖x− x′‖22), where γ > 0 is a hyperparameter controlling the smoothness of the
features.

In terms of computation, the evaluation of MMDk(D, D̂) takes O(n2) time, which is prohibitive for
large n. When using a shift-invariant kernel, such as the Gaussian kernel, one can invoke Bochner’s
theorem (Rudin, 1962) to obtain a linear-time approximation to the empirical MMD (Lopez-Paz et al.,
2015), with form

M̂MD
m

k (D, D̂) =
∥∥∥µ̂k(D)− µ̂k(D̂)∥∥∥

Rm

and O(mn) evaluation time. Here, the approximate empirical kernel mean embedding has form

µ̂k(D) =
√

2

m

1

|D|
∑
x∈D

[cos(〈w1, x〉+ b1), . . . , cos(〈wm, x〉+ bm)] ,

where wi is drawn from the normalized Fourier transform of k, and bi ∼ U [0, 2π], for i = 1, . . . ,m.
In our experiments, we compare the performance and computation times of both M̂MDk and M̂MD

m

k .

B A BRIEF SURVEY OF RELATED WORK

The literature about learning FCMs from data is vast. We recommend the books (Spirtes et al., 2000;
Pearl, 2003; Peters et al., 2017) and surveys (Kalisch & Bühlmann, 2014; Heinze-Deml et al., 2017;
Drton & Maathuis, 2017). FCM learning methods can be classified into bivariate and multivariate
algorithms.

On the one, pairwise algorithms aim at orienting the cause-effect relation between two random
variables (X,Y ) by searching for asymmetries in the distribution P (X,Y ). The Additive Noise
Model, or ANM (Hoyer et al., 2009), assumes an FCM with form Y ← f(X) + E, where the cause
X is statistically independent from the noise E. Following these assumptions, the ANM performs
one nonlinear regression in each direction, and prefers the one that produces residuals statistically
independent from the alleged cause. The Post Non-Linear (PNL) model (Zhang & Hyvärinen, 2009)
extends the ANM by allowing FCMs with form Y ← g(f(X) +E), where g is a monotone function.
The IGCI method (Daniusis et al., 2012) prefers the causal direction producing a cause distribution
independent from the derivative of the causal mechanism. The LiNGAM method (Shimizu et al.,
2006) leverages independent component analysis to orient linear cause-effect relations. The CURE
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method (Sgouritsa et al., 2015) assumes that the distribution of the cause is independent from the
causal mechanism, and prefers the causal direction that maximizes such independence. The GPI
method (Stegle et al., 2010) fits a Bayesian model in both directions, and prefers as causal the one
producing the largest marginal likelihood. The most similar work to this article is the one of Lopez-
Paz & Oquab (2017), where a conditional generative adversarial network is trained to model a single
equation from a FCM. Another set of methods, which include RCC (Lopez-Paz et al., 2015), NCC
(Lopez-Paz et al., 2017), and Jarfo (Fonollosa, 2016) treat the cause-effect inference problem as a
binary classification task. To this end, these methods need samples of causally-related variables, such
as the ones pioneered by the competitions of Guyon (2013; 2014). However, these learning-based
methods perform poorly when applied to cause-effect variables that differ from the training set.
Statnikov et al. (2012); Mooij et al. (2016) reviews pairwise methods.

On the other hand, multivariate algorithms can be classified in to constraint-based, score, hybrid, and
pairwise methods. First, constraint-based methods, such as the PC algorithm (Spirtes et al., 1999;
Colombo et al., 2012) exploit conditional independences in data to construct an skeleton, and then
orient v-structures. The constraint-based FCI algorithm (Spirtes et al., 2000) is an extension of the
PC algorithm able to deal with hidden variables. All constraint-based methods perform conditional
independence tests, which are usually implemented in terms of kernel methods (Zhang et al., 2012)
and require an exponential amount of data in the number of conditioning variables to be reliable.
Second, score methods search the space of causal graphs by minimizing a score function in a greedy
way (for instance, by adding, removing, or reversing edges). Some examples of score methods are
the GES (Chickering, 2002) and the Fast GES (Ramsey, 2015) algorithms. Third, hybrid methods
(Drton & Maathuis, 2017; Nandy et al., 2015) combine constraint-based and score methods. Some
examples include the MMHC (Tsamardinos et al., 2006) and GFCI (Ogarrio et al., 2016) algorithms.
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