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ABSTRACT

The key idea of variational auto-encoders (VAEs) resembles that of traditional
auto-encoder models in which spatial information is supposed to be explicitly en-
coded in the latent space. However, the latent variables in VAEs are vectors, which
can be interpreted as multiple feature maps of size 1x1. Such representations can
only convey spatial information implicitly when coupled with powerful decoders.
In this work, we propose spatial VAEs that use feature maps of larger size as latent
variables to explicitly capture spatial information. This is achieved by allowing
the latent variables to be sampled from matrix-variate normal (MVN) distributions
whose parameters are computed from the encoder network. To increase dependen-
cies among locations on latent feature maps and reduce the number of parameters,
we further propose spatial VAEs via low-rank MVN distributions. Experimental
results show that the proposed spatial VAEs outperform original VAEs in captu-
ring rich structural and spatial information.

1 INTRODUCTION

The mathematical and computational modeling of probability distributions in high-dimensional
space and generating samples from them are highly useful yet very challenging. With the deve-
lopment of deep learning methods, deep generative models have been shown to be effective and
scalable (Kingma & Welling, 2013; Rezende et al., 2014; Burda et al., 2015; Gulrajani et al., 2016;
Makhzani et al., 2015; Goodfellow et al., 2014; Radford et al., 2015) in capturing probability dis-
tributions over high-dimensional data spaces and generating samples from them. Among them,
variational auto-encoders (VAEs) (Kingma & Welling, 2013; Rezende et al., 2014; Doersch, 2016)
are one of the most promising approaches. In machine learning, the auto-encoder architecture is
applied to train scalable models by learning latent representations. For image modeling tasks, it is
preferred to encode spatial information into the latent space explicitly. However, the latent variables
in VAEs are vectors, which can be interpreted as 1×1 feature maps with no explicit spatial informa-
tion. While such lack of explicit spatial information does not lead to major performance problems
on simple tasks such as digit generation from the MNIST dataset (LeCun et al., 1998b), it greatly
limits the model’s abilities when images are more complicated (Krizhevsky & Hinton, 2009; Liu
et al., 2015).

To overcome this limitation, we propose spatial VAEs that employ d × d (d > 1) feature maps as
latent representations. Such latent feature maps are generated from matrix-variate normal (MVN)
distributions whose parameters are computed from the encoder network. Specifically, MVN distri-
butions are able to generate feature maps with appropriate dependencies among locations. To in-
crease dependencies among locations on latent feature maps and reduce the number of parameters,
we further propose spatial VAEs via low-rank MVN distributions. In this low-rank formulation, the
mean matrix of MVN distribution is computed as the outer product of two vectors computed from
the encoder network. Experimental results on image modeling tasks demonstrate the capabilities of
our spatial VAEs in complicated image generation tasks.

It is worth noting that the original VAEs can be considered as a special case of spatial VAEs via
MVN distributions. That is, if we set the size of feature maps generated via MVN distributions to
1 × 1, spatial VAEs via MVN distributions reduce to the original VAEs. More importantly, when
the size of feature maps is larger than 1 × 1, direct structural ties have been built into elements of
the feature maps via MVN distributions. Thus, our proposed spatial VAEs are intrinsically different
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with the original VAEs when the size of feature maps is larger than 1×1. Specifically, our proposed
spatial VAEs cannot be obtained by enlarging the size of the latent representations in the original
VAEs.

2 BACKGROUND AND RELATED WORK

2.1 AUTO-ENCODER ARCHITECTURES

Auto-encoder (AE) is a model architecture used in tasks like image segmentation (Zeiler et al., 2010;
Ronneberger et al., 2015; Long et al., 2015), machine translation (Bahdanau et al., 2014; Sutskever
et al., 2014) and denoising reconstruction (Vincent et al., 2008; 2010). It consists of two parts:
an encoder that encodes the input data into lower-dimensional latent representations and a decoder
that generates outputs by decoding the representations. Depending on different tasks, the latent
representations will focus on different properties of input data. Nevertheless, these tasks usually
require outputs to have similar or exactly the same structure as inputs. Thus, structural information
is expected to be preserved through the encoder-decoder process.

In computer vision tasks, structural information usually means spatial information of images. There
are two main strategies to preserve spatial information in AE for image tasks. One is to apply
very powerful decoders, like conditional pixel convolutional neural networks (PixelCNNs) (Oord
et al., 2016; van den Oord et al., 2016; Salimans et al., 2017; Gulrajani et al., 2016), that gene-
rate output images pixel-by-pixel. In this way, the decoders can recover spatial information in the
form of dependencies among pixels. However, pixel-by-pixel generation is very slow, resulting in
major speed problems in practice. The other method is to let the latent representations explicitly
contain spatial information and apply decoders that can make use of such information. To apply
this strategy for image tasks, usually the latent representations are feature maps of size between the
size of a pixel (1 × 1) and that of the input image, while the decoders are deconvolutional neural
networks (DCNNs) (Zeiler et al., 2010). Since most computer vision tasks only require high-level
spatial information like relative locations of objects instead of detailed relationships among pixels,
preserving only rough spatial information is enough, and this strategy is proved effective and effi-
cient.

2.2 VARIATIONAL AUTO-ENCODERS

In unsupervised learning, generative models aim to modeling the underlying data distribution. For-
mally, for data space X , let ptrue(x) denote the probability density function (PDF) of the true data
distribution for x ∈ X . Given a dataset D = {x(i)}Ni=1 of i.i.d samples from X , generative models
try to approximate ptrue(x) using a model distribution pθ(x) where θ represents model parameters.
To train the model, maximum likelihood (ML) inference is performed on θ; that is, parameters are
updated to optimize log pθ(D) = log pθ(x

(1), . . . , x(N)) =
∑N
i=1 log pθ(x

(i)). The approximation
quality of pθ(x) relies on the generalization ability of the model. In machine learning, it highly
depends on learning latent representations which can encode common features among data samples
and disentangle abstract explanatory factors behind the data (Bengio et al., 2013). In data generation
tasks, we apply pθ(x) =

∫
pθ(x|z)pθ(z)dz for modeling, where pθ(z) is the PDF of the distribution

of latent representations and pθ(x|z) represents a complex mapping from the latent space to the data
space. A major advantage of using latent representations is dimensionality reduction of data since
they are low-dimensional. The prior pθ(z) can be simple and easy to model while the mapping
represented by pθ(x|z) can be learned through complicated deep learning models automatically.

Recently, Kingma & Welling (2013) point out that the above model has intractability problems and
can only be trained by costly sampling-based methods. To tackle this, they propose variational
auto-encoders (VAEs), which instead maximize a variational lower bound of the log-likelihood as

log pθ(x) ≥ LVAE = Ez∼qφ(z|x)[log pθ(x|z)]−DKL[qφ(z|x)|pθ(z)], (1)

where qφ(z|x) is an approximation model to the intractable pθ(z|x), parameterized by φ, DKL[·]
represents the Kullback-Leibler divergence. In VAEs, pθ(x|z) = N (x; fθ(z), σ

2I), qφ(z|x) =
N (z;µφ(x),Σφ(x)), and pθ(z) = N (z; 0, I) are modeled as multivariate Gaussian distributions
with diagonal covariance matrices. Here, fθ(z), µφ(x) and Σφ(x) are computed with deep neural
networks like CNNs. Figure 1 shows the architecture of VAEs. The model parameters θ and φ can
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be trained using the reparameterization trick (Rezende et al., 2014), where the sampling process
z ∼ qφ(z|x) = N (z;µφ(x),Σφ(x)) is decomposed into two steps as

ε ∼ N (ε; 0, I), z = µφ(x) + Σ
1
2

φ (x) ∗ ε. (2)

3 SPATIAL VARIATIONAL AUTO-ENCODERS

In this section, we analyze a problem of the original VAEs and propose spatial VAEs in Section 3.1
to overcome it. Afterwards, several ways to implement spatial VAEs are discussed. A naı̈ve im-
plementation is introduced and analyzed in Section 3.2, followed by a method that incorporates the
use of matrix-variate normal (MVN) distributions in Section 3.3. Finally, we propose our final mo-
del, spatial VAEs via low-rank MVN distributions, by applying a low-rank formulation of MVN
distributions in Section 3.4.

3.1 OVERVIEW

Note that pθ(x|z) and qφ(z|x) in VAEs resemble the encoder and decoder, respectively, in AE
for image reconstruction tasks, where z represents the latent representations. However, in VAE,
z is commonly a vector, which can be considered as multiple 1 × 1 feature maps. While z may
implicitly preserve some spatial information of the input image x, it raises the requirement for
a more complex decoder. Given a fixed architecture, the hypothesis space of decoder models is
limited. As a result, the optimal decoder may not lie in the hypothesis space (Zhao et al., 2017).
This problem significantly hampers the performance of VAEs, especially when spatial information
is important for images in X .

Based on the above analysis, it is beneficial to either have larger hypothesis space for decoders or let
z explicitly contain spatial information. Note that these two methods correspond to the two strategies
introduced in Section 2.1. Gulrajani et al. (2016) follow the first strategy and propose PixelVAEs
whose decoders are conditional PixelCNNs (van den Oord et al., 2016) instead of simple DCNNs.
As conditional PixelCNNs themselves are also generative models, PixelVAEs can be considered as
conditional PixelCNNs with the conditions replaced by z. In spite of their impressive results, the
performance of PixelVAEs and conditional PixelCNNs is similar, which indicates that conditional
PixelCNNs are responsible for capturing most properties of images in X . In this case, z contributes
little to the performance. In addition, applying conditional PixelCNNs leads to very slow generation
process in practice. In this work, the second strategy is explored by constructing spatial latent
representations z in the form of feature maps of size larger than 1 × 1. Such feature maps can
explicitly contain spatial information. We term VAEs with spatial latent representations as spatial
VAEs.

The main distinction between spatial VAEs and the original VAEs is the size of latent feature maps.
By having d × d (d > 1) feature maps instead of 1 × 1 ones, the total dimension of the latent
representations z significantly increases. However, spatial VAEs are essentially different from the
original VAEs with a higher-dimensional latent vector z. Suppose the vector z is extended by d2 ti-
mes in order to match the total dimension, the number of hidden nodes in each layer of decoders will
explode correspondingly. This results in an explosion in the number of decoders’ parameters, which
slows down the generation process. Whereas in spatial VAEs, decoders becomes even simpler since
d × d is closer to the required size of output images. From the other side, when using decoders of
similar capacities, spatial VAEs must have higher-dimensional latent representations than the origi-
nal VAEs. It is demonstrated that this only slightly influences the training process by requiring more
outputs from encoders, while the generation process that only involves decoders remains unaffected.
Our experimental results show that with proper designs, spatial VAEs substantially outperform the
original VAEs when applying similar decoders.

3.2 NAÏVE SPATIAL VAES

To achieve spatial VAEs, a direct and naı̈ve way is to simply reshape the original vector z intoN fea-
ture maps of size d×d. But this naı̈ve way is problematic since the sampling process does not change.
Note that in the original VAEs, the vector z is sampled from qφ(z|x) = N (z;µφ(x),Σφ(x)). The
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Figure 1: Illustration of the differences between the proposed spatial VAEs via low-rank MVN dis-
tributions and the original VAEs. At the top is the architecture of the original VAEs where the latent
z is a vector sampled from a multivariate Gaussian distribution with a diagonal covariance matrix.
Below is the proposed model which is explained in detail in Section 3.4. Briefly, it modifies the
sampling process by incorporating a low-rank formulation of the MVN distributions and produces
latent representations that explicitly retain spatial information.

covariance matrix Σφ(x) is diagonal, meaning each variable is uncorrelated. In particular, for mul-
tivariate Gaussian distributions, uncorrelation implies independence. Therefore, z’s components are
independent random variables and the variances of their distributions correspond to entries on the
diagonal of Σφ(x). Specifically, suppose z is aC-dimensional vector, the ith component is a random
variable that follows the univariate normal distribution as zi ∼ N (zi;µφ(x)i, diag(Σφ(x))i), i =
1, . . . , C, where diag(·) represents the vector consisting of a matrix’s diagonal entries. After ap-
plying the reparameterization trick, we can rewrite Equation 2 as

εi ∼ N (εi; 0, 1), zi = µφ(x)i + diag(Σφ(x))
1
2
i ∗ εi, i = 0, . . . , C. (3)

To sample N feature maps of size d × d in naı̈ve spatial VAEs, the above process is followed by a
reshape operation while setting C = d2N .

However, between two different components zi and zj , the only relationship is that their respective
distribution parameters (µφ(x)i, diag(Σφ(x))i) and (µφ(x)j , diag(Σφ(x))j) are both computed
from x. Such dependencies are implicit and weak. It is obvious that after reshaping, there is no
direct relationship among locations within each feature map, while spatial latent representations
should contain spatial information like dependencies among locations. To overcome this limitation,
we propose spatial VAEs via matrix-variate normal distributions.

3.3 SPATIAL VAES VIA MATRIX-VARIATE NORMAL DISTRIBUTIONS

Instead of obtaining N feature maps of size d× d by first sampling a d2N -dimensional vector from
multivariate normal distributions and then reshaping, we propose to directly sample d×dmatrices as
feature maps from matrix-variate normal (MVN) distributions (Gupta & Nagar, 1999), resulting in
an improved model known as spatial VAEs via MVN distributions. Specifically, we modify qφ(z|x)
in the original VAEs and keep other parts the same. As explained below, MVN distributions can
model dependencies between the rows and columns in a matrix. In this way, dependencies among
locations within a feature map are established. We proceed by providing the definition of MVN
distributions.
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Definition: A random matrix A ∈ Rm×n is said to follow a matrix-variate normal distribution
Nm,n(A;M,Ω⊗Ψ) with mean matrixM ∈ Rm×n and covariance matrix Ω⊗Ψ, where Ω ∈ Rm×m,
det(Ω) > 0, Ψ ∈ Rn×n, det(Ψ) > 0, if vec(AT ) follows the multivariate normal distribution
N (vec(AT ); vec(MT ),Ω ⊗ Ψ). Here, ⊗ denotes the Kronecker product and vec(·) denotes trans-
forming a Rm×n matrix into an mn-dimensional vector by concatenating the columns.

In MVN distributions, Ω and Ψ capture the relationships across rows and columns, respectively, of a
matrix. By constructing the covariance matrix through the Kronecker product of these two matrices,
dependencies among values in a matrix can be modeled. In spatial VAEs, a feature map F can be
considered as a Rd×d matrix that follows a MVN distributionNd,d(F ;M,Ω⊗Ψ), where Ω ∈ Rd×d
and Ψ ∈ Rd×d are diagonal matrices. Although within F the random variables corresponding to
each location are still independent since Ω⊗Ψ is diagonal, MVN distributions are able to add direct
structural ties among locations through their variances. For example, for two locations (i1, j1) and
(i2, j2) in F ,

F(i1,j1) ∼ N (F(i1,j1);M(i1,j1), diag(Ω⊗Ψ)i1∗j1),

F(i2,j2) ∼ N (F(i2,j2);M(i2,j2), diag(Ω⊗Ψ)i2∗j2).
(4)

Here, F(i1,j1) and F(i2,j2) are independently sampled from two univariate Gaussian distributions.
However, the variances diag(Ω⊗Ψ)i1∗j1 and diag(Ω⊗Ψ)i2∗j2 have built direct interactions through
the Kronecker product. Based on this, we propose spatial VAEs via MVN distributions, which
samples N feature maps of size d× d from N independent MVN distributions as

Fk ∼ Nd,d(Fk;Mkφ(x),Ωkφ(x)⊗Ψkφ(x)), k = 0, . . . , N, (5)

where Mkφ(x), Ωkφ(x) and Ψkφ(x) are computed through the encoder. Here, compared to the
original VAEs, qφ(z|x) is replaced but pθ(z) remains the same. Since MVN distributions are defined
based on multivariate Gaussian distributions, the term DKL[qφ(z|x)|pθ(z)] in Equation 1 can be
calculated in a similar way.

To demonstrate the differences with naı̈ve spatial VAEs, we reexamine the original VAEs. Note
that naı̈ve spatial VAEs have the same sampling process as the original VAEs. The original VAE
samples a C = d2N -dimensional vector z from qφ(z|x) = N (z;µφ(x),Σφ(x)) where µφ(x) is a
C-dimensional vector and Σφ(x) is a RC×C diagonal matrix. Because Σφ(x) is diagonal, it can be
represented by the C-dimensional vector diag(Σφ(x)). To summarize, the encoder of the original
VAEs outputs 2C = 2d2N values which are interpreted as µφ(x) and diag(Σφ(x)).

In spatial VAEs via MVN distributions, according to Equation 5, Mkφ(x) is a Rd×d ma-
trix while Ωkφ(x) and Ψkφ(x) are Rd×d diagonal matrices that can be represented by d-
dimensional vectors. In this case, the required number of outputs from the encoder is changed
to (d2 + 2d)N , corresponding to [M1φ(x), . . . ,MNφ(x)], [diag(Ω1φ(x)), . . . , diag(ΩNφ(x))] and
[diag(Ψ1φ(x)), . . . , diag(ΨNφ(x))]. As has been explained in Section 3.2, since Ωkφ(x)⊗Ψkφ(x)
is diagonal, sampling the matrix Fk is equivalent to sampling d × d scalar numbers from d × d
independent univariate normal distributions. So the modified sampling process with the reparame-
terization trick is

ε(i,j,k) ∼ N (ε(i,j,k); 0, 1),

z(i,j,k) = µkφ(x)
(i,j)

+ diag(Ωkφ(x)⊗Ψkφ(x))
1
2
i∗j ∗ ε(i,j,k),

i, j = 0, . . . , d, k = 1, . . . , N,

(6)

where diag(Ωkφ(x) ⊗ Ψkφ(x))i∗j = [diag(Ωkφ(x))diagT (Ψkφ(x))](i,j). Here, we take advantage
of the fact that for diagonal matrices, the Kronecker product is equivalent to the out-product of
vectors. To be specific, suppose D1 and D2 are two Rd×d diagonal matrices, then d1 = diag(D1)
and d2 = diag(D2) are two d-dimensional vectors and satisfy

diag(D1 ⊗D2) = vec(d1d
T
2 ). (7)

It is worth noting that, compared to naı̈ve spatial VAEs, the required number of outputs from the
encoder decreases from 2d2N to (d2 +2d)N . As a result, spatial VAEs via MVN distributions leads
to a simpler model while adding structural ties among locations. Note that the original VAEs can be
considered as a special case of the spatial VAEs via MVN distributions. That is, if we set d = 1,
spatial VAEs via MVN distributions reduce to the original VAEs.
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3.4 A LOW-RANK FORMULATION

The use of MVN distributions makes locations directly related to each other within a feature map
by adding restrictions on variances. However, in probability theory, variance only measures the ex-
pected distance from the mean. To have more direct relationships, it is preferred to have restricted
means. In this section, we introduce a low-rank formulation of MVN distributions (Allen & Tibshi-
rani, 2010) for spatial VAEs.

The low-rank formulation of a MVN distributionNm,n(M,Ω⊗Ψ) is denoted asNm,n(µ, ν,Ω⊗Ψ)
where the mean matrix M is computed by the out-product µνT instead. Here, µ and ν are m-
dimensional and n-dimensional vectors, respectively. Similar to computing the covariance matrix
through the Kronecker product of two separate matrices, it explicitly forces structural interactions
among entries of the mean matrix. Applying this low-rank formulation leads to our final model,
spatial VAEs via low-rank MVN distributions, which is illustrated in Figure 1. By using two distinct
d-dimensional vectors to construct Miφ(x) ∈ Rd×d, Equation 5 is modified as

Fk ∼ Nd,d(Fk;µkφ(x)νk
T
φ (x),Ωkφ(x)⊗Ψkφ(x)), ∀k = 0, . . . , N, (8)

where µkφ(x) and νkφ(x) are d-dimensional vectors. For the encoder, the number of outputs is furt-
her reduced to 4dN from (d2 + 2d)N , replacing d2N outputs for (M1φ(x), . . . ,MNφ(x)) with dN
outputs for (µ1φ(x), . . . , µNφ(x)) and another dN outputs for (ν1φ(x), . . . , νNφ(x)). In contrast
to Equation 6, the two-step sampling process can be expressed as

ε(i,j,k) ∼ N (ε(i,j,k); 0, 1),

z(i,j,k) = (µkφ(x)νk
T
φ (x))(i,j) + diag(Ωkφ(x)⊗Ψkφ(x))

1
2
i∗j ∗ ε(i,j,k),

i, j = 0, . . . , d, k = 1, . . . , N,

(9)

where diag(Ωkφ(x)⊗Ψkφ(x))i∗j = [diag(Ωkφ(x))diagT (Ψkφ(x))](i,j).

As has been demonstrated in Section 3.1, spatial VAEs require more outputs from encoders than
the original VAEs, which slows down the training process. Spatial VAEs via low-rank MVN dis-
tributions properly address the problem while achieving appropriate spatial latent representations.
According to the experimental results, they outperform the original VAEs in several image genera-
tion tasks when similar decoders are used.

4 EXPERIMENTAL STUDIES

We use the original VAEs as the baseline models in our experiments, as most recent improvements
on VAEs are derived from the vector latent representations and can be easily incorporated into our
matrix-based models. To elucidate the performance differences of various spatial VAEs, we compare
the results of three different spatial VAEs as introduced in Section 3; namely naı̈ve spatial VAEs,
spatial VAEs via MVN distributions and spatial VAEs via low-rank MVN distributions. We train
the models on the CelebA, CIFAR-10 and MNIST datasets, and analyze sample images generated
from the models to evaluate the performance. For the same task, the encoders of all compared
models are composed of the same convolutional neural networks (CNNs) and a fully-connected
output layer (LeCun et al., 1998a; Krizhevsky et al., 2012). While the fully-connected layer may
differ as required by different numbers of output units, it only slightly affects the training process.
As discussed in Section 3.1, it is reasonable to compare spatial VAEs with the original VAEs in the
case that their decoders have similar architectures and model capabilities. Therefore, following the
original VAEs, deconvolutional neural networks (DCNNs) are used as decoders in spatial VAEs.
Meanwhile, the total number of trainable parameters in the decoders of all compared models are set
to be as similar as possible while accommodating different input sizes.

4.1 CELEBA

The CelebA dataset contains 202, 599 colored face images of size 64 × 64. The generative models
are supposed to generate faces that are similar but not exactly the same to those in the dataset.
For this task, the CNNs in the encoders have 3 layers while the decoders are 5 or 6-layer DCNNs
corresponding to spatial VAEs and the original VAEs, respectively. This difference is caused by the
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Figure 2: Sample face images generated by different VAEs when trained on the CelebA dataset.
The first and second rows shows training images and images generated by the original VAEs. The
remaining three rows are the results of naı̈ve spatial VAEs, spatial VAEs via MVN distributions and
spatial VAEs via low-rank MVN distributions, respectively.

fact that spatial VAEs have d×d (d > 1) feature maps as latent representations, which require fewer
up-sampling operations to obtain 64× 64 outputs. We set d = 3 and N = 64, and the dimension of
z in the original VAEs is 81 in order to have decoders with similar numbers of trainable parameters.

Figure 2 shows sample face images generated by the original VAEs and three different variants of
spatial VAEs. It is clear that spatial VAEs can generate images with more details than the original
VAEs. Due to the lack of explicit spatial information, the original VAEs produce face images with
little details like hair near the borders. While naı̈ve spatial VAEs seem to address this problem,
most faces have only incomplete hairs as naı̈ve spatial VAEs cannot capture the relationships among
different locations. Theoretically, spatial VAEs via MVN distributions are able to incorporate inte-
ractions among locations. However, the results are strange faces with some distortions. We believe
the reason is that adding dependencies among locations through restrictions on distribution varian-
ces is not effective and sufficient. Spatial VAEs via low-rank MVN distributions that have restricted
means tackle this well and generate faces with appealing visual appearances.

4.2 CIFAR-10

The CIFAR-10 dataset consists of 60, 000 color images of 32 × 32 in 10 classes. VAEs usually
perform poorly in generating photo-realistic images since there are significant differences among
images in different classes, indicating that the underlying true distribution of the data is a multi-
model. In this case, VAEs tend to output very blurry images (Theis et al., 2015; Goodfellow et al.,
2014; Goodfellow, 2016). However, comparison among different models can still demonstrate the
differences in terms of generative capabilities. In this experiment, we set d = 3 and N = 128, and
the dimension of z in the original VAEs is 150. The encoders have 4 layers while the decoders have
4 or 5 layers.

Some sample images are provided in Figure 3. The original VAEs only produce images composed
of several colored areas, which is consistent to the results of a similar model reported in Rezende
et al. (2014). It is obvious that all three implementations of spatial VAEs generate images with more
details. However, naı̈ve spatial VAEs still produce meaningless images as there is no relationship
among different parts. The images generated by spatial VAEs via MVN distributions look like some
distorted objects, which have similar problems to the results of the CelebA dataset. Again, spatial
VAEs via low-rank MVN distributions outperform the other models, producing blurry but object-like
images.
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Figure 3: Sample images generated by different VAEs when trained on the CIFAR-10 dataset. From
top to bottom, the five rows are training images and images generated by the original VAEs, naı̈ve
spatial VAEs, spatial VAEs via MVN distributions, spatial VAEs via low-rank MVN distributions,
respectively.

Table 1: Parzen window log-likelihood estimates of test data on the MNIST dataset. We follow the
same procedure as in Goodfellow et al. (2014).

Model Log-Likelihood
Original VAE 297
Naı̈ve spatial VAE 275
Spatial VAE via MVN distributions 267
Spatial VAE via low-rank MVN distributions 296

4.3 MNIST

We perform quantitative analysis on real-valued MNIST dataset by employing the Parzen window
log-likelihood estimates (Breuleux et al., 2011). This evaluation method is used for several gene-
rative models where the exact likelihood is not tractable (Goodfellow et al., 2014; Makhzani et al.,
2015). The results are reported in Table 2. Despite of the difference in visual quality of genera-
ted images, spatial VAE via low-rank MVN distributions shares similar quantitative results with the
original VAE. Note that generative models for images are supposed to capture the underlying data
distribution by maximizing log-likelihood and generate images that are similar to real ones. Ho-
wever, it has been pointed in Theis et al. (2015) that these two objectives are not consistent, and
generative models need to be evaluated directly with respect to the applications for which they were
intended. A model that can generates samples with good visual appearances may have poor average
log-likelihood on test dataset and vice versa. Common examples of deep generative models are
VAEs and generative adversarial networks (GANs) (Goodfellow et al., 2014). VAEs usually have
higher average log-likelihood while GANs can generate more photo-realistic images. This is basi-
cally caused by the different training objectives of these two models (Goodfellow, 2016). Currently
there is no commonly accepted standard for evaluating generative models.

4.4 TIMING COMPARISON

To show the influence of different spatial VAEs to the training process, we compare the training time
on the CelebA dataset. Theoretically, spatial VAEs slow down training due to the larger numbers of
outputs from encoders. To keep the number of trainable parameters in decoders roughly equal, we
set the dimension of z in the original VAEs to be 81 while d = 3 and N = 64 for spatial VAEs.
According to Section 3, the numbers of outputs from their encoders are 162, 1152, 960, and 768 for
the original VAE, naı̈ve spatial VAE, spatial VAE via MVN distributions and spatial VAE via low-
rank MVN distributions, respectively. We train our models on a Nvidia Tesla K40C GPU and report
the average time for training one epoch in Table 2. Comparisons of the time for generating 10, 000
images are also provided to show that the increase in the total dimension of latent representations
does not affect the generation process.

The results show consistent relationships between the training time and the number of outputs from
encoders; that is, spatial VAEs cost more time than the original VAE but spatial VAEs via low-rank
MVN distributions can alleviate this problem. Moreover, spatial VAEs only slightly slow down the
training process since they only affect one single layer in the models.
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Table 2: Training and generation time of different models when trained on the CelebA dataset using
a Nvidia Tesla K40C GPU. The average time for training one epoch and the time for generating
10, 000 images are reported and compared.

Model Training time Generation time
Original VAE 167.0309s 1.3892s
Naı̈ve spatial VAE 178.8601s 1.3676s
Spatial VAE via MVN distributions 177.4387s 1.3767s
Spatial VAE via low-rank MVN distributions 172.9639s 1.3686s

5 CONCLUSION

In this work, we propose spatial VAEs for image generation tasks, which improve VAEs by requiring
the latent representations to explicitly contain spatial information of images. Specifically, in spatial
VAEs, d×d (d > 1) feature maps are sampled to serve as spatial latent representations in contrast to
a vector. This is achieved by sampling the latent feature maps from MVN distributions, which can
model dependencies between the rows and columns in a matrix. We further propose to employ a low-
rank formulation of MVN distributions to establish stronger dependencies. Qualitative results on
different datasets show that spatial VAEs via low-rank MVN distributions substantially outperform
the original VAEs.
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