

000 KV CACHE STEERING FOR CONTROLLING FROZEN 001 LLMS 002

003 **Anonymous authors**

004 Paper under double-blind review

005 ABSTRACT

006
007
008
009 We propose *cache steering*, a lightweight method for implicit steering of language
010 models via a one-shot intervention applied directly to the key-value cache. To
011 validate its effectiveness, we apply cache steering to induce chain-of-thought
012 reasoning in small language models. Our approach constructs steering vectors from
013 reasoning traces, obtained either from teacher models (e.g., GPT-4o) or existing
014 human annotations, that shift model behavior toward more explicit, multi-step
015 reasoning without fine-tuning or prompt modifications. Experimental evaluations
016 on diverse reasoning benchmarks demonstrate that cache steering improves both
017 the qualitative structure of model reasoning and quantitative task performance.
018 Additional experiments show that the method also scales to larger models and
019 yields further gains on challenging datasets such as GPQA and MATH. Compared
020 to prior activation steering techniques that require continuous interventions, our
021 one-shot cache steering offers substantial advantages in terms of inference latency,
022 hyperparameter stability, and ease of integration with existing inference APIs.
023 Beyond mere reasoning induction, we show that cache steering enables controllable
024 transfer of reasoning styles (e.g., stepwise, causal, analogical), making it a practical
025 tool for behavior-level guidance of language models.
026

027 1 INTRODUCTION

028
029 The ability of large language models to perform complex reasoning is a key driver of their increasing
030 utility. However, this potential is not always spontaneously realized, especially in smaller models
031 which may possess latent reasoning capabilities that require specific guidance to activate. Traditional
032 methods for uncovering these abilities, such as supervised fine-tuning or few-shot prompting with
033 chain-of-thought examples, can be effective but often demand significant data or intricate prompt
034 design. The question then arises: can we develop more lightweight interventions to unlock and steer
035 these inherent reasoning processes post-training?

036 One promising direction is activation steering (Turner et al., 2024; Rimsky et al., 2024), which aims
037 to guide model behavior by directly modifying its internal hidden states. While promising for its ability
038 to influence outputs without retraining, activation steering often requires continuous interventions
039 at each token generation step throughout the decoding process to be effective (Wehner et al., 2025).
040 This continuous manipulation can introduce instability, making the outcomes highly sensitive to
041 hyperparameter choices (e.g., targeted layers, intervention strength) and potentially leading to a
042 degradation in generation quality.

043 To address these issues, we introduce a method called **cache steering**. Our approach operates by making
044 a targeted, one-time modification directly to the key-value cache of a Transformer model, typically after
045 the cache has been populated by an initial prompt. By applying steering vectors, derived either from
046 reasoning traces generated by a capable teacher model like GPT-4o or from existing human/dataset
047 annotations, to these cached key and value representations, we can guide the reasoning trajectory of
048 language models. This single intervention, applied before token generation begins, effectively steers
049 the model towards more explicit, multi-step reasoning without altering model weights or requiring
050 complex prompt modifications. Compared to activation steering, which applies interventions at every
051 decoding step, cache steering avoids cascading effects, is robust to hyperparameter choices, introduces
052 virtually no runtime cost, and seamlessly integrates with standard inference pipelines.

Figure 1: **Activation steering vs. Cache steering.** Activation steering (left) injects vectors into hidden states *dynamically* during decoding, typically at a single chosen layer. Intervening at multiple layers is possible but often amplifies effects across the network, making the method sensitive to tuning and prone to instability. Cache steering (right) instead modifies the pre-computed KV cache once after the prefilling step. Because these cached representations are *fixed*, the intervention can be applied consistently across all layers and then implicitly influences future tokens, leading to stable and efficient inference without repeated runtime injections.

We demonstrate that our method improves reasoning structure and, in many cases, task accuracy on multiple benchmarks, including GSM8K, ARC-Challenge, CSQA, and PIQA, and further scales to larger models and harder datasets such as GPQA and MATH. Beyond simple reasoning induction, cache steering enables *controllable transfer of reasoning styles* (e.g., stepwise, causal, analogical), illustrating its value as a practical tool for behavior-level guidance.

Overall, our key contributions are as follows:

- We propose **cache steering**, a one-shot modification of the KV cache that provides a lightweight and production-ready alternative to activation steering and fine-tuning.
- We demonstrate that cache steering can **distill reasoning styles** from teacher models or existing reasoning traces into smaller models without weight updates or prompt augmentation.
- We conduct extensive evaluations across multiple model families and benchmarks, analyze efficiency and stability, and provide additional results on larger models and challenging reasoning datasets.

2 RELATED WORK

Reasoning and Chain-of-Thought prompting. A widely adopted approach to enhance reasoning abilities in LLMs involves demonstrating example solutions to the problem (in-context learning or ICL) that contain a step-by-step reasoning process (Chain-of-Thought or CoT) in a prompt to the language model (Brown et al., 2020; Wei et al., 2022), a technique known as few-shot prompting. Zero-shot variants of CoT prompting simplify this approach by adding instructions such as "Let's think step by step" to elicit step-by-step reasoning without the need for example demonstrations (Kojima et al., 2022).

Recent work shows that reinforcement learning can lead to remarkable reasoning capabilities, which can be effectively distilled into smaller models through supervised fine-tuning (Guo et al., 2025). These findings suggest that it is not enough to just trigger CoT reasoning in the language models, but the **style** of the reasoning matters. This motivates our approach, which aims to directly steer small models toward reasoning behavior reminiscent of larger teacher models via cache-level interventions.

Activation steering. Activation steering, also known as representation engineering, is a technique used to control the generation process of LLMs implicitly by manipulating their intermediate activations during decoding, typically through linear interventions (Rimsky et al., 2024; Turner et al., 2024). Multiple works have applied activation steering to induce or suppress specific behaviors in models without retraining. The examples include sentiment, topic and style control (Turner et al., 2024); function steering (Todd et al., 2024; Postmus & Abreu, 2024), removing or inducing refusal behavior, (Lee et al., 2025), toxicity reduction (Turner et al., 2024), truthfulness (Wang et al., 2025),

108 editing factual knowledge (Yin et al., 2024), reasoning induction (Zhang & Viteri, 2025; Galichin et al.,
 109 2025), reasoning compression (Azizi et al., 2025; Chen et al., 2025) and other (Wehner et al., 2025).
 110

111 In its most basic form, activation steering involves two steps: vector extraction and injection of the
 112 vector into the activations of the model at inference. The vector extraction stage involves computing
 113 a “steering vector”, which is commonly done by aggregating activations from pairs of positive
 114 prompts with desired behavior and negative or sometimes neutral prompts, forming a contrastive set
 115 $C = \{(p_0^+, p_0^-), (p_1^+, p_1^-), \dots, (p_N^+, p_N^-)\}$. The most common aggregation method is Difference-in-Means
 (Wehner et al., 2025), which is identical to Mean-of-Differences when the vectors are paired:

$$s_l = \frac{1}{N} \sum_{(p^+, p^-) \in C} f_l(p^+) - f_l(p^-)$$

119 where f_l represents the part of the Transformer model (e.g., the whole decoder layer) at layer l and
 120 N is the number of examples in the contrastive dataset C . To steer the model’s output, the steering
 121 vector is added to the activations of specific layers during inference:

$$h_l^* = h_l + c s_l$$

122 where h_l represents the activations at layer l before steering, s_l is a steering vector extracted from
 123 layer l , and c is a coefficient that determines the strength of the steering.

124 It is important to mention that the vector can be extracted and applied to different token positions, layers,
 125 and parts of the model, which are treated as hyperparameters or design choices. Usually, it is a common
 126 practice to perform a grid search to determine the layers to apply steering to and the value of the steering
 127 strength coefficient c (Turner et al., 2024; Lee et al., 2025; Wang et al., 2025; Dong et al., 2024; Rimsky
 128 et al., 2024; Wang et al., 2024; Stolfo et al., 2025; Zhang & Viteri, 2025; Postmus & Abreu, 2024).
 129

130 While activation steering offers a tool for model control, it typically requires continuous intervention
 131 during generation (Wehner et al., 2025), which can be expensive and can lead to unstable generations.
 132 Several studies address this hyperparameter sensitivity through dynamic steering, where the steering
 133 strength is adapted throughout decoding. Methods such as Dynamic Activation Composition (Scalena
 134 et al., 2024) and Episodic-Memory Steering (Tran et al., 2025) dynamically adjust the steering strength
 135 coefficients using KL-guided updates or memory-bank interpolation to mitigate oversteering. However,
 136 these approaches require continuous modification of activations, additional forward passes, or auxiliary
 137 data structures, making them not practical for real-world scenarios.
 138

139 Our work takes a different approach: rather than adapting activation edits on the fly, we shift
 140 the intervention target entirely to the static key–value (KV) cache, allowing a single post-prefill
 141 modification that does not propagate vertically through the network. This removes the need for
 142 dynamic schedules altogether and enables a one-shot intervention that is both efficient and stable at
 143 inference time. We discuss the steering amplification effect in detail in Section 3.4.

144 **Cache manipulation.** Another emerging line of research explores the idea of modifying the key-value
 145 (KV) cache from the memory and efficiency perspective (Li et al., 2024; Liu et al., 2025a; Ge et al., 2024;
 146 Mu et al., 2023). These approaches aim to reduce the memory footprint or compress contextual representations
 147 through KV cache manipulation. Building on this idea, Liu et al. (2025b) introduced a method
 148 for augmenting the KV cache to improve the performance on tasks that require reasoning abilities. The
 149 authors use a differentiable “coprocessor”, which allows augmenting the KV cache as a pre-generation
 150 step instead of modifying activations directly during the forward pass. However, in order to augment the
 151 KV cache, the method requires training a separate model, which makes this method less practical than
 152 pure activation steering methods introduced in the previous subsection. In contrast, our approach aims to
 153 use the KV cache as a target for behavioral control in small models without training auxiliary modules.
 154

155 3 CACHE STEERING

156 We introduce **cache steering**, a lightweight method for inducing structured reasoning in language
 157 models by applying steering vectors directly to the key-value cache. Unlike traditional activation
 158 steering methods, which modify intermediate hidden states during generation, our approach modifies
 159 the cached keys and values associated with specific tokens, enabling a one-shot intervention that can
 160 be precomputed and reused. This technique is compatible with standard inference APIs and does not
 161 require model fine-tuning or prompt engineering.

162 3.1 PRELIMINARIES
163

164 Transformer-based language models rely on the self-attention mechanism, which operates on sets
165 of query, key, and value vectors to compute contextualized token representations. For a given input
166 sequence, the attention output at layer l is computed as:

$$167 \text{Attention}(\mathbf{Q}^l, \mathbf{K}^l, \mathbf{V}^l) = \text{softmax}\left(\frac{\mathbf{Q}^l(\mathbf{K}^l)^\top}{\sqrt{D_h}}\right) \mathbf{V}^l$$

170 where $\mathbf{Q}^l, \mathbf{K}^l, \mathbf{V}^l \in \mathbb{R}^{T \times H \times D_h}$ are the query, key, and value tensors at layer l , T is the sequence length,
171 H is the number of attention heads, and D_h is the dimensionality of each head.

172 During autoregressive decoding, the model stores the keys \mathbf{K}^l and values \mathbf{V}^l corresponding to
173 previously processed tokens, which is known as a key-value (KV) cache. These cached tensors are
174 used to efficiently compute attention for each new token without recomputing representations for
175 the entire sequence. Importantly, these cache entries can be precomputed and reused across multiple
176 examples (such as caching a system prompt), which is especially useful in scenarios involving large
177 models or repeated inference over similar inputs. This makes the KV cache a potential target for
178 behavioral interventions, offering compatibility with real-world settings.

179 3.2 EXTRACTING KEY-VALUE STEERING VECTORS
180

182 Similarly to activation steering, we construct a contrastive set of prompt pairs $C =$
183 $\{(p_0^+, p_0^-), (p_1^+, p_1^-), \dots, (p_N^+, p_N^-)\}$ to extract the key-value steering vectors. We refer to prompts that
184 demonstrate the desired behavior as positive and the prompts without such behavior as negative. We
185 discuss the details of how the positive and negative prompts are constructed for the reasoning induction
186 task in Section 3.5.

187 For each contrastive pair of examples, we make a forward pass and extract the keys and values vectors
188 from the designated token position (typically the final token of the input prompt). The vectors are
189 then aggregated using the Mean-of-Differences method:

$$190 \mathbf{S}_l^k = \frac{1}{N} \sum_{(p^+, p^-) \in C} f_l^k(p^+) - f_l^k(p^-) \quad \mathbf{S}_l^v = \frac{1}{N} \sum_{(p^+, p^-) \in C} f_l^v(p^+) - f_l^v(p^-)$$

193 where f_l is a Transformer layer, $\mathbf{S}_l^k \in \mathbb{R}^{H \times D_h}$ and $\mathbf{S}_l^v \in \mathbb{R}^{H \times D_h}$ are the resulting steering tensors
194 at layer l , with H denoting the number of attention heads and D_h their dimension. By taking the
195 difference between positive and negative examples and averaging across multiple contrastive pairs,
196 we aim to isolate a directional signal associated with target behavior while minimizing the amount
197 of noise introduced by information from individual examples.

198 3.3 APPLYING KEY-VALUE STEERING VECTORS
199

201 At inference time, we perform a standard forward pass on the input prompt to populate the KV cache.
202 Then, at each layer l , we modify the cached key and value vectors at a target token position of the KV
203 cache as follows:

$$204 \mathbf{V}_l^* = \mathbf{V}_l + c^v \mathbf{S}_l^v \quad \mathbf{K}_l^* = \mathbf{K}_l + c^k \mathbf{S}_l^k$$

205 where $\mathbf{K}_l, \mathbf{V}_l \in \mathbb{R}^{H \times D_h}$ are the original cached key and value vectors at layer l , and $\mathbf{S}_l^k, \mathbf{S}_l^v \in \mathbb{R}^{H \times D_h}$
206 are the steering vectors, and $c^k, c^v \in \mathbb{R}$ are scalar coefficients controlling the steering strength. Then
207 the generation proceeds as usual using the modified cache.

208 3.4 ELIMINATING STEERING AMPLIFICATION
209

211 Cache steering differs fundamentally from traditional activation steering in *how* and *when* interventions
212 are applied. Activation steering can amplify across layers and timesteps, making it unstable and sensitive
213 to hyperparameters. Cache steering eliminates this amplification by modifying the fixed KV cache
214 once after prefilling, as illustrated in Figure 1. Below, we outline the core intuition behind this contrast.

215 At a specific timestep t , activation steering explicitly affects the current hidden state at a chosen
layer l . This modification propagates both *vertically* through all subsequent layers $l+1$ to $l+N$ and

216 *horizontally* into future tokens as decoding continues. Because interventions accumulate across layers
 217 and timesteps, small changes can compound into “oversteering,” which can negatively affect generation
 218 quality. This makes the method highly sensitive to hyperparameters such as steering strength and
 219 application layer (Turner et al., 2024; Lee et al., 2025; Wang et al., 2025; Dong et al., 2024; Rimsky
 220 et al., 2024; Wang et al., 2024; Stolfo et al., 2025; Zhang & Viteri, 2025; Postmus & Abreu, 2024).

221 In contrast, cache steering modifies the *fixed* key and value representations of *past* tokens after the
 222 prefilling stage. These cached representations are no longer transformed through the network and
 223 can therefore be adjusted vertically across all layers without risk of compounding. Future tokens then
 224 attend to this modified cache, so the steering effect propagates horizontally across the tokens during
 225 decoding. This one-shot intervention avoids cascading effects, allowing cache steering to be both
 226 stable to hyperparameters and efficient at runtime.

227 In short, cache steering replaces the compounding per-step interventions of activation steering with
 228 a single post-prefill modification that avoids amplification, yielding a stable and efficient mechanism
 229 for guiding model behavior.

231 3.5 IMPLEMENTATION DETAILS

232 **Contrastive set construction.** To extract steering vectors, we construct a contrastive dataset
 233 consisting of paired prompts. Each pair includes a **positive example** (containing explicit chain-of-thought
 234 reasoning) and a **negative example** (containing only the final answer). Each contrastive prompt is
 235 created using few-shot in-context learning (ICL) examples. Specifically, both the positive and negative
 236 prompts include n ICL examples followed by a question and a generation prompt. The positive and
 237 negative prompts differ only in the presence of reasoning steps in the ICL examples (see Appendix C.1
 238 for more details and an illustrative example).

239 **Extraction and application positions.** We extract key and value vectors from the final token of
 240 the prompt, which typically corresponds to the last token of the generation prompt depending on
 241 the model’s chat template (e.g. “\n\n” in “assistant\n\n”). During inference, we aim to apply
 242 cache steering to the same logical position in the prompt as used during extraction. However, due to the
 243 autoregressive decoding mechanism (see Section 3.1), the KV cache is populated only after each token
 244 is processed. To ensure alignment, we append a neutral offset token (e.g., a newline or whitespace)
 245 to the prompt, so that the KV representation of the final token can be used in the generation of the
 246 next tokens. This ensures the cache steering affects the intended location. Details on token alignment
 247 and cache offset are provided in Appendix C.5.

248 **Hyperparameters.** As with activation steering, the steering strength coefficients of key and value
 249 vectors are treated as hyperparameters. Since we are interested in distilling reasoning behaviors
 250 from larger models, we additionally treat the number of contrastive pairs and the number of in-context
 251 examples in each pair as additional hyperparameters. Similarly to other steering approaches, we perform
 252 a small grid search over the hyperparameters to obtain reasonable values for each model-dataset pair
 253 (Turner et al., 2024; Lee et al., 2025; Wang et al., 2025; Dong et al., 2024; Rimsky et al., 2024; Wang
 254 et al., 2024; Stolfo et al., 2025; Zhang & Viteri, 2025; Postmus & Abreu, 2024). We find that steering
 255 coefficients tend to lie within consistent ranges across tasks, suggesting robustness in the method’s
 256 behavior. More on this in Section 5.3. The full list of hyperparameters can be found in Appendix G.

260 4 EXPERIMENTAL SETUP

261 **Datasets.** We use four common reasoning benchmarks for the evaluation: GSM8K (Cobbe et al.,
 262 2021), CommonsenseQA (Talmor et al., 2018), ARC-Challenge (Clark et al., 2018), and PIQA (Bisk
 263 et al., 2020). These datasets span arithmetic reasoning, commonsense inference, scientific questions,
 264 and physical commonsense reasoning. For each dataset, we generate elaborate step-by-step answers
 265 to a subset of questions from the corresponding training sets using GPT-4o, which are then used in
 266 positive examples in the contrastive set. The details on the specific prompt used to generate these steps
 267 and the generation procedure can be found in the Appendix C.6. Steering vectors are computed using
 268 the training set, while evaluation is performed on the corresponding test sets.

270 **Table 1: Comparison of baselines, activation steering, and cache steering on four reasoning**
 271 **benchmarks.** We evaluate six models of different sizes on GSM8K, ARC-Challenge, CSQA, and
 272 PIQA using both greedy decoding (left block) and sampling-based decoding (right block). Results
 273 show that cache steering consistently improves reasoning performance, often outperforming both
 274 baseline and activation steering. Combining cache steering with CoT prompting yields further gains
 275 in more than half of the cases. Numbers in parentheses denote standard deviation across 5 sampled
 276 generations per input; the sampling block highlights that cache steering produces a *stable shift in logits*,
 277 as reflected by consistently better or on-par performance under stochastic decoding.

Dataset	Model	Greedy					Sampling	
		Baseline	CoT prompt	Activation	Cache	Cache steering + CoT prompt	Baseline	Cache steering
				steering	steering			
ARC-c	SmolLM2-360M	24.32	26.62	24.06	27.13	25.26	24.16 (1.13)	24.52 (0.87)
	Llama-3.2-1B	53.67	53.75	53.84	55.03	56.14	52.29 (0.81)	53.16 (1.44)
	Llama-3.2-3B	74.32	77.13	74.23	79.27	79.52	74.64 (0.36)	77.71 (0.82)
	Qwen2-0.5B	39.51	37.20	40.69	40.36	38.82	38.05 (0.21)	35.96 (0.93)
	Llama-3.1-8B	83.11	84.98	84.64	85.58	85.24	82.66 (0.28)	85.09 (0.64)
GSM8K	Phi-4-mini	84.56	86.69	86.18	87.97	86.77	83.46 (0.56)	87.2 (0.62)
	SmolLM2-360M	8.49	10.39	7.66	8.95	10.39	8.08 (0.38)	7.87 (0.4)
	Llama-3.2-1B	45.56	46.10	45.41	46.32	47.16	43.71 (0.83)	43.88 (1.22)
	Llama-3.2-3B	68.54	71.57	68.38	67.17	72.10	68.22 (0.43)	67.57 (1.22)
	Qwen2-0.5B	17.44	24.94	23.81	18.04	25.47	16.94 (1.08)	16.48 (0.4)
CSQA	Llama-3.1-8B	76.34	77.56	76.50	75.81	77.86	75.94 (0.62)	75.22 (0.58)
	Phi-4-mini	77.94	74.68	75.89	78.47	75.74	77.48 (0.62)	77.1 (0.66)
	SmolLM2-360M	19.74	22.11	19.66	21.95	22.52	20.02 (1.77)	21.31 (0.67)
	Llama-3.2-1B	53.56	54.71	54.14	55.20	53.56	51.45 (0.64)	50.78 (0.73)
	Llama-3.2-3B	70.27	72.56	69.12	72.32	72.48	70.09 (0.78)	70.40 (1.1)
PIQA	Qwen2-0.5B	47.42	44.31	45.95	46.03	45.37	45.67 (1.18)	42.36 (1.11)
	Llama-3.1-8B	73.87	74.04	73.30	75.27	74.37	73.92 (0.37)	74.27 (1.01)
	Phi-4-mini	69.78	70.11	69.29	70.00	70.52	68.22 (0.62)	67.52 (1.08)
	SmolLM2-360M	50.38	52.61	49.62	51.31	52.50	48.12 (0.66)	50.72 (1.03)
	Llama-3.2-1B	65.29	64.96	61.48	63.76	66.43	65.02 (0.88)	62.48 (1.57)
PIQA	Llama-3.2-3B	69.42	76.93	72.31	73.34	76.88	68.35 (0.28)	71.83 (0.66)
	Qwen2-0.5B	52.12	53.43	53.43	54.57	55.55	51.82 (0.68)	53.86 (0.44)
	Llama-3.1-8B	80.03	81.61	80.25	82.86	83.13	79.08 (0.39)	83.41 (0.52)
	Phi-4-mini	78.29	79.59	80.74	79.33	80.25	77.19 (0.63)	79.46 (0.68)

304 **Models.** We evaluate cache steering on small instruction-tuned models from four families: Llama-3.2
 305 (1B and 3B variants), SmolLM2 (360M), Qwen2 (0.5B), and Phi-4-mini (3.8B) (Grattafiori et al.,
 306 2024; Team, 2024; Allal et al., 2025; Abouelenin et al., 2025). Additionally, we add the Llama-3.1
 307 (8B) model to evaluate how cache steering scales beyond the smallest models. The list with the full
 308 model names and URLs can be found in Appendix C.8.

310 **Decoding strategies.** Since cache steering affects internal representations, which result in a shift
 311 in output logits, we evaluate our approach using both deterministic and stochastic decoding. For
 312 sampling-based decoding, we assess the consistency of steering effects by generating the response with
 313 5 different seeds and comparing that to the baseline generations using the same setup. The generation
 314 arguments can be found in Appendix C.4.

316 **Answer extraction and metrics.** Answer correctness is determined using task-specific heuristics.
 317 For GSM8K, we extract the final number mentioned in the output using digit pattern matching (Wang
 318 et al., 2023; Wang & Zhou, 2024). For multiple-choice tasks (ARC, PIQA, CSQA), we develop a
 319 4-stage extraction pipeline that uses soft string matching against known answer choices, with failover
 320 to constrained decoding. More details on the answer extraction process can be found in Appendix C.2.

322 **Comparison to activation steering.** In several experiments, we compare cache steering to activation
 323 steering. More specifically, we use the CAA method (Rimsky et al., 2024), which is one of the most
 324 popular methods for activation steering. In all experiments, we make the best effort to provide a fair

324
 325 **Table 2: Cache steering consistently increases the length of generated outputs across tasks.** We re-
 326 port the average number of generated tokens under three conditions: baseline decoding, CoT prompting,
 327 and cache steering. Results are shown for multiple model sizes averaged across reasoning benchmarks.
 328 Cache steering leads to significantly longer outputs, exceeding even CoT-prompted completions,
 329 suggesting that the intervention encourages more elaborate reasoning, even without explicit prompting.

330	331 Model	332 Baseline	333 CoT	334 Cache Steering
331	332 SmoILM2-360M	333 73.5 (94.1)	334 194.8 (27.7)	335 294.2 (52.4)
332	333 Qwen2-0.5B	334 100.0 (59.5)	335 167.8 (52.1)	336 225.0 (50.6)
333	334 Llama-3.1-8B	335 156.0 (36.7)	336 174.8 (18.6)	337 297.2 (61.0)
334	335 Llama-3.2-1B	336 121.8 (50.7)	337 161.8 (27.5)	338 291.2 (122.4)
335	336 Llama-3.2-3B	337 160.2 (37.7)	338 181.0 (29.6)	339 284.5 (95.8)
336	337 Phi-4-mini	338 107.8 (33.5)	339 211.0 (20.7)	340 328.8 (132.7)

337
 338 **Table 3: Results on larger model and harder benchmarks.** Evaluation of cache steering on
 339 Llama-3.1-70B-Instruct across ARC-Challenge, GPQA Diamond, and a subset of MATH.

340	341 Dataset	342 Model	343 Baseline	344 CoT	345 Cache	346 Cache steering
				prompt	Steering	+ CoT prompt
343	344 ARC-c	345 Llama-3.1-70B	346 93.00	347 92.91	348 93.52	349 93.17
344	345 GPQA Diamond	346 Llama-3.1-70B	347 40.40	348 44.95	349 44.95	350 47.98
345	346 MATH (subset)	347 Llama-3.1-70B	348 66.22	349 62.68	350 73.63	351 64.95

347 comparison. The details of how activation steering vectors are extracted and applied can be found
 348 in Appendix C.3.

351 5 EXPERIMENTS

353 5.1 INDUCING REASONING VIA CACHE STEERING

355 To evaluate the effectiveness of cache steering in inducing reasoning behavior, we compare it against
 356 several baselines: standard greedy decoding (no intervention), CoT prompting (appending “Let’s think
 357 step by step” to the prompt), and activation steering. We also evaluate a hybrid approach that combines
 358 CoT prompting with cache steering. As shown in Table 1 (greedy part), cache steering consistently
 359 outperforms the baseline and often leads to performance gains over the CoT prompting. Furthermore,
 360 the combination of CoT prompting with cache steering leads to additional gains in more than half of
 361 the cases, indicating the complementary nature of both techniques. Notably, cache steering surpasses
 362 activation steering in almost all cases.

363 Additionally, we report the mean number of generated tokens per model, averaged over all datasets,
 364 in Table 2 (results for each dataset-pair can be found in Appendix F). Cache steering leads to longer
 365 outputs, suggesting that the intervention encourages reasoning even without explicit prompting. Taking
 366 into account the results from both tables, we can conclude that cache steering leads to well-structured
 367 reasoning traces, which can be further confirmed by examining qualitative examples in Appendix B.

368 To complement our main results on small and medium-sized models, we evaluate cache steering on
 369 a larger model (Llama-3.1-70B) and more challenging benchmarks. The results in Table 3 show +4.6%
 370 accuracy on GPQA Diamond and +7.4% on a MATH subset. These gains are even stronger than
 371 those observed on small models, where limited base capabilities can bottleneck the benefits of induced
 372 reasoning. This suggests that cache steering has the potential to scale effectively with model size.

373 **Stability under sampling.** The right side of Table 1 reports results under sampling-based decoding,
 374 comparing cache steering to the baseline across multiple models and tasks. We observe that cache
 375 steering produces consistent performance improvements or maintains parity with the baseline,
 376 indicating that the intervention leads to stable and meaningful *shift in logits*. Rather than injecting
 377 noise or introducing erratic behavior, cache steering systematically biases the model toward more

Figure 2: **Cache steering ablations on ARC-c (Llama-3.2-1B-Instruct).** Accuracy remains stable across contrastive set sizes and key/value steering strengths, with optimal performance around $c^k = 0.3$ and $c^v = 6$. Fewer in-context examples (e.g., 1-shot) yield better steering, likely due to reduced noise. Overall, the method is robust to a range of hyperparameters.

structured reasoning even under stochastic generation. The relatively low standard deviations across runs further support the robustness of the effect.

5.2 COMPUTATIONAL OVERHEAD

Cache steering involves only a one-time cache modification after the prefilling step and does not require any additional forward passes compared to the baseline. In contrast, activation steering typically requires continuous interventions at every decoding step for the steering to be effective (Wehner et al., 2025). As shown in Figure 3, cache steering achieves latency nearly identical to the baseline (~ 10 ms/token at batch size 1), while activation steering incurs substantially higher time per token (~ 15 ms/token, with the gap widening at larger batch sizes). These findings underscore the practical efficiency of cache steering, making it well-suited for real-world deployment scenarios. Full experimental details are provided in Appendix C.7.

5.3 ABLATION STUDIES

We conduct ablation experiments on Llama-3.2-1B-Instruct and the ARC-c dataset to assess the sensitivity of cache steering to the primary hyperparameters: 1) number of contrastive pairs used to extract steering vectors, 2) number of few-shot examples per contrastive example, and 3) steering strength coefficients c^k and c^v . The results for all the ablation studies can be found in Figure 2.

Vector extraction. We vary the number of contrastive pairs from 100 to 1000. The accuracy remains relatively stable across this range, with only minor fluctuations (from 53.1% to 55.7%). This suggests that even small contrastive sets can yield effective steering vectors, though performance tends to improve slightly with larger sets. We also vary the number of ICL examples per prompt from 1 to 10. Interestingly, the best result is achieved with a single example (55.8%), and performance dips slightly at 3-shot (52.4%) before recovering. This non-monotonic trend suggests that reasoning signals may be sensitive to specific examples in the training data.

Vector application. More importantly, we observe that cache steering is robust to steering strength variation. Varying the key coefficient c^k between 0.0 and 0.4 results in only minor changes, with the best performance at $c^k = 0.3$ (56.4%). Varying the value coefficient c^v from 1 to 10 shows a peak around $c^v = 6$ (55.0%) and a gradual decline afterward, with performance dropping below 52% beyond $c^v = 8$. Although extreme hyperparameters can lead to slight performance drops, cache steering remains stable to local changes to the coefficients. In contrast, activation steering often exhibits high sensitivity, with small shifts in coefficient values leading to catastrophic generation failures (Rimsky et al., 2024; Turner et al., 2024; Da Silva et al., 2025). We show the sensitivity of activation steering to hyperparameters on a smaller subset of ARC-c in Appendix E.

Figure 3: **Cache steering introduces negligible overhead compared to activation steering.** We report average time per token (in milliseconds) for cache steering, activation steering, and the baseline (no intervention) on a single H100 GPU, using batch sizes of 1 and 16. At batch size 1, both the baseline and cache steering run at \sim 10 ms/token, while activation steering is slower at \sim 15 ms/token; the gap widens further at larger batch sizes. Unlike activation steering, which requires continuous intervention, cache steering adds virtually no runtime cost over baseline inference.

Table 4: **Percentage of generated outputs that exhibit the intended structure when steered using a style-specific vector.** Results demonstrate that cache steering can reliably induce distinct reasoning styles, although its effectiveness varies across styles.

Metric (%)	Stepwise Reasoning	Strategy+ Execution	Causal Chain	Annotated Deduction	Analogical Reasoning
Matching Style	95	35	95	15	90

SmolLM-360M-Instruct on ARC-c	
Prompt:	An astronomer observes that a planet rotates faster after a meteorite impact. Which is the most likely effect of this increase in rotation?
Analogical Reasoning:	Just like Earth, planets with higher rotation rates tend to have more massive cores. When...
Causal Chain:	If a planet rotates faster after a meteorite impact, it is likely that the planet's rotation rate...
Annotated deduction:	[Faster rotation] [Planetary density will decrease] [Planetary years will become...]
Stepwise reasoning:	Step 1: Understand the impact of the meteorite on the planet's rotation. Step 2: Identify...
Strategy execution:	Strategy: To determine the most likely effect of a meteorite impact on a planet's rotation...

Figure 4: **Example outputs on a single ARC-c question, using different style-specific vectors.** Each generation reflects the structure of the steering traces used to construct the corresponding vector.

5.4 STYLE TRANSFER

To explore whether cache steering can be used to distill distinct reasoning styles from a teacher model, we evaluate how the stylistic form of the reasoning traces used to extract the vectors affects the response structure. For this experiment, we construct reasoning traces of 5 different styles (definitions and experiment details in Appendix A) for a subset of ARC-Challenge questions and extract one steering vector per style. Table 4 reports the percentage of generated responses that match the intended structure for each style-specific steering vector using the SmolLM-360M-Instruct model. The results indicate that cache steering reliably induces the correct structure for common styles such as *Stepwise Reasoning*, *Causal Chain*, and *Analogical Reasoning*. Performance is weaker for less common styles. We provide an analysis of these failure modes in Appendix A.

Figure 4 illustrates outputs from a single ARC-Challenge question under different style-specific steering vectors. These show that the rhetorical differences between generations are not only detectable but often pronounced. For instance, all analogical responses begin with *Just like . . .*, while causal chain examples follow a conditional logic pattern. These observations confirm that stylistic signals are indeed encoded in the KV cache and can be carried over to any prompt using cache steering. Taken together, these results show that cache steering can be used not only to induce reasoning in general, but to exert fine-grained control over its *form*.

486

6 CONCLUSIONS

488 We introduced *cache steering*, a one-shot technique for guiding language models by modifying their
 489 key-value cache. Using contrastive examples and GPT-4o-generated reasoning traces, our method
 490 induces structured reasoning in small models without fine-tuning, prompt engineering, or continuous
 491 interventions. Unlike activation steering, cache steering operates once on fixed past representations,
 492 improving stability, efficiency, and compatibility with standard inference pipelines. Experiments on
 493 GSM8K, ARC-c, CSQA, and PIQA show reliable induction of reasoning behavior and occasional
 494 accuracy gains, while style-transfer experiments demonstrate the ability to control reasoning forms.
 495 Although its effectiveness still depends on coefficient settings and steering vector selection, cache
 496 steering provides a lightweight, practical mechanism for behavior control and opens new directions
 497 for behavior control and low-cost distillation in the KV space.

498

REFERENCES

501 Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen Bach, Jianmin
 502 Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, Congcong Chen, et al. Phi-4-mini technical
 503 report: Compact yet powerful multimodal language models via mixture-of-loras. *arXiv preprint*
 504 *arXiv:2503.01743*, 2025.

505 Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guilherme Penedo, Lewis
 506 Tunstall, Andrés Marafioti, Hynek Kydlíček, Agustín Piqueres Lajarín, Vaibhav Srivastav, et al.
 507 Smollm2: When smol goes big—data-centric training of a small language model. *arXiv preprint*
 508 *arXiv:2502.02737*, 2025.

509 Seyedarmin Azizi, Erfan Baghaei Potraghloo, and Massoud Pedram. Activation steering for
 510 chain-of-thought compression. *arXiv preprint arXiv:2507.04742*, 2025.

512 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
 513 commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
 514 volume 34, pp. 7432–7439, 2020.

515 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 516 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 517 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

519 David Chanin. steering-vectors: Steering vectors for transformer language models in pytorch/hug-
 520 gingface. <https://pypi.org/project/steering-vectors/>, 2025. Accessed:
 521 2025-05-13.

522 Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steerable
 523 reasoning calibration of large language models for free. *arXiv preprint arXiv:2504.07986*, 2025.

525 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 526 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
 527 *arXiv preprint arXiv:1803.05457*, 2018.

528 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
 529 Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word
 530 problems. *arXiv preprint arXiv:2110.14168*, 2021.

532 Patrick Queiroz Da Silva, Hari Sethuraman, Dheeraj Rajagopal, Hannaneh Hajishirzi, and Sachin
 533 Kumar. Steering off course: Reliability challenges in steering language models. *arXiv preprint*
 534 *arXiv:2504.04635*, 2025.

535 Weilong Dong, Xinwei Wu, Renren Jin, Shaoyang Xu, and Deyi Xiong. Contrans: Weak-to-strong
 536 alignment engineering via concept transplantation. *arXiv preprint arXiv:2405.13578*, 2024.

537 Andrey Galichin, Alexey Dontsov, Polina Druzhinina, Anton Razzhigaev, Oleg Y Rogov, Elena
 538 Tutubalina, and Ivan Oseledets. I have covered all the bases here: Interpreting reasoning features
 539 in large language models via sparse autoencoders. *arXiv preprint arXiv:2503.18878*, 2025.

540 Tao Ge, Hu Jing, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder for
 541 context compression in a large language model. In *The Twelfth International Conference on*
 542 *Learning Representations*. ICLR, 2024.

543 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 544 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 545 of models. *arXiv preprint arXiv:2407.21783*, 2024.

546 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 547 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 548 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

549 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 550 language models are zero-shot reasoners. *Advances in neural information processing systems*, 35:
 551 22199–22213, 2022.

552 Bruce W Lee, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Erik Miehling, Pierre Dognin, Manish
 553 Nagireddy, and Amit Dhurandhar. Programming refusal with conditional activation steering. In
 554 *The Thirteenth International Conference on Learning Representations*. ICLR, 2025.

555 Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
 556 Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
 557 *Advances in Neural Information Processing Systems*, 37:22947–22970, 2024.

558 Guangda Liu, Chengwei Li, Jieru Zhao, Chenqi Zhang, and Minyi Guo. Clusterkv: Manipulating llm
 559 kv cache in semantic space for recallable compression. In *2025 62nd ACM/IEEE Design Automation*
 560 *Conference (DAC)*, pp. 1–7. IEEE, 2025a.

561 Luyang Liu, Jonas Pfeiffer, Jiaxing Wu, Jun Xie, and Arthur Szlam. Deliberation in latent space via
 562 differentiable cache augmentation. In *Forty-second International Conference on Machine Learning*,
 563 2025b.

564 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine*
 565 *learning research*, 9(Nov):2579–2605, 2008.

566 Jesse Mu, Xiang Li, and Noah Goodman. Learning to compress prompts with gist tokens. *Advances*
 567 *in Neural Information Processing Systems*, 36:19327–19352, 2023.

568 Joris Postmus and Steven Abreu. Steering large language models using conceptors: Improving
 569 addition-based activation engineering. In *MINT: Foundation Model Interventions*, 2024.

570 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
 571 *arXiv preprint arXiv:1908.10084*, 2019.

572 Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt Turner.
 573 Steering llama 2 via contrastive activation addition. In *Proceedings of the 62nd Annual Meeting*
 574 *of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 15504–15522, 2024.

575 Daniel Scalena, Gabriele Sarti, and Malvina Nissim. Multi-property steering of large language models
 576 with dynamic activation composition. *arXiv preprint arXiv:2406.17563*, 2024.

577 Alessandro Stolfo, Vidhisha Balachandran, Safoora Yousefi, Eric Horvitz, and Besmira Nushi.
 578 Improving instruction-following in language models through activation steering. In *International*
 579 *Conference on Learning Representations*. ICLR, 2025.

580 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
 581 answering challenge targeting commonsense knowledge. *arXiv preprint arXiv:1811.00937*, 2018.

582 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2412.15115*, 2024.

583 Eric Todd, Millicent Li, Arnab Sharma, Aaron Mueller, Byron C Wallace, and David Bau. Function
 584 vectors in large language models. In *International Conference on Learning Representations*. ICLR,
 585 2024.

594 Quan Hung Tran, Svetha Venkatesh, Hung Le, et al. Dynamic steering with episodic memory for
 595 large language models. In *Findings of the Association for Computational Linguistics: ACL 2025*,
 596 pp. 13731–13749, 2025.

597

598 Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J Vazquez, Ulisse Mini, and
 599 Monte MacDiarmid. Activation addition: Steering language models without optimization. *URL*
 600 <https://arxiv.org/abs/2308.10248>, 2024.

601

602 Tianlong Wang, Xianfeng Jiao, Yinghao Zhu, Zhongzhi Chen, Yifan He, Xu Chu, Junyi Gao, Yasha
 603 Wang, and Liantao Ma. Adaptive activation steering: A tuning-free llm truthfulness improvement
 604 method for diverse hallucinations categories. In *Proceedings of the ACM on Web Conference 2025*,
 605 pp. 2562–2578, 2025.

606

607 Weixuan Wang, Jingyuan Yang, and Wei Peng. Semantics-adaptive activation intervention for llms
 608 via dynamic steering vectors. *arXiv preprint arXiv:2410.12299*, 2024.

609

610 Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting. *Advances in Neural*
 611 *Information Processing Systems*, 37:66383–66409, 2024.

612

613 Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu, David
 614 Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels go? exploring the
 615 state of instruction tuning on open resources. *Advances in Neural Information Processing Systems*,
 616 36:74764–74786, 2023.

617

618 Jan Wehner, Sahar Abdelnabi, Daniel Tan, David Krueger, and Mario Fritz. Taxonomy, opportu-
 619 nities, and challenges of representation engineering for large language models. *arXiv preprint*
 620 *arXiv:2502.19649*, 2025.

621

622 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 623 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances*
 624 *in neural information processing systems*, 35:24824–24837, 2022.

625

626 Fangcong Yin, Xi Ye, and Greg Durrett. Lofit: Localized fine-tuning on llm representations. *Advances*
 627 *in Neural Information Processing Systems*, 37:9474–9506, 2024.

628

629 Jason Zhang and Scott W Viteri. Uncovering latent chain of thought vectors in large language models.
 630 In *Workshop on Neural Network Weights as a New Data Modality*, 2025.

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
Table 5: **Overview of reasoning styles used in the style transfer experiment.** Each style reflects a distinct structure.

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 Style Name	651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 Structure
Stepwise Reasoning	Step 1: ... Step 2: ...
Strategy + Execution	Strategy: ... Solution: ...
Causal Chain	If ..., then ... Therefore...
Annotated Deduction	[Premise] → [Inference]
Analogical Reasoning	This is similar to... Thus, we can infer...

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 A ADDITIONAL DETAILS ON STYLE TRANSFER

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 A.1 EXPERIMENTAL SETUP

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
To evaluate whether cache steering can transfer distinct reasoning styles, we select a subset of 20 questions from the ARC-Challenge dataset, each paired with its correct multiple-choice answer. For each question, we construct five distinct reasoning traces that arrive at the same answer but differ in their structure. The description of the five styles can be found in Table 5.

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
We extract one steering vector per style. During inference, we apply each style-specific steering vector to a set of 20 questions from the test set of the ARC-Challenge dataset to examine how it affects the resulting output structure. For this experiment, we use the SmoILM-360M-Instruct model due to its small size.

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 A.2 FAILURE ANALYSIS

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
Style transfer was less reliable for the *Strategy + Execution* and *Annotated Deduction* formats. Only half of the generations reflected the strategy-execution structure, and just one out of ten matched the annotated deduction style. To understand these failure modes, we performed a qualitative analysis of the outputs. In the case of *Annotated Deduction*, we hypothesize that this format is underrepresented in the model’s pretraining distribution. While most of the completions exhibited partial stylistic artifacts, such as starting with a phase or word in square brackets (e.g., [Farms] in Wyoming were ...), they lacked the structured logical progression seen in the positive examples used during vector extraction. The steering signal appeared to “nudge” the model in the direction of the desired style, but was not strong enough to elicit full adherence.

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
A similar pattern emerged with the *Strategy + Execution* format. Although all the responses began with the correct discourse marker (e.g., *Strategy* :), half of the generated samples repeated the same marker in a loop (e.g. *Strategy* : , *Strategy* : , ...). We attribute this breakdown to possible oversteering: since we did not tune the steering coefficients for each style, it is likely that the default values were too strong in this case, leading to degenerate outputs. These analyses suggest that while cache steering robustly transfers common reasoning styles, rare or structurally complex formats may require further tuning or style-specific adjustments.

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 B QUALITATIVE EXAMPLES

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
Here we show qualitative examples from different model-dataset pairs. We try to include cases when: 1) both baseline and steering answers are correct; 2) only the steering answer is correct; 3) only the baseline answer is correct. All qualitative examples can be found the the code repository, which contains the outputs for all model-dataset pairs.

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
Importantly, even though cache steering is effective at inducing reasoning, this alone does not guarantee higher accuracy on the benchmarks. In some cases, it induces reasoning traces that are well-structured and plausible but arrive at incorrect conclusions (e.g., due to question ambiguity or alternative valid interpretations). We also observe that failures or the models to tie complex reasoning back to the choice labels (i.e., generating the correct answer but the wrong label) sometimes cause correct reasoning traces to be scored as incorrect. We encourage readers to examine qualitative outputs in the code repository, where the steering effect is visible in the structure and style of responses.

702 B.1 LLAMA-3.2-1B-INSTRUCT ON ARC-C
703704 **Llama-3.2-1B-Instruct on ARC-c: both baseline and steering are correct**
705706 **Prompt:** A scientist investigated how well plants native to Maryland would grow in desert conditions. The
707 scientist placed equal amounts of desert soil into 10 identical containers. Each container held two of the
708 same kind of plant. The scientist investigated a total of 10 different kinds of plants. The scientist placed
709 all of the containers into a greenhouse adjusted to produce hot, desert-like conditions. The scientist gave
710 the plants equal, but small amounts of water for the next five weeks. Most of the plants did not survive after
711 the five week investigation. Which statement best explains why 16 of the plants did not survive? Choices:
712713

- A: Plants do not grow in desert conditions.
- B: Few plants survive severe changes to their environment.
- C: Plants native to Maryland are not good for scientific studies.
- D: Plants native to Maryland are only able to survive in Maryland.

714 **Baseline Response:**

715 The correct answer is B: Few plants survive severe changes to their environment.

716 The statement that best explains why 16 of the plants did not survive is that they were placed in a desert-like
717 environment with hot, desert-like conditions, and then given small amounts of water for five weeks. This
718 severe change to their environment would likely be stressful for the plants, making it difficult for them to
719 survive. The fact that most of the plants did not survive suggests that the conditions were too harsh for them,
720 rather than that the plants themselves are not good for scientific studies or that they are only able to survive
721 in Maryland. **So the correct choice is B.**722 **Steered Response:**723 To understand why 16 of the plants did not survive, we need to consider the factors that affect plant growth
724 in desert conditions.725 Firstly, plants native to Maryland are not adapted to desert conditions. They are typically found in temperate
726 climates with moderate temperatures and adequate rainfall. Desert plants, on the other hand, are adapted
727 to hot, dry conditions with limited water availability.728 Secondly, the desert soil used in the containers was not suitable for the plants. Desert soil is often high in
729 salt and lacks essential nutrients, which can be detrimental to plant growth.730 Thirdly, the amount of water provided to the plants was small, which can be stressful for most plants. Even
731 if the plants were adapted to desert conditions, the lack of water would still be a significant challenge.

732 Now, let's consider the options:

733 A: Plants do not grow in desert conditions. This statement is incorrect because plants can grow in desert
734 conditions, but they require specific adaptations and conditions to survive.735 B: Few plants survive severe changes to their environment. This statement is partially correct, as the severe
736 changes to the environment (hot, dry conditions and limited water) would indeed be challenging for most
737 plants. However, it does not explain why 16 of the plants did not survive.738 C: Plants native to Maryland are not good for scientific studies. This statement is incorrect because plants
739 native to Maryland can be valuable subjects for scientific studies, especially when they are adapted to specific
740 conditions.741 D: Plants native to Maryland are only able to survive in Maryland. This statement is incorrect because plants
742 native to Maryland can survive in other environments, including desert conditions, as long as they are adapted
743 to those conditions.744 The correct answer is B: Few plants survive severe changes to their environment. This is because the
745 combination of hot, dry conditions and limited water provided to the plants would be challenging for most
746 plants to survive. **So the correct choice is B.**747 **Llama-3.2-1B-Instruct on ARC-c: incorrect baseline, correct steering**
748749 **Prompt:** A college campus has so few parking spaces that cars are often lined up waiting to park during
750 class hours. Which of the following describes how the college could best solve the need for more parking
751 spaces using the universal systems model? Choices:752 A: The college could build an additional parking lot, gather parking data, and then receive input from
753 community meetings.754 B: The college could limit access to parking lots during busy hours, hire security officers to help restrict
755 parking, and then gather parking data.756 C: The college could gather parking data, receive input from community meetings, build an additional
757 parking lot, and then gather more parking data.758 D: The college could hire security officers to help restrict parking, gather parking data, receive input from
759 community meetings, and then gather more data.

756
 757 **Baseline Response:**
 758 The correct answer is B: The college could limit access to parking lots during busy hours, hire security
 759 officers to help restrict parking, and then gather parking data.
 760 This option describes how the college could best solve the need for more parking spaces using the universal
 761 systems model. The universal systems model is a framework for understanding and managing complex
 762 systems, and in this case, it involves:
 763 Identifying the problem (limited parking spaces)
 764 Gathering data on the current situation (parking data)
 765 Receiving input from stakeholders (community meetings)
 766 Taking action to address the problem (limiting access to parking lots during busy hours and hiring security
 767 officers)
 768 This approach is a good example of how the universal systems model can be applied to solve a complex
 769 problem like limited parking spaces. **So the correct choice is B.**

770 **Steered Response:**
 771 To solve the need for more parking spaces on a college campus, the college should consider the universal
 772 systems model, which involves several key components.
 773 First, the college should gather parking data. This involves collecting information about the number of cars
 774 parked, the types of vehicles, and the time of day when parking is most popular. This data will help the college
 775 understand the current parking situation and identify areas where additional parking spaces are needed.
 776 Next, the college should receive input from community meetings. This involves engaging with students,
 777 faculty, and staff to gather their opinions and concerns about parking. By listening to their feedback, the
 778 college can better understand the needs and priorities of the community.
 779 Building an additional parking lot is a crucial step in addressing the parking shortage. However, it should
 780 be done in conjunction with the gathering of parking data and the community meetings. This ensures that
 781 the new parking lot is designed and constructed to meet the needs of the community, and that it is accessible
 782 and convenient for everyone.
 783 Finally, the college should gather more parking data to evaluate the effectiveness of the new parking lot
 784 and make adjustments as needed. This will help the college to refine its parking management strategies and
 785 ensure that the parking lot is meeting its intended purpose.
 786 In summary, the correct answer is the one that involves gathering parking data, receiving input from commu-
 787 nity meetings, building an additional parking lot, and then gathering more data to evaluate its effectiveness.
 788 Choices A, B, and D do not accurately describe the universal systems model. Choice A involves gathering
 789 data and then implementing a solution, but it does not involve community meetings. Choice B involves
 790 restricting access to parking during busy hours, but it does not involve gathering data or receiving input from
 791 the community. Choice D involves gathering data, but it does not involve building an additional parking
 792 lot or receiving input from the community. **So the correct choice is C.**

788 Llama-3.2-1B-Instruct on ARC-c: correct baseline, incorrect steering

789 **Prompt:** In 1903 Mary Anderson invented the first windshield wiper. How did this invention most likely
 790 help people?
 791 Choices:

792 **A: It helped people use less gas.**
 793 **B: It kept people from driving too fast.**
 794 **C: It made cars easier for people to buy.**
 795 **D: It made cars safer to drive in bad weather.**

796 **Baseline Response:**

797 The correct answer is D: It made cars safer to drive in bad weather.

798 Mary Anderson's windshield wiper invention was designed to help people see while driving, especially in
 799 rainy or snowy conditions. By keeping the windshield clear of rain and snow, drivers could see the road ahead
 800 more clearly, reducing the risk of accidents. This was particularly important in the early days of automobile
 801 travel, when roads were often poorly maintained and visibility was limited. Anderson's invention helped
 802 to improve road safety and reduce the number of accidents on the roads. **So the correct choice is D.**

803 **Steered Response:**

804 To understand how Mary Anderson's windshield wiper invention helped people, we need to consider the
 805 context and purpose of the invention.

806 Mary Anderson's windshield wiper was designed to improve visibility while driving, especially in rainy or
 807 foggy conditions. The primary goal of the invention was to reduce the amount of time spent stopping and
 808 starting the vehicle, which was a significant challenge in early automobiles.

809 In the early 1900s, driving was a hazardous activity, especially in poor weather conditions. Drivers had to con-
 810 stantly stop and start the engine, which was time-consuming and often resulted in accidents. The windshield

810
811
812
813
814
815

wiper helped to reduce this time by allowing drivers to clear the windshield of rain and debris more quickly. Therefore, the correct answer is that Mary Anderson’s windshield wiper invention most likely helped people by reducing the time spent stopping and starting the vehicle, which was a significant challenge in early automobiles. **So the correct choice is B.**

816
817

C IMPLEMENTATION DETAILS

818
819

C.1 CONTRASTIVE DATA CONSTRUCTION

820
821
822
823

All prompts are formatted using the chat template from the model’s tokenizer configuration. This ensures consistency with how the models are typically used during chat-style inference. The example of a single contrastive pair with 1 in-context example:

824
825
826
827
828
829
830
831
832
833
834
835
836837
838
839

Figure 5: The example of a single contrastive pair with 1 in-context example. The positive example (left) includes both the reasoning trace and the final answer. The negative example (right) includes only the final answer.

840
841
842
843

To ensure that in-context examples are semantically similar to the target question, we embed all training questions using the `all-MiniLM-L6-v2` sentence embedding model (Reimers & Gurevych, 2019) and retrieve the $top-n$ most similar examples based on cosine similarity.

844

C.2 ANSWER EXTRACTION

845
846
847
848
849
850
851
852
853
854

We explored using an LLM to extract answer labels from model outputs, which is a common practice in recent activation steering studies (Rimsky et al., 2024; Wang et al., 2023; Wehner et al., 2025). However, due to computational constraints, we were unable to use a sufficiently large model to ensure high-quality extraction. In particular, smaller judges often rely on their own knowledge to infer the correct answer, rather than faithfully extracting it from the generated output. This compromises the reliability of evaluation in cases where steering affects reasoning without necessarily correcting the final answer. To minimize the amount of false positive answers, we opted for a rule-based pipeline that is transparent, fast to run at scale, and robust enough for comparative analysis in our setting.

855
856
857
858
859
860

GSM8K. For GSM8K, we extract the final numeric answer using a digit-based pattern match. Specifically, we select the last number mentioned in the model’s output. This approach has been used in prior work (Wang et al., 2023; Wang & Zhou, 2024). While this method introduces both false positives (e.g., trailing numbers in explanations) and false negatives (e.g., answers embedded in text), these effects tend to cancel out over large-scale evaluation.

861
862
863

Multiple-choice tasks. For multiple-choice datasets, we require more structured extraction due to the open-ended nature of the model outputs. Therefore, we adopt the approach from Wang & Zhou (2024) and augment it further with a more rigorous extraction process. We develop a multi-stage extraction pipeline designed to recover answer labels with high precision and robustness. For all

864 experiments, we append the string "So the correct choice is" to the end of the prompt and
 865 allow the model to generate 10 additional tokens. The output is then processed in the following stages:
 866

- 867 **1. Regex-based label extraction:** We apply a sequence of 12 regular expressions to identify
 868 explicit label mentions (e.g., "A", "option C", "(B)") both immediately following the answer
 869 prefix and in the whole answer string as a fallback. Each pattern is designed to handle common
 870 formats seen across models and datasets. The full list of regex patterns can be found in the code.
- 871 **2. String match fallback:** If no regex match is found, we scan the span after "So the
 872 correct choice is" for an exact string match with any of the raw answer choices.
 873 To avoid false positive matches, we only accept matches when exactly one choice matches
 874 unambiguously. We also filter out cases containing negation cues (e.g., "not", "incorrect",
 875 "wrong") to exclude completions like "So the correct answer is not B".
- 876 **3. Invalid and multi-label detection:** We detect multi-answer completions (e.g., "both A and
 877 C") or noncommittal outputs ("none of the above") and label them as [incorrect]. Any
 878 remaining answers that do not match a valid choice are marked as [invalid].
- 879 **4. Constrained decoding for fallback resolution:** For all completions marked as [invalid],
 880 we discard the answer span after "So the correct choice is" and repeat decoding
 881 with constraints: we re-append "So the correct choice is" to the prompt and
 882 sample a single token, masking the logits to allow only valid label tokens. This final step
 883 guarantees that a valid label is recovered for every input.

884 Despite this multi-stage approach, errors in label extraction are still common. In particular, semantically
 885 correct answers may be incorrectly marked due to minor phrasing differences or ambiguous generation
 886 formats. Additionally, the constrained decoding stage forces the model to generate a valid label even if
 887 the generated text is not semantically meaningful, which was especially common in activation steering
 888 experiments. Therefore, to mitigate this, we discard the results if the accuracy before the constrained
 889 decoding stage is significantly lower than after.

891 C.3 ACTIVATION STEERING EVALUTAION

892 To make a fair comparison of activation steering to cache steering, we chose a similar setting:
 893 greedy decoding, 200 contrastive samples, each with 5 few-shot examples. Similarly to cache
 894 steering implementation, the vectors were extracted from the last token position, aggregated with
 895 a Difference-in-Means method. The vectors were applied continuously to each new token during
 896 decoding. All these choices adhere to the current best practices in activation steering research (Wehner
 897 et al., 2025). To extract and apply the steering vector, we used the steering-vectors Python library
 898 (Chanin, 2025) that implements the most popular activation steering method CAA (Rimsky et al., 2024).

899 First we performed a grid search on a subset of data over $c \in [0.5, 1, 3]$ and middle layers of each
 900 model: for SmoILM2-360M-Instruct $l \in [13, 14, 15, 16, 17, 18, 19]$, for Llama-3.2-1B-Instruct
 901 $l \in [6, 7, 8, 9, 10]$, for Llama-3.2-3B-Instruct $l \in [13, 14, 15]$, for Llama-3.1-8B-Instruct $l \in [15, 16, 17]$,
 902 for Phi-4-mini-instruct $l \in [15, 16, 17]$, for Qwen2-0.5B-Instruct $l \in [11, 12, 13]$. The selected
 903 hyperparameters were inspired by the numbers reported in Turner et al. (2024). Then, activation
 904 steering with the best parameters was evaluated on the full test set to obtain the final results.

905 C.4 SAMPLING PARAMETERS

906 For sampling experiments, we used the parameters specified in the generation config of the model.
 907 If the generation config was not available, we used temperature: 0.6, top_p: 0.9, top_k: 50.

911 C.5 ALIGNING CACHE POSITION

912 Through extensive experimentation, we discovered that for most datasets, cache steering is most
 913 effective if the vectors are applied to the same token from which the vectors were extracted. In case
 914 of an instruction-tuned model, such a token can be the last token of the generation prompt (e.g., the
 915 newline character after "assistant"). Therefore, when we extract the steering vectors from such a token,
 916 the steering effect is most pronounced if we apply the vector to the same token. Even though the actual
 917 positions of the extraction and application tokens in the corresponding sequences are different, in

918 both sequences the tokens play a similar role. We think of these tokens as information aggregation
 919 tokens. In cases when the desired application token is last in the sequence, we append a special token
 920 to the prompt in order to be able to apply the intervention to the correct position. In cases when cache
 921 steering is applied to any other position, this procedure is not needed.
 922

923 C.6 GENERATION OF REASONING DATA

925 To generate reasoning data, we used a GPT-4o model via OpenAI’s Chat Completions API. We used
 926 the following instruction prompt to elicit detailed CoT-style responses:

928 You are given a question and a corresponding answer
 929 to that question. Your task is to think step by
 930 step and provide the reasoning steps to get the
 931 answer. Separate each reasoning step with <reasoning>
 932 </reasoning> tags. The question: '{question}'. The
 933 correct answer: {answer}.

934 The obtained reasoning steps were further parsed with regular expressions.

936 C.7 COMPUTATIONAL OVERHEAD EXPERIMENT DETAILS

938 To compare the computational efficiency of cache steering, activation steering, and the model without
 939 any intervention, we measure the per-token generation time under both methods using a subset of
 940 100 examples from the ARC-Challenge dataset.

941 We conduct experiments using two different batch sizes: 1 (single-example inference) and 16 (batched
 942 inference), to reflect both interactive and throughput-oriented use cases. All runs are executed on the
 943 same hardware using greedy decoding.

944 Timing is measured from the beginning of generation (post-prompt forward pass) to the completion
 945 of the final token. All results are averaged over three runs.

947 C.8 MODELS USED

949 We evaluate our method using multiple open-source language models from different model families.
 950 Below, we list their Hugging Face model hub URLs.

- 952 • **SmollM2-360M-Instruct**
 - 953 – URL: <https://huggingface.co/HuggingFaceTB/SmollM2-360M-Instruct>
 - 955 – License: Apache 2.0
- 957 • **LLaMA-3.2-1B-Instruct**
 - 958 – URL: <https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct>
 - 959 – License: Llama 3.2 Community License
- 961 • **LLaMA-3.2-3B-Instruct**
 - 962 – URL: <https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct>
 - 963 – License: Llama 3.2 Community License
- 966 • **Qwen2-0.5B-Instruct**
 - 967 – URL: <https://huggingface.co/Qwen/Qwen2-0.5B-Instruct>
 - 968 – License: Apache 2.0
- 970 • **Phi-4-mini-instruct**
 - 971 – URL: <https://huggingface.co/microsoft/Phi-4-mini-instruct>
 - License: MIT

972 • **Llama-3.1-8B-Instruct**
 973 – URL: <https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct>
 974 – License: Llama 3.1 Community License

977 **D REPRODUCIBILITY**

980 **D.1 EXPERIMENTS REPRODUCIBILITY**

982 To ensure consistency and facilitate detailed analysis, we implemented several reproducibility
 983 safeguards throughout our experimental pipeline.

984 **Sample tracking via UUIDs.** At test time, we assign each input a unique identifier (UUID) derived
 985 deterministically from a hash of the input text. This allows us to track and compare individual examples
 986 across experiments with different settings (e.g., sampling, steering variants, decoding strategies), and
 987 ensures the integrity of input data over time. The UUID makes it easy to locate the same question across
 988 logs, qualitative outputs, and evaluation reports, and is sensitive to minor changes in the question itself.

990 **Deterministic runs.** For all runs involving stochastic generation (e.g., sampling-based decoding),
 991 we set the random seed at the beginning of each run to guarantee reproducibility.

993 **Llama chat template** In all experiments, we used the chat template predefined by the model to
 994 tokenize the input text. However, we noticed that specifically in the Llama models, the current date is
 995 added to the system prompt, making it impossible to fully reproduce the results. Therefore, we modify
 996 the chat template of the Llama models to exclude the current date from the system prompt.

998 **D.2 HARDWARE SPECIFICATIONS**

1000 All experiments were run on the internal cluster (not in the cloud). These are the specifications of
 1001 the hardware:

- 1002 • 1 NVIDIA H100 GPU, 94GiB of memory
- 1003 • 16 AMD 4th GEN EPYC CPUs

1005 The time to run each experiment varied per model, dataset, whether it was a baseline experiment, cache
 1006 steering or activation steering experiment, the amount of training data used, etc. On average, a single
 1007 run for almost all model-dataset pairs took less than 1 hour to run, with the exception of Llama-3.2-3B
 1008 model on PIQA dataset, which took under 2 hours, and activation steering experiments, which took
 1009 under 6 hours per experiment. The full research project required more compute than the experiments
 1010 reported in the paper since a significant part of the project was experimentation and empirical analysis.

1012 **D.3 SOFTWARE ENVIRONMENT**

- 1014 • Python 3.11.11
- 1015 • transformers: 4.49.0
- 1016 • torch: 2.5.1

1018 **E SENSITIVITY OF ACTIVATION STEERING TO HYPERPARAMETERS**

Figure 6: Sensitivity of activation steering to hyperparameters on ARC-c dataset using Llama-3.2-1B. The results are obtained from the activation steering grid search described in C.3.

F LENGTH OF GENERATED OUTPUTS

Table 6: **Cache steering consistently increases the length of generated outputs across tasks.** We report the average number of generated tokens under three conditions: baseline decoding, CoT prompting, and cache steering. Results are shown for multiple model sizes across four reasoning benchmarks. The results indicate that cache steering leads to longer answers on average across all tasks and models, except for GSM8K. We hypothesize that the reason for that is that this dataset is a classic benchmark for evaluation of reasoning methods, and all models are already trained on this dataset and generate CoT responses even without explicit instructions.

Task	Model	Baseline	CoT	Cache Steering
ARC	SmolLM2-360M-Instruct	22	188	315
	Qwen2-0.5B-Instruct	75	147	242
	Llama-3.1-8B-Instruct	178	196	315
	Llama-3.2-1B-Instruct	152	171	283
	Llama-3.2-3B-Instruct	190	208	301
	Phi-4-mini-instruct	110	228	369
CSQA	SmolLM2-360M-Instruct	19	159	295
	Qwen2-0.5B-Instruct	53	104	181
	Llama-3.1-8B-Instruct	104	151	340
	Llama-3.2-1B-Instruct	46	134	283
	Llama-3.2-3B-Instruct	105	146	251
	Phi-4-mini-instruct	62	181	443
GSM8K	SmolLM2-360M-Instruct	214	222	222
	Qwen2-0.5B-Instruct	187	216	188
	Llama-3.1-8B-Instruct	185	179	207
	Llama-3.2-1B-Instruct	147	146	150
	Llama-3.2-3B-Instruct	171	167	179
	Phi-4-mini-instruct	142	215	137
PIQA	SmolLM2-360M-Instruct	39	210	345
	Qwen2-0.5B-Instruct	85	204	289
	Llama-3.1-8B-Instruct	157	173	327
	Llama-3.2-1B-Instruct	142	196	449
	Llama-3.2-3B-Instruct	175	203	407
	Phi-4-mini-instruct	117	220	366

1080
1081
1082
1083
1084
G LIST OF HYPERPARAMETERS1085
1086
1087
1088
1089
1090
1091
1092
Table 7: Hyperparameters used for the experiments for each task-dataset pair.

Task	Model	Contrastive Samples	In-context Examples	c^k	c^v
GSM8K	HuggingFaceTB/SmollM2-360M-Instruct	200	5	0	1
	meta-llama/Llama-3.2-1B-Instruct	100	5	0	1
	meta-llama/Llama-3.2-3B-Instruct	100	5	0	1
	Qwen/Qwen2-0.5B-Instruct	100	5	0	3
	meta-llama/Llama-3.1-8B-Instruct	100	5	0	2
	microsoft/Phi-4-mini-instruct	100	5	0	1
CSQA	meta-llama/Llama-3.2-1B-Instruct	100	5	0	10
	meta-llama/Llama-3.2-3B-Instruct	300	10	0	4
	HuggingFaceTB/SmollM2-360M-Instruct	400	12	0	6
	Qwen/Qwen2-0.5B-Instruct	200	10	0.2	4
	meta-llama/Llama-3.1-8B-Instruct	100	5	0	10
	microsoft/Phi-4-mini-instruct	100	5	0	10
ARC-c	meta-llama/Llama-3.2-3B-Instruct	400	10	0	6
	meta-llama/Llama-3.2-1B-Instruct	200	10	0	6
	HuggingFaceTB/SmollM2-360M-Instruct	300	10	0	6
	Qwen/Qwen2-0.5B-Instruct	400	10	0	10
	meta-llama/Llama-3.1-8B-Instruct	200	10	0	6
	microsoft/Phi-4-mini-instruct	200	10	0	6
PIQA	meta-llama/Llama-3.2-1B-Instruct	200	10	0	6
	meta-llama/Llama-3.2-3B-Instruct	200	10	0	10
	HuggingFaceTB/SmollM2-360M-Instruct	200	10	0	6
	Qwen/Qwen2-0.5B-Instruct	200	10	0	8
	meta-llama/Llama-3.1-8B-Instruct	200	10	0	6
	microsoft/Phi-4-mini-instruct	200	10	0	6

1111
1112
1113
H LIMITATIONS

1114
1115 In this work, we focus primarily on inducing reasoning behavior in small LLMs. While results on one
1116 larger model already show a potential for even better improvements, further study is needed to assess
1117 how well cache steering generalizes across a wider range of large models, domains, and tasks beyond
1118 reasoning. Importantly, cache steering, like other behavior-guidance methods including prompting
1119 and fine-tuning, has broad applications. Potential misuse, such as steering toward deceptive, harmful,
1120 or biased outputs, remains a concern. We therefore advocate responsible use and recommend that
1121 safeguards are considered.

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134 I VERTICAL AMPLIFICATION
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158

1159 **Figure 7: Vertical amplification in activation steering.** A steering vector added to the residual
1160 stream at layer N influences the representations of each subsequent layer, causing the steering effect
1161 to accumulate vertically. Applying another steering vector at layer $N+1$ reinforces amplifies the steering
1162 effect, leading to oversteering. This vertical propagation contrasts with cache steering, where
1163 modifications are applied to static key-value vectors that are not recomputed across layers.

1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 **J ADDITIONAL EXPERIMENTS**1189
1190 **J.1 ABLATION ON INDIVIDUAL LAYERS**

1205 **Figure 8: Ablation on the individual layers on ARC-c (Llama-3.2-1B-Instruct).** The results
1206 show only modest variation (≈ 2 percentage points) across layers, supporting our claim of reduced sensitivity
1207 compared to activation steering.

1208 To further examine the sensitivity of cache steering to the choice of steering layers, we ran an ablation
1209 in which the steering vector was applied to each individual layer of Llama-3.2-1B-Instruct on ARC-c.
1210 Figure 8 presents the accuracy obtained when steering only a single layer at a time. The results vary
1211 by only ≈ 2 percentage points across all layers. This behavior contrasts with activation steering, where
1212 effectiveness depends heavily on choosing the correct layer and where a poor choice can lead to degraded
1213 performance. Overall, this ablation supports our claim that cache steering is substantially less sensitive
1214 to the steering location, reducing the hyperparameter search space to steering strength coefficients.

1215 **J.2 PERSISTENCE OF EFFECT OVER LONG GENERATIONS**

1216 To evaluate whether the steering effect persists over long generations, we conduct a targeted analysis
1217 on Llama-3.2-1B-Instruct using the ARC-c dataset. For each input, we first apply cache steering
1218 for the initial n generated tokens (with $n \in \{0, 16, 32, 64, 128, 256, 512, 1024\}$) and then reset the KV
1219 cache, removing all steering modifications before continuing decoding. We measure the final response
1220 length and structure over 100 samples per setting. The results, shown in Figure 9, demonstrate a clear
1221 monotonic trend: the longer steered KV cache is used, the longer and the final responses remain. When
1222 conditioned only on the previously generated tokens (without modified KV cache), the model tends
1223 to produce shorter sequences.

1224 **J.3 t-SNE VISUALIZATION OF POSITIVE AND NEGATIVE VALUE REPRESENTATIONS**

1225 To better understand why contrastive cache shifts are effective we follow the methods used by (Azizi
1226 et al., 2025; Chen et al., 2025), we visualize the value vectors extracted from positive (reasoning) and
1227 negative (non-reasoning) examples using 2-D t-SNE projections (Maaten & Hinton, 2008) across
1228 all layers of Llama-3.2-1B-Instruct on ARC-c (Figure 10). We observe consistent separation between

Figure 9: **Persistence of cache steering effect over long generations.** Mean response length on ARC-c for Llama-3.2-1B-Instruct when steered KV cache is used to generate only the first n tokens (x-axis), after which the KV cache is reset and decoding proceeds normally ($n \in \{0, 16, 32, 64, 128, 256, 512, 1024\}$).

positive and negative representations in almost every layer, indicating that the model internally encodes reasoning-related signals in a linearly separable manner. This directly motivates our method: constructing a steering vector as the difference of mean positive and negative cache representations captures this separation and provides a direction that reliably induces reasoning behavior.

