
Under review as a conference paper at ICLR 2018

A CLOSER LOOK AT THE WORD ANALOGY PROBLEM

Anonymous authors
Paper under double-blind review

ABSTRACT

Although word analogy problems have become a standard tool for evaluating word
vectors, little is known about why word vectors are so good at solving these prob-
lems. In this paper, I attempt to further our understanding of the subject, by devel-
oping a simple, but highly accurate generative approach to solve the word analogy
problem for the case when all terms involved in the problem are nouns. My ap-
proach solves the word analogy problem using a small fraction of the data that
is typically used to train word vectors. My results demonstrate the ambiguities
associated with learning the relationship between a word pair, and the role of the
training dataset in determining the relationship which gets most highlighted. Fur-
thermore, my results show that the ability of a model to accurately solve the word
analogy problem may not be indicative of a model’s ability to learn the relation-
ship between a word pair the way a human does.

1 INTRODUCTION

Word vectors constructed using Word2vec (Mikolov et al. (2013a), Mikolov et al. (2013c)) and
Glove (Pennington et al. (2014)) are central to the success of several state of the art models in
natural language processing (Kim (2014), Le & Mikolov (2014), Mikolov et al. (2013b), Vinyals
et al. (2015)). These vectors are low dimensional vector representations of words that accurately
capture the semantic and syntactic information about the word in a document.

The ability of these vectors to encode language is best illustrated by their efficiency at solving word
analogy problems. The problem involves predicting a word, D, which completes analogies of the
form ‘A:B :: C:D’. For example, if the phrase is ‘’King:Queen :: Man:D’, then the appropriate value
of D is Woman. Word2vec solves these problems by observing that the word vectors for A, B, C and
D satisfy the equation V ec(D) ≈ V ec(C) + V ec(B)− V ec(A) in several cases.

Although this equation accurately resolves the word analogy for a wide variety of semantic and
syntactic problems, the precise dynamics underlying this equation are largely unknown. Part of the
difficulty in understanding the dynamics is that word vectors are essentially ‘black boxes’ which
lack interpretability. This difficulty has been overcome in large part due to the systematic analyses
of Levy, Goldberg and colleagues, who have derived connections between word vectors and the
more human-interpretable count based approach of representing words. They show that 1) there
are mathematical equivalences between Word2vec and the count based approach (Levy & Goldberg
(2014b)), 2) that the count based approach can produce results comparable to Word2vec on word
analogy problems (Levy & Goldberg (2014a)) and more generally, 3) that the count based approach
can perform as well as Word2vec on most NLP tasks when the hyper-parameters in the model
are properly tuned (Levy et al. (2015). Their results (see section 9 in Levy & Goldberg (2014a))
demonstrate that V ec(B) − V ec(A) is likely capturing the ‘common information’ between A and
B, and this information is somehow being ‘transferred’ on to C to compute D.

Still the question remains, how is this transference process taking place? The answer would provide
insight into the topology of word vectors and would help us to identify gaps in our understanding
of word vectors. In this paper, I attempt to gain insights into the transference process by building
a simple generative algorithm for solving semantic word analogy problems in the case where A, B,
C and D are nouns. My algorithm works in two steps: In the first step, I compute a list of nouns
that likely represent the information that is common to both A and B. In the second step, I impose
the information about the nouns obtained in the first step on to C to compute D. Both steps of the
algorithm work only on word counts; therefore, it is possible to precisely understand how and why
D is generated in every word analogy question.

1

Under review as a conference paper at ICLR 2018

Despite the simplicity of my approach, the algorithm is able to produce results comparable to
Word2vec on the semantic word analogy questions, even using a very small dataset. My study
reveals insights into why word vectors solve certain classes of word analogy problems much bet-
ter than others. I show that there is no universal interpretation of the information contained in
V ec(B) − V ec(A) because the ‘common information’ between A and B is strongly dependent on
the training dataset. My results reveal that a machine may not be ‘learning’ the relationship between
a pair of words the way a human does, even when it accurately solves an analogy problem.

2 PROBLEM SETUP

Problem Statement. In this paper, I analyze a variant of the semantic word analogy problem
studied in Mikolov et al. (2013c). The problem can be stated as follows: given 3 nouns, A, B and
C, appearing in the text, T , find a fourth noun D such that the semantic relationship (R) between
A and B is the same as the semantic relationship between C and D. Here, R describes an ‘is a’
relationship; for instance, if A = Beijing and B = China, then R is likely to be capital since Beijing
is a capital of China. Typically, the relationship between A and B will not be unique; in the example
above, we could also have said Beijing is a city in China, or Beijing is a center of tourism in China.

The dataset: For my analysis, the text, T , comprises the first billion characters from Wikipedia. This
dataset contains less than 10 % of the information present in Wikipedia. The data can be downloaded
from http://mattmahoney.net/dc/enwik9.zip and pre-processed using wikiextractor
detailed in http://medialab.di.unipi.it/wiki/Wikipedia_Extractor. The raw
data is divided into several unrelated chapters for e.g., there is a chapter on ‘Geography of Angola’,
‘Mouthwash Antiseptic’ etc. As part of the pre-processing I remove all those chapters containing
less than 5 words.

Analysis questions: I test the efficacy of my proposed solution using a subset of the seman-
tic word analogy problems compiled by Mikolov et al. (2013c) that is relevant to this study.
The test set used here comprise 8,363 problems 1divided into 4 categories: common capi-
tals (e.g., Athens:Greece::Oslo:Norway), all capitals (e.g., Vienna:Austria::Bangkok:Thailand),
currencies (e.g., Argentina:peso::Hungary: forint) and cities in states of the U.S (e.g., Dal-
las:Texas::Henderson:Nevada). The original dataset comprises questions in a fifth category of
gender inflections (e.g., grandfather:grandmother::father:mother) which is left out of the analysis
because many of the problems involve pronouns (e.g., his:her::man:woman).

Word2vec. I compare the results produced by my method with those obtained using Word2vec.
Word2vec derives low dimensional vector representations for words such that ‘similar’ words oc-
cupy ‘similar’ regions in a vector space. Given a sequence of words w1, w2 . . . wT , Word2vec
maximizes the log probability

J = − 1

T

t=T∑
t=1

∑
−w≤j≤w

log p(wt+j |wt), (1)

where w is the window size, and p(wt+j |wt) is a function of the word vectors for wt+j and wt

respectively; for detailed insights into the functioning of Word2vec see Goldberg & Levy (2014) and
Rong (2014). Given the word vectors V ec(A), V ec(B) and V ec(C) for A, B and C respectively,
Word2vec derives D as the word whose word vector best satisfies the relationship

V ec(D) ≈ V ec(B)− V ec(A) + V ec(C) (2)

The critical implicit assumption made in Equation (1) is that the w words surrounding wi on either
side, namely [wi−w, wi−w+1, . . . wi−1, wi+1 . . . wi+w−1, wi+w] contains the most semantically and
syntactically relevant words to wi. In the next section, I will explain how a slight generalization of
this result forms the basis for my algorithm.

1The problems are the first 8,367 lines in https://github.com/nicholas-leonard/
word2vec/blob/master/questions-words.txt

2

http://mattmahoney.net/dc/enwik9.zip
http://medialab.di.unipi.it/wiki/Wikipedia_Extractor
https://github.com/nicholas-leonard/word2vec/blob/master/questions-words.txt
https://github.com/nicholas-leonard/word2vec/blob/master/questions-words.txt

Under review as a conference paper at ICLR 2018

3 ALGORITHMIC DETAILS

The goal is to solve the word analogy problem using a simple, generative window based approach.
I begin my analysis by noting that all terms relevant in the analysis (A, B, C, D, and R) are nouns.
Accordingly, I construct a new document, T ′, comprising only the nouns appearing in T , stored in
the order in which they appear2

For convenience of notation, I will assume that there are H nouns in T ′, and the ith noun appearing
in T ′ is represented as T ′i (i.e., T ′[i] = T ′i). Since the same noun likely appear multiple times in the
text, I use the set Q(X) = {i|T ′i = X} to indicate the locations of the noun, X in T ′.

The key idea in Word2vec is that the words surrounding a given word in the text contain rich se-
mantic information about that word. More generally, we expect the nouns surrounding a given noun
to contain rich semantic information about the noun. This implies that for certain values of w, the
context of T ′i defined as

F (T ′i , w) = [T ′i−w, T
′
i−w+1 . . . T

′
i−2, T

′
i−1, T

′
i+1, T

′
i+2 . . . T

′
i+w−1, T

′
i+w]

= [y|y ∈ T ′d(y, T ′i) ≤ w]
(3)

will contain nouns that are semantically related to T ′i , for all 0 ≤ i ≤ H . In equation (3), d(y, T ′i)
is a metric distance function describing the number of nouns separating y and T ′i in T ′, and w is the
window size. Clearly, equation (3) is likely to hold for small values of w, and not likely to hold for
very large values of w. Accordingly, I make the following assumption:
Assumption 1. There exists a maximal window size, w∗ = 2s, such that the nouns present in
F (T ′i , w

∗) are semantically related to T ′i for all 0 ≤ i ≤ H .

Assumption 1 states that T ′i is semantically related to T ′j if d(T ′i , T
′
j) ≤ w∗, and not semantically

related to T ′j if d(T ′i , T
′
j) > w∗.

The results thus far describe contexts around one noun. We are interested in nouns that are semanti-
cally related to 2 nouns. Therefore, I define

F̃ (i, j, w) = F (T ′i , w) + F (T ′j , w)|i < j ≤ i+ w

= [T ′i−w, T
′
i−w+1, . . . T

′
i−1, T

′
i , T
′
i+1 . . . T

′
j−1, T

′
j , T
′
j+1 . . . T

′
j+w], (4)

which describes the combined context of F (T ′i , w) and F (T ′j , w), when F (T ′i , w) and F (T ′j , w)
overlap i.e., when i < j ≤ i+ w. For any 2 nouns, A and B, and the set, S(A,B,w) defined as

S(A,B,w) =
{
F̃ (i, j, w)|i < j ≤ i+ w, (i, j) ∈ (Q(A)×Q(B)) ∪ (Q(B)×Q(A))

}
, (5)

we have the following result:
Proposition 1. If assumption 1 holds true, then all the nouns present in W ∈ S(A,B, s) will be
semantically related to both A and B.

Proof. For every noun N ∈W we have

d(N,B) ≤ d(A,B) + s ≤ 2s = w∗, (6)

i.e., N belongs to one of the contexts of B and is therefore, semantically related to B. Similarly, it
can be shown that N is semantically related to A.

Proposition 1 describes the ideal scenario; realistically, we do not expect assumption 1 to hold
exactly and therefore, we expect W ∈ S(A,B, s) to contain a higher frequency of nouns that are
relevant to both A and B, and a lower frequency of nouns that are relevant to only either A or B. In
particular, the higher the frequency of the noun appearing in the list

LC = [Y |Y ∈W,W ∈ S(A,B, s), Y 6= A, Y 6= B], (7)

2 This is trivially achieved using any standard Part of Speech tagger. My analysis uses the one provided by
spaCy (https://github.com/explosion/spaCy)

3

https://github.com/explosion/spaCy

Under review as a conference paper at ICLR 2018

Table 1: Efficiency at solving the word analogy problem. Comparing the efficacy of the current
approach with that obtained using word vectors trained on 1) the same dataset and 2) on the entire
Wikipedia 2014 corpus, which contains more than 10 times the data. Performance on the Wikipedia
2014 dataset are taken from Levy & Goldberg (2014a)

.

Category
current

approach
Word2vec

(same dataset)
Word2vec

(full wiki 2014)

common capitals 81.59 % 63.44 % 90.51 %
all capitals 78.3 % 23.80 % 77.61 %
currencies 0.7 % 6.91 % 14.55 %

city in state 59.3 % 23.79 % 56.95 %

the more likely it describes the relationship between A and B. Since the relationship between A and
B need not be unique, I assume that the set, NAB , comprising the k most frequent nouns in L are
equally likely candidates for the relationship between A and B. Algorithm 1 shows how NAB can
be derived from A, B and k, for a given value of s.

Algorithm 1 Algorithm for finding Candidate NAB

1: procedure CANDIDATE_N_VALUES(T ′, A,B, k)
2: Set LC to empty List
3: for every (i, j) in (Q(A)×Q(B)) ∪ (Q(B)×Q(A)) do
4: if F (T ′i , s) overlaps with F (T ′j , s) and j > i then
5: F̃ (i, j, s) = F (T ′i , s) + F (T ′j , s) . Equation (4)
6: LC ← LC + [w for w in F̃ (i, j, s) if (w 6= A and w 6= B)] . Equation (7)
7: return MostCommon(LC , k) . NAB contains the k most frequent nouns in LC

Once NAB is computed using algorithm 1, we can derive D from C as the most frequently appearing
noun in the list

LD = [Y |Y ∈W,W ∈ S(C,X, s), X ∈ NAB , Y 6= C]; (8)

details for the computation of D are provided in algorithm 2.

Algorithm 2 Algorithm for finding Candidate D values

1: procedure CANDIDATE_N_VALUES(T ′,NAB , C)
2: Set LD to empty List
3: for every X in NAB do
4: for every (i, j) in (Q(C)×Q(X)) ∪ (Q(X)×Q(C)) do
5: if F (T ′i , s) overlaps with F (T ′j , s) and j > i then
6: F̃ (i, j, s) = F (T ′i , s) + F (T ′j , s) . Equation (4)
7: LD ← LD + [w for w in F̃ (i, j, s) if (w 6= C and w 6= X)] . Equation (8)
8: return MostCommon(LD, 1) . D is the most frequent noun in LD

Algorithms 1 and 2 described above have two hyper-parameters: s and k. A grid search on the
parameter values suggests that the improvement of the approach begins to saturate around s = 10
and k = 20; these are the parameter values used in the remainder of the analysis unless specified
otherwise.

4 RESULTS

Table 1 shows that the approach described in this paper does better than Word2vec on 3 out of 4
categories when the word vectors are trained using the same dataset. The current approach beats the
results obtained by Word2vec in 2 out of 4 categories even when the word vectors are trained on the

4

Under review as a conference paper at ICLR 2018

entire Wikipedia 2014 corpus, which has more than 10 times the amount of data used in the current
analysis.

Algorithm 1 assumes that the k nouns in NAB are equally likely candidates for the relationship
between A and B. While this assumption is a good starting point, it’s not precise enough. Table 2
shows that the more frequently co-occurring nouns with A and B capture more information about the
relationship between A and B than the less frequently co-occurring nouns. This suggests that 1) word
vectors are likely capturing information about the nouns co-occurring with A and B, weighted by
their frequency of occurrence with A and B, and 2) that the most frequently co-occurring noun with
A and B likely represents the Maximum Likelihood Estimate (MLE) of the relationship between A
and B. Table 3 shows the 5 most frequently observed MLE values for questions in each of the 4
categories, listed by their frequency of occurrence. Although most of the MLE values in the table
make intuitive sense, some (particularly the MLEs for ‘common capitals’) do not; I will revisit this
point later.

The remainder of my analysis proceeds in two parts: In the first step, I discuss some of the problems
associated with estimating word vectors for infrequently occurring words in the dataset and in the
second step, I describe problems one might encounter with word vectors corresponding to frequently
occurring words in the dataset.

LOW FREQUENCY WORDS

There is substantial variation in the prediction ability between the categories; both the current ap-
proach and Word2vec perform worse predicting currencies than the other 3 categories. This is
probably because currencies appear far less frequently in the training dataset as compared to nouns
in the other categories as demonstrated in Table 4. The lack of training data likely results in poor es-
timates of the relationship between A and B and accordingly, poor estimates of D. Similar problems
will likely by observed with word analogy problems involving words appearing less frequently than
the currencies in the current dataset.

Increasing the size of the dataset will resolve some of these issues relating to data scarcity, but to
what extent? Will word vectors corresponding to most of the words trained on a larger dataset be
accurate? To answer this question, consider the word vectors obtained by training Word2vec on the
entire Wikipedia corpus, which comprises approximately 1.5 billion tokens, of which approximately
5.8 million are unique. The most popular token is the which appears 86 million times. 3. From
Zipf’s law, we expect the frequency of occurrence of a particular word in the text to be inversely
proportional to its frequency rank. Therefore, a word with a frequency rank of 1 million will appear
approximately 86 times. Since Word2vec is fitting a 200 dimensional vector corresponding to this
word using data from 86 points, I expect the estimate of the vector to be unreliable. This suggests
that word vectors corresponding to at least 80 % of the unique words trained on the entire Wikipedia
corpus will be unreliable.

In general, any dataset will contain some percentage of low frequency words for which accurate
word vectors cannot be adequately estimated. Care should be taken to filter these out as is done in
Pennington et al. (2014).

3http://imonad.com/seo/wikipedia-word-frequency-list/

Table 2: Frequency of co-occurence matters. Accuracy of the current approach at solving the word
analogy problem for different values of k. Increasing the value of k produces diminishing returns
beyond k = 5; the improvements on going from k = 10 to k = 20 are nominal.

Category k = 1 k = 5 k = 10 k = 20 (full model)
common capitals 28.12 % 70.31 % 80.99 % 81.59 %

all capitals 26.09 % 61.32 % 71.13 % 78.31 %
currencies 9.7% 4.2% 1.87% 0.7%

city in state 27.6 % 46.99 % 55.78 % 59.3 %

5

http://imonad.com/seo/wikipedia-word-frequency-list/

Under review as a conference paper at ICLR 2018

Table 3: Category wise MLEs The 5 most frequently appearing MLEs for the value D in each of the
categories, listed by their frequency of occurrence. The MLEs for ‘common capitals’ demonstrates
that a model may not be ‘learning’ the relationship between a pair of words the way a human does.

Category Frequently observed MLEs
common capitals city, war, de, republic, county

all capitals city, capital, war, university, population
currencies currency, south, dollar, nagorno, exchange

city in state city, county, university, state, dallas

HIGH FREQUENCY WORDS

In the ‘common capitals’ category, the countries and capitals being considered appear with high
frequencies (see table 4), and are therefore not plagued by the data scarcity issues described in
the previous section. Furthermore, the algorithm described in this paper is able to solve the word
analogy problem in this category with a high accuracy as shown in table 1. These facts together seem
to imply that the approach is learning the relationship capital accurately from the data. However, as
shown in table 3, capital is not even in the top 5 most likely candidates for the relationship between
A and B. This suggests that a model may not be ‘learning’ the relationship between a pair of words
the way a human does, even when it accurately solves the word analogy problem.

To further elaborate on this point, consider figure 2 of Mikolov et al. (2013c), wherein the authors
demonstrate that the projection of the vector describing the relationship between a country and its
capital has nearly the same orientation for ten (country,capital) pairs. The authors attribute this
fixed orientation to the ability of word vectors to learn the ‘is capital’ relationship without any
supervised effort. Table 5 indicates that word vectors might actually be learning the relationship
from information about wars afflicting cities in different countries. 4 Since the attacks in a war are
generally targeted at the capital city, word vectors appear to be learning this relationship simply as a
result of correlations. These results show that the context that a model uses to infer the relationship
between a pair words may not match the context that humans typically use to infer the relationship
between the same pair of words. The ambiguity in context can lead to some paradoxical properties
of word relationships (see table 6) such as:

• Pluralization can change the relationship between words. The relationship for the pair
Bear:Lion derives from the fact that they are both animals, but the relationship for the pair
Bears:Lions derives from the fact that they are both names of sports teams. A corollary
of this result is that the results of word analogy questions need not be symmetric; for the
word analogy question Bears:Lions::Bear:D the context is ‘sports game’, but for the word
analogy question Bear:Lion::Bears:D the context is ‘animal’.

4Most of the relationships seem to derive from World War II

Table 4: Median counts Median number of times A and B appear in the dataset for each of the
categories. The median counts for the frequencies are far less than that for any other group.

Category
Median

value of A
Median

value of B

common capitals
827

(A = Capital City)
5344

(B = Country)

all capitals
146

(A = Capital City)
753

(B = Country)

currencies
2709

(A = Country)
47

(B = Currency)

city in state
549

(A = City)
5310

(B = State)

6

Under review as a conference paper at ICLR 2018

Table 5: Derived relationship between countries and their capitals. The five most commonly co-
occurring nouns with countries and their capitals. The countries chosen in this list are the same as
those considered in figure 2 of Mikolov et al. (2013c). The model appears to be learning information
about the wars that affected the capital city of these countries.

A B NAB

China Beijing republic, people, government, captial, taiwan
Russia Moscow city, petersburg, war, time, st.
Japan Tokyo war, world, city, airport, university

Turkey Ankara city, republic, treaty, captial, war
Poland Warsaw war, city, army, capital, germany

Germany Berlin west, east, war, city, republic
Italy Rome city, pope, war, who, bc

Greece Athens city, bc, games, war, olympics
Spain Madrid de, franco, years, barcelona, war

Portugal Lisbon king, city, spain, capital, john

• There can be ambiguity in the relationship, even within the same context. Bears :Lions
could be referring to the famed rivalry between the Chicago Bears and the Detroit Lions
in the National Football League5. Bears:Lions could also be referring to the merger of the
Brisbane Bears and the Fitzroy Lions to form the Brisbane Lions in the Australian Football
League6. Here, there is ambiguity in the relationship despite the fact that in both cases,
the nouns, Bears and Lions are being used in the context of sports teams. The relationship
which gets over-emphasized in the word vector is strictly a function of the data being used
to train the word vectors.
• Inferences drawn from word analogies may produce counter-intuitive results. The

relationships for the Lions:Giants and Dolphins:Giants pairs are deriving from the fact
that the Lions, the Dolphins, and the Giants are teams in the National Football League.
However, the relationship for the Lions:Dolphins pair is deriving from the fact that they are
both animals.

5 WHAT IS WORD2VEC DOING?

The generative approach described above makes a critical assumption that is not required by
Word2vec – that the answer to the word analogy problem being posed will always be a noun. In-
deed, Word2vec produces high accuracies even on questions where the answers to the word analogy
questions are not nouns, by ‘learning’ the part of speech required by the outcome.

I believe that this learning takes place because word vectors corresponding to words having the
same Part of Speech (POS) tag lie in the same subspace of the word vector space. The word analogy
problem relies on the fact that

V ec(B)− V ec(A) ≈ V ec(D)− V ec(C). (9)

5https://en.wikipedia.org/wiki/Bears%E2%80%93Lions_rivalry
6https://en.wikipedia.org/wiki/Brisbane_Lions

Table 6: Word relationship ambiguities Ambiguities associated with determining the relationship
between a word pair.

A B NAB

bear lion animals, grizzly, food
bears lions week, game, brisbane
lions dolphins sea, whales, seals

dolphins giants bowl, miami, super
lions giants games, detroit, season

7

https://en.wikipedia.org/wiki/Bears%E2%80%93Lions_rivalry
https://en.wikipedia.org/wiki/Brisbane_Lions

Under review as a conference paper at ICLR 2018

Table 7: Phrase information and common information Relationship between A and B when con-
sidered as part of a phrase (algorithm 3), and as two separate words (algorithm 1). The cases where
the information provided by the two algorithms disagree are marked in red.

A B Phrase analysis (algorithm 3) Common information (algorithm 1)
Larry Page google, sergey, university wikipedia, google, university

Canada Air airport, airlines, airline airlines, airport, service
Baltimore Sun u.s., negroponte, newspaper times, morning, washington
Montreal Canadiens team, hockey, nhl cup, team, nhl
Stephen King novel, story, series henry, who, death
Pacific Southwest airline, service, us population, races, density

Therefore, if a POS subspace did exist, V ec(D) would belong to Span(V ec(A), V ec(B), V ec(C)),
and D would be forced to have the same POS tag as either A or B or C. For the word analogy
questions considered in the previous section, A, B and C are all nouns, and therefore I would expect
D to also be a noun, as is the case.

WHAT IS VEC(B) -VEC(A) CAPTURING?

The idea behind equation (9) is that V ec(B)− V ec(A) is capturing information that is common to
both A and B, and the information that is common to both A and B is also common to C and D. If
a POS subspace does exist, then for any 2 nouns, A and B, the ‘common information’ (described
by V ec(B)− V ec(A)) will lie in the noun subspace of the vector space, and can be expressed as a
linear combination of the information in other nouns in the text; this is the possibly why algorithm
1 is able to express the common information between 2 nouns solely in terms of other nouns.

The question remains, what does ‘common information’ mean? Is Canada Air the common infor-
mation between Canada and Air? Our intuitive guess would be no, as is the claim made in Mikolov
et al. (2013c), since there is nothing ‘airline’ about Canada. To test their claim, I construct algorithm
3 to derive the most likely interpretation of a two-word phrase ‘A B’. Algorithm 3 is a minor variant
of algorithm 1, which finds all nouns co-occurring with A and B under the stricter constraint that B
is always the noun succeeding A. If the claim in Mikolov et al. (2013c) is true, we would expect the
information captured by algorithm 1 to be drastically different from that captured by algorithm 3.

Algorithm 3 Nouns closest to two word phrase ‘A B’

1: procedure CANDIDATE_N_VALUES(T ′, A,B)
2: Set LC to empty List
3: for every i in Q(A) do
4: if T ′i+1 == B then . Stricter conditions than algorithm 1
5: F̃ (i, j, s) = F (T ′i , s) + F (T ′j , s) . Equation (4)
6: LC ← LC + [w for w in F̃ (i, j, s) if (w 6= A and w 6= B)] . Equation (7)
7: return MostCommon(LC , k) . NAB contains the k most frequent nouns in LC

This is not what happens. Table 7 shows that both, algorithm 1 and algorithm 3 capture information
about Canada Air being an airline equally well. But, when considering the common information be-
tween the words Pacific and Southwest , algorithm 3 captures information about the airline whereas
algorithm 1 captures information about the region. Similar contradictions are observed when con-
sidering names of famous people – for both algorithms, the common information between Larry and
Page is Google. But, with the words Stephen and King, algorithm 3 captures information about the
novelist while algorithm 1 captures information about history.

These results suggest that the notion of ‘common information’ is very subjective, and is strongly
influenced by the data used to train the word vectors.

8

Under review as a conference paper at ICLR 2018

6 CONCLUSION

Although problems have become a mainstay in illustrating the efficacy of word vectors, little is
known about the dynamics underlying the solution. In this paper, I attempt to improve our under-
standing by providing a simple generative approach to solve the problem for the case when A, B, C
and D are nouns. My approach proceeds by first estimating the relationship between the (A, B) pair,
and then transferring this relationship to C to compute D. My results demonstrates the high ambi-
guity associated with estimating the relationship between a word pair, and the role of the training
dataset in determining the relationship which gets most represented. My analysis shows that even
when the model predicts D accurately, it is difficult to infer the relationship the model learns about
the (A, B) pair.

ACKNOWLEDGMENTS

I would like to thank Nima Reyhani and Boris Ginsburg for useful comments on earlier drafts, which
greatly improved the quality of the analysis. Special thanks to Maria Ginsbourg for meticulously
proofreading and editing the paper.

REFERENCES

Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov et al.’s negative-sampling
word-embedding method. arXiv preprint arXiv:1402.3722, 2014.

Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In Pro-
ceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 1188–1196,
2014.

Omer Levy and Yoav Goldberg. Linguistic regularities in sparse and explicit word representations.
In Proceedings of the eighteenth conference on computational natural language learning, pp.
171–180, 2014a.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. In Ad-
vances in neural information processing systems, pp. 2177–2185, 2014b.

Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity with lessons learned
from word embeddings. Transactions of the Association for Computational Linguistics, 3:211–
225, 2015.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013a.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. Exploiting similarities among languages for ma-
chine translation. arXiv preprint arXiv:1309.4168, 2013b.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed represen-
tations of words and phrases and their compositionality. In Advances in neural information pro-
cessing systems, pp. 3111–3119, 2013c.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Xin Rong. word2vec parameter learning explained. arXiv preprint arXiv:1411.2738, 2014.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton. Gram-
mar as a foreign language. In Advances in Neural Information Processing Systems, pp. 2773–
2781, 2015.

9

	Introduction
	Problem setup
	Algorithmic Details
	Results
	What is word2vec doing?
	Conclusion

