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ABSTRACT

Local trends of time series characterize the intermediate upward and downward
patterns of time series. Learning and forecasting the local trend in time series data
play an important role in many real applications, ranging from investing in the
stock market, resource allocation in data centers and load schedule in smart grid.
Inspired by the recent successes of neural networks, in this paper we propose
TreNet, a novel end-to-end hybrid neural network that predicts the local trend
of time series based on local and global contextual features. TreNet leverages
convolutional neural networks (CNNs) to extract salient features from local raw
data of time series. Meanwhile, considering long-range dependencies existing in
the sequence of historical local trends, TreNet uses a long-short term memory
recurrent neural network (LSTM) to capture such dependency. Furthermore, for
predicting the local trend, a feature fusion layer is designed in TreNet to learn
joint representation from the features captured by CNN and LSTM. Our pro-
posed TreNet demonstrates its effectiveness by outperforming conventional CNN,
LSTM, HMM method and various kernel based baselines on real datasets.

1 INTRODUCTION

Time series, which is a sequence of data points in time order, is being generated in a wide spectrum of
domains, such as daily fluctuation of the stock market, power consumption records of households,
performance monitoring data of clusters in data centres, and so on. In many applications, users
are interested in understanding the evolving trend in time series and forecasting the trend, since
the conventional prediction on specific data points could deliver very little information about the
semantics and dynamics of the underlying process generating the time series. For instance, time
series in Figure 1 are from the household power consumption dataset1. Figure 1(a) shows some raw
data points of time series. Though pointA andB have approximately the same value, the underlying
system is likely to be in two different states when it outputs A and B, because A is in an upward
trend whileB is in a downward trend (Wang et al., 2011; Matsubara et al., 2014). On the other hand,
even when two points with the similar value are both in the upward trend, e.g, point A and C, the
different slopes and durations of the trends where point A and C locate, could also indicate different
states of the underlying process.

Particularly, in this paper we are interested in the local trend of time series which measures the in-
termediate local behaviour, i.e., upward or downward pattern of time series that characterized by the
slope and duration (Wang et al., 2011). For instance, in Figure 1(b) the linear segments over raw data
points of time series represent the local trends extracted from a real household power consumption
time series. For the ease of presentation, we will use the term trend and local trend interchangeably
in the rest of the paper. Learning and forecasting local trends are quite useful in a wide range of
applications. For instance, in the stock market, due to its high volatility and noisy environment,
in reality predicting stock price trends is preferred over the prediction of the stock market absolute
values (Atsalakis & Valavanis, 2009). Predicting the local trend of stock price time series empowers

∗These two authors contributed equally.
1 https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
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traders to design profitable trading strategies (Chang et al., 2012b; Atsalakis & Valavanis, 2009).
In the smart energy domain, knowing the predictive local trend of power consumption time se-
ries enables energy providers to schedule power supply and maximize energy utilization (Zhao &
Magoulès, 2012).

Meanwhile, in recent years neural networks have shown the dramatical power in a wide spectrum of
domains, e.g., natural language processing, computer vision, speech recognition, time series anal-
ysis, etc. (Wang et al., 2016b; Sutskever et al., 2014; Yang et al., 2015; Lipton et al., 2015). For
time series data, two mainstream architectures, convolutional neural network (CNN) and recurrent
neural network (RNN) have been exploited in different time series related tasks, e.g., RNN in time
series classification (Lipton et al., 2015) and CNN in activity recognition and snippet learning (Liu
et al., 2015; Yang et al., 2015). RNN is powerful in discovering the dependency in sequence data
(Jain et al., 2014; Graves, 2012) and particularly the Long Short-Term Memory (LSTM) RNN works
well on sequence data with long-term dependencies (Chung et al., 2014; Hochreiter & Schmidhuber,
1997) due to the internal memory mechanism. CNN excels in exacting effective representation of
local salience from raw data of time series by enforcing a local connectivity between neurons. (Yang
et al., 2015; Hammerla et al., 2016).

Figure 1: (a) Time series of household power consumption. (b) Local trends in time series. (c)
Effect of local raw data on the trend forecasting.

In this paper, we focus on learning and forecasting the local trends in time series via neural networks.
This involves learning different aspects of the data. On one hand, the sequence of historical local
trends describes the long-term contextual information of time series and thus naturally affects the
evolution of the following local trend. On the other hand, the recent raw data points of time series
(Wang et al., 2011; Batal et al., 2012), which represent the local variation and behaviour of time
series, affect the evolving of the following trend as well and have particular predictive power for
abruptly changing local trends (Wang et al., 2011). For instance, in Figure 1(c), trend 1, 2 and
3 present a continuous upward pattern. Then when we aim at predicting the subsequent trend of
time series at the end of the third local trend, the previous three successive upward trends outline a
probable increasing trend afterwards. However, the local data around the end of the third trend, e.g.,
data points in the red circle, indicate that time series could stabilize and even decrease. The data
points after the third trend indeed present a decreasing trend indicated by the red dotted segment. In
this case, the subsequent trend has more dependency on the local data points. Therefore, it is highly
desired to develop a systematic way to model such various hidden and complementary dependencies
in time series for the local trend forecasting problem.

To this end, we propose a end-to-end hybrid neural network, referred to as TreNet. In particular,
it consists of a LSTM recurrent neural network to capture the long dependency in historical local
trends, a convolutional neural network to extract local features from local raw data of time series,
and a feature fusion layer to learn joint representation to take advantage of both features drawn from
CNN and LSTM. Such joint representation is used for the local trend forecasting. The experimental
analysis on real datasets demonstrates that TreNet outperforms individual recurrent neural network,
convolutional neural network and a variety of baselines in term of local trend prediction accuracy.

The rest of the paper is organized as follows. Section 2 presents related work, while Section 3 defines
the problem to be solved and introduces the notations. In Section 4, we present the proposed TreNet.
Section 5 demonstrates the performance of our method and baselines on real datasets. Finally, the
paper is concluded in Section 6. Refer to Section 7 and Section 8 for more experiment results and
discussion.
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2 RELATED WORK

Traditional learning approaches over local trends of time series mainly make use of Hidden Markov
Models (HMMs) (Wang et al., 2011; Matsubara et al., 2014). HMMs maintain short-term state de-
pendences, i.e., the memoryless Markov property and predefined number of states, which requires
significant task specific knowledge. RNNs instead use high dimensional, distributed hidden states
that could take into account long-term dependencies in sequence data. Previous time series seg-
mentation approaches (Keogh et al., 2001; Matsubara et al., 2014; Yuan, 2015) focus on achieving
a meaningful segmentation and finding patterns, rather than modeling the relation in segments and
therefore are not suitable for forecasting local trends. Multi-step ahead prediction is another way
to realize local trend prediction by fitting the predicted values to estimate the local trend. However,
multi-step ahead prediction is a non-trivial problem itself (Chang et al., 2012a). In this paper, we
concentrate on directly learning local trends through neural networks.

RNNs have recently shown promising results in a variety of applications, especially when there ex-
ist sequential dependencies in data (Lyu & Zhu, 2014; Chung et al., 2014; Sutskever et al., 2014).
Long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997; Lyu & Zhu, 2014; Chung
et al., 2014), a class of recurrent neural networks with sophisticated recurrent hidden and gated
units, are particularly successful and popular due to its ability to learn hidden long-term sequential
dependencies. (Lipton et al., 2015) uses LSTMs to recognize patterns in multivariate time series,
especially for multi-label classification of diagnoses. (Chauhan & Vig, 2015; Malhotra et al., 2015)
evaluate the ability of LSTMs to detect anomalies in ECG time series. Bidirectional LSTM (Graves
& Schmidhuber, 2005) is usually intended for speech processing rather than time series forecasting
problems. Our paper focuses on using LSTM to capture the dependency in the sequence of histor-
ical local trends and meanwhile the hidden states in LSTM are further used to learn joint feature
representations for the local trend forecasting.

CNN is often used to learn effective representation of local salience from raw data (Vinyals et al.,
2015; Donahue et al., 2015; Karpathy et al., 2014). (Hammerla et al., 2016; Yang et al., 2015; Lea
et al., 2016) make use of CNNs to extract features from raw time series data for activity/action
recognition. (Liu et al., 2015) focuses on the prediction of periodical time series values by using
CNN and embedding time series with the potential neighbors in the temporal domain. Our proposed
TreNet will combine the strengths of both LSTM and CNN and form a novel and unified neural
network architecture for local trend forecasting.

Hybrid neural networks, which combines the strengths of various neural networks, are receiving in-
creasing interest in the computer vision domain, such as image captioning (Mao et al., 2014; Vinyals
et al., 2015; Donahue et al., 2015), image classification (Wang et al., 2016a), protein structure pre-
diction (Li & Yu, 2016), action recognition (Ballas et al., 2015; Donahue et al., 2015) and so on.
But efficient exploitation of such hybrid architectures has not been well studied for time series data,
especially the trend forecasting problem. (Li & Yu, 2016; Ballas et al., 2015) utilize CNNs over im-
ages in cascade of RNNs in order to capture the temporal features for classification. (Bashivan et al.,
2015) transforms EEG data into a sequence of topology-preserving multi-spectral images and then
trains a cascaded convolutional-recurrent network over such images for EEG classification. (Wang
et al., 2016a; Mao et al., 2014) propose the CNN-RNN framework to learn a shared representation
for image captioning and classification problems. In our proposed TreNet, LSTM and CNN first
respectively learn the trend evolution and local raw data of time series and then TreNet fuses the
features captured by LSTM and CNN to predict the trend.

3 PROBLEM FORMULATION

In this section, we provide the formal definition of the trend learning and forecasting problem in this
paper.

We define time series as a sequence of data points X = {x1, . . . , xT }, where each data point xt is
real-valued and subscript t represents the time instant. The corresponding local trend sequence of
X is a series of piecewise linear representations of X , denoted by T = {〈`k, sk〉}. Each element
of T , e.g., 〈`k, sk〉 describes a linear function over a certain subsequence (or segment) of X and
corresponds to a local trend in X . Such local trends in T are extracted from X by time series
segmentation and fitting a linear function w.r.t. time t over each segment (Keogh et al., 2001; Wang
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et al., 2011). `k and sk respectively represent the duration and slope of trend k. `k is measured in
terms of the time range covered by trend k. Local trends in T are time ordered and non-overlapping.
The durations of all the local trends in T address

∑
k

`k = T . In addition, a local trend sequence

ending by time t is denoted by T (t) = {〈`k, sk〉 |
∑
k

`k ≤ t}.

Meanwhile, as we discussed in Section 1, local raw data of time series affects the varying of trend
as well and thus we define the local data w.r.t. a certain time instant t as a sequence of data points
in a window of size w, denoted by L(t) = {xt−w, . . . , xt}.
At certain time t, trend forecasting is meant to predict the duration and slope of the following trend
based on a given sequence of historical trends T (t) and local data set L(t). The predicted duration
and slope at time t are denoted by ˆ̀

t and ŝt. Our proposed TreNet can be trained for predicting
either ˆ̀

t or ŝt. For simplicity, we use ŷt to represent the predicted value of TreNet throughout the
paper.

Therefore, given the training datasetD = X∪T , we aim to propose a neural network based approach
to learn a function ŷt = f(T (t),L(t)) for the trend forecasting. In this paper, we focus on univariate
time series. The proposed method can be naturally generalized to multivariate time series as well by
augmenting the input to the neural network. Refer to Section 8 for more discussion.

4 HYBRID NEURAL NETWORKS FOR TREND LEARNING AND FORECASTING

In this section, we first present an overview about the proposed TreNet for the trend forecasting.
Then we will detail the components of TreNet.

Overview.
The idea of our TreNet is to combine CNN with LSTM to utilize their representation abilities on
different aspects of training data D (D = X ∪ T ) and then to learn a joint feature for the trend pre-
diction. Technically, TreNet is designed to learn a predictive function ŷt = f(R(T (t)), C(L(t))).
R(T (t)) is derived by training the LSTM over sequence T to capture the dependency in the trend
evolving, while C(L(t)) corresponds to local features extracted by CNN from L(t). The long-term
and local features captured by LSTM and CNN, i.e., R(T (t)) and C(L(t)) convey complementary
information pertaining to the trend varying. Therefore, the feature fusion layer is supposed to take
advantages of both features to produce a fused representation for improved performance. Finally,
the trend prediction is realized by the function f(·, ·), which corresponds to the feature fusion and
output layers in Figure 2.

Figure 2: Illustration of the hybrid architecture of TreNet. (best viewed in colour)

Learning the dependency in the trend sequence.
During the training phase, the duration `k and slope sk of each local trend k in sequence T are fed
into the LSTM layer of TreNet. Each j-th neuron in the LSTM layer maintains a memory cjk at step
k. The output hjk or the activation of this neuron is then expressed as (Hochreiter & Schmidhuber,
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1997; Chung et al., 2014):

hjk = ojktanh(c
j
k) (1)

where ojk is an output gate and calculated as:

ojk = σ(Wo[`k sk] +Uohk−1 + Vock)
j (2)

where [`k sk] is the concatenation of the duration and slope of the trend k, hk−1 and ck are the
vectorization of the activations of {hjk−1} and {cjk}, and σ is a logistic sigmoid function. Then,
the memory cell cjk is updated through partially forgetting the existing memory and adding a new
memory content c̃jk:

cjk = f jkc
j
k−1 + ijk c̃

j
k , c̃

j
k = tanh(Wc[`k sk] +Uchk−1)

j (3)

The extent to which the existing memory is forgotten is modulated by a forget gate f jk , and the
degree to which the new memory content is added to the memory cell is modulated by an input gate
ijk. Then, such gates are computed by

f jk = σ(Wf [`k sk] +Ufhk−1 + Vfck−1)
j (4)

ijk = σ(Wi[`k sk] +Uihk−1 + Vick−1)
j (5)

At each step k, the hidden activation hk is the output to the feature fusion layer. Specifically, given
a T (t) containing n local trends (i.e., |T (t)| = n), the output of R(T (t)) is R(T (t)) = hn.

Learning features from the local raw data of time series.
When the k-th trend in T is fed to LSTM, the corresponding local raw time series data input to

the CNN part of TreNet is L(t), where t =
k∑

i=1

`i. CNN consists of H stacked layers of 1-d

convolutional, activation and pooling operations. Denote by ai the input signal of layer i and thus
at the first layer a1 = L(t). Each layer has a specified number of filters ni of a specified filter size
di. Each filter on a layer sweeps through the entire input signal to exact local features as follows:

vi,jm = φ(bi,j +

m+di/2∑
z=m−di/2

W i,j
z aiz) ,∀m = 1, . . . , |ai| (6)

where vi,jm is the activation of j-th filter of layer i on m position of the input signal. Here φ is the
Leaky Rectified Linear Unit, which is shown to perform better (Xu et al., 2015). Then the max-
pooling is performed over the vi,jm of each filter.

Finally, the output of CNN in TreNet is the concatenation of max-pooling of each filter on the last
layer H , namely:

C(L(t)) = [p1, . . . , pn
H

], pj = [ max
1≤z≤q

({vH,j
m+z})], ∀j = 1, . . . , nH (7)

where q is the pooling size.

Feature fusion and output layers.
The feature fusion layer combines the representations R(T (t)) and C(L(t)), to form a joint feature.
Then, such joint feature is fed to the output layer to provide the trend prediction. Particularly, we first
map R(T (t)) and C(L(t)) to the same feature space and add them together to obtain the activation
of the feature fusion layer (Mao et al., 2014). The output layer is a fully-connect layer following the
feature fusion layer. Mathematically, the prediction of TreNet is expressed as:

ŷt = f(R(T (t)), C(L(t))) =W o · φ(W r ·R(T (t)) +W c · C(L(t)))︸ ︷︷ ︸
feature fusion

+bo (8)

where φ(·) is element-wise leaky ReLU activation function and + denotes the element-wise addi-
tion. W o and bo are the weights and bias of the output layer.
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To train TreNet, we adopt the squared error function plus a regularization term as:

J(W , b ; T ,X ) = 1

|T |

|T |∑
k=1

(ŷk − yk)2 + λ‖W ‖2 (9)

where W and b represent the weight and bias parameters in TreNet, λ is a hyperparameter for the
regularization term and yk is the true value of trend slope or duration.

The cost function is differentiable and the architecture of TreNet allows the gradients from the loss
function (9) to be backpropagated to both LSTM and CNN parts. TreNet can be trained respectively
for the slope and duration of local trends using T and X . When performing forecasting, T (t) and
L(t) are fed to TreNet and the prediction value ŷk could be either the slope or duration depending
on the training target.

5 EXPERIMENTAL ANALYSIS

In this section, we conduct extensive experiments to demonstrate the prediction performance of
TreNet by comparing to a variety of baselines. Due to the page limit, refer to Section 7 for more
experiment results.

5.1 EXPERIMENT SETUP

Dataset: We test our method and baselines on three real time series datasets.

• Daily Household Power Consumption (HousePC). This dataset2 contains measurements
of electric power consumption in one household with a one-minute sampling rate over a
period of almost 4 years. Different electrical quantities and some sub-metering values are
available. We use the voltage time series throughout the experiments.

• Gas Sensor (GasSensor). This dataset3 contains the recordings of chemical sensors ex-
posed to dynamic gas mixtures at varying concentrations. The measurement was con-
structed by the continuous acquisition of the sensor array signals for a duration of about 12
hours without interruption. We mainly use the gas mixture time series regarding Ethylene
and Methane in air.

• Stock Transaction (Stock): This dataset is extracted from Yahoo Finance and contains the
daily stock transaction information in New York Stock Exchange from 1950-10 to 2016-4.

All datasets are preprocessed by (Keogh et al., 2001) to extract local trends. Alternative time series
segmentation and local trend extraction approaches can be used as well. We choose (Keogh et al.,
2001) here due to its high efficiency. Totally, we obtain 42591, 4720 and 1316 local trends respec-
tively from above datasets. For the ease of experimental result interpretation, the slope of extracted
local trends is represented by the angle of the corresponding linear function and thus in a bounded
value range [−90, 90]. The duration of local trends is measured by the number of data points within
the local trend. Then, the obtained trend sequences and the set of local data are split into training
(80%), validation (10%) and test (10%) datasets.

Baselines: We compare TreNet with the following six baselines:

• CNN. This baseline method predicts the trend by only using CNN over the set of local raw
data of time series to learn features for the forecasting. The size of local data is set at w as
is defined in Section 3.

• LSTM. This method uses LSTM to learn dependencies in the trend sequence T and pre-
dicts the trend only using the trained LSTM.

• Support Vector Regression (SVR). A family of support vector regression based ap-
proaches with different kernel methods is used for the trend forecasting. We consider three

2 https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
3 https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures
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Dataset Model RMSE @ Duration RMSE @ Slope

HousePC

CNN 27.51 13.56
LSTM 27.27 13.27

SVRBF 31.81 12.94
SVPOLY 31.81 12.93
SVSIG 31.80 12.93
pHMM 34.06 26.00
Naive 39.68 21.17

CLSTM 25.97 13.77
TreNet 25.89 12.89

Stock

CNN 18.87 12.78
LSTM 11.07 8.40

SVRBF 11.38 7.40
SVPOLY 11.40 7.42
SVSIG 11.49 7.41
pHMM 36.37 8.70
Naive 11.36 8.58

CLSTM 9.26 7.31
TreNet 8.86 6.84

GasSensor

CNN 53.99 11.51
LSTM 55.77 11.22

SVRBF 62.81 10.21
SVPOLY 70.91 10.95
SVSIG 85.69 11.92
pHMM 111.62 13.07
Naive 53.76 10.57

CLSTM 54.20 14.86
TreNet 52.28 9.57

Table 1: RMSE of the prediction of local trend duration and slope on each dataset.
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commonly used kernels (Liu et al., 2015), i.e., Radial Basis kernel (SVRBF), Polynomial
kernel (SVPOLY), Sigmoid kernel (SVSIG). The trend sequence and the corresponding
set of local time series data are concatenated as the input features to such SVR approaches.

• Pattern-based Hidden Markov Model (pHMM). (Wang et al., 2011) proposed a pattern-
based hidden Markov model (HMM), which segments the time series and models the de-
pendency in segments via HMM. The derived HMM model is used to predict the state of
time series and then to estimate the trend based on the state.

• Naive. This is the naive approach which takes the duration and slope of the last trend as
the prediction for the next one.

• ConvNet+LSTM(CLSTM). It is based on the cascade structure of ConvNet and LSTM
in (Bashivan et al., 2015) which feeds the features learnt by ConvNet over time series to a
LSTM and obtains the prediction from the LSTM.

Evaluation metric: We evaluate the predictive performance of TreNet and baselines in terms of
Root Mean Square Error (RMSE). The lower the RMSE, the more accurate the predictions.

Training: The training procedure of TreNet and baselines in our paper follows the schema below.

The CNN and LSTM components in TreNet share the same network structure (e.g., number of lay-
ers, neurons in each layer) as CNN and LSTM baselines. CNN has two stacked convolutional layers,
which have 32 filters of size 2 and 4. The number of memory cells in LSTM is 600. For baseline
CNN and LSTM, we tune the learning rate for each approach from {10−1, 10−2, 10−3, 10−4, 10−5}
(Sutskever et al., 2013), in order to achieve the least prediction errors and then fix the learning rate.
For TreNet, in addition to the learning rate, the number of neurons in the feature fusion layer is
chosen from the range {300, 600, 900, 1200} to achieve the best performance. We use dropout and
L2 regularization to control the capacity of neural networks to prevent overfitting, and set the values
to 0.5 and 5 × 10−4 respectively for all datasets (Mao et al., 2014). The Adam optimizer (Kingma
& Ba, 2014) is chosen to learn the weights in neural networks.

Regarding the SVR based approaches, we carefully tune the parameters c (error penalty), d (degree
of kernel function), and γ (kernel coefficient) for kernels. Each parameter is selected from the sets
c ∈ {10−5, 10−4, . . . , 1, . . . , 104, 105}, d ∈ {1, 2, 3}, γ ∈ {10−5, 10−4, . . . , 1, . . . , 105} respec-
tively. We iterate through candidate values of each combination of c, d and γ to train our model,
and keep the parameters that generate the lowest RMSE on the validation set, and then use them to
predict on the test set.

The training datasets of SVR and pHMM baselines are consistent as that of TreNet. Likewise, CNN
and LSTM baselines are respectively fed by the set of local data and the trend sequence of the same
size as TreNet. In addition, since the window size of local data is tunable, we vary the window
size of local data, i.e. w, from the range {100, 300, 500, 700, 900}, so as to investigate how the size
of local data influences the predication performance. The results will be presented in Section 5.2.
The model’s performance on the validation set will be evaluated after each epoch of training. Each
model is trained for at least 50 epochs. Meanwhile, the training process adopts early stopping if no
further improvement in the performance of validation shows up after 50 epochs.

5.2 EXPERIMENT RESULTS

Table 1 studies the prediction performances of TreNet and baselines. For each dataset, the window
size of local data is constant for approaches (i.e., CNN, SVRBF, SVPOLY, SVSIG, pHMM and
TreNet) that take local data as input. Then, the results of each approach are obtained by tuning the
corresponding parameter as described in Section 5.1.

In Table 1, we observe that TreNet consistently outperforms baselines on the duration and slope
prediction by achieving around 30% less errors at the maximum. It verifies that the hybrid architec-
ture of TreNet can improve the performance by utilizing the information captured by both CNN and
LSTM. Specifically, pHMM method performs worse due to the limited representation capability of
HMM. On the slope prediction, SVR based approaches can get comparable results as TreNet.

In the following group of experiments, we investigate the effect of local data size (i.e., w) on the
prediction. In particular, we tune the value of local data size for the approaches whose input fea-

8



Under review as a conference paper at ICLR 2017

tures contains local data and observe the prediction errors. Such approaches include CNN, SVRBF,
SVPOLY, SVSIG, pHMM and TreNet. LSTM only consumes the trend sequence and thus is not
included. Due to the page limit, we report the results on the HousePC dataset in Table 2 and Table 3.
The results on Stock and GasSensor datasets can be referred to Section 7.

Baseline Naive has no original time series data as input CLSTM works on the whole time series and
has no local data. Thus they are excluded from this set of experiments.

In Table 2, we observe that compared to baselines TreNet has the lowest errors on the duration pre-
diction across different window sizes. pHMM requires sufficient data points to model the relations
of segments and fails to work on 100 size. As the window size increases and more local data points
are fed to the training process, the prediction errors of CNN and TreNet decrease or nearly stabilize.
This could be because only the certain amount of local data has predictive power. The filtering and
pooling mechanism enables CNN to focus on the certain local data having strong predictive power
and thus giving more local data only gives rise to marginal improvements. Such similar phenomenon
is observed on the slope prediction as is shown in Table 3. For more results and discussion, please
refer to Section 7.

Window Size CNN SVRBF SVPOLY SVSIG pHMM TreNet
100 29.37 31.48 31.96 31.88 - 25.93
300 27.33 31.17 31.61 31.66 30.03 25.94
500 27.51 31.81 31.81 31.80 34.06 25.89
700 27.41 31.10 31.09 31.11 27.37 25.72
900 27.42 31.28 31.27 31.27 28.45 25.62

Table 2: RMSE of the duration predictions w.r.t. different sizes of local data in HousePC dataset

Window Size CNN SVRBF SVPOLY SVSIG pHMM TreNet
100 13.68 12.93 12.9352 12.9346 - 13.14
300 13.60 12.93 12.9346 12.9345 27.75 13.15
500 13.56 12.94 12.9342 12.9346 26.00 12.89
700 13.52 12.93 12.9345 12.9345 35.32 12.86
900 13.60 12.94 12.9350 12.9346 37.60 12.96

Table 3: RMSE of the slope predictions w.r.t. different sizes of local data in HousePC dataset

6 CONCLUSION

In this paper we propose TreNet, a novel hybrid neural network to learn and predict the local trend
behaviour of time series. The experimental results demonstrate that such a hybrid framework can
indeed utilize complementary information extracted by CNN and LSTM to enhance the prediction
performance. Moreover, such architecture is generic and extendible in that additional exogenous
time series can be fed to TreNet, so as to boost the performance and investigate the effect of different
data sources on the trend evolving.
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7 APPENDIX

7.1 DATA PRE-PROCESSING

In this part, we describe the data pre-processing, which extracts the local trend sequence from raw
time series data for the subsequent neural network training and testing.

We convert the raw time series data into a piecewise linear representation, namely consecutive seg-
ments (Keogh et al., 2001; Wang et al., 2011). Each segment corresponds to a local trend and is
fitted by a linear function of time series value w.r.t. time, e.g., xt = β1t+β0+ ε over the time range
[t1, t2) of this segment. Then, the slope and duration are derived from the coefficient β1 and [t1, t2).

Technically, we adopt the bottom-up approach in (Keogh et al., 2001), since it can achieve lower
approximate errors compared with top-down and sliding window methods. The process is illustrated
in Figure 3. Initially, we approximate time series X with bT2 c line segments (T is the length of the
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Figure 3: Illustration of local trend extraction via time series segmentation. (Best viewed in colour)

time series). Then, we iteratively merge the neighbouring segments to build longer ones. In each
iteration, neighbouring segments with the minimal approximation error are merged into a new one.
The merging process repeats until every possible merge gives rise to a segment with errors above
a specified threshold. We use the relative mean squared error as the error metric and specify the
threshold as 0.05.

7.2 ADDITIONAL EXPERIMENT RESULTS

(a) HousePC (b) Stock

(c) GasSensor

Figure 4: Visualization of the trend prediction by TreNet in HousePC, Stock and GasSensor datasets.
The blue line in each figure represents the historical trend sequence. The yellow line represents the
predicted local trend.

In this group of experiments, we visualize the trend prediction using the sample testing data instance
from each dataset in Figure 4. We can observe that in HousePC TreNet successfully predicts the
changed trend, though there are successive upward trends before. In Stock and GasSensor datasets,
the succeeding upward and downward trends are correctly predicted as well.
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Window Size CNN SVRBF SVPOLY SVSIG pHMM TreNet
100 18.87 11.38 11.40 11.49 - 8.86
300 18.17 11.41 11.44 11.42 39.84 8.85
500 18.06 11.39 11.44 11.36 32.10 8.51
700 18.10 11.45 11.59 11.58 36.37 8.58
900 18.07 11.32 11.47 11.59 38.36 8.78

Table 4: RMSE of the duration predictions on different sizes of local data in Stock dataset

Window Size CNN SVRBF SVPOLY SVSIG pHMM TreNet
100 12.78 7.40 7.42 7.41 - 6.84
300 12.24 7.42 7.51 7.38 6.67 6.53
500 12.13 7.47 7.41 7.42 7.59 6.58
700 12.24 7.53 7.58 7.51 9.74 6.75
900 12.25 7.61 7.45 7.59 14.00 6.73

Table 5: RMSE of the slope predictions on different sizes of local data in Stock dataset

Then, we provide the RMSE w.r.t. the varying window size on Stock and GasSensor datasets in
Table 4, Table 5, Table 6 and Table 7.

From the results, we observe that TreNet outperforms baselines almost on all window sizes. Mean-
while, the prediction errors often present the decreasing and stable pattern as the window size varies.

Window size of local data: The observation in above experiments w.r.t. the varying window size
provides inspiration for choosing the window size of local data. Given the training dataset, we can
find out the maximum duration of local trends and takes it as the local data size. This is because
doing so can ensure that the range of local data in each training instance can cover the most recent
local trend, whose raw data is believed to have strong predictive power for the subsequent trend.
Additionally, we observe that setting the window size of local data of CNN and TreNet in this way
can achieve comparable prediction errors compared to the cases with larger window sizes .

Window Size CNN SVRBF SVPOLY SVSIG pHMM TreNet
100 54.23 57.77 65.99 99.78 - 53.91
300 53.99 62.81 70.91 85.69 - 52.28
500 53.82 61.86 64.33 91.51 111.62 51.77
700 53.14 61.20 63.89 78.20 175.36 51.15
900 53.19 61.45 63.83 68.09 255.73 51.25

Table 6: RMSE of the duration predictions on different sizes of local data in GasSensor dataset

Window Size CNN SVRBF SVPOLY SVSIG pHMM TreNet
100 11.98 11.16 11.19 12.48 - 10.30
300 11.51 10.21 10.95 11.92 - 9.57
500 11.75 10.08 10.65 11.64 13.07 9.60
700 11.59 9.54 10.44 11.72 12.29 9.55
900 12.10 9.61 10.37 11.54 12.37 9.46

Table 7: RMSE of the slope predictions on different sizes of local data in GasSensor dataset

8 DISCUSSION

For multivariate time series, we can augment the input of TreNet by including the trend sequences
and local data of exogenous time series and then train TreNet for a certain target time series to predict
its trend. Another line of research is to explore equipping TreNet with multi-task learning. This is
motivated by the observation that if we decompose the trend forecasting problem into classification
and regression respectively for the slope and duration, we can utilize the correlation between slope
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and duration to boost the prediction performance. In addition, there could be alternative frameworks
to combine the outputs of CNN and LSTM and our work opens the door for applying hybrid neural
networks for trend analysis in time series.
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