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ABSTRACT

We propose cache steering, a lightweight method for implicit steering of language
models via a one-shot intervention applied directly to the key-value cache. To
validate its effectiveness, we apply cache steering to induce chain-of-thought
reasoning in small language models. Our approach constructs steering vectors from
reasoning traces, obtained either from teacher models (e.g., GPT-4o) or existing
human annotations, that shift model behavior toward more explicit, multi-step
reasoning without fine-tuning or prompt modifications. Experimental evaluations
on diverse reasoning benchmarks demonstrate that cache steering improves both
the qualitative structure of model reasoning and quantitative task performance.
Additional experiments show that the method also scales to larger models and
yields further gains on challenging datasets such as GPQA and MATH. Compared
to prior activation steering techniques that require continuous interventions, our
one-shot cache steering offers substantial advantages in terms of inference latency,
hyperparameter stability, and ease of integration with existing inference APIs.
Beyond mere reasoning induction, we show that cache steering enables controllable
transfer of reasoning styles (e.g., stepwise, causal, analogical), making it a practical
tool for behavior-level guidance of language models.

1 INTRODUCTION

The ability of large language models to perform complex reasoning is a key driver of their increasing
utility. However, this potential is not always spontaneously realized, especially in smaller models
which may possess latent reasoning capabilities that require specific guidance to activate. Traditional
methods for uncovering these abilities, such as supervised fine-tuning or few-shot prompting with
chain-of-thought examples, can be effective but often demand significant data or intricate prompt
design. The question then arises: can we develop more lightweight interventions to unlock and steer
these inherent reasoning processes post-training?

One promising direction is activation steering (Turner et al., 2024; Rimsky et al., 2024), which aims
to guide model behavior by directly modifying its internal hidden states. While promising for its ability
to influence outputs without retraining, activation steering often requires continuous interventions
at each token generation step throughout the decoding process to be effective (Wehner et al., 2025).
This continuous manipulation can introduce instability, making the outcomes highly sensitive to
hyperparameter choices (e.g., targeted layers, intervention strength) and potentially leading to a
degradation in generation quality.

To address these issues, we introduce a method called cache steering. Our approach operates by making
a targeted, one-time modification directly to the key-value cache of a Transformer model, typically after
the cache has been populated by an initial prompt. By applying steering vectors, derived either from
reasoning traces generated by a capable teacher model like GPT-4o or from existing human/dataset
annotations, to these cached key and value representations, we can guide the reasoning trajectory of
language models. This single intervention, applied before token generation begins, effectively steers
the model towards more explicit, multi-step reasoning without altering model weights or requiring
complex prompt modifications. Compared to activation steering, which applies interventions at every
decoding step, cache steering avoids cascading effects, is robust to hyperparameter choices, introduces
virtually no runtime cost, and seamlessly integrates with standard inference pipelines.
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Figure 1: Activation steering vs. Cache steering. Activation steering (left) injects vectors into hidden
states dynamically during decoding, typically at a single chosen layer. Intervening at multiple layers
is possible but often amplifies effects across the network, making the method sensitive to tuning and
prone to instability. Cache steering (right) instead modifies the pre-computed KV cache once after
the prefilling step. Because these cached representations are fixed, the intervention can be applied
consistently across all layers and then implicitly influences future tokens, leading to stable and efficient
inference without repeated runtime injections.

We demonstrate that our method improves reasoning structure and, in many cases, task accuracy on
multiple benchmarks, including GSM8K, ARC-Challenge, CSQA, and PIQA, and further scales to
larger models and harder datasets such as GPQA and MATH. Beyond simple reasoning induction,
cache steering enables controllable transfer of reasoning styles (e.g., stepwise, causal, analogical),
illustrating its value as a practical tool for behavior-level guidance.

Overall, our key contributions are as follows:

• We propose cache steering, a one-shot modification of the KV cache that provides a
lightweight and production-ready alternative to activation steering and fine-tuning.

• We demonstrate that cache steering can distill reasoning styles from teacher models or
existing reasoning traces into smaller models without weight updates or prompt augmentation.

• We conduct extensive evaluations across multiple model families and benchmarks, analyze
efficiency and stability, and provide additional results on larger models and challenging
reasoning datasets.

2 RELATED WORK

Reasoning and Chain-of-Thought prompting. A widely adopted approach to enhance reasoning
abilities in LLMs involves demonstrating example solutions to the problem (in-context learning or ICL)
that contain a step-by-step reasoning process (Chain-of-Thought or CoT) in a prompt to the language
model (Brown et al., 2020; Wei et al., 2022), a technique known as few-shot prompting. Zero-shot
variants of CoT prompting simplify this approach by adding instructions such as "Let’s think step by
step" to elicit step-by-step reasoning without the need for example demonstrations (Kojima et al., 2022).

Recent work shows that reinforcement learning can lead to remarkable reasoning capabilities, which
can be effectively distilled into smaller models through supervised fine-tuning (Guo et al., 2025).
These findings suggest that it is not enough to just trigger CoT reasoning in the language models, but
the style of the reasoning matters. This motivates our approach, which aims to directly steer small
models toward reasoning behavior reminiscent of larger teacher models via cache-level interventions.

Activation steering. Activation steering, also known as representation engineering, is a technique
used to control the generation process of LLMs implicitly by manipulating their intermediate
activations during decoding, typically through linear interventions (Rimsky et al., 2024; Turner et al.,
2024). Multiple works have applied activation steering to induce or suppress specific behaviors in
models without retraining. The examples include sentiment, topic and style control (Turner et al.,
2024); function steering (Todd et al., 2024; Postmus & Abreu, 2024), removing or inducing refusal
behavior, (Lee et al., 2025), toxicity reduction (Turner et al., 2024), truthfulness (Wang et al., 2025),
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editing factual knowledge (Yin et al., 2024), reasoning induction (Zhang & Viteri, 2025; Galichin et al.,
2025), reasoning compression (Azizi et al., 2025; Chen et al., 2025) and other (Wehner et al., 2025).

In its most basic form, activation steering involves two steps: vector extraction and injection of the
vector into the activations of the model at inference. The vector extraction stage involves computing
a “steering vector”, which is commonly done by aggregating activations from pairs of positive
prompts with desired behavior and negative or sometimes neutral prompts, forming a contrastive set
C={(p+0 ,p

−
0 ),(p

+
1 ,p

−
1 ),...,(p

+
N ,p−N )}. The most common aggregation method is Difference-in-Means

(Wehner et al., 2025), which is identical to Mean-of-Differences when the vectors are paired:

sl=
1

N

∑
(p+,p−)∈C

fl(p
+)−fl(p

−)

where fl represents the part of the Transformer model (e.g., the whole decoder layer) at layer l and
N is the number of examples in the contrastive dataset C. To steer the model’s output, the steering
vector is added to the activations of specific layers during inference:

h∗
l =hl+csl

where hl represents the activations at layer l before steering, sl is a steering vector extracted from
layer l, and c is a coefficient that determines the strength of the steering.

It is important to mention that the vector can be extracted and applied to different token positions, layers,
and parts of the model, which are treated as hyperparameters or design choices. Usually, it is a common
practice to perform a grid search to determine the layers to apply steering to and the value of the steering
strength coefficient c (Turner et al., 2024; Lee et al., 2025; Wang et al., 2025; Dong et al., 2024; Rimsky
et al., 2024; Wang et al., 2024; Stolfo et al., 2025; Zhang & Viteri, 2025; Postmus & Abreu, 2024).

While activation steering offers a tool for model control, it typically requires continuous intervention
during generation (Wehner et al., 2025), which can be expensive and can lead to unstable generations.
Several studies address this hyperparameter sensitivity through dynamic steering, where the steering
strength is adapted throughout decoding. Methods such as Dynamic Activation Composition (Scalena
et al., 2024) and Episodic-Memory Steering (Tran et al., 2025) dynamically adjust the steering strength
coefficients using KL-guided updates or memory-bank interpolation to mitigate oversteering. However,
these approaches require continuous modification of activations, additional forward passes, or auxiliary
data structures, making them not practical for real-world scenarios.

Our work takes a different approach: rather than adapting activation edits on the fly, we shift
the intervention target entirely to the static key–value (KV) cache, allowing a single post-prefill
modification that does not propagate vertically through the network. This removes the need for
dynamic schedules altogether and enables a one-shot intervention that is both efficient and stable at
inference time. We discuss the steering amlification effect in detail in Section 3.4.

Cache manipulation. Another emerging line of research explores the idea of modifying the key-value
(KV) cache from the memory and efficiency perspective (Li et al., 2024; Liu et al., 2025a; Ge et al., 2024;
Mu et al., 2023). These approaches aim to reduce the memory footprint or compress contextual represen-
tations through KV cache manipulation. Building on this idea, Liu et al. (2025b) introduced a method
for augmenting the KV cache to improve the performance on tasks that require reasoning abilities. The
authors use a differentiable "coprocessor", which allows augmenting the KV cache as a pre-generation
step instead of modifying activations directly during the forward pass. However, in order to augment the
KV cache, the method requires training a separate model, which makes this method less practical than
pure activation steering methods introduced in the previous subsection. In contrast, our approach aims to
use the KV cache as a target for behavioral control in small models without training auxiliary modules.

3 CACHE STEERING

We introduce cache steering, a lightweight method for inducing structured reasoning in language
models by applying steering vectors directly to the key-value cache. Unlike traditional activation
steering methods, which modify intermediate hidden states during generation, our approach modifies
the cached keys and values associated with specific tokens, enabling a one-shot intervention that can
be precomputed and reused. This technique is compatible with standard inference APIs and does not
require model fine-tuning or prompt engineering.

3
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3.1 PRELIMINARIES

Transformer-based language models rely on the self-attention mechanism, which operates on sets
of query, key, and value vectors to compute contextualized token representations. For a given input
sequence, the attention output at layer l is computed as:

Attention(Ql,Kl,V l)=softmax
(
Ql(Kl)⊤√

Dh

)
V l

where Ql,Kl,V l∈RT×H×Dh are the query, key, and value tensors at layer l, T is the sequence length,
H is the number of attention heads, and Dh is the dimensionality of each head.

During autoregressive decoding, the model stores the keys Kl and values V l corresponding to
previously processed tokens, which is known as a key-value (KV) cache. These cached tensors are
used to efficiently compute attention for each new token without recomputing representations for
the entire sequence. Importantly, these cache entries can be precomputed and reused across multiple
examples (such as caching a system prompt), which is especially useful in scenarios involving large
models or repeated inference over similar inputs. This makes the KV cache a potential target for
behavioral interventions, offering compatibility with real-world settings.

3.2 EXTRACTING KEY-VALUE STEERING VECTORS

Similarly to activation steering, we construct a contrastive set of prompt pairs C =
{(p+0 ,p

−
0 ),(p

+
1 ,p

−
1 ),...,(p

+
N ,p−N )} to extract the key-value steering vectors. We refer to prompts that

demonstrate the desired behavior as positive and the prompts without such behavior as negative. We
discuss the details of how the positive and negative prompts are constructed for the reasoning induction
task in Section 3.5.

For each contrastive pair of examples, we make a forward pass and extract the keys and values vectors
from the designated token position (typically the final token of the input prompt). The vectors are
then aggregated using the Mean-of-Differences method:

Sk
l =

1

N

∑
(p+,p−)∈C

fk
l (p

+)−fk
l (p

−) Sv
l =

1

N

∑
(p+,p−)∈C

fv
l (p

+)−fv
l (p

−)

where fl is a Transformer layer, Sk
l ∈ RH×Dh and Sv

l ∈ RH×Dh are the resulting steering tensors
at layer l, with H denoting the number of attention heads and Dh their dimension. By taking the
difference between positive and negative examples and averaging across multiple contrastive pairs,
we aim to isolate a directional signal associated with target behavior while minimizing the amount
of noise introduced by information from individual examples.

3.3 APPLYING KEY-VALUE STEERING VECTORS

At inference time, we perform a standard forward pass on the input prompt to populate the KV cache.
Then, at each layer l, we modify the cached key and value vectors at a target token position of the KV
cache as follows:

V ∗
l =Vl+cvSv

l K∗
l =Kl+ckSk

l

where Kl,Vl∈RH×Dh are the original cached key and value vectors at layer l, and Sk
l ,S

v
l ∈RH×Dh

are the steering vectors, and ck,cv ∈R are scalar coefficients controlling the steering strength. Then
the generation proceeds as usual using the modified cache.

3.4 ELIMINATING STEERING AMPLIFICATION

Cache steering differs fundamentally from traditional activation steering in how and when interventions
are applied. Activation steering can amplify across layers and timesteps, making it unstable and sensitive
to hyperparameters. Cache steering eliminates this amplification by modifying the fixed KV cache
once after prefilling, as illustrated in Figure 1. Below, we outline the core intuition behind this contrast.

At a specific timestep t, activation steering explicitly affects the current hidden state at a chosen
layer l. This modification propagates both vertically through all subsequent layers l+1 to l+N and

4
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horizontally into future tokens as decoding continues. Because interventions accumulate across layers
and timesteps, small changes can compound into “oversteering,” which can negatively affect generation
quality. This makes the method highly sensitive to hyperparameters such as steering strength and
application layer (Turner et al., 2024; Lee et al., 2025; Wang et al., 2025; Dong et al., 2024; Rimsky
et al., 2024; Wang et al., 2024; Stolfo et al., 2025; Zhang & Viteri, 2025; Postmus & Abreu, 2024).

In contrast, cache steering modifies the fixed key and value representations of past tokens after the
prefilling stage. These cached representations are no longer transformed through the network and
can therefore be adjusted vertically across all layers without risk of compounding. Future tokens then
attend to this modified cache, so the steering effect propagates horizontally across the tokens during
decoding. This one-shot intervention avoids cascading effects, allowing cache steering to be both
stable to hyperparameters and efficient at runtime.

In short, cache steering replaces the compounding per-step interventions of activation steering with
a single post-prefill modification that avoids amplification, yielding a stable and efficient mechanism
for guiding model behavior.

3.5 IMPLEMENTATION DETAILS

Contrastive set construction. To extract steering vectors, we construct a contrastive dataset con-
sisting of paired prompts. Each pair includes a positive example (containing explicit chain-of-thought
reasoning) and a negative example (containing only the final answer). Each contrastive prompt is
created using few-shot in-context learning (ICL) examples. Specifically, both the positive and negative
prompts include n ICL examples followed by a question and a generation prompt. The positive and
negative prompts differ only in the presence of reasoning steps in the ICL examples (see Appendix C.1
for more details and an illustrative example).

Extraction and application positions. We extract key and value vectors from the final token of
the prompt, which typically corresponds to the last token of the generation prompt depending on
the model’s chat template (e.g. "\n\n" in "assistant\n\n"). During inference, we aim to apply
cache steering to the same logical position in the prompt as used during extraction. However, due to the
autoregressive decoding mechanism (see Section 3.1), the KV cache is populated only after each token
is processed. To ensure alignment, we append a neutral offset token (e.g., a newline or whitespace)
to the prompt, so that the KV representation of the final token can be used in the generation of the
next tokens. This ensures the cache steering affects the intended location. Details on token alignment
and cache offset are provided in Appendix C.5.

Hyperparameters. As with activation steering, the steering strength coefficients of key and value
vectors are treated as hyperparameters. Since we are interested in distilling reasoning behaviors
from larger models, we additionally treat the number of contrastive pairs and the number of in-context
examples in each pair as additional hyperparameters. Similarly to other steering approaches, we perform
a small grid search over the hyperparameters to obtain reasonable values for each model-dataset pair
(Turner et al., 2024; Lee et al., 2025; Wang et al., 2025; Dong et al., 2024; Rimsky et al., 2024; Wang
et al., 2024; Stolfo et al., 2025; Zhang & Viteri, 2025; Postmus & Abreu, 2024). We find that steering
coefficients tend to lie within consistent ranges across tasks, suggesting robustness in the method’s
behavior. More on this in Section 5.3. The full list of hyperparameters can be found in Appendix G.

4 EXPERIMENTAL SETUP

Datasets. We use four common reasoning benchmarks for the evaluation: GSM8K (Cobbe et al.,
2021), CommonsenseQA (Talmor et al., 2018), ARC-Challenge (Clark et al., 2018), and PIQA (Bisk
et al., 2020). These datasets span arithmetic reasoning, commonsense inference, scientific questions,
and physical commonsense reasoning. For each dataset, we generate elaborate step-by-step answers
to a subset of questions from the corresponding training sets using GPT-4o, which are then used in
positive examples in the contrastive set. The details on the specific prompt used to generate these steps
and the generation procedure can be found in the Appendix C.6. Steering vectors are computed using
the training set, while evaluation is performed on the corresponding test sets.
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Table 1: Comparison of baselines, activation steering, and cache steering on four reasoning
benchmarks. We evaluate six models of different sizes on GSM8K, ARC-Challenge, CSQA, and
PIQA using both greedy decoding (left block) and sampling-based decoding (right block). Results
show that cache steering consistently improves reasoning performance, often outperforming both
baseline and activation steering. Combining cache steering with CoT prompting yields further gains
in more than half of the cases. Numbers in parentheses denote standard deviation across 5 sampled
generations per input; the sampling block highlights that cache steering produces a stable shift in logits,
as reflected by consistently better or on-par performance under stochastic decoding.

Dataset Model Greedy Sampling

Baseline CoT
prompt

Activation
steering

Cache
steering

Cache
steering +

CoT prompt
Baseline Cache

steering

ARC-c

SmolLM2-360M 24.32 26.62 24.06 27.13 25.26 24.16 (1.13) 24.52 (0.87)

Llama-3.2-1B 53.67 53.75 53.84 55.03 56.14 52.29 (0.81) 53.16 (1.44)

Llama-3.2-3B 74.32 77.13 74.23 79.27 79.52 74.64 (0.36) 77.71 (0.82)

Qwen2-0.5B 39.51 37.20 40.69 40.36 38.82 38.05 (0.21) 35.96 (0.93)

Llama-3.1-8B 83.11 84.98 84.64 85.58 85.24 82.66 (0.28) 85.09 (0.64)

Phi-4-mini 84.56 86.69 86.18 87.97 86.77 83.46 (0.56) 87.2 (0.62)

GSM8K

SmolLM2-360M 8.49 10.39 7.66 8.95 10.39 8.08 (0.38) 7.87 (0.4)

Llama-3.2-1B 45.56 46.10 45.41 46.32 47.16 43.71 (0.83) 43.88 (1.22)

Llama-3.2-3B 68.54 71.57 68.38 67.17 72.10 68.22 (0.43) 67.57 (1.22)

Qwen2-0.5B 17.44 24.94 23.81 18.04 25.47 16.94 (1.08) 16.48 (0.4)

Llama-3.1-8B 76.34 77.56 76.50 75.81 77.86 75.94 (0.62) 75.22 (0.58)

Phi-4-mini 77.94 74.68 75.89 78.47 75.74 77.48 (0.62) 77.1 (0.66)

CSQA

SmolLM2-360M 19.74 22.11 19.66 21.95 22.52 20.02 (1.77) 21.31 (0.67)

Llama-3.2-1B 53.56 54.71 54.14 55.20 53.56 51.45 (0.64) 50.78 (0.73)

Llama-3.2-3B 70.27 72.56 69.12 72.32 72.48 70.09 (0.78) 70.40 (1.1)

Qwen2-0.5B 47.42 44.31 45.95 46.03 45.37 45.67 (1.18) 42.36 (1.11)

Llama-3.1-8B 73.87 74.04 73.30 75.27 74.37 73.92 (0.37) 74.27 (1.01)

Phi-4-mini 69.78 70.11 69.29 70.00 70.52 68.22 (0.62) 67.52 (1.08)

PIQA

SmolLM2-360M 50.38 52.61 49.62 51.31 52.50 48.12 (0.66) 50.72 (1.03)

Llama-3.2-1B 65.29 64.96 61.48 63.76 66.43 65.02 (0.88) 62.48 (1.57)

Llama-3.2-3B 69.42 76.93 72.31 73.34 76.88 68.35 (0.28) 71.83 (0.66)

Qwen2-0.5B 52.12 53.43 53.43 54.57 55.55 51.82 (0.68) 53.86 (0.44)

Llama-3.1-8B 80.03 81.61 80.25 82.86 83.13 79.08 (0.39) 83.41 (0.52)

Phi-4-mini 78.29 79.59 80.74 79.33 80.25 77.19 (0.63) 79.46 (0.68)

Models. We evaluate cache steering on small instruction-tuned models from four families: Llama-3.2
(1B and 3B variants), SmolLM2 (360M), Qwen2 (0.5B), and Phi-4-mini (3.8B) (Grattafiori et al.,
2024; Team, 2024; Allal et al., 2025; Abouelenin et al., 2025). Additionally, we add the Llama-3.1
(8B) model to evaluate how cache steering scales beyond the smallest models. The list with the full
model names and URLs can be found in Appendix C.8.

Decoding strategies. Since cache steering affects internal representations, which result in a shift
in output logits, we evaluate our approach using both deterministic and stochastic decoding. For
sampling-based decoding, we assess the consistency of steering effects by generating the response with
5 different seeds and comparing that to the baseline generations using the same setup. The generation
arguments can be found in Appendix C.4.

Answer extraction and metrics. Answer correctness is determined using task-specific heuristics.
For GSM8K, we extract the final number mentioned in the output using digit pattern matching (Wang
et al., 2023; Wang & Zhou, 2024). For multiple-choice tasks (ARC, PIQA, CSQA), we develop a
4-stage extraction pipeline that uses soft string matching against known answer choices, with failover
to constrained decoding. More details on the answer extraction process can be found in Appendix C.2.

Comparison to activation steering. In several experiments, we compare cache steering to activation
steering. More specifically, we use the CAA method (Rimsky et al., 2024), which is one of the most
popular methods for activation steering. In all experiments, we make the best effort to provide a fair

6
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Table 2: Cache steering consistently increases the length of generated outputs across tasks. We re-
port the average number of generated tokens under three conditions: baseline decoding, CoT prompting,
and cache steering. Results are shown for multiple model sizes averaged across reasoning benchmarks.
Cache steering leads to significantly longer outputs, exceeding even CoT-prompted completions,
suggesting that the intervention encourages more elaborate reasoning, even without explicit prompting.

Model Baseline CoT Cache Steering
SmolLM2-360M 73.5 (94.1) 194.8 (27.7) 294.2 (52.4)

Qwen2-0.5B 100.0 (59.5) 167.8 (52.1) 225.0 (50.6)

Llama-3.1-8B 156.0 (36.7) 174.8 (18.6) 297.2 (61.0)

Llama-3.2-1B 121.8 (50.7) 161.8 (27.5) 291.2 (122.4)

Llama-3.2-3B 160.2 (37.7) 181.0 (29.6) 284.5 (95.8)

Phi-4-mini 107.8 (33.5) 211.0 (20.7) 328.8 (132.7)

Table 3: Results on larger model and harder benchmarks. Evaluation of cache steering on
Llama-3.1-70B-Instruct across ARC-Challenge, GPQA Diamond, and a subset of MATH.

Dataset Model Baseline CoT
prompt

Cache
Steering

Cache steering
+ CoT prompt

ARC-c Llama-3.1-70B 93.00 92.91 93.52 93.17
GPQA Diamond Llama-3.1-70B 40.40 44.95 44.95 47.98
MATH (subset) Llama-3.1-70B 66.22 62.68 73.63 64.95

comparison. The details of how activation steering vectors are extracted and applied can be found
in Appendix C.3.

5 EXPERIMENTS

5.1 INDUCING REASONING VIA CACHE STEERING

To evaluate the effectiveness of cache steering in inducing reasoning behavior, we compare it against
several baselines: standard greedy decoding (no intervention), CoT prompting (appending “Let’s think
step by step” to the prompt), and activation steering. We also evaluate a hybrid approach that combines
CoT prompting with cache steering. As shown in Table 1 (greedy part), cache steering consistently
outperforms the baseline and often leads to performance gains over the CoT prompting. Furthermore,
the combination of CoT prompting with cache steering leads to additional gains in more than half of
the cases, indicating the complementary nature of both techniques. Notably, cache steering surpasses
activation steering in almost all cases.

Additionally, we report the mean number of generated tokens per model, averaged over all datasets,
in Table 2 (results for each dataset-pair can be found in Appendix F). Cache steering leads to longer
outputs, suggesting that the intervention encourages reasoning even without explicit prompting. Taking
into account the results from both tables, we can conclude that cache steering leads to well-structured
reasoning traces, which can be further confirmed by examining qualitative examples in Appendix B.

To complement our main results on small and medium-sized models, we evaluate cache steering on
a larger model (Llama-3.1-70B) and more challenging benchmarks. The results in Table 3 show +4.6%
accuracy on GPQA Diamond and +7.4% on a MATH subset. These gains are even stronger than
those observed on small models, where limited base capabilities can bottleneck the benefits of induced
reasoning. This suggests that cache steering has the potential to scale effectively with model size.

Stability under sampling. The right side of Table 1 reports results under sampling-based decoding,
comparing cache steering to the baseline across multiple models and tasks. We observe that cache
steering produces consistent performance improvements or maintains parity with the baseline,
indicating that the intervention leads to stable and meaningful shift in logits. Rather than injecting
noise or introducing erratic behavior, cache steering systematically biases the model toward more
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Figure 2: Cache steering ablations on ARC-c (Llama-3.2-1B-Instruct). Accuracy remains stable
across contrastive set sizes and key/value steering strengths, with optimal performance around ck =
0.3 and cv = 6. Fewer in-context examples (e.g., 1-shot) yield better steering, likely due to reduced
noise. Overall, the method is robust to a range of hyperparameters.

structured reasoning even under stochastic generation. The relatively low standard deviations across
runs further support the robustness of the effect.

5.2 COMPUTATIONAL OVERHEAD

Cache steering involves only a one-time cache modification after the prefilling step and does not
require any additional forward passes compared to the baseline. In contrast, activation steering
typically requires continuous interventions at every decoding step for the steering to be effective
(Wehner et al., 2025). As shown in Figure 3, cache steering achieves latency nearly identical to the
baseline (∼10 ms/token at batch size 1), while activation steering incurs substantially higher time
per token (∼15 ms/token, with the gap widening at larger batch sizes). These findings underscore
the practical efficiency of cache steering, making it well-suited for real-world deployment scenarios.
Full experimental details are provided in Appendix C.7.

5.3 ABLATION STUDIES

We conduct ablation experiments on Llama-3.2-1B-Instruct and the ARC-c dataset to assess the
sensitivity of cache steering to the primary hyperparameters: 1) number of contrastive pairs used to
extract steering vectors, 2) number of few-shot examples per contrastive example, and 3) steering
strength coefficients ck and cv . The results for all the ablation studies can be found in Figure 2.

Vector extraction. We vary the number of contrastive pairs from 100 to 1000. The accuracy remains
relatively stable across this range, with only minor fluctuations (from 53.1% to 55.7%). This suggests
that even small contrastive sets can yield effective steering vectors, though performance tends to
improve slightly with larger sets. We also vary the number of ICL examples per prompt from 1 to
10. Interestingly, the best result is achieved with a single example (55.8%), and performance dips
slightly at 3-shot (52.4%) before recovering. This non-monotonic trend suggests that reasoning signals
may be sensitive to specific examples in the training data.

Vector application. More importantly, we observe that cache steering is robust to steering strength
variation. Varying the key coefficient ck between 0.0 and 0.4 results in only minor changes, with
the best performance at ck=0.3 (56.4%). Varying the value coefficient cv from 1 to 10 shows a peak
around cv=6 (55.0%) and a gradual decline afterward, with performance dropping below 52% beyond
cv = 8. Although extreme hyperparameters can lead to slight performance drops, cache steering
remains stable to local changes to the coefficients. In contrast, activation steering often exhibits high
sensitivity, with small shifts in coefficient values leading to catastrophic generation failures (Rimsky
et al., 2024; Turner et al., 2024; Da Silva et al., 2025). We show the sensitivity of activation steering
to hyperparameters on a smaller subset of ARC-c in Appendix E.
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Figure 3: Cache steering introduces negligible overhead compared to activation steering. We
report average time per token (in milliseconds) for cache steering, activation steering, and the baseline
(no intervention) on a single H100 GPU, using batch sizes of 1 and 16. At batch size 1, both the
baseline and cache steering run at ∼10 ms/token, while activation steering is slower at ∼15 ms/token;
the gap widens further at larger batch sizes. Unlike activation steering, which requires continuous
intervention, cache steering adds virtually no runtime cost over baseline inference.

Table 4: Percentage of generated outputs that exhibit the intended structure when steered using
a style-specific vector. Results demonstrate that cache steering can reliably induce distinct reasoning
styles, although its effectiveness varies across styles.

Metric (%) Stepwise
Reasoning

Strategy+
Execution

Causal
Chain

Annotated
Deduction

Analogical
Reasoning

Matching Style 95 35 95 15 90

SmolLM-360M-Instruct on ARC-c

Prompt: An astronomer observes that a planet rotates faster after a meteorite impact. Which is the most likely
effect of this increase in rotation?
Analogical Reasoning: Just like Earth, planets with higher rotation rates tend to have more massive cores. When...
Casual Chain: If a planet rotates faster after a meteorite impact, it is likely that the planet’s rotation rate...
Annotated deduction: [Faster rotation] [Planetary density will decrease] [Planetary years will become...]
Stepwise reasoning: Step 1: Understand the impact of the meteorite on the planet’s rotation. Step 2: Identify...
Strategy execution: Strategy: To determine the most likely effect of a meteorite impact on a planet’s rotation...

Figure 4: Example outputs on a single ARC-c question, using different style-specific vectors. Each
generation reflects the structure of the steering traces used to construct the corresponding vector.

5.4 STYLE TRANSFER

To explore whether cache steering can be used to distill distinct reasoning styles from a teacher
model, we evaluate how the stylistic form of the reasoning traces used to extract the vectors affects the
response structure. For this experiment, we construct reasoning traces of 5 different styles (definitions
and experiment details in Appendix A) for a subset of ARC-Challenge questions and extract one
steering vector per style. Table 4 reports the percentage of generated responses that match the intended
structure for each style-specific steering vector using the SmolLM-360M-Instruct model. The results
indicate that cache steering reliably induces the correct structure for common styles such as Stepwise
Reasoning, Causal Chain, and Analogical Reasoning. Performance is weaker for less common styles.
We provide an analysis of these failure modes in Appendix A.

Figure 4 illustrates outputs from a single ARC-Challenge question under different style-specific
steering vectors. These show that the rhetorical differences between generations are not only detectable
but often pronounced. For instance, all analogical responses begin with Just like ..., while
causal chain examples follow a conditional logic pattern. These observations confirm that stylistic
signals are indeed encoded in the KV cache and can be carried over to any prompt using cache steering.
Taken together, these results show that cache steering can be used not only to induce reasoning in
general, but to exert fine-grained control over its form.
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6 CONCLUSIONS

We introduced cache steering, a one-shot technique for guiding language models by modifying their
key–value cache. Using contrastive examples and GPT-4o-generated reasoning traces, our method
induces structured reasoning in small models without fine-tuning, prompt engineering, or continuous
interventions. Unlike activation steering, cache steering operates once on fixed past representations,
improving stability, efficiency, and compatibility with standard inference pipelines. Experiments on
GSM8K, ARC-c, CSQA, and PIQA show reliable induction of reasoning behavior and occasional
accuracy gains, while style-transfer experiments demonstrate the ability to control reasoning forms.
Although its effectiveness still depends on coefficient settings and steering vector selection, cache
steering provides a lightweight, practical mechanism for behavior control and opens new directions
for behavior control and low-cost distillation in the KV space.
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Table 5: Overview of reasoning styles used in the style transfer experiment. Each style reflects
a distinct structure.

Style Name Structure
Stepwise Reasoning Step 1: ... Step 2: ...
Strategy + Execution Strategy: ... Solution: ...
Causal Chain If ..., then ... Therefore...
Annotated Deduction [Premise] → [Inference]
Analogical Reasoning This is similar to... Thus, we can infer...

A ADDITIONAL DETAILS ON STYLE TRANSFER

A.1 EXPERIMENTAL SETUP

To evaluate whether cache steering can transfer distinct reasoning styles, we select a subset of 20
questions from the ARC-Challenge dataset, each paired with its correct multiple-choice answer. For
each question, we construct five distinct reasoning traces that arrive at the same answer but differ in
their structure. The description of the five styles can be found in Table 5.

We extract one steering vector per style. During inference, we apply each style-specific steering vector
to a set of 20 questions from the test set of the ARC-Challenge dataset to examine how it affects the result-
ing output structure. For this experiment, we use the SmolLM-360M-Instruct model due to its small size.

A.2 FAILURE ANALYSIS

Style transfer was less reliable for the Strategy + Execution and Annotated Deduction formats. Only
half of the generations reflected the strategy-execution structure, and just one out of ten matched the
annotated deduction style. To understand these failure modes, we performed a qualitative analysis
of the outputs. In the case of Annotated Deduction, we hypothesize that this format is underrepresented
in the model’s pretraining distribution. While most of the completions exhibited partial stylistic
artifacts, such as starting with a phase or word in square brackets (e.g., [Farms] in Wyoming
were ...), they lacked the structured logical progression seen in the positive examples used during
vector extraction. The steering signal appeared to “nudge” the model in the direction of the desired
style, but was not strong enough to elicit full adherence.

A similar pattern emerged with the Strategy + Execution format. Although all the responses began
with the correct discourse marker (e.g., Strategy:), half of the generated samples repeated the same
marker in a loop (e.g. Strategy:, Strategy:, ...). We attribute this breakdown to possible
oversteering: since we did not tune the steering coefficients for each style, it is likely that the default
values were too strong in this case, leading to degenerate outputs. These analyses suggest that while
cache steering robustly transfers common reasoning styles, rare or structurally complex formats may
require further tuning or style-specific adjustments.

B QUALITATIVE EXAMPLES

Here we show qualitative examples from different model-dataset pairs. We try to include cases when:
1) both baseline and steering answers are correct; 2) only the steering answer is correct; 3) only the
baseline answer is correct. All qualitative examples can be found the the code repository, which
contains the outputs for all model-dataset pairs.

Importantly, even though cache steering is effective at inducing reasoning, this alone does not guarantee
higher accuracy on the benchmarks. In some cases, it induces reasoning traces that are well-structured
and plausible but arrive at incorrect conclusions (e.g., due to question ambiguity or alternative valid
interpretations). We also observe that failures or the models to tie complex reasoning back to the choice
labels (i.e., generating the correct answer but the wrong label) sometimes cause correct reasoning
traces to be scored as incorrect. We encourage readers to examine qualitative outputs in the code
repository, where the steering effect is visible in the structure and style of responses.
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B.1 LLAMA-3.2-1B-INSTRUCT ON ARC-C

Llama-3.2-1B-Instruct on ARC-c: both baseline and steering are correct

Prompt: A scientist investigated how well plants native to Maryland would grow in desert conditions. The
scientist placed equal amounts of desert soil into 10 identical containers. Each container held two of the
same kind of plant. The scientist investigated a total of 10 different kinds of plants. The scientist placed
all of the containers into a greenhouse adjusted to produce hot, desert-like conditions. The scientist gave
the plants equal, but small amounts of water for the next five weeks. Most of the plants did not survive after
the five week investigation. Which statement best explains why 16 of the plants did not survive? Choices:
A: Plants do not grow in desert conditions.
B: Few plants survive severe changes to their environment.
C: Plants native to Maryland are not good for scientific studies.
D: Plants native to Maryland are only able to survive in Maryland.

Baseline Response:
The correct answer is B: Few plants survive severe changes to their environment.
The statement that best explains why 16 of the plants did not survive is that they were placed in a desert-like
environment with hot, desert-like conditions, and then given small amounts of water for five weeks. This
severe change to their environment would likely be stressful for the plants, making it difficult for them to
survive. The fact that most of the plants did not survive suggests that the conditions were too harsh for them,
rather than that the plants themselves are not good for scientific studies or that they are only able to survive
in Maryland. So the correct choice is B.

Steered Response:
To understand why 16 of the plants did not survive, we need to consider the factors that affect plant growth
in desert conditions.
Firstly, plants native to Maryland are not adapted to desert conditions. They are typically found in temperate
climates with moderate temperatures and adequate rainfall. Desert plants, on the other hand, are adapted
to hot, dry conditions with limited water availability.
Secondly, the desert soil used in the containers was not suitable for the plants. Desert soil is often high in
salt and lacks essential nutrients, which can be detrimental to plant growth.
Thirdly, the amount of water provided to the plants was small, which can be stressful for most plants. Even
if the plants were adapted to desert conditions, the lack of water would still be a significant challenge.
Now, let’s consider the options:
A: Plants do not grow in desert conditions. This statement is incorrect because plants can grow in desert
conditions, but they require specific adaptations and conditions to survive.
B: Few plants survive severe changes to their environment. This statement is partially correct, as the severe
changes to the environment (hot, dry conditions and limited water) would indeed be challenging for most
plants. However, it does not explain why 16 of the plants did not survive.
C: Plants native to Maryland are not good for scientific studies. This statement is incorrect because plants
native to Maryland can be valuable subjects for scientific studies, especially when they are adapted to specific
conditions.
D: Plants native to Maryland are only able to survive in Maryland. This statement is incorrect because plants
native to Maryland can survive in other environments, including desert conditions, as long as they are adapted
to those conditions.
The correct answer is B: Few plants survive severe changes to their environment. This is because the
combination of hot, dry conditions and limited water provided to the plants would be challenging for most
plants to survive. So the correct choice is B.

Llama-3.2-1B-Instruct on ARC-c: incorrect baseline, correct steering

Prompt: A college campus has so few parking spaces that cars are often lined up waiting to park during
class hours. Which of the following describes how the college could best solve the need for more parking
spaces using the universal systems model? Choices:
A: The college could build an additional parking lot, gather parking data, and then receive input from
community meetings.
B: The college could limit access to parking lots during busy hours, hire security officers to help restrict
parking, and then gather parking data.
C: The college could gather parking data, receive input from community meetings, build an additional
parking lot, and then gather more parking data.
D: The college could hire security officers to help restrict parking, gather parking data, receive input from
community meetings, and then gather more data.
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Baseline Response:
The correct answer is B: The college could limit access to parking lots during busy hours, hire security
officers to help restrict parking, and then gather parking data.
This option describes how the college could best solve the need for more parking spaces using the universal
systems model. The universal systems model is a framework for understanding and managing complex
systems, and in this case, it involves:
Identifying the problem (limited parking spaces)
Gathering data on the current situation (parking data)
Receiving input from stakeholders (community meetings)
Taking action to address the problem (limiting access to parking lots during busy hours and hiring security
officers)
This approach is a good example of how the universal systems model can be applied to solve a complex
problem like limited parking spaces. So the correct choice is B.

Steered Response:
To solve the need for more parking spaces on a college campus, the college should consider the universal
systems model, which involves several key components.
First, the college should gather parking data. This involves collecting information about the number of cars
parked, the types of vehicles, and the time of day when parking is most popular. This data will help the college
understand the current parking situation and identify areas where additional parking spaces are needed.
Next, the college should receive input from community meetings. This involves engaging with students,
faculty, and staff to gather their opinions and concerns about parking. By listening to their feedback, the
college can better understand the needs and priorities of the community.
Building an additional parking lot is a crucial step in addressing the parking shortage. However, it should
be done in conjunction with the gathering of parking data and the community meetings. This ensures that
the new parking lot is designed and constructed to meet the needs of the community, and that it is accessible
and convenient for everyone.
Finally, the college should gather more parking data to evaluate the effectiveness of the new parking lot
and make adjustments as needed. This will help the college to refine its parking management strategies and
ensure that the parking lot is meeting its intended purpose.
In summary, the correct answer is the one that involves gathering parking data, receiving input from commu-
nity meetings, building an additional parking lot, and then gathering more data to evaluate its effectiveness.
Choices A, B, and D do not accurately describe the universal systems model. Choice A involves gathering
data and then implementing a solution, but it does not involve community meetings. Choice B involves
restricting access to parking during busy hours, but it does not involve gathering data or receiving input from
the community. Choice D involves gathering data, but it does not involve building an additional parking
lot or receiving input from the community. So the correct choice is C.

Llama-3.2-1B-Instruct on ARC-c: correct baseline, incorrect steering

Prompt: In 1903 Mary Anderson invented the first windshield wiper. How did this invention most likely
help people?
Choices:
A: It helped people use less gas.
B: It kept people from driving too fast.
C: It made cars easier for people to buy.
D: It made cars safer to drive in bad weather.

Baseline Response:
The correct answer is D: It made cars safer to drive in bad weather.
Mary Anderson’s windshield wiper invention was designed to help people see while driving, especially in
rainy or snowy conditions. By keeping the windshield clear of rain and snow, drivers could see the road ahead
more clearly, reducing the risk of accidents. This was particularly important in the early days of automobile
travel, when roads were often poorly maintained and visibility was limited. Anderson’s invention helped
to improve road safety and reduce the number of accidents on the roads. So the correct choice is D.

Steered Response:
To understand how Mary Anderson’s windshield wiper invention helped people, we need to consider the
context and purpose of the invention.
Mary Anderson’s windshield wiper was designed to improve visibility while driving, especially in rainy or
foggy conditions. The primary goal of the invention was to reduce the amount of time spent stopping and
starting the vehicle, which was a significant challenge in early automobiles.
In the early 1900s, driving was a hazardous activity, especially in poor weather conditions. Drivers had to con-
stantly stop and start the engine, which was time-consuming and often resulted in accidents. The windshield
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wiper helped to reduce this time by allowing drivers to clear the windshield of rain and debris more quickly.
Therefore, the correct answer is that Mary Anderson’s windshield wiper invention most likely helped people
by reducing the time spent stopping and starting the vehicle, which was a significant challenge in early
automobiles. So the correct choice is B.

C IMPLEMENTATION DETAILS

C.1 CONTRASTIVE DATA CONSTRUCTION

All prompts are formatted using the chat template from the model’s tokenizer configuration. This
ensures consistency with how the models are typically used during chat-style inference. The example
of a single contrastive pair with 1 in-context example:

[system]
You are a helpful assistant.

[user]
What is the capital of France?

[assistant]
Typically, the capital of a country...
The answer is Paris.

[user]
What happens if you drop a glass?

[assistant]

Positive prompt

[system]
You are a helpful assistant.

[user]
What is the capital of France?

[assistant]
The answer is Paris.

[user]
What happens if you drop a glass?

[assistant]

Negative prompt

Figure 5: The example of a single contrastive pair with 1 in-context example. The positive example
(left) includes both the reasoning trace and the final answer. The negative example (right) includes
only the final answer.

To ensure that in-context examples are semantically similar to the target question, we embed all training
questions using the all-MiniLM-L6-v2 sentence embedding model (Reimers & Gurevych, 2019)
and retrieve the top-n most similar examples based on cosine similarity.

C.2 ANSWER EXTRACTION

We explored using an LLM to extract answer labels from model outputs, which is a common practice
in recent activation steering studies (Rimsky et al., 2024; Wang et al., 2023; Wehner et al., 2025).
However, due to computational constraints, we were unable to use a sufficiently large model to ensure
high-quality extraction. In particular, smaller judges often rely on their own knowledge to infer the
correct answer, rather than faithfully extracting it from the generated output. This compromises the
reliability of evaluation in cases where steering affects reasoning without necessarily correcting the
final answer. To minimize the amount of false positive answers, we opted for a rule-based pipeline
that is transparent, fast to run at scale, and robust enough for comparative analysis in our setting.

GSM8K. For GSM8K, we extract the final numeric answer using a digit-based pattern match.
Specifically, we select the last number mentioned in the model’s output. This approach has been
used in prior work (Wang et al., 2023; Wang & Zhou, 2024). While this method introduces both false
positives (e.g., trailing numbers in explanations) and false negatives (e.g., answers embedded in text),
these effects tend to cancel out over large-scale evaluation.

Multiple-choice tasks. For multiple-choice datasets, we require more structured extraction due
to the open-ended nature of the model outputs. Therefore, we adopt the approach from Wang & Zhou
(2024) and augment it further with a more rigorous extraction process. We develop a multi-stage
extraction pipeline designed to recover answer labels with high precision and robustness. For all

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

experiments, we append the string "So the correct choice is" to the end of the prompt and
allow the model to generate 10 additional tokens. The output is then processed in the following stages:

1. Regex-based label extraction: We apply a sequence of 12 regular expressions to identify
explicit label mentions (e.g., “A”, “option C”, “(B)”) both immediately following the answer
prefix and in the whole answer string as a fallback. Each pattern is designed to handle common
formats seen across models and datasets. The full list of regex patterns can be found in the code.

2. String match fallback: If no regex match is found, we scan the span after "So the
correct choice is" for an exact string match with any of the raw answer choices.
To avoid false positive matches, we only accept matches when exactly one choice matches
unambiguously. We also filter out cases containing negation cues (e.g., “not”, “incorrect”,
“wrong”) to exclude completions like “So the correct answer is not B”.

3. Invalid and multi-label detection: We detect multi-answer completions (e.g., “both A and
C”) or noncommittal outputs (“none of the above”) and label them as [incorrect]. Any
remaining answers that do not match a valid choice are marked as [invalid].

4. Constrained decoding for fallback resolution: For all completions marked as[invalid],
we discard the answer span after "So the correct choice is" and repeat decoding
with constraints: we re-append "So the correct choice is" to the prompt and
sample a single token, masking the logits to allow only valid label tokens. This final step
guarantees that a valid label is recovered for every input.

Despite this multi-stage approach, errors in label extraction are still common. In particular, semantically
correct answers may be incorrectly marked due to minor phrasing differences or ambiguous generation
formats. Additionally, the constrained decoding stage forces the model to generate a valid label even if
the generated text is not semantically meaningful, which was especially common in activation steering
experiments. Therefore, to mitigate this, we discard the results if the accuracy before the constrained
decoding stage is significantly lower than after.

C.3 ACTIVATION STEERING EVALUTAION

To make a fair comparison of activation steering to cache steering, we chose a similar setting:
greedy decoding, 200 contrastive samples, each with 5 few-shot examples. Similarly to cache
steering implementation, the vectors were extracted from the last token position, aggregated with
a Difference-in-Means method. The vectors were applied continuously to each new token during
decoding. All these choices adhere to the current best practices in activation steering research (Wehner
et al., 2025). To extract and apply the steering vector, we used the steering-vectors Python library
(Chanin, 2025) that implements the most popular activation steering method CAA (Rimsky et al., 2024).

First we performed a grid search on a subset of data over c ∈ [0.5,1,3] and middle layers of each
model: for SmolLM2-360M-Instruct l ∈ [13, 14, 15, 16, 17, 18, 19], for Llama-3.2-1B-Instruct
l∈ [6,7,8,9,10], for Llama-3.2-3B-Instruct l∈ [13,14,15], for Llama-3.1-8B-Instruct l∈ [15,16,17],
for Phi-4-mini-instruct l ∈ [15, 16, 17], for Qwen2-0.5B-Instruct l ∈ [11, 12, 13]. The selected
hyperparameters were inspired by the numbers reported in Turner et al. (2024). Then, activation
steering with the best parameters was evaluated on the full test set to obtain the final results.

C.4 SAMPLING PARAMETERS

For sampling experiments, we used the parameters specified in the generation config of the model.
If the generation config was not available, we used temperature: 0.6, top_p: 0.9, top_k: 50.

C.5 ALIGNING CACHE POSITION

Through extensive experimentation, we discovered that for most datasets, cache steering is most
effective if the vectors are applied to the same token from which the vectors were extracted. In case
of an instruction-tuned model, such a token can be the last token of the generation prompt (e.g., the
newline character after "assistant"). Therefore, when we extract the steering vectors from such a token,
the steering effect is most pronounced if we apply the vector to the same token. Even though the actual
positions of the extraction and application tokens in the corresponding sequences are different, in
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both sequences the tokens play a similar role. We think of these tokens as information aggregation
tokens. In cases when the desired application token is last in the sequence, we append a special token
to the prompt in order to be able to apply the intervention to the correct position. In cases when cache
steering is applied to any other position, this procedure is not needed.

C.6 GENERATION OF REASONING DATA

To generate reasoning data, we used a GPT-4o model via OpenAI’s Chat Completions API. We used
the following instruction prompt to elicit detailed CoT-style responses:

You are given a question and a corresponding answer
to that question. Your task is to think step by
step and provide the reasoning steps to get the
answer. Separate each reasoning step with <reasoning>
</reasoning> tags. The question: ’{question}’. The
correct answer: {answer}.

The obtained reasoning steps were further parsed with regular expressions.

C.7 COMPUTATIONAL OVERHEAD EXPERIMENT DETAILS

To compare the computational efficiency of cache steering, activation steering, and the model without
any intervention, we measure the per-token generation time under both methods using a subset of
100 examples from the ARC-Challenge dataset.

We conduct experiments using two different batch sizes: 1 (single-example inference) and 16 (batched
inference), to reflect both interactive and throughput-oriented use cases. All runs are executed on the
same hardware using greedy decoding.

Timing is measured from the beginning of generation (post-prompt forward pass) to the completion
of the final token. All results are averaged over three runs.

C.8 MODELS USED

We evaluate our method using multiple open-source language models from different model families.
Below, we list their Hugging Face model hub URLs.

• SmolLM2-360M-Instruct
– URL: https://huggingface.co/HuggingFaceTB/
SmolLM2-360M-Instruct

– License: Apache 2.0

• LLaMA-3.2-1B-Instruct
– URL: https://huggingface.co/meta-llama/Llama-3.
2-1B-Instruct

– License: Llama 3.2 Community License

• LLaMA-3.2-3B-Instruct
– URL: https://huggingface.co/meta-llama/Llama-3.
2-1B-Instruct

– License: Llama 3.2 Community License

• Qwen2-0.5B-Instruct
– URL: https://huggingface.co/Qwen/Qwen2-0.5B-Instruct
– License: Apache 2.0

• Phi-4-mini-instruct
– URL: https://huggingface.co/microsoft/Phi-4-mini-instruct
– License: MIT
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• Llama-3.1-8B-Instruct
– URL: https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

– License: Llama 3.1 Community License

D REPRODUCIBILITY

D.1 EXPERIMENTS REPRODUCIBILITY

To ensure consistency and facilitate detailed analysis, we implemented several reproducibility
safeguards throughout our experimental pipeline.

Sample tracking via UUIDs. At test time, we assign each input a unique identifier (UUID) derived
deterministically from a hash of the input text. This allows us to track and compare individual examples
across experiments with different settings (e.g., sampling, steering variants, decoding strategies), and
ensures the integrity of input data over time. The UUID makes it easy to locate the same question across
logs, qualitative outputs, and evaluation reports, and is sensitive to minor changes in the question itself.

Deterministic runs. For all runs involving stochastic generation (e.g., sampling-based decoding),
we set the random seed at the beginning of each run to guarantee reproducibility.

Llama chat template In all experiments, we used the chat template predefined by the model to
tokenize the input text. However, we noticed that specifically in the Llama models, the current date is
added to the system prompt, making it impossible to fully reproduce the results. Therefore, we modify
the chat template of the Llama models to exclude the current date from the system prompt.

D.2 HARDWARE SPECIFICATIONS

All experiments were run on the internal cluster (not in the cloud). These are the specifications of
the hardware:

• 1 NVIDIA H100 GPU, 94GiB of memory
• 16 AMD 4th GEN EPYC CPUs

The time to run each experiment varied per model, dataset, whether it was a baseline experiment, cache
steering or activation steering experiment, the amount of training data used, etc. On average, a single
run for almost all model-dataset pairs took less than 1 hour to run, with the exception of Llama-3.2-3B
model on PIQA dataset, which took under 2 hours, and activation steering experiments, which took
under 6 hours per experiment. The full research project required more compute than the experiments
reported in the paper since a significant part of the project was experimentation and empirical analysis.

D.3 SOFTWARE ENVIRONMENT

• Python 3.11.11
• transformers: 4.49.0
• torch: 2.5.1

E SENSITIVITY OF ACTIVATION STEERING TO HYPERPARAMETERS
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Figure 6: Sensitivity of activation steering to hyperparameters on ARC-c dataset using Llama-3.2-1B.
The results are obtained from the activation steering grid search described in C.3.

F LENGTH OF GENERATED OUTPUTS

Table 6: Cache steering consistently increases the length of generated outputs across tasks.
We report the average number of generated tokens under three conditions: baseline decoding, CoT
prompting, and cache steering. Results are shown for multiple model sizes across four reasoning
benchmarks. The results indicate that cache steering leads to longer answers on average across all
tasks and models, except for GSM8K. We hypothesize that the reason for that is that this dataset is
a classic benchmark for evaluation of reasoning methods, and all models are already trained on this
dataset and generate CoT responses even without explicit instructions.

Task Model Baseline CoT Cache Steering

ARC

SmolLM2-360M-Instruct 22 188 315
Qwen2-0.5B-Instruct 75 147 242
Llama-3.1-8B-Instruct 178 196 315
Llama-3.2-1B-Instruct 152 171 283
Llama-3.2-3B-Instruct 190 208 301
Phi-4-mini-instruct 110 228 369

CSQA

SmolLM2-360M-Instruct 19 159 295
Qwen2-0.5B-Instruct 53 104 181
Llama-3.1-8B-Instruct 104 151 340
Llama-3.2-1B-Instruct 46 134 283
Llama-3.2-3B-Instruct 105 146 251
Phi-4-mini-instruct 62 181 443

GSM8K

SmolLM2-360M-Instruct 214 222 222
Qwen2-0.5B-Instruct 187 216 188
Llama-3.1-8B-Instruct 185 179 207
Llama-3.2-1B-Instruct 147 146 150
Llama-3.2-3B-Instruct 171 167 179
Phi-4-mini-instruct 142 215 137

PIQA

SmolLM2-360M-Instruct 39 210 345
Qwen2-0.5B-Instruct 85 204 289
Llama-3.1-8B-Instruct 157 173 327
Llama-3.2-1B-Instruct 142 196 449
Llama-3.2-3B-Instruct 175 203 407
Phi-4-mini-instruct 117 220 366
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G LIST OF HYPERPARAMETERS

Table 7: Hyperparameters used for the experiments for each task-dataset pair.

Task Model Contrastive
Samples

In-context
Examples ck cv

GSM8K

HuggingFaceTB/SmolLM2-360M-Instruct 200 5 0 1
meta-llama/Llama-3.2-1B-Instruct 100 5 0 1
meta-llama/Llama-3.2-3B-Instruct 100 5 0 1
Qwen/Qwen2-0.5B-Instruct 100 5 0 3
meta-llama/Llama-3.1-8B-Instruct 100 5 0 2
microsoft/Phi-4-mini-instruct 100 5 0 1

CSQA

meta-llama/Llama-3.2-1B-Instruct 100 5 0 10
meta-llama/Llama-3.2-3B-Instruct 300 10 0 4
HuggingFaceTB/SmolLM2-360M-Instruct 400 12 0 6
Qwen/Qwen2-0.5B-Instruct 200 10 0.2 4
meta-llama/Llama-3.1-8B-Instruct 100 5 0 10
microsoft/Phi-4-mini-instruct 100 5 0 10

ARC-c

meta-llama/Llama-3.2-3B-Instruct 400 10 0 6
meta-llama/Llama-3.2-1B-Instruct 200 10 0 6
HuggingFaceTB/SmolLM2-360M-Instruct 300 10 0 6
Qwen/Qwen2-0.5B-Instruct 400 10 0 10
meta-llama/Llama-3.1-8B-Instruct 200 10 0 6
microsoft/Phi-4-mini-instruct 200 10 0 6

PIQA

meta-llama/Llama-3.2-1B-Instruct 200 10 0 6
meta-llama/Llama-3.2-3B-Instruct 200 10 0 10
HuggingFaceTB/SmolLM2-360M-Instruct 200 10 0 6
Qwen/Qwen2-0.5B-Instruct 200 10 0 8
meta-llama/Llama-3.1-8B-Instruct 200 10 0 6
microsoft/Phi-4-mini-instruct 200 10 0 6

H LIMITATIONS

In this work, we focus primarily on inducing reasoning behavior in small LLMs. While results on one
larger model already show a potential for even better improvements, further study is needed to assess
how well cache steering generalizes across a wider range of large models, domains, and tasks beyond
reasoning. Importantly, cache steering, like other behavior-guidance methods including prompting
and fine-tuning, has broad applications. Potential misuse, such as steering toward deceptive, harmful,
or biased outputs, remains a concern. We therefore advocate responsible use and recommend that
safeguards are considered.
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I VERTICAL AMPLIFICATION

hidden_states

attention

hidden_states

attention

hidden_states

attention

Layer N

Layer N + 1

Layer N + 2

Applying a steering
vector to the layer N

steering_vec+

Applying a steering vector to the
layer N +1: the steering effect is
aggregated

steering_vec+

steering_vec+

Figure 7: Vertical amplification in activation steering. A steering vector added to the residual
stream at layer N influences the representations of each subsequent layer, causing the steering effect
to accumulate vertically. Applying anoter steering vector at layer N+1 reinforces amplifies the the
steering effect, leading to oversteering. This vertical propagation contrasts with cache steering, where
modifications are applied to static key-value vectors that are not recomputed across layers.
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J ADDITIONAL EXPERIMENTS

J.1 ABLATION ON INDIVIDUAL LAYERS
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Figure 8: Ablation on the individual layers on ARC-c (Llama-3.2-1B-Instruct). The results
show only modest variation (≈2% points) across layers, supporting our claim of reduced sensitivity
compared to activation steering.

To further examine the sensitivity of cache steering to the choice of steering layers, we ran an ablation
in which the steering vector was applied to each individual layer of Llama-3.2-1B-Instruct on ARC-c.
Figure 8 presents the accuracy obtained when steering only a single layer at a time. The results vary
by only ≈ 2 percentage points across all layers. This behavior contrasts with activation steering, where
effectiveness depends heavily on choosing the correct layer and where a poor choice can lead to degraded
performance. Overall, this ablation supports our claim that cache steering is substantially less sensitive
to the steering location, reducing the hyperparameter search space to steering strength coefficients.

J.2 PERSISTENCE OF EFFECT OVER LONG GENERATIONS

To evaluate whether the steering effect persists over long generations, we conduct a targeted analysis
on Llama-3.2-1B-Instruct using the ARC-c dataset. For each input, we first apply cache steering
for the initial n generated tokens (with n∈{0,16,32,64,128,256,512,1024}) and then reset the KV
cache, removing all steering modifications before continuing decoding. We measure the final response
length and structure over 100 samples per setting. The results, shown in Figure 9, demonstrate a clear
monotonic trend: the longer steered KV cache is used, the longer and the final responses remain. When
conditioned only on the previously generated tokens (without modified KV cache), the model tends
to produce shorter sequences.

J.3 T-SNE VISUALIZATION OF POSITIVE AND NEGATIVE VALUE REPRESENTATIONS

To better understand why contrastive cache shifts are effective we follow the methods used by (Azizi
et al., 2025; Chen et al., 2025), we visualize the value vectors extracted from positive (reasoning) and
negative (non-reasoning) examples using 2-D t-SNE projections (Maaten & Hinton, 2008) across
all layers of Llama-3.2-1B-Instruct on ARC-c (Figure 10). We observe consistent separation between
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Figure 9: Persistence of cache steering effect over long generations. Mean response length on ARC-c
for Llama-3.2-1B-Instruct when steered KV cache is used to generate only the firstn tokens (x-axis), af-
ter which the KV cache is reset and decoding proceeds normally (n∈{0,16,32,64,128,256,512,1024}).

positive and negative representations in almost every layer, indicating that the model internally
encodes reasoning-related signals in a linearly separable manner. This directly motivates our method:
constructing a steering vector as the difference of mean positive and negative cache representations
captures this separation and provides a direction that reliably induces reasoning behavior.
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Figure 10: t-SNE visualization of the value representations of positive and negative examples in
each layer on ARC-c (Llama-3.2-1B-Instruct). Two-dimensional t-SNE projections of 100 positive
(reasoning) and 100 negative (non-reasoning) value-cache vectors from Llama-3.2-1B-Instruct
on ARC-c. Almost all layers show clear separation between the two groups, indicating that
reasoning-related signals are encoded distinctly in the value cache and motivating the construction
of steering vectors via contrastive averaging in the KV space.
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