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Abstract

Strokes are one of the leading causes of death and disability in the UK. There are
two main types of stroke: ischemic and hemorrhagic, with the majority of stroke
patients suffering from the former. During an ischemic stroke, parts of the brain
lose blood supply, and if not treated immediately, can lead to irreversible tissue
damage and even death. Ischemic lesions can be detected by diffusion weighted
magnetic resonance imaging (DWI), but localising and quantifying these lesions
can be a time consuming task for clinicians. Work has already been done in training
neural networks to segment these lesions, but these frameworks require a large
amount of manually segmented 3D images, which are very time consuming to
create. We instead propose to use past examinations of stroke patients which consist
of DWIs, corresponding radiological reports and diagnoses in order to develop a
learning framework capable of localising lesions. This is motivated by the fact
that the reports summarise the presence, type and location of the ischemic lesion
for each patient, and thereby provide more context than a single diagnostic label.
Acute lesions prediction is aided by an attention mechanism which implicitly learns
which regions within the DWI are most relevant to the classification.

1 Introduction

Patients that have suffered the symptoms of a stroke have a very short time frame in which to be
effectively treated; therefore, it is imperative that radiologists determine whether the cause of the
symptoms is due to an ischemic lesion, hemorrage, or neither. Computer aided diagnostic (CAD) sys-
tems are commonly used by radiologists to assist in the interpretation 2D and 3D radiological images:
from providing basic image processing, through to localisation and classification of pathologies. In
the case of 3D diffusion weighted magnetic resonance images (DWI) of stroke patients, having a
CAD system capable of flagging patients with potential lesions and extracting the relevant slices can
greatly reduce the processing time of individual exams, as well as reduce the time-to-treatment for
high-risk patients where time is critical.

A common approach to developing these systems is through supervised machine learning algorithms
and large amounts of annotated data. Unlike in computer vision, high-quality annotated data requires
the expertise of specialist radiologists, and it is incredibly time consuming to generate the amount
required for a good predictive model. On the other hand, past radiological exams and corresponding
free-text reports are available in large quantities and dispense with the need for manual labeling;
however, their use in supervised learning present a different set of challenges. For one, the free-text
reports detailed by clinicians are unstructured and may contain errors or omissions, and second, the
language used, and even the image features chosen for description, can vary amongst clinicians.
A single label can be extracted from the report by the presence/absence of a pathology, but would
not capture the detail and context of the pathology within the image based on the description. For
instance, a DWI clinician’s report would typically detail the presence, location, severity and any
visually descriptive features of the lesion.
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To this end we propose an interpretable, attention-guided lesions localisation model that takes
advantage of the descriptive clinical reports by training it to predict the pathology as well the brain
region within which it is presented, as outlined in the clinical reports. Our learning framework
consists of a recurrent attention model that implicitly learns the relevance of regions within individual
slices of a DWI to the final diagnosis.

To our knowledge, this is the first attempt to use raw radiological reports gathered from past examina-
tion in a multi-modal attention-guided acute lesion prediction framework that takes multiple slices
from a 3D image as input. In addition, this framework has been trained and tested on a real clinical
dataset with real potential clinical applications as part of computer aided diagnostic system.

2 Related work

2.1 Learning from multi-modal data

Learning from natural language descriptions of images is primarily used towards the goal of image
caption generation, the objective being complex scene understanding that goes beyond simple object
recognition. In computer vision, the most sophisticated models use deep learning. Typically, recurrent
neural networks (RNNs) are combined with convolutional neural networks (CNNs) and trained using
backpropagation techniques [1, 2, 3]. Such models and learning frameworks are, to a lesser extent,
being applied to medical images and their reports: from learning to automate medical subject heading
(MeSH R©) annotations for chest X-rays [4], to leveraging reports in a dual-attention framework to
improve features used for classifying histopathology images and to provide interpretability to the
classification [5, 6]. Creating these templated reports and manual heading annotations are both time
consuming tasks that can only be done by qualified radiologists, so the training data available is
usually limited. In addition, the learning frameworks are constrained to these templates, and so
cannot be easily transferred to other imaging modalities.

Another approach to learning from radiological images and clinical reports is text mining the reports
for diagnoses and assigning them as labels to the images to be used in classification [7] and weakly
supervised localisation learning frameworks [8]. In these examples, a series of text processing
techniques are applied to the reports for pathology extraction, including negation detection, and
tools such as DNorm [9] and MetaMap [10], which map key words to a standardised vocabulary of
clinical terms. However, other biological concepts in the reports, such as location, severity, visually
descriptive features of the pathology, and concepts present in patient history, are not taken advantage
of.

Here we propose to use pathologies and their locations extracted from raw textual reports from past
radiological exams for the following reasons: locations can aid in pathology localisation and provide
more context and interpretability to the output, we do not need to rely on radiologists for manual
annotation of images and are therefore able to acquire a large number of training images, and the
framework is not specific to an imaging modality.

2.2 Recurrent attention-guided supervision

Attention mechanisms have been successfully used in machine translation [11], image classification
[12] and image captioning [2] in order to learn to attend to parts of the input: words in text, image
regions, or both simultaneously. Attention is learned over image regions by computing a context
vector xt = φ ({ai}, {αi}) which is a dynamic representation of the relevant parts of the image
at time step t for each location i, where αi are the weights of each image feature vector ai. For
single, 2D image classification, these annotation vectors are taken from a lower convolutional layer
of a CNN. A recurrent neural network (RNN) processes these inputs at each time step, learning a
sequential internal representation of locations based on the prediction task. At each time step, the
weights αi are computer for each location i ∈ 1 · · ·L2 as per the formulation in [11] and [2]:

eti = MLP (ai,ht−1) αi =
exp (eti)∑
i exp (eti)

(1)

where MLP is multi-layer perceptron, ht−1 is the hidden state of the RNN at the previous time step.
The location i for the next time step can be found by sampling from this softmax (hard attention), or
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by computing the expectation over the feature slices (soft attention), the advantage of soft attention
being that it is differentiable. In attention-guided multilabel video classification tasks [13, 14], the
RNN is used to model the temporal dependencies of frames and attention is learnt over locations
within individual frames. We adopt a similar approach where an RNN is used to model the sequential
dependencies of slices within the DWI and trained to produce a multilabel output, where each label
pathology/region within the brain as extracted from the reports.

3 Method

A Long Short-Term Memory (LSTM) [15] RNN is used to model the sequence of input slices. Each
LSTM unit has three sigmoid gates to control the internal state: ‘input’, ‘output’ and ‘forget’. At each
time step, the gates control how much of the previous time steps is propagated through to determine
the output. For an input sequence X = {x1, . . . , xN}, the internal hidden state ht and memory state
ct are updated as follows:

it = σ(W (iy)yt−1 +W (ih)ht−1 +W (ix)xt)

ft = σ(W (fy)yt−1 +W (fh)ht−1 +W (fx)xt)

ot = σ(W (oy)yt−1 +W (oh)ht−1 +W (ox)xt)

ct = ft � ct−1 + it � tanh(W (cx)xt +W (ch)ht−1)

ht = ot � tanh(ct)

(2)

where W (cx) and W (ch) are the trainable weight parameters, and it, ot and ft are the input, output
and forget gates respectively.

For each 3D DWI, the annotations vectors of each slice are taken from the last convolution layer
of a CNN: a = {a1, . . . ,aN},ai ∈ RL×L×D. The weights can be thought of as the probability
distribution of the relevancy of each location to the output (diagnosis). The input at the next time step
xt is then the expectation of features at different locations:

xt =

L2∑
i

αiXi (3)

We train by learning to predict the output yt, which is a k-hot vector of labels summarising the report.
The complete model is illustrated in Figure 1.

4 Experiments

4.1 Data

The dataset used in this study consisted of 1226 DWI scans and corresponding radiological reports of
acute stroke patients, collected from local hospitals. All the images and reports were fully anonymised
and ethical approval was granted by Imperial College Joint Regulatory Office. The images varied
in sizes between (7–52) × (64 × 64) – (512 × 512), with slice thickness: 5mm, slice spacing:
1.0–1.5mm, and pixel size in x–y plane: 1.40 × 1.40 – 1.80 × 1.80. The scans were pre-processed
according to the steps outlined in [16]: images were resampled into uniform pixel size of 1.6 ×
1.6mm, and pixel intensities were normalised to zero mean and unit variance. The images were then
re-scaled and padded to 128 × 128.

Each report was parsed by a clinician to extract 1–2 sentences summarising the presence/absence
of the pathology and its location within the brain. These filtered reports contained between 1 and
78 words, with an average of 16.7 and standard deviation 9.8. In addition, each exam is assigned
a diagnosis label as part of hospital protocol: 54% were diagnosed ‘no acute infarct’, 46% were
diagnosed ‘acute infarct’. The remaining, which made up a total of <1% and included diagnoses such
as ‘unknown’, ‘haematoma’, ‘tumour’, were removed for the purpose of training, leaving a total of
1177 exams.
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Figure 1: Attention-guided clinical report generation model.

Table 1: Top 20 classes of brain regions after re-assignment based on a hierarchical ontology.
Brain region freq. Brain region freq.

frontal lobe 100 left cerebellar hemisphere 17
basal ganglia 99 cerebellum 15
parietal lobe 74 centrum semiovale 13
corona radiata 72 posterior cerebral artery 12
middle cerebral artery 68 medulla oblongata 11
occipital lobe 45 midbrain 11
pons 43 superior cerebellar artery 11
insular cortex 41 perirolandic region 9
thalamus 39 thalamocapsular region 8
temporal lobe 36 right cerebellar hemisphere 8

4.2 Brain region extraction

A combination of manual and automated annotation was necessary in order to extract terms relating
to brain regions from the clinical reports. A hierarchical brain region ontology available from the
Allen Institute [17] was used to manually extract the terms, and then automatically assign these terms
to larger, parent regions in the hierarchy. For instance, ‘left middle temporal gyrus’ is located within,
and therefore reassigned to, the ‘temporal lobe’. Ones that occurred less than 3 times were excluded.
In this way, 356 unique regions were reduced to 42. The 20 most common regions and their frequency
of appearance are listed in Table 1. The diagnosis (binary presence/absence of acute infarct) and each
region is treated as a class, and each report is thus encoded as a 43-hot vector. An example of a DWI
central slice, its corresponding clinical report, manually extracted regions and re-assigned region
labels is illustrated in Figure 2.

4.3 Model and training parameters

We evaluate the effectiveness of the attention-guided model by comparing it to basic fine-tuning
of VGG-16 [18] and GoogleNet [19], pretrained on the ImageNet [20] dataset, for multilabel
classification. For the fine-tuning, the weights of the CNN are held fixed up to the last average pooling
layer (R4096 for VGG-16, R1024 for GoogleNet), compared to the last convolutional layer of the
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Clinical Report: There is a small focus of acute ischaemia in the right corona radiate, and a
tiny focal cortical infarct in the left middle temporal gyrus.

Clinical Diagnosis: Acute infarct

Manually Extracted Regions: right corona radiate, left middle temporal gyrus

Report Labels: acute_infarct, corona_radiata, temporal_lobe.

Figure 2: Central slice of sample DWI exam with corresponding clinical report, clinical diagnosis,
manually extracted brain regions and labels.

attention framework (R14×14×512 for VGG-16). Since lesions may be located in any slice(s) within
the DWI, we first run fine-tuning by taking the central slice as input, and then compare that to taking
a max-aggregate of pooling features across all slices.

The VGG-16 and GoogleNet models take a fixed-size input of 224 × 224 × 3, each slice is padded,
and duplicated. The dimension of the hidden state of the LSTM is set to R512. The LSTM is
unrolled up to 19 time steps for the average number of slices. Images with fewer than 19 slices were
re-distributed and padded with intervening slices. The LSTM model was trained by minimising the
cross-entropy loss:

L(S, I) = −
K∑
t=0

C∑
c=0

yt,c log ŷt,c + λ
∑
i

W 2
i (4)

where yt is the k-hot vector of labels at time step t and N is the LSTM sequence length, λ is the
weight decay coefficient, and W are all the model parameters. Exams were split into 80%-10%-10%
for training, testing and validation respectively. At training time, loss is minimised over the training
set using stochastic gradient descent (batch size 16, learning rate 1e-5, 10 epochs), and parameters
are updated using Adam [21] optimisation.

5 Results

To test the effectiveness of learning attention over image slices, we evaluate the mean average
accuracy, precision and recall as outlined in [22], and Hamming Loss as outlined in [23], comparing
the results to standard VGG-16 and GoogleNet models trained without attention. Table 5 summarises
the quantitative results. We report the accuracy of the ‘infarct’ class separately as it is ultimately the
one that radiologists are interested in, and we also report the mean average accuracy, precision and
recall (mAA, mAP, mAR) and Hamming Loss (HL) of all the classes.

Taking the central slice as input and fine-tuning performs better than taking all of the slices and
max-aggregating the features. This is as expected since lesions will only be present in a small number
of slices, and taking all the slices as inputs introduces a lot of noise. On the other hand, taking the
central slice is the more naive approach: a lesion reported in the text may not be present in the central
slice. Taking an expectation over all the locations across the slices provides a compromise: the entire
image is explored, but the input is more localised at each time step. The accuracy of the ‘infarct’ class
has improved over the standard models, and in addition, an improvement is seen in mean average
precision, which is arguably more important in the medical domain as we want to identify all patients
with high-risk lesions (for further examination).

5.1 Qualitative assessment of attention over image slices

Figure 3 displays a number of sample DWI images that have been classified by the model as containing
an ‘acute infarct’. They are presented alongside their corresponding true and predicted labels, as well
as attention maps overlayed over each slice to give a sense of which parts of the image slices were
used to determine the output labels. The attention maps inform us as to whether the model is looking
over the correct areas of the brain, and whether it is ‘exploring’ the full 3D image in order to make
a classification. We can see that the model is looking at a combination of various localised regions
within the slices of the DWI in order to make the classification, focusing particularly on regions of
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Table 2: Classification accuracy of visual and textual recurrent attention models. The attention
model is compared to VGG-16 and GoogleNet pretrained on ImageNet and fine-tuned for multilabel
classification. The accuracy of the ‘infarct’ class is reported separately as well as part of the mean
average accuracy, precision and recall (mAA, mAP, mAR) and Hamming Loss (HL) of all classes.

Acc. ‘infarct’ (%) mAA (%) mAP (%) mAR (%) HL (%)

GoogleNet, central slice 62.7 97.5 26.7 14.0 2.5
VGG-16, central slice 59.3 97.3 29.3 17.1 2.7
VGG-16, max-aggregate 55.1 97.9 24.6 14.2 3.1
VGG-16+attention 68.0 97.7 39.0 19.6 2.2

high contrast. Acute stroke lesions appear as regions of hyperintensity in DWI images, however, we
would need the expertise of radiologists to make a more quantitative assessment.

6 Conclusion

We present a first attempt at a multi-modal lesion detection framework that uses an attention mecha-
nism in order to better learn to predict the presence of lesions within 3D DWI, with the help of brain
region locations extracted from textual reports. We show that learning implicit attention over the 3D
image for multilabel classification results in better overall performance when compared to standard
approaches of fine-tuning. The next steps are to use other visually descriptive entities in the reports,
such as ‘several small foci’, ‘large volume’ as these provide further context to the pathology, and can
be used to not only improve the attention model, but also as part of a CAD system that can output a
structured report at the end.

Acknowledgments.

This work is supported by the NIHR Grant i4i: Decision-assist software for management of acute
ischemic stroke using brain-imaging machine-learning (Ref: II-LA-0814-20007).

References
[1] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural

image caption generator. In Computer Vision and Pattern Recognition (CVPR), 2015 IEEE
Conference on, pages 3156–3164. IEEE, 2015.

[2] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov,
Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with
visual attention. In International Conference on Machine Learning, pages 2048–2057, 2015.

[3] Justin Johnson, Andrej Karpathy, and Li Fei-Fei. Densecap: Fully convolutional localization
networks for dense captioning. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4565–4574, 2016.

[4] Hoo-Chang Shin, Kirk Roberts, Le Lu, Dina Demner-Fushman, Jianhua Yao, and Ronald M
Summers. Learning to read chest x-rays: Recurrent neural cascade model for automated
image annotation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2497–2506, 2016.

[5] Zizhao Zhang, Yuanpu Xie, Fuyong Xing, Mason McGough, and Lin Yang. Mdnet: A
semantically and visually interpretable medical image diagnosis network. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 6428–6436, 2017.

[6] Zizhao Zhang, Pingjun Chen, Manish Sapkota, and Lin Yang. Tandemnet: Distilling knowledge
from medical images using diagnostic reports as optional semantic references. In International
Conference on Medical Image Computing and Computer-Assisted Intervention, pages 320–328.
Springer, 2017.

6



Original: acute infarct, basal ganglia
Predicted: acute infarct

Original: acute infarct, 'mca/pca_borderzone'
Predicted: acute infarct

Original: no acute infarct
Predicted: acute infarct

Figure 3: Uniformly samples slices from input DWI exams with attention maps overlayed over the
slices. The original and predicted labels are displayed beneath each sample.
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