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Abstract

Large-scale language models coupled with
prompts have shown remarkable performance
on few-shot learning. However, through sys-
tematic experiments, we find that the few-shot
performance of small language models is poor,
and using prompts on them brings fewer im-
provements than on larger ones. In this paper,
we propose SMASH, an approach to improve
SMALII language models’ few-SHot ability by
training on intermediate tasks before prompt-
based fine-tuning on downstream tasks. We de-
sign intermediate tasks for sentence-pair tasks
and single-sentence classification tasks by cre-
ating training examples with prompt templates
similar to downstream tasks using sentences
sampled from a large-scale unsupervised cor-
pus, and apply knowledge distillation to distill
from outputs of larger pre-trained models as
training objective. We conduct extensive ex-
periments and show that SMASH can make a
6-layer DistilRoBRETa-base achieve compa-
rable performance on few-shot datasets to a
12-layer RoBERTa-base at a low cost. !

1 Introduction

Language models at scale, such as GPT-3 (Brown
et al., 2020), have shown remarkable performance
on prompt-based few-shot learning on a wide vari-
ety of tasks given only a natural language prompt
and few demonstrations. However, the ability of
few-shot learning usually comes with heavy com-
putation and a huge amount of parameters. Re-
cent works (Gao et al., 2020; Li and Liang, 2021)
investigated prompt-based few-shot learning on
moderately-sized language models such as BERT-
large (Devlin et al., 2019), RoBERTa-large (Liu
et al., 2019) and GPT-2 (Radford et al., 2019), but
these models are still difficult to be deployed on
edge devices such as mobile phones.

"We will make our code and models publicly available
after publication.

In this paper, we investigate whether we
can make small language models, such as
DistilRoBERTa-base (Sanh et al., 2019), better few-
shot learners. Prompt-based fine-tuning has been
seen as a promising method for few-shot learn-
ing as it uses language modeling heads instead of
introducing new parameters as task-specific classi-
fication heads during fine-tuning, thus narrowing
down the gap between pre-training (e.g., masked
language modeling for ROBERTa) and applying
to downstream tasks. However, Table 1 shows
that when annotated data is insufficient, prompt-
based fine-tuning on DistilRoBERTa-base does not
make improvements over fine-tuning as large as on
RoBERTa-base or RoOBERTa-large for most down-
stream tasks. We suppose that’s because the mod-
els’ abilities to respond to gaps between tasks are
proportional to their sizes, and the gap of trans-
ferring from pre-training to the prompt-based fine-
tuning on downstream tasks directly is still too wide
for small language models. This suggests that addi-
tional adaptations may be required when applying
small language models on few-shot downstream
tasks.

To tackle with this problem we propose SMASH,
an approach of further training SMAIl language
models on intermediate tasks before applying them
to few-SHot downstream tasks. Theoretically, if
we can design intermediate tasks similar to both
the pre-training task and downstream tasks, we
can mitigate this problem by replacing one large
gap (from the pre-training task to downstream
tasks) with two smaller gaps (from the pre-training
task to intermediate tasks, then to downstream
tasks). Noticing that same manual prompt tem-
plates (or similar templates with minor differences)
are often used when prompt-based fine-tuning mod-
els on a group of similar tasks (e.g., template
<s>zg?<mask>,z1.</s> for sentence-pair tasks
in GLUE benchmark (Wang et al., 2019), such as
MNLI, QNLI, RTE, etc.), we consider using this



MNLI-m QQP RTE SST-2

(acc) (f1) (acc) (acc)

dR-b PT 46.8 53.0 545 85.7
dR-b FT 38.5 53.1 505 75.5
PT - FT 8.3 -0.1 4.0 10.2
R-b PT 58.4 63.9 59.6 89.0
R-b FT 40.7 59.1  50.8 82.1
PT - FT 17.7 4.8 8.8 6.9
R-1PTY 68.3 65.5 69.1 92.7
R-1 FTf 45.8 60.7 544 81.4
PT-FT 225 48 147 113

Table 1: Fine-tuning (FT) and prompt-based fine-

tuning (PT) performance on DistilRoBERTa-base (dR-
b), RoBERTa-base (R-b) and RoBERTa-large (R-1) on
16-shot training and validation dataset. {: results from
(Gao et al., 2020). Bold results indicates the largest
improvement of PT comparing to FT.

prompt template and sample sentences from a large-
scale unsupervised corpus to form the inputs of the
intermediate task. To construct supervision signals
we leverage knowledge distillation (Hinton et al.,
2015) by feeding the inputs to a larger pre-trained
language model and using its outputs as the train-
ing objective. In this way, the intermediate task can
be both similar to the pre-training task (by training
on similar distributions of data, e.g. large scale
corpus from the web) and downstream tasks (by
using similar prompt templates). From the perspec-
tive of knowledge distillation, the intermediate task
can also be seen as performing data augmentation
using a large-scale unsupervised corpus to trans-
fer knowledge of solving a group of similar tasks
from larger models to smaller models, which can
be exploited later by prompt-based fine-tuning on
downstream tasks.

As the intermediate task depends on the input
format of downstream tasks, it’s not feasible to ex-
periment with SMASH on all NLP tasks at once.
In this paper, we only take sentence-pair tasks and
single-sentence classification tasks, two groups of
tasks that are popular in NLP as an example, and
design two intermediate tasks respectively. Note
that practitioners can also use SMASH on other
groups of downstream tasks by designing their
own intermediate tasks. Experiments on the GLUE
benchmark (Wang et al., 2019) and several other
single-sentence classification tasks show that using
SMASH can make a 6-layer DistilRoBERTa-base
achieve comparable performance with a 12-layer
RoBERTa-base on few-shot datasets at a low cost.

We find that SMASH provides more improvements
on more complicated tasks like natural language
inference and sentence similarity than easier tasks
like sentiment classification, and is robust over dif-
ferent templates, verbalizers, and model structures.
In summary, our key contributions are:

* Conducting systematic experiments to verify
the effectiveness of existing few-shot learning
methods on small language models;

* Proposing SMASH, a general method to im-
prove few-shot prompt-based fine-tuning per-
formance for small language models on a
group of downstream tasks;

* Designing intermediate tasks for sentence-pair
tasks and single-sentence classification tasks,
and showing their effectiveness on several
downstream tasks.

2 Related Work

Prompt-based learning. Prompt-based learning
has become a new paradigm in NLP fueled by
the serious work of GPT (Radford et al., 2018,
2019; Brown et al., 2020). There are a large body
of works on mining sequences of tokens as dis-
crete prompts (Jiang et al., 2020; Shin et al., 2020)
or training continuous prompts (Li and Liang,
2021; Liu et al., 2021; Lester et al., 2021; Ham-
bardzumyan et al., 2021). Prompt-based learning
has been seen as a promising method for few-shot
learning. PET (Schick and Schiitze, 2021a,b) fo-
cuses on finding prompts under a semi-supervised
setting using a small annotated dataset and a large
set of unlabeled examples. (Gao et al., 2020) pro-
posed methods to generate prompts and find demon-
strations from few-shot datasets. The work most
related to us is (Gu et al., 2021), which leveraged
unsupervised data to pre-train representations of
prompt tokens. Our work differs from previous
works in two aspects: (1) we use extremely small
models, compared to large models ranging from
BERT-base to GPT-3 in previous works; (2) we
study methods of training the language model in-
stead of finding better prompts.

General distillation of Pre-trained Language
Models (PLMs). General Distillation aims at
distilling student models at the pre-training stage
using unsupervised data to foster its ability on
solving various types of tasks. DistilBERT (Sanh
et al., 2019) performs general distillation using soft



cross-entropy loss over logits and cosine embed-
ding loss. MiniLM (Wang et al., 2020) proposed
self-attention distillation at the pre-training stage,
and MiniLmv2 (Wang et al., 2021) proposed multi-
head self-attention relation distillation that has no
restrictions in terms of the number of teacher’s and
student’s attention heads. TinyBERT (Jiao et al.,
2020) proposed transformer distillation method that
aligns embedding layer, hidden states, attention
matrices, and output logits between teacher model
and student model. Though the effects of different
training objectives have been studied extensively,
most previous works conducted general distillation
on the masked language modeling task using raw
text input. To the best of our knowledge, our work
is the first work that performs prompt-based gen-
eral distillation using input sequences assembled
by prompt templates.

3 Method

3.1 Preliminaries

Fine-tuning. When fine-tuning on downstream
tasks, we tokenize input = to a token sequence
Z, the language model £ then maps Z to a se-
quence of hidden vectors {h;, € R%}. For single-
sentence classification tasks, we take Zginge =
<s>x</s> and for sentence-pair tasks, we take
a%pm»,. = <s>x1</s>x9</s>. For a downstream
task with label space )/, we train a task-specific
classification head softmax(W,h<s>) by max-
imizing the log-likelihood of the correct label,
where W, € RIYI*? is a set of randomly initial-
ized parameters and h< s> is the hidden vector of
<s>. However, it is challenging to train this new
set of parameters from a small amount of annotated
data.

Prompt-based Fine-tuning. An alternative ap-
proach is prompt-based fine-tuning, where input
is formulated as a “blank-filling task" with natural
language prompts. Take single-sentence classifica-
tion task as an example, given an input sentence
x € V* (where V is the vocabulary of £, and V*
denotes a sequence of tokens from V') and its la-
bel y € Y, a template f : V* — V* maps x into
a new token sequence f(x) containing the input
sentence, several prompt tokens, and at least one
<mask> token for £ to predict. Then a verbalizer
v: RV = Yisused to map p, the output distribu-
tion of £ to a label v(p) = y € Y. For example,
we can formulate a sentiment classification task

t=(f,v)as:

f(x) =<s> x. It was <mask>.</s>

and let £ decide whether it is more appropri-
ate to fill in “terrible" (negative) or “great" (pos-
itive) for <mask>. Then the verbalizer v =
[great,terrible] maps the output distribution of
L to a label:

o(p) = positive p(”great”) > p("terrible”)
p)= negative otherwise

Same as (Gao et al., 2020), we treat regression
tasks in a bounded interval [l, u| as interpolation
between two opposing words in verbalizer v =
[y1, yu]. In this way, we calculate g as:

9 =1xp(ylzr) +u x p(yu|r)

where p is the output probability of model £ and
p(yi|z) + p(yu|x) = 1. We train the model L to
minimize the following objective function using
KL divergence:

ﬁkl = KL(ppred|pgold)a
where

Ppred = [p(yl|$)7p(yu|3«")]
u—y Yy— l]
u—1"u—1

Pgold = [

Knowledge Distillation. Knowledge distillation
(KD) was first proposed by (Hinton et al., 2015),
which aims at transferring knowledge from the
teacher model to the student model. In the sim-
plest form of KD, we train the student model using
soft target distributions produced by the teacher
model instead of hard labels on a transfer set. For-
mally, soft target distributions can be expressed as:

G = exp(z;/T)
' Zjey exp(z;/T)

where ) is the label space, z is the teacher logits
and 7 is the temperature hyper-parameter that con-
trols the softness of probability distribution and is
normally set to 1. The objective function is the
cross-entropy loss of the student model’s output
distribution s and the soft target distribution g:

Lee=—qixlog(s) Q)
i€y
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Figure 1: Overview of SMASH on sentence-pair tasks.

3.2 SMASH

(Gu et al., 2021) showed that the performance of
downstream tasks can be improved by pre-training
the representation of prompt tokens on an unsuper-
vised corpus. Inspired by their work, we propose
SMASH to leverage unsupervised corpus to trans-
fer the ability to solve a group of downstream tasks
from a pre-trained teacher model L., to a pre-
trained student model L4, to further narrow down
the gap between pre-training and prompt-based
fine-tuning.

Formally, suppose a group of downstream task T
containing n downstream tasks {¢1, ..., t,, }, where

(fi,vi). We design an intermediate task
tdis = (fdis[ ys]) for group T. 2 After distilling
Lty from Lo with t9%, we continue to train Lz,
for each task ¢ in 7 with prompt-based fine-tuning
on task-specific data.

In this work, we focus on two groups of down-
stream tasks: sentence-pair and single-sentence
classification, and provide the design of their in-
termediate tasks respectively. We emphasize that
SMASH can be applied to any downstream tasks,
and practitioners can design their own correspond-
ing intermediate tasks by themselves.

Sentence-Pair Tasks. Sentence-pair tasks such
as natural language inference take two sentences
(z1,x2) as input. Following (Gu et al., 2021),
we construct a dataset from unlabeled raw text

The verbalizer of intermediate tasks is optional as £y
can learn from the output distribution of the whole vocabulary
from Ly, directly.

documents, and set the two sentences from dif-
ferent documents as label 0, those from the same
document but not adjacent as label 1, and those
next to each other as label 2. We sampled the
same amount of training examples for each la-
bel to avoid distribution bias. We use template
f4s = <s>x1? <mask>, w3</s>.Figure 1 is
an overview of SMASH on sentence-pair tasks.

Single-Sentence Classification Tasks. Single
sentence classification tasks such as sentiment clas-
sification take one sentence z as input. In or-
der to comply with the setting where annotated
data is difficult to obtain, we filter sentences with
low-classification probability with a pre-trained
RoBERTa-large model instead of a model fine-
tuned on another sentiment analysis task (Gu et al.,
2021). To filter the low-classification probability
sentences, we use template

ffilter — <s>gy It was <mask>. </s>

and verbalizer

v/ e — [terrible, bad, okay, good, great]

After filtering we distill £, using template f4¢ =
f filter )

We experimented on three transformer distil-
lation objectives: prediction distillation, hidden
states distillation, and multi-head attention distil-
lation. For prediction distillation, we train £
using the output distribution of £/*® by minimizing



the following objective function:

Lee = — Zti x log(s;) 2)
%
where ¢; and s; are probabilities of token 7 esti-
mated by L., and L, respectively.

For hidden states distillation, the objective is
defined as:

Mstu
Lhian = »_ MSE(HJ", Hi%% ) (3)
m=0

where M SE denotes mean squared error loss,
M % is the number of layers of the student model,
H,, refers to the hidden states of mth layer, and
Hj denotes the representations after embedding
layer. g(m) denotes the layer mapping function
from student to teacher, which means mth layer of
student model learns from g(m)th layer of teacher
model. We use uniform strategy described in (Jiao
et al., 2020), where g(m) = m x (M /M5H),

For multi-head attention distillation, the objec-
tive is defined as:

Mstu H
Lattn = Z Z MSE(A%Z, A?]e(gn)h) “4)
m=1 h=1

where H is the number of attention heads, A,
refers to the hth attention head of mth layer. We
use the same layer mapping function as hidden
states distillation, i.e. g(m) = m x (M /M),
Note that hidden states distillation and multi-head
attention distillation requires £ and £*® to be
the same type of transformer language model with
the same number of attention heads and hidden size,
while prediction distillation has no requirements
for the model structure of £5 and £

After conducting experiments on all above-
mentioned distillation objectives described in detail
in Section 4.3, we only use prediction distillation in
other experiments due to its superior performance
and simplicity.

4 Experiment

4.1 Setup

Datasets. We evaluate our methods on GLUE
benchmark (Wang et al., 2019) and three more
sentiment analysis datasets: SST-5 (Socher et al.,
2013), MR (Pang and Lee, 2005) and CR (Hu and
Liu, 2004). Our few-shot dataset is same as (Gao
et al., 2020), with K = 16 examples per label sam-
pled from the original training set as our training

set and validation set, and use the original valida-
tion set as our test set. For each task, we sampled 5
different few-shot datasets and report the average
(standard deviation) metric of 5 trials. We sample
datasets for intermediate tasks from Wikipedia 3.
We sampled 1300k sentence pairs for sentence-pair
task and 2560k sentences for single-sentence task.
Training for 200k steps takes roughly 2 epochs for
sentence-pair task and 1 epoch for single-sentence
task.

Implementation Details. During the intermedi-
ate task, we use RoBERTa-large as the teacher
model and DistilRoBERTa-base * as the student
model. We set batch size as 128 and learning rate
as le-4. During prompt-based fine-tuning, we use
DistilRoBERTa-base as our small language model
to study. We perform grid search and take learning
rates from {1le-5, 2e-5, 5e-5} and batch sizes from
{2,4}. We set the max length of input sequences as
64 for single-sentence tasks and 128 for sentence-
pair tasks. We use templates and verbalizers same
as (Gao et al., 2020). For more implementation
details please refer to Appendix A.

Baselines. We compare to a number of base-
lines, namely (1) majority in full training set (ma-
jority); (2) fine-tuning DistilRoBERTa-base (dR-
b finetune); (3) prompt-based zero-shot perfor-
mance of DistilRoBERTa-base (dR-b zero-shot)
and RoBERTa-base (R-b zero-shot); (4) prompt-
based fine-tuning DistilRoBERTa-base (dR-b),
RoBERTa-base and RoBERTa-large; (5) knowl-
edge distillation by adding the soft label loss
(Eq. 1) between logits from RoBERTa-large
and DistilRoBERTa-base when prompt-based fine-
tuning DistilRoBERTa-base (dR-b distill); and (6)
same as (5) but use back-translation (Sennrich et al.,
2015) to augment the training set 10 times larger
for KD (dR-b distill bt10).

4.2 Main Results

Table 2 shows our main results. On most tasks
SMASH outperforms DistilRoBERTa-base and is
comparable with the 2x larger RoBERTa-base
model on both prompt-based fine-tuning and zero-
shot performance, which shows the effectiveness
of SMASH. As the input of CoLA may be a non-
grammatical sentence that is out of the language

3https://huggingface.co/datasets/wikipedia

“We use model checkpoint from
https://huggingface.co/distilroberta-base, with 6 layers,
768 dimension, 12 heads, and 82M parameters.


https://huggingface.co/datasets/wikipedia
https://huggingface.co/distilroberta-base

MNLI-m MRPC QQpP CoLA SNLI QNLI RTE
(acc) (f1) D) (matt.) (acc) (acc) (acc)
rnajorityJr 32.7 81.2 0.0 0.0 33.8 49.5 52.7
dR-b 46.8 (1.5) 70.0 (6.5) 53.0(1.5) 3.6(4.5) 50.1(5.0) 54.12.2) 54.5(3.9)
dR-b zero-shot 44.8 73.0 50.1 -1.2 37.5 50.6 51.3
dR-b finetune 385(1.5) 654(15.1) 53.1(55 55@3.0) 39.8(2.0) 54.6(2.5) 505(1.4)
dR-b distill 46.6 (1.5) 67.1(9.9) 533(1.9 0944 499(@(3.7) 53.72.1) 549 2.5)
dR-b distill bt10 44.2 (3.4) 723 (2.8) 53.012.5) 1435 484(R29) 52.8(2.8) 54.9(1.8)
SMASH 55.9 (1.6) 73.9(6.4) 61.3(3.0)0 4.1(3.1) 62.03.6) 66.72.9) 61.72.9)
SMASH zero-shot 46.6 76.2 52.5 -0.7 49.8 51.3 53.8
RoBERTa-base 584 (1.7) 72.1(10.9) 6394.0) 72(6.00 61.6(4.2) 61.3(5.0) 59.6(6.6)
R-b zero-shot 48.1 53.0 51.6 -3.6 48.6 50.8 53.1
RoBERTa—largeT 68.3 (2.3) 745(5.3) 655(5.3) 93(7.3) 77.23.7) 6454.2) 69.13.6)
MNLI-mm STS-B SST-2 SST-5 MR CR
(acc) (pear.) (acc) (acc) (acc) (acc)
rnajorityJr 33.0 - 50.9 23.1 50.0 50.0
dR-b 48.2(3.3) 423(154) 857(1.4) 42.7(1.5) 80.4(1.4) 85.8(1.8)
dR-b zero-shot 45.7 -5.7 81.8 284 78.0 84.0
dR-b finetune 39.3(1.5) 56.7(10.1) 755(4.0) 355(09) 67.9@3.8) 7454.2)
dR-b distill 48.7(1.8) 422(15.6) 86.3(1.0) 41.2(1.1) 80.4(1.6) 86.7(1.6)
dR-b distill bt10 46.6 (3.2) 33.6(13.3) 82.9(2.2) 40.2(1.5) 789(1.6) 84.1(1.9)
SMASH 58.2 (1.6) 64.2(8.0) 88.3(0.4) 424(12.6) 819 (2.2) 88.0(0.8)
SMASH zero-shot 47.9 19.7 75.7 31.1 74.0 77.6
RoBERTa-base 60.6 (1.4) 69.1 (3.0) 89.0(1.2) 445(1.6) 84.3(1.3) 89.2(1.4)
R-b zero-shot 49.2 14.5 77.8 32.8 72.3 79.7
RoBERTa-large! 70.5 (1.9) 71.0(7.0) 92.7(0.9) 4742.5) 87.0(1.2) 90.3(1.0)

Table 2: Main results. : results from (Gao et al., 2020). Bold results indicates the best result achieved using

DistilRoBERTa-base.

model’s distribution, discussions in the rest of this
paper are based on tasks other than CoLA unless
otherwise specified.

First, for sentence-pair tasks, prompt-based zero-
shot performance of DistilRoBERTa-base is worse
than or only slightly better than majority baseline,
but it can be improved by SMASH; For single-
sentence classification tasks, prompt-based zero-
shot performance of DistilRoBERTa-base is much
better than majority baseline, and SMASH cannot
provide further improvements. This indicates that
without next sentence prediction (NSP) objective
in the pre-training stage, DistilRoBERTa-base does
not encode enough knowledge to understand the re-
lationship between two sentences, and SMASH can
remedy this problem by training the model with an
intermediate task that resembles NSP. As for single-
sentence classification tasks, DistilRoBERTa-base
encodes its ability to understand a single sentence
during pre-training, so SMASH cannot improve its
zero-shot performance.

Second, distilling directly from RoBERTa-large
using prompt-based method perform worse than

prompt-based fine-tuning on a few-shot dataset,
as it’s hard to train a strong task-specific teacher
model and transfer knowledge from teacher model
to student model due to lack of training data. It is
counter-intuitive that the student model performs
even worse with the use of back-translation, we
suppose that’s because the teacher model is not
powerful enough to resolve the noise introduced by
the augmented examples.

Finally, we observed that on most tasks, prompt-
based fine-tuning improvements are significantly
greater than zero-shot improvements (e.g., for
RTE, prompt-based fine-tuning improvement is
61.7 — 54.5 = 7.2, and zero-shot improvement
1s 53.8 —51.3 = 2.5). This verifies our assumption
that instead of making the student model learn to
solve one certain downstream task, SMASH works
like general distillation that transfers the potential
ability to solve a group of similar tasks to student
model, which can be exploited later by prompt-
based fine-tuning on downstream tasks.



55

50 s
label
—— RoBERTa-base
DistilRoBERTa-base
— Rlce
—— Rbce
— Rb ce+hidn
—— Rb ce+attn
Rb distilbert
35 —— Rirule

ac

45

40

0 40000 80000 120000 160000
step

200000

(a) MNLI-m

89

88

87

acc

86

85

label
—— RoBERTa-base
84 DistilRoBERTa-base
—— Rl ce
83 —— Rb distilbert

0 40000 80000 120000 160000
step

(b) SST-2

200000

Figure 2: Few-shot Performance with different distil-
lation settings. Shaded area indicates standard devia-
tion. We omit standard deviation of RoBERTa-base and
DistilRoBERTa-base for simplicity.

4.3 Comparisons of Different Distillation
Settings

To verify the effectiveness of different distillation
settings, we compare the following settings for
sentence-pair tasks: (1) SMASH with objective
Lce (Eq.2) and RoBERTa-large teacher (Rl ce);
(2) SMASH with objective L., and RoBERTa-
base teacher (Rb ce); (3) SMASH with objective
Lee+0.01Lp54, (Eq.3) and RoBERTa-base teacher
(Rb ce+hidn); (4) SMASH with objective L., +
0.01L4¢tn (Eq.4) and RoBERTa-base teacher (Rb
ce+attn); (5) perform further pre-training using raw
text from Wikipedia on masked language modeling
task and training objective same as (Sanh et al.,
2019) and RoBERTa-base teacher (Rb distilbert);
and (6) using rule-based label described in Section
3.2 as objective and minimize cross-entropy loss us-
ing prompt-based fine-tuning with template same
as (1) and verbalizer v = [No, Maybe,Y es]
(RI rule). We trained all these models for up to
200k steps and prompt-based fine-tune on MNLI.
Figure 2(a) shows the results of the comparison.
Performance of all settings stabilizes at around
100k steps, and fluctuations after 100k steps are
probably due to high variance caused by small train-

ing and validation sets of downstream tasks. For
settings (2)-(4) with RoBERTa-base teacher, dis-
tilling only with L., achieves better performance
than using other transformer distillation objectives
such as Lp;q, or Lauy consistently. We suppose
that’s because during the pre-training stage of
DistilRoBERTa-base, its self-attention heads and
hidden states are not trained to imitate ROBERTa-
base, so its self-attention heads (and hidden states)
may capture different information (and lie in dif-
ferent spaces) from RoBERTa-base. Hence adding
these objectives actually introduces noise to the dis-
tillation process. Setting (5) shows that further pre-
training using (Sanh et al., 2019) objective does not
make further improvements, as this setting still uses
the masked language modeling task and can not nar-
row down the gap between the pre-training task and
downstream tasks. This observation makes sense
as DistilRoBERTa-base has been trained with set-
ting (5) for millions of steps during the pre-training
stage and already converges. Based on previous
observations we find that using L. as training ob-
jective gets the best results despite its simplicity
and compatibility, as it has no requirements of the
structure of the teacher model. So in setting (1),
we use RoBERTa-large as a stronger teacher with
L. objective, and it outperforms all other settings.

Setting (6) shows that training using rule-based
labels results in inferior performance, indicating
that without knowledge distillation, these rule-
based labels are not appropriate optimization tar-
gets for natural language inference downstream
tasks. In summary, choosing an intermediate task
similar to downstream tasks and using knowledge
distillation are both essential.

Figure 2(b) shows comparisons of setting (1)
and (5) on SST-2, and its results is consistent with
Figure 2(a).

4.4 Robustness Under Different Templates
and Verbalizers

Previous works (Gao et al., 2020; Gu et al., 2021;
Liu et al., 2021) mentioned that the choice of
template and verbalizer leads to substantial dif-
ferences in performance. Note that the superior
results in Table 2 are achieved using manual down-
stream task templates and verbalizers, in this sub-
section we validate the robustness of SMASH when
changing templates or verbalizers, especially when
using templates that are different from the inter-
mediate task. Figure 3 presented results using
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Figure 3: Prompt-based fine-tuning using different tem-
plates and verbalizers. Shaded area indicates standard
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Figure 4: Comparisons of different downstream dataset
sizes. Shaded area indicates standard deviation.

5 best templates/verbalizers from the generated
prompts provided by (Gao et al., 2020). Note that
these templates/verbalizers are generated based on
RoBERTa-large and may not be the best ones for
DistilRoBERTa-base. Results show that SMASH
provides consistent improvements even the tem-
plate of the downstream task is different from the
intermediate task.

4.5 Impact on Downstream Datasets of
Different Sizes

Figure 4 illustrates comparisons of prompt-
based fine-tuning DistilRoBERTa-base (dR-b
PT), RoBERTa-base (R-b PT) and SMASH on
DistilRoBERTa-base when K increases. SMASH
still provides improvements when using training
set and validation set up to K = 256 samples per
label, but the improvements reduces as K increases.

4.6 SMASH on Different Language Models

To explore the impact of SMASH on language mod-
els other than ROBERTa, We use T5-large (Raffel
et al., 2019) as the teacher model and T5-small

MNLI-m QQp MRPC
(acc) (f1D) (D)
TS-small 42.5(2.0) 54.0(3.5) 65.2(5.8)
SMASH 48.4(1.9) 58.04.7) 70.0(5.2)
T5-base 52.9 (2.1) 63.8(0.6) 71.3(4.3)

Table 3: Few-shot performance of T5 models. Bold
results indicates the best result achieved using TS5-small.

as the student model. We distill for 200k steps
and prompt-based fine-tune on downstream tasks.
We compare with two prompt-based fine-tuning
baselines: T5-small and T5-base. Table 3 shows
that SMASH improves the few-shot performance
of T5-small on several sentence-pair tasks.

5 Conclusion

In this paper, we present SMASH, an approach of
using knowledge distillation on an unsupervised
corpus to improve small language model’s few-shot
performance. The principle of this approach is dis-
tilling the model using input similar to downstream
tasks sampled from unsupervised corpus as an inter-
mediate task to transfer knowledge of solving these
tasks and further narrow down the gap between
pre-training and prompt-based fine-tuning. We de-
sign intermediate tasks for sentence-pair tasks and
single-sentence classification tasks. We show that
our approach results in significant improvements on
few-shot datasets, especially for harder tasks like
natural language inference. We analyze SMASH
on different distillation objectives, and verify its ro-
bustness over different templates, verbalizers, and
model structures.

Possible future directions of this work include:
apply SMASH on more types of downstream tasks,
especially those that can not be easily formulated
using prompts or are difficult to simulate using
unsupervised corpus (e.g., text-to-SQL); or explore
intermediate tasks that are more data-efficient.
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A Experimental Details

A.1 Hyper-Parameters

Experiments in Section 4.2. During distillation
stage, we use batch size = 128, learning rate = le-4,
max input length = 128 for sentence-pair task and
64 for single-sentence task. We distill for 200k
steps, which takes about 4 days for sentence-pair
task and 2 days for single-sentence task on 2 GTX
1080 Ti GPUs. We sampled 1300k sentence pairs
from Wikipedia for sentence-pair task, training for
200k steps takes roughly 2 epochs; and 2560k sen-
tences from Wikipedia for single sentence task,
training for 200k steps takes 1 epoch. During
prompt-based fine-tuning stage, we perform grid
search and take learning rates from {le-5, 2e-5,
5e-5} and batch sizes from {2, 4}. We prompt-
based fine-tune the model for up to 1000 steps and
save checkpoints every 100 steps. We take the best-
performing checkpoint on validation set to get test
set results. 3

Experiments in Section 4.3  For settings (1)-(4),
we use the same hyper-parameters as Section 4.2.
For setting (5), we use learning rate = le-5, max
input length = 512, weight of L., = 5, weight of
Lom = 2 and weight of L.,s = 1. We use batch
size = 4 and gradient accumulation steps = 32, and
consider each gradient update as a training step to
compare with other settings. For setting (6), we
use learning rate = le-5.

Experiments in Section 4.5 We prompt-based
fine-tune for up to {1000, 1000, 2000, 2000, 4000}
steps for K = {16, 32, 64, 128, 256} respectively.
Other hpyer-parameters are same as Section 4.2.

Experiments in Section 4.6 When distilling
and prompt-based fine-tuning TS, we format

SWhen the validation set is small, the best checkpoint tends
to over-fit to the validation set. We observed in some cases the
test set performance of the best grid-searched hyper-parameter
is even worse than an arbitrary hyper-parameter.
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sentence-pair tasks as replace corrupted spans
task same as the pre-training stage by using
template x1? <extra_id_0>, z2</s>. We
use the output probability of the second gener-
ated token, as the first generated token is always
<extra_id_0>. Other hyper-parameters are
same as Section 4.2.

A.2 Templates and Verbalizers

Table 4 shows our templates and verbalizers used
on RoBERTa models, which is the same as (Gao
et al., 2020). For T5 models, we use the same
verbalizers and similar templates by removing <s>
and replacing <mask> with <extra_id_0>.
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Task

Template

Verbalizer

MNLI
MRPC
QQP
SNLI
QNLI
RTE
STS-B
CoLA
SST-2
SST-5
MR
CR

<s>xg?<mask>,r1.</s>
<s>rg<mask>,xri.</s>
<s>zg<mask>,xr;.</s>
<s>xg?<mask>,r1.</s>
<s>xg?<mask>,x1.</s>
<s>xg?<mask>,x1.</s>
<s>rg<mask>,ri.</s>

<s>rg This 1is <mask>.</s>

<s>rp It was <mask>.</s>
<s>rg It was <mask>.</s>
<s>rp It was <mask>.</s>
<s>rg It was <mask>.</s>

{contradiction:No, entailment: Yes, neutral:Maybe }

{0:No, 1:Yes}
{0:No, 1:Yes}

{contradiction:No, entailment: Yes, neutral:Maybe }

{not entailment:No, entailment: Yes }
{not entailment:No, entailment: Yes }
{0:No, 1:Yes}

{O:incorrect, 1:correct}
{O:terrible, 1:great}
{O:terrible, 1:bad, 2:0kay, 3:good, 4:great}
{O:terrible, 1:great}
{O:terrible, 1:great}

Table 4: Manual templates and verbalizers used.
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