
Published as a conference paper at ICLR 2018

ACTIVE NEURAL LOCALIZATION

Devendra Singh Chaplot, Emilio Parisotto, Ruslan Salakhutdinov
Machine Learning Department
School of Computer Science
Carnegie Mellon University
{chaplot,eparisot,rsalakhu}@cs.cmu.edu

ABSTRACT

Localization is the problem of estimating the location of an autonomous agent from
an observation and a map of the environment. Traditional methods of localization,
which filter the belief based on the observations, are sub-optimal in the number of
steps required, as they do not decide the actions taken by the agent. We propose
“Active Neural Localizer”, a fully differentiable neural network that learns to
localize accurately and efficiently. The proposed model incorporates ideas of
traditional filtering-based localization methods, by using a structured belief of
the state with multiplicative interactions to propagate belief, and combines it
with a policy model to localize accurately while minimizing the number of steps
required for localization. Active Neural Localizer is trained end-to-end with
reinforcement learning. We use a variety of simulation environments for our
experiments which include random 2D mazes, random mazes in the Doom game
engine and a photo-realistic environment in the Unreal game engine. The results
on the 2D environments show the effectiveness of the learned policy in an idealistic
setting while results on the 3D environments demonstrate the model’s capability
of learning the policy and perceptual model jointly from raw-pixel based RGB
observations. We also show that a model trained on random textures in the Doom
environment generalizes well to a photo-realistic office space environment in the
Unreal engine.

1 INTRODUCTION

Localization is the problem of estimating the position of an autonomous agent given a map of
the environment and agent observations. The ability to localize under uncertainity is required by
autonomous agents to perform various downstream tasks such as planning, exploration and target-
navigation. Localization is considered as one of the most fundamental problems in mobile robotics
(Cox & Wilfong, 1990; Borenstein et al., 1996). Localization is useful in many real-world applications
such as autonomous vehicles, factory robots and delivery drones.

In this paper we tackle the global localization problem where the initial position of the agent is
unknown. Despite the long history of research, global localization is still an open problem, and
there are not many methods developed which can be learnt from data in an end-to-end manner,
instead typically requiring significant hand-tuning and feature selection by domain experts. Another
limitation of majority of localization approaches till date is that they are passive, meaning that they
passively estimate the position of the agent from the stream of incoming observations, and do not
have the ability to decide the actions taken by the agent. The ability to decide the actions can result in
faster as well as more accurate localization as the agent can learn to navigate quickly to unambiguous
locations in the environment.

We propose “Active Neural Localizer”, a neural network model capable of active localization using
raw pixel-based observations and a map of the environment12. Based on the Bayesian filtering
algorithm for localization (Fox et al., 2003), the proposed model contains a perceptual model to
estimate the likelihood of the agent’s observations, a structured component for representing the belief,
multiplicative interactions to propagate the belief based on observations and a policy model over the
current belief to localize accurately while minimizing the number of steps required for localization.
The entire model is fully differentiable and trained using reinforcement learning, allowing the
perceptual model and the policy model to be learnt simultaneously in an end-to-end fashion. A variety

1 Demo videos: https://devendrachaplot.github.io/projects/Neural-Localization
2 The code is available at https://github.com/devendrachaplot/Neural-Localization

1

https://devendrachaplot.github.io/projects/Neural-Localization
https://github.com/devendrachaplot/Neural-Localization

Published as a conference paper at ICLR 2018

of 2D and 3D simulation environments are used for testing the proposed model. We show that the
Active Neural Localizer is capable of generalizing to not only unseen maps in the same domain but
also across domains.

2 RELATED WORK

Localization has been an active field of research since more than two decades. In the context of mobile
autonomous agents, Localization can be refer to two broad classes of problems: Local localization
and Global localization. Local localization methods assume that the initial position of the agent is
known and they aim to track the position as it moves. A large number of localization methods tackle
only the problem of local localization. These include classical methods based on Kalman Filters
(Kalman et al., 1960; Smith et al., 1990) geometry-based visual odometry methods (Nistér et al., 2006)
and most recently, learning-based visual odometry methods which learn to predict motion between
consecutive frames using recurrent convolutional neural networks (Clark et al., 2017b; Wang et al.,
2017). Local localization techniques often make restrictive assumptions about the agent’s location.
Kalman filters assume Gaussian distributed initial uncertainty, while the visual odometry-based
methods only predict the relative motion between consecutive frames or with respect to the initial
frame using camera images. Consequently, they are unable to tackle the global localization problem
where the initial position of the agent is unknown. This also results in their inability to handle
localization failures, which consequently leads to the requirement of constant human monitoring and
interventation (Burgard et al., 1998).

Global localization is more challenging than the local localization problem and is also considered as
the basic precondition for truly autonomous agents by Burgard et al. (1998). Among the methods for
global localization, the proposed method is closest to Markov Localization (Fox, 1998). In contrast
to local localization approaches, Markov Localization computes a probability distribution over all
the possible locations in the environment. The probability distribution also known as the belief is
represented using piecewise constant functions (or histograms) over the state space and propagated
using the Markov assumption. Other methods for global localization include Multi-hypothesis
Kalman filters (Cox & Leonard, 1994; Roumeliotis & Bekey, 2000) which use a mixture of Gaussians
to represent the belief and Monte Carlo Localization (Thrun et al., 2001) which use a set of samples
(or particles) to represent the belief.

All the above localization methods are passive, meaning that they aren’t capable of deciding the
actions to localize more accurately and efficiently. There has been very little research on active
localization approaches. Active Markov Localization (Fox et al., 1998) is the active variant of Markov
Localization where the agent chooses actions greedily to maximize the reduction in the entropy of
the belief. Jensfelt & Kristensen (2001) presented the active variant of Multi-hypothesis Kalman
filters where actions are chosen to optimise the information gathering for localization. Both of
these methods do not learn from data and have very high computational complexity. In contrast,
we demonstrate that the proposed method is several order of magnitudes faster while being more
accurate and is capable of learning from data and generalizing well to unseen environments.

Recent work has also made progress towards end-to-end localization using deep learning models.
Mirowski et al. (2016) showed that a stacked LSTM can do reasonably well at self-localization. The
model consisted of a deep convolutional network which took in at each time step state observations,
reward, agent velocity and previous actions. To improve performance, the model also used several
auxiliary objectives such as depth prediction and loop closure detection. The agent was successful at
navigation tasks within complex 3D mazes. Additionally, the hidden states learned by the models
were shown to be quite accurate at predicting agent position, even though the LSTM was not explicitly
trained to do so. Other works have looked at doing end-to-end relocalization more explicitly. One
such method, called PoseNet (Kendall et al., 2015), used a deep convolutional network to implicitly
represent the scene, mapping a single monocular image to a 3D pose (position and orientation). This
method is limited by the fact that it requires a new PoseNet trained on each scene since the map
is represented implicitly by the convnet weights, and is unable to transfer to scenes not observed
during training. An extension to PoseNet, called VidLoc (Clark et al., 2017a), utilized temporal
information to make more accurate estimates of the poses by passing a Bidirectional LSTM over
each monocular image in a sequence, enabling a trainable smoothing filter over the pose estimates.
Both these methods lack a straightforward method to utilize past map data to do localization in a new
environment. In contrast, we demonstrate our method is capable of generalizing to new maps that
were not previously seen during training time.

2

Published as a conference paper at ICLR 2018

3 BACKGROUND: BAYESIAN FILTERING

Bayesian filters (Fox et al., 2003) are used to probabilistically estimate a dynamic system’s state using
observations from the environment and actions taken by the agent. Let yt be the random variable
representing the state at time t. Let st be the observation received by the agent and at be the action
taken by the agent at time step t. At any point in time, the probability distribution over yt conditioned
over past observations s1:t−1 and actions a1:t−1 is called the belief, Bel(yt) = p(yt|s1:t−1, a1:t−1)
The goal of Bayesian filtering is to estimate the belief sequentially. For the task of localization, yt
represents the location of the agent, although in general it can represent the state of the any object(s)
in the environment. Under the Markov assumption, the belief can be recursively computed using the
following equations:

Bel(yt) =
∑
yt−1

p(yt|yt−1, at−1)Bel(yt−1), Bel(yt) =
1

Z
Lik(st)Bel(yt),

where Lik(st) = p(st|yt) is the likelihood of observing st given the location of the agent is yt, and
Z = ΣytLik(st)Bel(yt) is the normalization constant. The likelihood of the observation, Lik(st) is
given by the perceptual model and p(yt|yt−1, at−1), i.e. the probability of landing in a state yt from
yt−1 based on the action, at−1, taken by the agent is specified by a state transition function, ft. The
belief at time t = 0, Bel(y0), also known as the prior, can be specified based on prior knowledge
about the location of the agent. For global localization, prior belief is typically uniform over all
possible locations of the agent as the agent position is completely unknown.

4 METHODS

4.1 PROBLEM FORMULATION

Let st be the observation received by the agent and at be the action taken by the agent at time step t.
Let yt be a random variable denoting the state of the agent, that includes its x-coordinate, y-coordinate
and orientation. In addition to agent’s past observations and actions, a localization algorithm requires
some information about the map, such as the map design. Let the information about the map be
denoted by M . In the problem of active localization, we have two goals: (1) Similar to the standard
state estimation problem in the Bayesian filter framework, the goal is to estimate the belief, Bel(yt),
or the probability distribution of yt conditioned over past observations and actions and the information
about the map, Bel(yt) = p(yt|s1:t, a1:t−1,M), (2) We also aim to learn a policy π(at|Bel(yt)) for
localizing accurately and efficiently.

4.2 PROPOSED MODEL

Representation of Belief and Likelihood Let yt be a tuple Ao, Ax, Ay where Ax,Ay and Ao
denote agent’s x-coordinate, y-coordinate and orientation respectively. Let M × N be the map
size, and O be the number of possible orientations of the agent. Then, Ax ∈ [1,M], Ay ∈ [1, N]
and Ao ∈ [1, O]. Belief is represented as an O ×M ×N tensor, where (i, j, k)th element denotes
the belief of agent being in the corresponding state, Bel(yt = i, j, k). This kind of grid-based
representation of belief is popular among localization methods as if offers several advantages over
topological representations (Burgard et al., 1996; Fox et al., 2003). Let Lik(st) = p(st|yt) be the
likelihood of observing st given the location of the agent is yt, The likelihood of an observation in
a certain state is also represented by an O ×M ×N tensor, where (i, j, k)th element denotes the
likelihood of the current observation, st given that the agent’s state is yt = i, j, k. We refer to these
tensors as Belief Map and Likelihood Map in the rest of the paper.

Model Architecture The overall architecture of the proposed model, Active Neural Localizer
(ANL), is shown in Figure 1. It has two main components: the perceptual model and the policy
model. At each timestep t, the perceptual model takes in the agent’s observation, st and outputs
the Likelihood Map Lik(st). The belief is propagated through time by taking an element-wise dot
product with the Likelihood Map at each timestep. Let Bel(yt) be the Belief Map at time t before
observing st. Then the belief, after observing st, denoted by Bel(yt), is calculated as follows:

Bel(yt) =
1

Z
Bel(yt)� Lik(st)

where � denotes the Hadamard product, Z =
∑
yt
Lik(st)Bel(yt) is the normalization constant.

3

Published as a conference paper at ICLR 2018

Figure 1: The architecture of the proposed model. The perceptual model computes the likelihood of the
current observation in all possible locations. The belief of agent’s location is propagated through time by taking
element-wise dot-product with the likelihood. The policy model learns a policy to localize accurately while
minimizing the number of steps required for localization. See text for more details.

The Belief Map, after observing st, is passed through the policy model to obtain the probability of
taking any action, π(at|Bel(yt)). The agent takes an action at sampled from this policy. The Belief
Map at time t+ 1 is calculated using the transition function (fT), which updates the belief at each
location according to the action taken by the agent, i.e. p(yt+1|yt, at). The transition function is
similar to the egomotion model used by Gupta et al. (2017) for mapping and planning. For ‘turn
left’ and ‘turn right’ actions, the transition function just swaps the belief in each orientation. For the
the ‘move forward’ action, the belief values are shifted one unit according to the orientation. If the
next unit is an obstacle, then the value doesn’t shift, indicating a collison (See Appendix B for more
details).

4.3 MODEL COMPONENTS

Perceptual Model The perceptual model computes the feature representation from the agent’s
observation and the states given in the map information. The likelihood of each state in the map
information is calculated by taking the cosine similarity of the feature representation of the agent’s
observation with the feature representation of the state. Cosine similarity is commonly used for
computing the similarity of representations (Nair & Hinton, 2010; Huang et al., 2013) and has also
been used in the context on localization (Chaplot et al., 2016). The benefits of using cosine similarity
over dot-product have been highlighted by Chunjie et al. (2017).

In the 2D environments, the observation is used to compute a one-hot vector of the same dimension
representing the depth which is used as the feature representation directly. This resultant Likelihood
map has uniform non-zero probabilities for all locations having the observed depth and zero prob-
abilities everywhere else. For the 3D environments, the feature representation of each observation
is obtained using a trainable deep convolutional network (LeCun et al., 1995) (See Appendix B
for architecture details). Figure 2 shows examples of the agent observation and the corresponding
Likelihood Map computed in both 2D and 3D environments. The simulation environments are
described in detail in Section 5.1.

Policy Model The policy model gives the probablity of the next action given the current belief of the
agent. It is trained using reinforcement learning, specifically Asynchronous Advantage Actor-Critic
(A3C) (Mnih et al., 2016) algorithm (See Appendix A for a brief background on reinforcement
learning). The belief map is stacked with the map design matrix and passed through 2 convolutional
layers followed by a fully-connected layer to predict the policy as well as the value function. The
policy and value losses are computed using the rewards observed by the agent and backpropagated
through the entire model (See Appendix B for architecture details).

4

Published as a conference paper at ICLR 2018

Figure 2: The map design, agent’s observation and the corresponding likelihood maps in different domains. In
2D domains, agent’s observation is the pixels in front of the agent until the first obstacle. In the 3D domain, the
agent’s observation is the image showing the first-person view of the world as seen by the agent.

5 EXPERIMENTS

As described in Section 4, agent’s state, yt is a tuple Ao, Ax, Ay where Ax,Ay and Ao denote agent’s
x-coordinate, y-coordinate and orientation respectively. Ax ∈ [1,M], Ay ∈ [1, N] and Ao ∈ [1, O],
where M ×N is the map size, and O be the number of possible orientations of the agent. We use a
variety of domains for our experiments. The values of M and N vary accross domains but O = 4 is
fixed. The possible actions in all domains are ‘move forward’, ‘turn left’ and ‘turn right’. The turn
angle is fixed at (360/O = 90). This ensures that the agent is always in one of the 4 orientations,
North, South, East and West. Note that although we use, O = 4 in all our experiments, our method is
defined for any value of O. At each time step, the agent receives an intermediate reward equal to the
maximum probability of being in any state, rt = maxyt(Bel(yt)). This encourages the agent the
reduce the entropy of the Belief Map in order to localize as fast as possible. We observed that the
agent converges to similar performance without introducing the intermediate reward, but it helps in
speeding up training. At the end of the episode, the prediction is the state with the highest probability
in the Belief Map. If the prediction is correct, i.e. y∗ = arg maxyt Bel(yt) where y∗ is the true state
of the agent, then the agent receives a positive reward of 1. Please refer to Appendix B for more
details about training and hyper-parameters. The metric for evaluation is accuracy (Acc) which refers
to the ratio of the episodes where the agent’s prediction was correct over 1000 episodes. We also
report the total runtime of the method in seconds taken to evaluate 1000 episodes.

5.1 SIMULATION ENVIRONMENTS

Maze 2D In the Maze2D environment, maps are represented by a binary matrix, where 0 denotes
an obstacle and 1 denotes free space. The map designs are generated randomly using Kruskal’s
algorithm Kruskal (1956). The agent’s observation in 2D environments is the series of pixels in
front of the agent. For a map size of M ×N , the agent’s observation is an array of size max(M,N)
containing pixels values in front of the agent. The view of the agent is obscured by obstacles, so all
pixel values behind the first obstacle are treated as 0. The information about the map, M , received by
the agent is the matrix representing the map design. Note that the observation at any state in the map
can be computed using the map design. The top row in Figure 2 shows examples of map design and
agent’s observation in this environment.

The 2D environments provide ideal conditions for Bayesian filtering due to lack of observation or
motion noise. The experiments in the 2D environments are designed to evaluate and quantify the
effectiveness of the policy learning model in ideal conditions. The size of the 2D environments can
also be varied to test the scalability of the policy model. This design is similar to previous experimental
settings such as by Tamar et al. (2016) and Karkus et al. (2017) for learning a target-driven navigation
policy in grid-based 2D environments.

3D Environments In the 3D environments, the observation is an RGB image of the first-person
view of the world as seen by the agent. The x-y coordinates of the agent are continuous variables,

5

Published as a conference paper at ICLR 2018

Table 1: Results on the 2D Environments. ‘Time’ refers to the number of seconds required to evaluate 1000
episodes with the corresponding method and ‘Acc’ stands for accuracy over 1000 episodes.

Env Maze2D All

Map Size 7x7 15x15 21x21

Episode Length 15 30 20 40 30 60

Markov
Localization

Time 12 15 29 31 49 51 31.2
Acc 0.334 0.529 0.351 0.606 0.414 0.661 0.483

Active Markov
Localization (Fast)

Time 29 53 72 165 159 303 130.2
Acc 0.436 0.619 0.468 0.657 0.512 0.735 0.571

Active Markov
Localization (Slow)

Time 1698 3066 3791 8649 8409 13554 6527.8
Acc 0.854 0.938 0.846 0.984 0.845 0.958 0.904

Active Neural
Localization

Time 22 34 44 66 82 124 62.0
Acc 0.936 0.939 0.905 0.939 0.899 0.984 0.934

unlike the discrete grid-based coordinates in the 2D environments. The matrix denoting the belief
of the agent is discretized meaning each pixel in the Belief map corresponds to a range of states in
the environment. At the start of every epsiode, the agent is spawned at a random location in this
continuous range as opposed to a discrete location corresponding to a pixel in the belief map for 2D
environments. This makes localization much more challenging than the 2D envrionments. Apart
from the map design, the agent also receives a set of images of the visuals seen by the agent at a
few locations uniformly placed around the map in all 4 orientations. These images, called memory
images, are required by the agent for global localization. They are not very expensive to obtain in
real-world environments. We use two types of 3D environments:

Maze3D: Maze3D consists of virtual 3D maps built using the Doom Game Engine. We use the
ViZDoom API (Kempka et al., 2016) to interact with the gane engine. The map designs are generated
using Kruskal’s algorithm and Doom maps are created based on these map designs using Action
Code Scripts3. The design of the map is identical to the Maze2D map designs with the difference
that the paths are much thicker than the walls as shown in Figure 2. The texture of each wall, floor
and ceiling can be controlled which allows us to create maps with different number of ‘landmarks’.
Landmarks are defined to be walls with a unique texture.

Unreal3D: Unreal3D is a photo-realistic simulation environment built using the Unreal Game Engine.
We use the AirSim API (Shah et al., 2017) to interact with the game engine. The environment consists
of a modern office space as shown in Figure 2 obtained from the Unreal Engine Marketplace4.

The 3D environments are designed to test the ability of the proposed model to jointly learn the
perceptual model along with the policy model as the agent needs to handle raw pixel based input
while learning a policy. The Doom environment provides a way to test the model in challenging
ambiguous environments by controlling the number of landmarks in the environment, while the
Unreal Environment allows us to evaluate the effectiveness of the model in comparatively more
realistic settings.

5.2 BASELINES

Markov Localization (Fox, 1998) is a passive probabilistic approach based on Bayesian filtering. We
use a geometric variant of Markov localization where the state space is represented by fine-grained,
regularly spaced grid, called position probability grids (Burgard et al., 1996), similar to the state space
in the proposed model. Grid-based state space representations is known to offer several advantages
over topological representations (Burgard et al., 1996; Fox et al., 2003). In the passive localization
approaches actions taken by the agent are random.

Active Markov Localization (AML) (Fox et al., 1998) is the active variant of Markov Localization
where the actions taken by the agent are chosen to maximize the ratio of the ‘utility’ of the action to
the ‘cost’ of the action. The ‘utility’ of an action a at time t is defined as the expected reduction in
the uncertainity of the agent state after taking the action a at time t and making the next observation

3 https://en.wikipedia.org/wiki/Action_Code_Script
4 https://www.unrealengine.com/marketplace/small-office-prop-pack

6

https://en.wikipedia.org/wiki/Action_Code_Script
https://www.unrealengine.com/marketplace/small-office-prop-pack

Published as a conference paper at ICLR 2018

Figure 3: Different experiments in the 3D Environments. Refer to the text for more details.

at time t + 1: Ut(a) = H(yt) − Ea[H(yt+1)], where H(y) denotes the entropy of the belief:
H(y) = −

∑
y Bel(y) logBel(y), and Ea[H(yt+1)] denotes the expected entropy of the agent after

taking the action a and observing yt+1. The ‘cost’ of an action refers to the time needed to perform
the action. In our environment, each action takes a single time step, thus the cost is constant.

We define a generalized version of the AML algorithm. The utility can be maximized over a sequence
of actions rather than just a single action. Let a∗ ∈ Anl be the action sequence of length nl that
maximizes the utility at time t, a∗ = arg maxa Ut(a) (where A denotes the action space). After
computing a∗, the agent need not take all the actions in a∗ before maximizing the utility again. This
is because new observations made while taking the actions in a∗ might affect the utility of remaining
actions. Let ng ∈ {1, 2, ..., nl} be the number of actions taken by the agent, denoting the greediness
of the algorithm. Due to the high computational complexity of calculating utility, the agent performs
random action until belief is concentrated on nm states (ignoring beliefs under a certain threshold).
The complexity of the generalized AML is O(nm(nl − ng)|A|nl). Given sufficient computational
power, the optimal sequence of actions can be calculated with nl equal to the length of the episode,
ng = 1, and nm equal to the size of the state space.

In the original AML algorithm, the utility was maximized over single actions, i.e. nl = 1 which also
makes ng = 1. The value of nm used in their experiments is not reported, however they show an
example with nm = 6. We run AML with all possible combination of values of nl ∈ {1, 5, 10, 15},
ng ∈ {1, nl} and nm = {5, 10} and define two versions: (1) Active Markov Localization (Fast):
Generalized AML algorithm using the values of nl, ng, nm that maximize the performance while
keeping the runtime comparable to ANL, and (2) Active Markov Localization (Slow): Generalized
AML algorithm using the values of nl, ng, nm which maximize the performance while keeping the
runtime for 1000 episodes below 24hrs (which is the training time of the proposed model) in each
environment (See Appendix B for more details on the implementation of AML).

The perceptual model for both Markov Localization and Active Markov Localization needs to be
specified separately. For the 2D environments, the perceptual model uses 1-hot vector representation
of depth. For the 3D Environments, the perceptual model uses a pretrained Resnet-18 (He et al., 2016)
model to calculate the feature representations for the agent observations and the memory images.

5.3 RESULTS

2D Environments For the Maze2D environment, we run all models on mazes having size 7× 7,
15× 15 and 21× 21 with varying episode lengths. We train all the models on randomly generated
mazes and test on a fixed set of 1000 mazes (different from the mazes used in training). The results
on the Maze2D environment are shown in Table 1. As seen in the table, the proposed model, Active
Neural Localization, outperforms all the baselines on an average. The proposed method achieves a
higher overall accuracy than AML (Slow) while being 100 times faster. Note that the runtime of AML
for 1000 episodes is comparable to the total training time of the proposed model. The long runtime of
AML (Slow) makes it infeasible to be used in real-time in many cases. When AML has comparable
runtime, its performance drops by about 37% (AML (Fast)). We also observe that the difference in
the performance of ANL and baselines is higher for smaller episode lengths. This indicates that ANL
is more efficient (meaning it requires fewer actions to localize) in addition to being more accurate.

3D Environments All the mazes in the Maze3D environment are of size 70×70 while the office
environment environment is of size 70×50. The agent location is a continuous value in this range.
Each cell roughly corresponds to an area of 40cm×40cm in the real world. The set of memory
images correspond to only about 6% of the total states. Likelihood of rest of the states are obtained
by bilinear smoothing. All episodes have a fixed length of 30 actions. Although the size of the Office
Map is 70×50, we represent Likelihood and Belief by a 70×70 in order to transfer the model between

7

Published as a conference paper at ICLR 2018

Table 2: Results on the 3D environments. ‘Time’ refers to the number of seconds required to evaluate 1000
episodes with the corresponding method and ‘Acc’ stands for accuracy over 1000 episodes.

Env Maze3D Unreal3D
with lights All Domain

adaptation

Evaluation Setting Unseen Mazes
Seen Textures

Unseen mazes
Unseen textures

With
lights

Without
lights

Maze3D to
Unreal3D

No. of landmarks 10 5 0 10 5 0

Markov Localization
(Resnet)

Time 2415 2470 2358 2580 2509 2489 2513 2541 2484.4 -
Acc 0.716 0.657 0.641 0.702 0.669 0.652 0.517 0.249 0.600 -

Active Markov
Localization (Fast)

Time 14231 12409 11662 15738 12098 11761 11878 5511 11911.0 -
Acc 0.741 0.701 0.669 0.745 0.687 0.689 0.546 0.279 0.632 -

Active Markov
Localization (Slow)

Time 48291 47424 43096 48910 44500 44234 47962 11205 41952.8 -
Acc 0.759 0.749 0.694 0.787 0.730 0.720 0.577 0.302 0.665 -

Active Neural
Localization

Time 297 300 300 300 300 301 2750 2699 905.9 2756
Acc 0.889 0.859 0.852 0.858 0.839 0.871 0.934 0.505 0.826 0.921

both the 3D environments for domain adaptation. We also add a Gaussian noise of 5% standard
deviation to all translations in 3D environments.

In the Maze3D environment, we vary the difficulty of the environment by varying the number of
landmarks in the environment. Landmarks are defined to be walls with a unique texture. Each
landmark is present only on a single wall in a single cell in the maze grid. All the other walls have
a common texture making the map very ambiguous. We expect landmarks to make localization
easier as the likelihood maps should have a lower entropy when the agent visits a landmark, which
consequently should reduce the entropy of the Belief Map. We run experiments with 10, 5 and 0
landmarks. The textures of the landmarks are randomized during training. This technique of domain
randomization has shown to be effective in generalizing to unknown maps within the simulation
environment (Lample & Chaplot, 2016) and transferring from simulation to real-world (Tobin et al.,
2017). In each experiment, the agent is trained on a set of 40 mazes and evaluated in two settings: (1)
Unseen mazes with seen textures: the textures of each wall in the test set mazes have been seen in
the training set, however the map design of the test set mazes are unseen and (2) Unseen mazes with
unseen textures: both the textures and the map design are unseen. We test on a set of 20 mazes for
each evaluation setting. Figure 3 shows examples for both the settings.

In the Unreal3D environment, we test the effectiveness of the model in adapting to dynamic lightning
changes. We modified the the Office environment using the Unreal Game Engine Editor to create
two scenarios: (1) Lights: where all the office lights are switched on; (2) NoLights: where all the
office lights are switched off. Figure 3 shows sample agent observations with and without lights at
the same locations. To test the model’s ability to adapt to dynamic lighting changes, we train the
model on the Office map with lights and test it on same map without lights. The memory images
provided to the agent are taken while lights are switched on. Note that this is different as compared to
the experiments on unseen mazes in Maze3D environment, where the agent is given memory images
of the unseen environments.

The results for the 3D environments are shown in Table 2 and an example of the policy execution
is shown in Figure 45. The proposed model significantly outperforms all baseline models in all
evaluation settings with the lowest runtime. We see similar trends of runtime and accuracy trade-off
between the two version of AML as seen in the 2D results. The absolute performance of AML (Slow)
is rather poor in the 3D environments as compared to Maze2D. This is likely due to the decrease in
value of look-ahead parameter, nl, to 3 and the increase in value of the greediness hyper-parameter,
ng to 3, as compared to nl = 5, ng = 1 in Maze 2D, in order to ensure runtimes under 24hrs.

The ANL model performs better on the realistic Unreal environment as compared to Maze3D
environment, as most scenes in the Unreal environment consists of unique landmarks while Maze3D
environment consists of random mazes with same texture except those of the landmarks. In the
Maze3D environment, the model is able to generalize well to not only unseen map design but also
to unseen textures. However, the model doesn’t generalize well to dynamic lighting changes in
the Unreal3D environment. This highlights a current limitation of RGB image-based localization
approaches as compared to depth-based approaches, as depth sensors are invariant to lighting changes.

5 Demo videos: https://devendrachaplot.github.io/projects/Neural-Localization

8

https://devendrachaplot.github.io/projects/Neural-Localization

Published as a conference paper at ICLR 2018

Figure 4: An example of the policy execution and belief propagation in the Maze3D Environment. The rows
shows consecutive time steps in a episode. The columns show Agent’s observation, the belief of its location
before and after making the observation, the map design and agent’s perspective of the world. Agent’s true
location is also marked in the map design (not visible to the agent). Belief maps show the probability of being
at a particular location. Darker shades imply higher probability. The belief of its orientation and agent’s true
orientation are also highlighted by colors. For example, the Red belief map shows the probability of agent facing
east direction at each x-y coordinate. Note that map design is not a part of the Belief Maps, it is overlayed on the
Belief Maps for better visualization. At all time steps, all locations which look similar to agent’s perspective
have high probabilities in the belief map. The example shows the importance deciding actions while localizing.
At t = 3, the agent is uncertain about its location as there are 4 positions with identical perspectives. The agent
executes the optimal set of action to reduce its uncertainity, i.e. move forward and turn left, and successfully
localizes.

9

Published as a conference paper at ICLR 2018

Domain Adaptation We also test the ability of the proposed model to adapt between different
simulation environments. The model trained on the Maze3D is directly tested on the Unreal3D Office
Map without any fine-tuning. The results in Table 2 show that the model is able to generalize well
to Unreal environment from the Doom Environment. We believe that the policy model generalizes
well because the representation of belief and map design is common in all environments and policy
model is based only on the belief and the map design, while the perceptual model generalizes well
because it has learned to measure the similarity of the current image with the memory images as it
was trained on environments with random textures. This property is similar to siamese networks used
for one-shot image recognition (Koch et al., 2015).

6 CONCLUSION

In this paper, we proposed a fully-differentiable model for active global localization which uses
structured components for Bayes filter-like belief propagation and learns a policy based on the belief
to localize accurately and efficiently. This allows the policy and observation models to be trained
jointly using reinforcement learning. We showed the effectiveness of the proposed model on a
variety of challenging 2D and 3D environments including a realistic map in the Unreal environment.
The results show that our model consistently outperforms the baseline models while being order of
magnitudes faster. We also show that a model trained on random textures in the Doom simulation
environment is able to generalize to photo-realistic Office map in the Unreal simulation environment.
While this gives us hope that model can potentially be transferred to real-world environments, we
leave that for future work. The limitation of the model to adapt to dynamic lightning can potentially
be tackled by training the model with dynamic lightning in random mazes in the Doom environment.
There can be several extensions to the proposed model too. The model can be combined with Neural
Map (Parisotto & Salakhutdinov, 2017) to train an end-to-end model for a SLAM-type system and
the architecture can also be utilized for end-to-end planning under uncertainity.

ACKNOWLEDGEMENTS

This work was supported by Apple, IARPA DIVA award D17PC00340, and ONR award
N000141512791. The authors would also like to thank Jian Zhang for helping with the Unreal
environment and the NVidia for donating a DGX-1 deep learning machine and providing GPU
support.

REFERENCES

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE transactions on systems, man, and cybernetics, pp.
834–846, 1983.

Johann Borenstein, H. R. Everett, and Liqiang Feng. Navigating Mobile Robots: Systems and
Techniques. A. K. Peters, Ltd., Natick, MA, USA, 1996. ISBN 1568810660.

Wolfram Burgard, Dieter Fox, Daniel Hennig, and Timo Schmidt. Estimating the absolute position
of a mobile robot using position probability grids. In Proceedings of the national conference on
artificial intelligence, pp. 896–901, 1996.

Wolfram Burgard, Andrcas Derr, Dieter Fox, and Armin B Cremers. Integrating global position
estimation and position tracking for mobile robots: the dynamic markov localization approach. In
Intelligent Robots and Systems, 1998. Proceedings., 1998 IEEE/RSJ International Conference on,
volume 2, pp. 730–735. IEEE, 1998.

Devendra Singh Chaplot and Guillaume Lample. Arnold: An autonomous agent to play fps games.
In AAAI, pp. 5085–5086, 2017.

Devendra Singh Chaplot, Guillaume Lample, Kanthashree Mysore Sathyendra, and Ruslan Salakhut-
dinov. Transfer deep reinforcement learning in 3d environments: An empirical study. In NIPS
Deep Reinforcemente Leaning Workshop, 2016.

10

Published as a conference paper at ICLR 2018

Luo Chunjie, Yang Qiang, et al. Cosine normalization: Using cosine similarity instead of dot product
in neural networks. arXiv preprint arXiv:1702.05870, 2017.

Ronald Clark, Sen Wang, Andrew Markham, Niki Trigoni, and Hongkai Wen. Vidloc: 6-dof
video-clip relocalization. arXiv preprint arXiv:1702.06521, 2017a.

Ronald Clark, Sen Wang, Hongkai Wen, Andrew Markham, and Niki Trigoni. Vinet: Visual-inertial
odometry as a sequence-to-sequence learning problem. In AAAI, pp. 3995–4001, 2017b.

Ingemar J Cox and John J Leonard. Modeling a dynamic environment using a bayesian multiple
hypothesis approach. Artificial Intelligence, 66(2):311–344, 1994.

Ingemar J. Cox and Gordon T. Wilfong (eds.). Autonomous Robot Vehicles. Springer-Verlag New
York, Inc., New York, NY, USA, 1990. ISBN 0-387-97240-4.

Dieter Fox. Markov localization-a probabilistic framework for mobile robot localization and naviga-
tion. PhD thesis, Universität Bonn, 1998.

Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Active markov localization for mobile robots.
Robotics and Autonomous Systems, 25(3-4):195–207, 1998.

V Fox, Jeffrey Hightower, Lin Liao, Dirk Schulz, and Gaetano Borriello. Bayesian filtering for
location estimation. IEEE pervasive computing, 2(3):24–33, 2003.

Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. A survey of actor-critic
reinforcement learning: Standard and natural policy gradients. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 42(6):1291–1307, 2012.

Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra Malik. Cognitive
mapping and planning for visual navigation. arXiv preprint arXiv:1702.03920, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. Learning
deep structured semantic models for web search using clickthrough data. In Proceedings of the
22nd ACM international conference on Conference on information & knowledge management, pp.
2333–2338. ACM, 2013.

Patric Jensfelt and Steen Kristensen. Active global localization for a mobile robot using multiple
hypothesis tracking. IEEE Transactions on Robotics and Automation, 17(5):748–760, 2001.

Rudolph Emil Kalman et al. A new approach to linear filtering and prediction problems. Journal of
basic Engineering, 82(1):35–45, 1960.

Peter Karkus, David Hsu, and Wee Sun Lee. Qmdp-net: Deep learning for planning under partial ob-
servability. CoRR, abs/1703.06692, 2017. URL https://arxiv.org/abs/1703.06692.

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski. Viz-
doom: A doom-based ai research platform for visual reinforcement learning. arXiv preprint
arXiv:1605.02097, 2016.

Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A convolutional network for real-time
6-dof camera relocalization. In Proceedings of the IEEE international conference on computer
vision, pp. 2938–2946, 2015.

Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural networks for one-shot
image recognition. In ICML Deep Learning Workshop, volume 2, 2015.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In NIPS, volume 13, pp. 1008–1014,
1999.

Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical society, 7(1):48–50, 1956.

11

https://arxiv.org/abs/1703.06692

Published as a conference paper at ICLR 2018

Guillaume Lample and Devendra Singh Chaplot. Playing fps games with deep reinforcement learning.
arXiv preprint arXiv:1609.05521, 2016.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, 3361(10):1995, 1995.

Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andy Ballard, Andrea Banino, Misha
Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, et al. Learning to navigate in complex
environments. In Proceedings of the 5th International Conference on Learning Representations
2017, 2016.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pp. 1928–1937, 2016.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry for ground vehicle applications.
Journal of Field Robotics, 23(1):3–20, 2006.

Emilio Parisotto and Ruslan Salakhutdinov. Neural map: Structured memory for deep reinforcement
learning. arXiv preprint arXiv:1702.08360, 2017.

Stergios I. Roumeliotis and George A. Bekey. Bayesian estimation and kalman filtering: A unified
framework for mobile robot localization, 2000.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity visual
and physical simulation for autonomous vehicles. In Field and Service Robotics, 2017. URL
https://arxiv.org/abs/1705.05065.

Randall Smith, Matthew Self, and Peter Cheeseman. Estimating uncertain spatial relationships in
robotics. In Autonomous robot vehicles, pp. 167–193. Springer, 1990.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in neural information
processing systems, pp. 1057–1063, 2000.

Richard Stuart Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD thesis, University
of Massachusetts Amherst, 1984.

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks. In
Advances in Neural Information Processing Systems, pp. 2154–2162, 2016.

Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank Dellaert. Robust monte carlo localization
for mobile robots. Artificial intelligence, 128(1-2):99–141, 2001.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. arXiv
preprint arXiv:1703.06907, 2017.

Sen Wang, Ronald Clark, Hongkai Wen, and Niki Trigoni. Deepvo: Towards end-to-end visual
odometry with deep recurrent convolutional neural networks. In Robotics and Automation (ICRA),
2017 IEEE International Conference on, pp. 2043–2050. IEEE, 2017.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

12

https://arxiv.org/abs/1705.05065

Published as a conference paper at ICLR 2018

A BACKGROUND: REINFORCEMENT LEARNING

In the standard Reinforcement Learning Sutton & Barto (1998) setting, at each time step t, an agent
receives a observation, st, from the environment, performs an action at and receives a reward rt.
The goal is to learn a policy π(a|s) which maximizes the expected return or the sum of discounted
rewards Rt = ΣTt′=tγ

t′−trt′ , where T is the time at which the episode terminates, and γ ∈ [0, 1] is a
discount factor that determines the importance of future rewards.

Reinforcement learning methods can broadly be divided into value-based methods and policy-based
methods. Policy-based methods parametrize the policy function which can be optimized directly to
maximize the expected return (E[Rt]) Sutton et al. (2000). While policy-based methods suffer from
high variance, value-based methods typically use temporal difference learning which provides low
variance estimates of the expected return. Actor-Critic methods (Barto et al., 1983; Sutton, 1984;
Konda & Tsitsiklis, 1999) combine the benefits of both value-based methods by estimating both the
value function, V π(st; θv), as well as the policy function π(at|st; θ)(Grondman et al., 2012).

REINFORCE family of algorithms (Williams, 1992) are popular for optimizing the policy function,
which updates the policy parameters θ in the direction of ∇θ log π(at|st; θ)Rt. Since this update
is an unbiased estimate of∇θE[Rt], its variance can be reduced by subtracting a baseline function,
bt(st) from the expected return (∇θ log π(at|st; θ)(Rt − bt(st))). When the estimate of the value
function (V π(st)) is used as the baseline, the resultant algorithm is called Advantage Actor-Critic, as
the resultant policy gradient is scaled by the estimate of the advantage of the action at in state st,
A(at, st) = Q(at, st)− V (st). The Asynchronous Advantage Actor-Critic algorithm (Mnih et al.,
2016) uses a deep neural network to parametrize the policy and value functions and runs multiple
parallel threads to update the network parameters.

In this paper, we use the A3C algorithm for all our experiments. We also use entropy regularization
for improved exploration as described by (Mnih et al., 2016). In addition, we use the Generalized
Advantage Estimator (Schulman et al., 2015) to reduce the variance of the policy gradient updates.

B IMPLEMENTATION DETAILS

B.1 MODEL ARCHITECTURE DETAILS

The perceptual model for the 3D Environments receives RGB images of size 108x60. It consists of
2 Convolutional Layers. The first convolutional layer contains 32 filters of size 8x8 and stride of 4.
The second convolutional layer contains 64 filters of size 4x4 with a stride of 2. The convolutional
layers are followed by a fully-connected layer of size 512. The output of this fully-connected layer is
used as the representation of the image while constructing the likelihood map. Figure 5 shows the
architecture of the perceptual model in 3D environments. This architecture is adapted from previous
work which is shown to perform well at playing deathmatches in Doom (Chaplot & Lample, 2017).

The policy model consists of two convolutional layers too. For the 2D environments, both the
convolutional layers contain 16 filters of size 3 with stride of 1. For the 3D environments, the first
convolutional layer contains 16 filters of size 7x7 with a stride of 3 and the second convolutional
layer contains 16 filters of size 3x3 with a stride of 1. The convolutional layers are followed by
a fully-connected layer of size 256. Figure 6 shows the architecture of the policy model in 3D
environments.

We add action histroy of length 5 (last 5 actions) as well as the current time step as input to the policy
model. We observed that action history input avoids the agent being stuck in alternating ‘turn left’
and ‘turn right’ actions whereas time step helps in accurately predicting the value function as the
episode lengths are fixed in each environment. Each action in the action history as well as the current
timestep are passed through an Embedding Layer to get an embedding of size 8. The embeddings of
all actions and the time step are contacted with the 256-dimensional output of the fully-connected
layer. The resultant vector is passed through two branches of single fully-connected layers to get the
policy (actor layer with 3 outputs) and the value function (critic layer with 1 output).

13

Published as a conference paper at ICLR 2018

Figure 5: Figure showing the architecture of the perceptual model in 3D Environments.

Figure 6: Figure showing the architecture of the policy model in 3D Environments.

B.2 HYPER-PARAMETERS AND TRAINING DETAILS

All the models are trained with A3C using Stochastic Gradient Descent with a learning rate of 0.001.
We use 8 threads for 2D experiments and 4 threads for 3D experiments. Each thread performed an
A3C update after 20 steps. The weight for entropy regularization was 0.01. The discount factor (γ)
for reinforcement learning was chosen to be 0.99. The gradients were clipped at 40. All models
are trained for 24hrs of wall clock time. All the 2D experiments (including evaluation runtime
benchmarks for baselines) were run on Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz and all the 3D
experiments were run on Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz. While all the A3C training
threads ran on CPUs, the Unreal engine also utilized a NVidia GeForce GTX 1080 GPU. The model
with the best performance on the training environment is used for evaluation.

B.3 TRANSITION FUNCTION

The transition function transforms the belief according to the action taken by the agent. For turn
actions, the beliefs maps in each orientation are swapped according to the direction of the turn. For
the move forward action, all probability values move one cell in the orientation of the agent, except
those which are blocked by a wall (indicating a collision). Figure 7 shows sample outputs of the
transition function given previous belief and action taken by the agent.

Figure 7: Sample output of the transition function (fT) given previous belief and action taken by the agent. The
map design is shown in the left.

14

Published as a conference paper at ICLR 2018

B.4 IMPLEMENTATION DETAILS OF ACTIVE MARKOV LOCALIZATION

In order to make our implementation of generalized AML as efficient as possible, we employ various
techniques described by the authors, such as Pre-computation and Selective computation (Fox et al.,
1998), along with other techniques such as hashing of expected entropies for action subsequences.
The restrictions in runtime led to nl = 1, ng = 1, nm = 5 in both 2D and 3D environments for AML
(Fast), nl = 5, ng = 1, nm = 10 in 2D environments for AML (Slow) and nl = 3, ng = 3, nm = 10
in the 3D environments for AML (Slow).

The computation of expected entropies require the expected observation in the future states while
rolling out a sequence of action. While it is possible to calculate these in 2D environments with depth-
based observations, it is not possible to do this in 3D environments with RGB image observations.
However, for comparison purposes we assume that AML has a perfect model of the environment and
provide future observations by rolling out the action sequences in the simulation environment.

15

	Introduction
	Related Work
	Background: Bayesian Filtering
	Methods
	Problem Formulation
	Proposed Model
	Model Components

	Experiments
	Simulation Environments
	Baselines
	Results

	Conclusion
	Background: Reinforcement Learning
	Implementation Details
	Model Architecture Details
	Hyper-parameters and Training Details
	Transition function
	Implementation details of Active Markov Localization

