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ABSTRACT

In this paper, we study deep generative models for effective unsupervised learn-
ing. We propose VGAN, which works by minimizing a variational lower bound
of the negative log likelihood (NLL) of an energy based model (EBM), where the
model density p(x) is approximated by a variational distribution q(x) that is easy
to sample from. The training of VGAN takes a two step procedure: given p(x),
q(x) is updated to maximize the lower bound; p(x) is then updated one step with
samples drawn from q(x) to decrease the lower bound. VGAN is inspired by the
generative adversarial networks (GANs), where p(x) corresponds to the discrim-
inator and q(x) corresponds to the generator, but with several notable differences.
We hence name our model variational GANs (VGANs). VGAN provides a practi-
cal solution to training deep EBMs in high dimensional space, by eliminating the
need of MCMC sampling. From this view, we are also able to identify causes to
the difficulty of training GANs and propose viable solutions. 1

1 INTRODUCTION

Unsupervised learning is a long standing challenge of machine learning and deep learning. One
major difficulty of effective unsupervised learning lies in the lack of an accurate distance metric.
Euclidean distance has been widely adopted as the default metric from shallow methods, such as
K-means and Gaussian mixture models, to deep models such as autoencoder variants (e.g., Vincent
et al. (2010)). From a probabilistic point of view, the use of Euclidean distance assumes Gaussian
distributions (or mixtures thereof) in the input space, which is a strong assumption and is often times
inaccurate for high dimensional data (such as images). Generative adversarial networks (GANs)
Goodfellow et al. 2014 are a particularly interesting approach as it does not assume the data dis-
tribution to take any specific form, which therefore eliminates the need of a predefined distance
metric of samples. GANs work as a mini-max two player game, where a generator G(z) is trained
to generate samples that can fool the best discriminator D. When both G and D are formulated as
deep convolutional networks, it is shown that the generator can learn to generate surprisingly real-
istic looking images Radford et al. (2015). Energy-based models (EBMs) LeCun et al. (2006) are
another powerful family of unsupervised learning models. Similarly to GANs, EBMs make mini-
mal assumptions about the data distribution, as it directly parameterizes the negative long density
of data E(x) = − log p(x) as a deterministic function of x. It is clear that by properly choosing
the capacity of E(x), an EBM can be trained to approximate an arbitrary density function perfectly
well.

In this paper, we propose VGAN, which bridges GANs and EBMs and combines the benefits from
both worlds. In particular, we show that the mini-max game of GANs is approximately equivalent to

1Experimental code is available at https://github.com/Shuangfei/vgan
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minimizing a variational lower bound of the negative log likelihood (NLL) of an EBM. To be more
concrete, the energy E(x) corresponds to − logD(x), and the generator G(z) defines a parame-
terzied sampler from the model distribution defined by p(x) = e−E(x)∫

x
e−E(x)dx

. From this view, GANs
provide a viable solution for the maximum likelihood estimation of EBMs, which is known to be
challenging due to the difficulty of evaluating the partition function which integrates over the input
space. We discuss the important design choices of the energy functions in order to make VGAN nu-
merically stable, and propose a novel energy formulation that is bounded and explicitly multi-modal.
Moreover, from the EBM point of view, we are also able to identify the reasons that make GANs
unstable to train, due to the missing of an entropy term of the generator distribution, which causes
the generator to collapse to a single or few local minima of the energy landscape. As a solution, we
propose to parameterize the generator as a transition distribution (that is, pz(x̃|x) instead of pz(x)),
in analogy to the one used in Gibbs sampling procedure. We show that this variant corresponds to
a variational version of contrastive divergence Hinton (2002a), and circumvents the need of directly
approximating the cumbersome entropy term. In our experiments on MNIST, CIFAR10, and SVHN,
we show that we are able to learn generators that generate sharp and diversified images. Moreover,
the learned transition distributions are able to effectively capture the data manifold by consecutively
sampling realistic looking samples starting from testing images. Finally, as a quantitative evalua-
tion of the learned model, we use the transition distribution as data augmentation, from which we
are able to show consistent gains of classification accuracy with few training labels on MNIST and
SVHN.

2 GENERATIVE ADVERSARIAL NETWORKS

Generative adversarial networks Goodfellow et al. (2014) work by solving the following mini-max
game:

max
G

min
D

Ex∼pdata(x)[− logD(x)]− Ez∼pz(z)[log(1−D(G(z)))], (1)

where pdata(x) is the data distribution; D(x) is the discriminator that takes as input a sample and
outputs a scalar between [0, 1]; G(z) is the generator that maps a sample z ∈ Rd drawn from a
simple distribution p(z) to the input space. Typically both D and G are parameterized as deep
neural networks. Equation 1 suggests a training procedure consisting of two loops: in the inner loop
D is trained till convergence given G, and in the outer loop G is updated one step given D (note that
in Goodfellow et al. (2014), the authors propose to maximize log(D(G(z))) instead of − log(1 −
D(G(z))) in the outer loop). As the two-player, mini-max game reaches the Nash equilibrium, G
defines an implicit distribution pg(x) that recovers the data distribution, i.e., pg(x) = pdata(x).

3 VARIATIONAL TRAINING OF DEEP-EBMS

An EBM formulates a density function as:

p(x) =
e−E(x)∫

x
e−E(x)dx

, (2)

where E(x) is defined as the energy of input x. One particularly powerful case is deep energy based
models (deep-EBMs) Ngiam et al. (2011); Zhai et al. (2016), where E(x) is directly parameterized
as the output of a deep deterministic neural network. An obvious way to train an EBM is to minimize
the negative log likelihood (NLL):

J(E) = Ex∼pdata(x)[E(x)] + log[

∫
x

e−E(x)dx]. (3)
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Directly minimizing J(E) is difficult due to the integration term over the input space. As a remedy,
one can rewrite Equation 3 as follows:

J(E) = Ex∼pdata(x)[E(x)] + log[

∫
x

q(x)
e−E(x)

q(x)
dx]

= Ex∼pdata(x)[E(x)] + log[Ex∼q(x)[
e−E(x)

q(x)
]]

≥ Ex∼pdata(x)[E(x)] + Ex∼q(x)[log
e−E(x)

q(x)
]

= Ex∼pdata(x)[E(x)]− Ex∼q(x)[E(x)] +H(q),

(4)

where q(x) is an arbitrary distribution which we call the variational distribution withH(q) denoting
its entropy. Equation 4 is a natural application of the Jensen’s inequality, and it gives a variational
lower bound of the NLL given an q(x). The lower bound is tight when e−E(x)

q(x) is a constant inde-
pendent of x, i.e., q(x) ∝ E(x), which implies that q(x) = p(x). This suggests an optimization
procedure as follows:

min
E

max
q

Ex∼pdata(x)[E(x)]− Ex∼q(x)[E(x)] +H(q), (5)

where in the inner loop, given the energy model E(x), the variational lower bound is maximized
w.r.t. q; the energy model then is updated one step to decrease the NLL with the optimal q.

4 VARIATIONAL GENERATIVE ADVERSARIAL NETWORKS

In practice, q(x) can be chosen as a distribution that is easy to sample from and differentiable; the
inner loop can be achieved by simple stochastic gradient descent. It turns out that the generator used
in GANs exactly satisfies such requirements, which directly connects GANs to EBMs. To see this,
replace q(x) with the generator distribution pg(x) (that is the implicit data distribution produced by
x = G(z), z ∼ pz(z)), then Equation 5 turns into:

min
E

max
G

Ex∼pdata(x)[E(x)]− Ex∼pg(x)[E(x)] +H(pg). (6)

If we further let E(x) = − logD(x), this becomes:

min
D

max
G

Ex∼pdata(x)[− logD(x)]− Ez∼pz(z)[− logD(G(z))] +H(pg). (7)

One can now immediately recognize the resemblance of Equation 7 to Equation 1. Both of them take
the form as a mini-max optimization problem, where D is trained to increaseD(x) for x ∼ pdata(x)
and decrease D(x) for x ∼ pg(x), while G is trained to increase D(x) for x ∼ pg(x). In other
words, GAN behaves similarly to variational training of an EBM, where the variational distribution
q(x) takes the specific form of pg(x) which is easy to sample from. In light of this connection,
we call the family of the models defined by Equation 6 as the variational generative adversarial
networks (VGANs). The nice property of VGANs over the traditional EBM training strategies is
that it simplifies the sampling procedure by defining a differentiable, deterministic mapping from a
simple distribution (e.g., uniform distribution) to the input space.

Compared with GANs, VGANs differ in four aspects:

1. The order of minimization and maximization. GANs optimize D till convergence given G,
while VGANs optimize G till convergence given D. The outcome of a GAN is then a generator
that can fool the best discriminator possible, while the outcome of a VGAN is an energy model
parameterized by D, and a variational distribution G that can sample from the exact distribution
defined by D. Also note that with the optimization procedure of GANs, there is no guarantee that D
defines a viable EBM, as the variational lower bound can be arbitrarily low due to the swapping of
the min and max loops.

2. The parameterization of energy. GANs use a specific parameterization of energy as E(x) =
− logD(x). The energy parameterization of GANs is lower bounded by 0. This differs from that of
an RBM with binary visible hidden units, one of the most popular EBMs. An RBM has free energy
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E(x) = −bv
Tx −

∑K
j=1 log(1 + eW

T
j x+bh,j ), which is unbounded. As the goal of training an

EBM is to minimize the energy of training data, this difference is significant in practice. To see this,
note that the optimum in Equation 5 is invariant w.r.t. an affine transformation of the energy; that is,
let E∗(x) be an optimal solution to Equation 5; then Ẽ(x) = aE∗(x)+ b is also an optimal solution
for a ∈ R+, b ∈ R. This property makes unbounded energy inappropriate to use for VGANs, as
it often causes the scale of energy to explode. Even worse, the energy parameterization as that of
RBM’s has stronger gradients as the energy decreases, and this essentially encourages the energy of
both training samples and generated samples to grow to negative infinity.

3. The optimal energy assignment. A related problem to the energy parameterization is that, when
optimizing D, the term subject to expectation under p(z) of GANs is log(1 − D(G(z))), whereas
VGANs use − logD(G(z)). While both have the same direction of gradients w.r.t. to D(x) and
D(G(z)) (increasing the former and decreasing the latter), and the optimal solution to both models
is when pdata(x) = pg(x), they differ in the optimal D. The optimal D for GAN is fixed as
D(x) = 0.5.

4. The entropy term of the generator distribution H(pg). Last but not the least, GANs do not
include the entropy term while optimizing G. In VGANs, including the entropy term guarantees
that pg(x) recovers the density encoded by D, and that the variational lower bound is tightened
as such in the inner loop. Without the entropy term, G can be easily but misleadingly optimized
by collapsing into one of the few local minima of the energy landscape. In fact, this accounts for
most of the failures of training GANs, as pointed out in the GAN related literature Radford et al.
(2015); Salimans et al. (2016); Kim & Bengio (2016); Zhao et al. (2016). Of course, an immediate
challenge that one needs to solve is the approximation of H(pg). This amounts to a well known
problem of differentiable entropy approximation (see Hyvarinen (1999), for example). The fact that
the approximation needs not only to be accurate, but also to be easily optimized w.r.t. G makes it
even more intimidating and cumbersome.

5 BOUNDED MULTI-MODAL ENERGY

The first strategy we attempt to stabilize the generator is by designing a well behaved energy
such that the generator can be easily optimized. We start by noticing that the energy of the form
− logD(x) is inherently uni-modal. To see this, let D(x) = σ(wTφ(x) + b), where σ is the sig-
moid function and φ(x) denotes a feature mapping of x encoded by a deep neural network. Then in
order to maximize D(x) such as to minimize the energy, all the samples x are thus encouraged to be
projected to be proportional to the weight vector w. This is not a problem with the regularization of
H(pg), maximizing which diversifies φ(x), but without or with a poor approximation of the entropy
term may cause the generator to collapse. Consequently, we propose a bounded multi-modal energy
formulation as follows:

E(x) =

K∑
j=1

H(σ(WT
j φ(x) + bj)), (8)

where Wj ∈ Rd,bj ∈ R, φ(x) is the feature mapping; H(p) is slightly overloaded as the entropy
of a binomial distribution defined by p, i.e., H(p) = −p log p− (1− p) log(1− p). This energy for-
mulation can be viewed as an instance of the product of experts model (PoE) Hinton (2002b), where
each set of parameters Wj ,bj defines an expert. The nice property of this energy parameterization
is that it is 1) bounded between [0, K], 2) with strong gradients in the high energy area (σ(·) close
to 0.5) and with vanishing gradients at low energy area (σ(·) close to 0 or 1), and 3) multi-modal by
design. To see the last point, simply note that H(p) achieves its minimum with p = 0 and p = 1.
Thus for such a PoE energy with K experts, there exists 2K equally likely local minima by design.
With this energy formulation, it is also relatively easy to come up with a reasonable approximation
of H(pg), which is chosen as:

H̃(pg) =

K∑
j=1

H(
1

N

N∑
i=1

σ(WT
j φ(G(z)i))), (9)

where xi denotes the ith training example. Although there is no theoretical guarantee that Equation 9
recovers the true entropyH(pg) to any extent, maximizing it serves the same purpose of encouraging
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the generated samples to be diverse, as ˜H(pg) reaches its minimum if G(z) collapses to one single
point. Moreover, in the outer loop while minimizing the NLL w.r.t. E, we find it helpful to also
maximize H̃(pdata) =

∑K
j=1H( 1

N

∑N
i=1 σ(WT

j φ(xi))) as well, which acts as a regularizer to E
to encourage the average activation of each expert σj(·) to close to 0.5. The training algorithm of
VGAN with the proposed bounded multi-modal energy is summarized in Algorithm 1.

Algorithm 1 The optimization procedure of VGAN
1: for number of training iterations do
2: for k steps do
3: sample N noise data {z1, . . . , zN}; update G by one step gradient ascent of

− 1

N

N∑
i=1

E(G(zi)) + H̃(pg)

4: end for
5: sample N training data {x1, . . . , xN}; sample N noise data {z1, . . . , zN};
6: update E with one step gradient descent of

1

N

N∑
i=1

E(xi)− 1

N

N∑
i=1

E(G(zi))− H̃(pdata)

7: end for

6 VARIATIONAL CONTRASTIVE DIVERGENCE WITH TRANSITION
DISTRIBUTIONS

Although it is possible to discourage the generator to collapse into a single output by carefully
designing the energy function as described in Section 5, there is no good way to monitor the quality
of the approximation of the entropy term other than manually observing the generated samples.
Also, there is no guarantee that the designed approximation is accurate such that the variational lower
bound is tight enough to provide correct gradients for updating the energy parameters. In this section,
we propose an additional approach to bypass the need of the cumbersome entropy approximation
problem. The idea is that instead of generating samples directly from pz(z), we define a transition
operator pg(x̃|x) conditioned on a training sample x̃. This corresponds to defining the variational
distribution q(x) in Equation 4 as q(x̃) =

∫
x
pdata(x)pz(x̃|x)dx. If we further restrict the transition

distribution pz(x|x̃) to be one that is closely centered around x̃, then the entropy term H(q) can be
well approximated by the data entropy H(pdata), which is a constant. The variational lower bound
is thus increased by increasing the energy for x̃ ∼ pg(x̃|x). Of course, this parameterizaton limits
the shape of the varaitional distribution, and the variational lower bound might never be tightened
especially in the early stage of training when the model distribution differs significantly from the
data distribution; this nonetheless can provide meaningful gradients to update the energies. In fact,
this sampling procedure is closely related to contrastive divergence (CD) Hinton (2010) (one step
CD to be exact), whereas in CD the transition distribution can be easily obtained from specific types
of EBMs (e.g., RBM). Our approach, on the other hand, uses a parameterized variational distribution
to approximate the true transition distribution; we thus name it variational contrastive divergence
(VCD).

The implementation of pg(x|x̃) is illustrated in Figure 1. Let h = Encode(x̃) be an encoder that
maps an input x̃ to a bottleneck vector h ∈ Rd, and let x̄ = Decode(h) be the output of a decoder
that maps h to the input space. A sample from pg(x̃|x) can be drawn as follows: 1) generate a
binomial vector m ∈ Rd with probability 0.5; 2) generate a noise vector z ∼ pz(z), z ∈ Rd; 3)
produce a new vector h̃ = m ∗ z + (1−m) ∗h; and 4) obtain the generated sample by passing h̃ to
the same decoder x̃ = Decode(h̃). The generator then tries to minimize the following objective:

ρ ∗ Ex∼pdata(x),x̃∼pg(x̃|x)[E(x̃)] + (1− ρ) ∗ Ex∼pdata(x)‖x̄− x‖22. (10)

The generator can be considered as a regularized autoencoder, where decreasing the first term of
Equation 10 encourages the EBM to assign low energy to samples generated by h̃. The choice
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Figure 1: Illustration of VGAN with variational contrastive divergence. On the left panel, energies
of real data x and generated data x̃ are computed, with the generator shown on the right. For the
generator on the right panel, each x ∼ pdata(x) is passed through an encoder to obtain h, which is
then passed through a decoder to achieve a reconstruction x̄. h is then mixed with a noise vector z

of the same dimensionality by a randomly generated binary mask vector m to obtain h̃ following
h̃ = m∗z+(1−m)∗h. h̃ is then passed through the same decoder to obtain the generated sample
x̃.

of the generation formula of h̃ is also critical. Randomly replacing half of the dimensions of h

with random noise z makes sure that h̃ is sufficiently different from h. Otherwise, the autoencoder
can easily denoise h̃ to make x̃ to collapse back to x, regardless of z. Also, mixing noise in the
bottleneck layer of an autoencoder makes the generation process easier, as it is known that with high
level features the mixing rate of MCMC sampling is significantly higher than the in the input space
Bengio et al.. In addition, the formulation of our transition operator does not make any Gaussian
(or mixture of Gaussian) distribution assumptions, despite the use of the reconstruction error. This
is due to the use of a deep decoder, such that the generated sample can be far away from the sample
conditioned on, when calculating the Euclidean distance. This conjecture is also supported in our
experiments, see Figure 5. The training algorithm for VCD is summarized in Table 2.

Algorithm 2 The optimization procedure of VCD
1: for number of training iterations do
2: for k steps do
3: sample N training data {x1, . . . , xN}; sample N noise data {z1, . . . , zN};
4: sample N binary mask vectors;
5: update G by one step gradient ascent of

− 1

N

N∑
i=1

E(G(zi,mi)) + H̃(pg)

6: end for
7: sample N training data {x1, . . . , xN}; sample N noise data {z1, . . . , zN};
8: sample N binary mask vectors;
9: update E with one step gradient descent of

1

N

N∑
i=1

E(xi)− 1

N

N∑
i=1

E(G(zi, ,mi))− H̃(pdata)

10: end for
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Table 1: CIFAR-10 Test error rates of the linear classifiers trained on the second to the top discrimi-
nator layer (φ(x)) of GAN and VGAN with generator update steps as 1 and 3.

GAN k=1 GAN k=3 VGAN k=1 VGAN k=3
84.7 86.6 36.5 32.5

7 EXPERIMENTS

7.1 VGAN SAMPLES

As a proof of concept, in the first set of experiments, we test the efficacy of the proposed VGAN al-
gorithm as in Algorithm 1. To do this, we train a VGAN on the 50,000 training images of CIFAR-10
with a moderately sized energy (discriminator) and generator. The energy is encoded by a convolu-
tional neural network (CNN) with two convolutional layers, two max pooling layers, and two fully
connected layers, where the last fully connected layer is used to compute the energy as defined in
Equation 5 (with K=100). The generator is encoded by a deconvolutional neural network with two
consecutive fully connected layers, the latter of which is reshaped and followed by two deconvolu-
tional layers to perform upsampling convolution. Both the energy and the generator use ReLU as
nonlinearity, and only the generator is equipped with batch normalization Ioffe & Szegedy (2015) 2.
Both the energy and the generator are updated with Adadelta Zeiler (2012) using learning rate 0.1.
As a direct comparison, we have also trained a GAN with the exact same architecture and training
protocol, except that the top layer of the discriminator is replaced with one single sigmoid unit. We
train both VGAN and GAN for 100 epochs, while varying the number of generator updates per it-
eration from 1 to 3 (k in Algorithm 1). Note that the original GAN paper Goodfellow et al. (2014)
proposes to update the discriminator k steps per iteration, which we did the opposite. We show the
generated samples from the generator in Figure 2. Here the first row corresponds to k = 1, and the
second row corresponds to k = 3. For each row, on the left are 100 generations from GAN, and
on the right are 100 generations from VGAN. We see that for both step numbers, VGAN is able to
generate visually appealing images that are difficult to distinguish from samples from the test set.
GAN, on the other hand, clearly fails to generate diversified, or realistically looking images when
k=1, but works much better when k=3. This can be easily understood from the variational point of
view, where a larger step k for generator makes the lower bound tighter, thus producing much stabler
models.

In order to further justify the observations, we train two linear classifiers with the second to the
top layer fully connected activation from the discriminator of both models (1204 dimensional), for
k = 1, 3; the results are shown in Table 1. We see that thanks to the bounded multi-modal energy,
VGAN is able to benefit from more generator updates. GAN, on the other hand, fails to learn
discriminative features, despite the appealing visual quality of generations when k=3. This also
verifies our hypothesis discussed in Section 5, as the uni-modal nature of GAN discourages it from
learning discriminative features at the top layer of its discriminator.

7.2 LEARNING WITH VCD

In the next set of experiments, we evaluate the variational contrastive divergence of our model. We
train our models on three datasets: MNIST, CIFAR-10, and SVHN with 50,000, 40,000, 60,000
training images, respectively. For each dataset, we train a VGAN with variational contrastive di-
vergence, while varying the weight ρ in Equation 10 from the range {0, 0.001, 0.01, 0.1, 1}. Note
that in the extreme case when ρ = 0, VGAN degrades to training an EBM with negative samples
obtained from an autoencoder. In the other extreme case when ρ = 1, the transition distribution
pz(x̃|x) is not constrained to be centered around x, and is roughly equal to a regular VGAN. We
set the dimensionality of h,m, z to be 256 for MNIST, and 2048 for CIFAR-10 and SVHN, and use
tanh as its nonlinearity (ReLU is used for all other layers except for the top layer of the autoencoder
with uses sigmoid). pz(z) is set to be a uniform distribution drawn from [−1, 1] which matches the

2Caution should be taken when attempting to apply batch normalization to the energy (discriminator). An
incorrect approach is to apply batch normalization to real data batch and generated batch separately, which
essentially makes E different for real and generated data in the energy function E(·).
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Figure 2: Samples from the GAN (left), and generations of VGAN (right), with the same architec-
ture. The first row corresponds to updating the generator one step at each iteration, and the second
row corresponds to updating the generator three steps at each iteration.

magnitudes of h. The training protocol is the same as that described in Section 7.1 except that we
use k=1 throughout this set for computational reasons.

We first study the effect of varying ρ by looking at the MNIST examples in Figure 3. The first
to third row corresponds to ρ = 0, 0.01, 1, respectively. The first to third column corresponds to
validation samples, reconstructions, and conditional generations, respectively. We see from the first
row (which equals to an unregularized autoencoder) that the generator fails to generate realistically
looking images. The third row is able to generate realistic images conditioned on a sample, but
there is no resemblance between the generation and the sample conditioned on. The second row, on
the other hand, is able to both reconstruct the input sample, and also generate realistically looking
samples with the transition operator, with notable differences between the input and generation. We
have also observed similar trends on SVHN and CIFAR-10 results in Figure 4, where only ρ = 0.01
is shown for the space concern.

We can also simulate a Markov Chain with the learned transition distribution, and we visualize
the results on MNIST and SVHN in Figure 5. We see that the learned transition distribution can
smoothly vary the style, type, color, and etc. of the digits. Also note that the transitions are not
restricted to the Euclidean neighborhood of the samples conditioned on, for example, changing of
colors should result in a large distance in the input space, which is our transition operator does not
have difficulty exploring.
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Finally, as a quantitative evaluation of the learned transition distribution, we attempt to use the
generated conditional samples as data augmentation on MNIST and SVHN 3. To be concrete, for
each dataset we train two additional CNNs enhanced with batch normalization, dropout out and
input Gaussian noising. We then minimize the follow loss function:

0.5 ∗ 1

N

N∑
i=1

L(xi,yi) + 0.5 ∗ 1

N

N∑
i=1

Ex̃i∼p(x̃|xi)L(x̃i,yi). (11)

For each dataset we train on the first 1000 training images, and use the validation set to select the best
model; we then report the test error of different configurations. The results are summarized in Table
2. We see that on both datasets, with a properly chosen ρ the generator is able to provide good gen-
erations to improve learning. On the other hand, with ρ = 0, which corresponds to sample from an
autoencoder, hurts performance. ρ = 1 completely messes up training as the generated samples are
not guaranteed to have the same label as the samples conditioned on. This shows that our transition
distribution is able to generate samples that are sufficiently different from training images to boost
the performance. Although these numbers are by no means state-of-the-art results, we consider them
significant as a proof of concept, because our baseline models are already heavily regularized with
dropout and feature noising, which can be considered as data agnostic data augmentation. Also note
that there are much space for improvements by leveraging the weights between the two terms in
Equation 11, tuning the architecture of the energy model, the generator and the classifier model.

Figure 3: Visualization of x, x̄, and x̃ for ρ = 0, 0.01, 1 on MNIST. The first to third row corre-
sponds to rho = 0, 0.01, 1, respectively. The first to third column corresponds to samples from the
validation set x, reconstructions of the samples x̄, and the generated samples x̃.

3we are not able to obtain reasonable results on CIFAR-10, as our EMB suffers from noticeable underfitting,
identified by the large reconstruction errors in Figure 4.
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Figure 4: Visualization of x, x̄, and x̃ for ρ = 0.01 on SVHN and CIFAR10. The first to third
column corresponds to samples from the validation set x, reconstructions of the samples x̄, and the
generated samples x̃.

Figure 5: Simulating a Markov Chain with pz(x̃|x). We show 30 and 28 images form the validation
set for MNIST and SVHN in the first row of each panel, respectively, followed by 9 Gibbs sampling
steps. Note the smooth transition of digit types, shapes, and/or colors.
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Table 2: Semisupevised learning error rates by using the learned transition distribution for data
augmentation.

model MNIST-1000 SVHN-1000
No augmentation 2.2 19
VCD (ρ = 0) 2.9 26
VCD (ρ = 0.001) 2.0 20
VCD (ρ = 0.01) 1.7 18
VCD (ρ = 0.1) 1.9 17
VCD (ρ = 1) 21 37

8 RELATED WORK

There has been a recent surge on improving GANs Radford et al. (2015); Salimans et al. (2016);
Zhao et al. (2016); Kim & Bengio (2016). Radford et al. (2015) proposes a set of techniques to sta-
blize GANs, including using batch normlization, dropping pooling layers, reduced learning rate, and
using strided convolutions, but there is little justification of the proposed designs. Our framework,
however, directly addresses two most important issues, the energy parametrization and the entropy
approximation, and allows the freedom of using the most conventional designs such as pooling and
ReLU. Salimans et al. (2016) proposes several tricks to enhance the stability. For example, the
proposed batch discrimination is in nature similar to our energy design, but with a much higher
complexity. Kim & Bengio (2016); Zhao et al. (2016) are the two most directly related efforts that
connect GANs with EBMs. However, our work is the first to the best of our knowledge to identify
the nature of the variational training of EBMs and to provide practical solutions in this view at the
same time.

There has also been a long standing interest in terms of EBMs and deep generative models in the
machine learning community, such as deep Boltzmann machines and deep belief networks Salakhut-
dinov & Hinton; Hinton et al. (2006). The contribution of our framework from this aspect is to pro-
pose a scalable training method to eliminate the need of MCMC sampling. Variational inference has
also been well studied in the literature, but most successfully in dealing with deep directed graphi-
cal models such as DBM Salakhutdinov & Hinton and variational autoencoder Kingma & Welling
(2013), where typically variational upper bounds are derived for NLL, instead of the lower bound
in our work. Minimizing the variational lower bound is obviously more difficult to work with, as if
the bound is not tight enough, there is no guarantee that the original NLL is minimized.

Our variational contrastive divergence is also related to GSNs Thibodeau-Laufer et al. (2014), as
they both model a transition probability. However, GSNs adopt a transition distribution of form
p(x|x̃), where x̃ is produced by adding simple noises to training samples. This essentially limits
the space of sampling limited to a Gaussian neighborhood of training examples, which our model
does not assume. VCD is also related to the adversarial autoencoder Makhzani et al. (2015) as they
both include an autoencoder module, but with fundamental differences: the use of autoencoder in
our work is part of and to improve the EBM/GAN, while Makhzani et al. (2015) on the other hand,
requires another GAN besides the autoencoder.

9 CONCLUSION

We have proposed VGANs, a family of methodologies to train deep EBMs with an auxiliary varia-
tional distribution. We have drawn connection between deep EBMs and GANs, and propose practi-
cal solutions to stabilizing training. We show that our proposed bounded multi-modal energy com-
bined with variational contrastive divergence works well on generating realistically looking images,
and recovering the data manifold by simulating a Markov Chain. We have also attempted to utilize
the learned transition distributions to perform data augmentation in the context of semisupervised
learning, and show consistent improvements.
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