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Abstract

Large-scale language models coupled with001
prompts have shown remarkable performance002
on few-shot learning. However, through sys-003
tematic experiments, we find that the few-shot004
performance of small language models is poor,005
and using prompts on them brings fewer im-006
provements than on larger ones. In this paper,007
we propose SMASH, an approach to improve008
SMAll language models’ few-SHot ability by009
training on intermediate tasks before prompt-010
based fine-tuning on downstream tasks. We de-011
sign intermediate tasks for sentence-pair tasks012
and single-sentence classification tasks by cre-013
ating training examples with prompt templates014
similar to downstream tasks using sentences015
sampled from a large-scale unsupervised cor-016
pus, and apply knowledge distillation to distill017
from outputs of larger pre-trained models as018
training objective. We conduct extensive ex-019
periments and show that SMASH can make a020
6-layer DistilRoBRETa-base achieve compa-021
rable performance on few-shot datasets to a022
12-layer RoBERTa-base at a low cost. 1023

1 Introduction024

Language models at scale, such as GPT-3 (Brown025

et al., 2020), have shown remarkable performance026

on prompt-based few-shot learning on a wide vari-027

ety of tasks given only a natural language prompt028

and few demonstrations. However, the ability of029

few-shot learning usually comes with heavy com-030

putation and a huge amount of parameters. Re-031

cent works (Gao et al., 2020; Li and Liang, 2021)032

investigated prompt-based few-shot learning on033

moderately-sized language models such as BERT-034

large (Devlin et al., 2019), RoBERTa-large (Liu035

et al., 2019) and GPT-2 (Radford et al., 2019), but036

these models are still difficult to be deployed on037

edge devices such as mobile phones.038

1We will make our code and models publicly available
after publication.

In this paper, we investigate whether we 039

can make small language models, such as 040

DistilRoBERTa-base (Sanh et al., 2019), better few- 041

shot learners. Prompt-based fine-tuning has been 042

seen as a promising method for few-shot learn- 043

ing as it uses language modeling heads instead of 044

introducing new parameters as task-specific classi- 045

fication heads during fine-tuning, thus narrowing 046

down the gap between pre-training (e.g., masked 047

language modeling for RoBERTa) and applying 048

to downstream tasks. However, Table 1 shows 049

that when annotated data is insufficient, prompt- 050

based fine-tuning on DistilRoBERTa-base does not 051

make improvements over fine-tuning as large as on 052

RoBERTa-base or RoBERTa-large for most down- 053

stream tasks. We suppose that’s because the mod- 054

els’ abilities to respond to gaps between tasks are 055

proportional to their sizes, and the gap of trans- 056

ferring from pre-training to the prompt-based fine- 057

tuning on downstream tasks directly is still too wide 058

for small language models. This suggests that addi- 059

tional adaptations may be required when applying 060

small language models on few-shot downstream 061

tasks. 062

To tackle with this problem we propose SMASH, 063

an approach of further training SMAll language 064

models on intermediate tasks before applying them 065

to few-SHot downstream tasks. Theoretically, if 066

we can design intermediate tasks similar to both 067

the pre-training task and downstream tasks, we 068

can mitigate this problem by replacing one large 069

gap (from the pre-training task to downstream 070

tasks) with two smaller gaps (from the pre-training 071

task to intermediate tasks, then to downstream 072

tasks). Noticing that same manual prompt tem- 073

plates (or similar templates with minor differences) 074

are often used when prompt-based fine-tuning mod- 075

els on a group of similar tasks (e.g., template 076

<s>x0?<mask>, x1.</s> for sentence-pair tasks 077

in GLUE benchmark (Wang et al., 2019), such as 078

MNLI, QNLI, RTE, etc.), we consider using this 079
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MNLI-m QQP RTE SST-2
(acc) (f1) (acc) (acc)

dR-b PT 46.8 53.0 54.5 85.7
dR-b FT 38.5 53.1 50.5 75.5
PT - FT 8.3 -0.1 4.0 10.2
R-b PT 58.4 63.9 59.6 89.0
R-b FT 40.7 59.1 50.8 82.1
PT - FT 17.7 4.8 8.8 6.9
R-l PT† 68.3 65.5 69.1 92.7
R-l FT† 45.8 60.7 54.4 81.4
PT - FT† 22.5 4.8 14.7 11.3

Table 1: Fine-tuning (FT) and prompt-based fine-
tuning (PT) performance on DistilRoBERTa-base (dR-
b), RoBERTa-base (R-b) and RoBERTa-large (R-l) on
16-shot training and validation dataset. †: results from
(Gao et al., 2020). Bold results indicates the largest
improvement of PT comparing to FT.

prompt template and sample sentences from a large-080

scale unsupervised corpus to form the inputs of the081

intermediate task. To construct supervision signals082

we leverage knowledge distillation (Hinton et al.,083

2015) by feeding the inputs to a larger pre-trained084

language model and using its outputs as the train-085

ing objective. In this way, the intermediate task can086

be both similar to the pre-training task (by training087

on similar distributions of data, e.g. large scale088

corpus from the web) and downstream tasks (by089

using similar prompt templates). From the perspec-090

tive of knowledge distillation, the intermediate task091

can also be seen as performing data augmentation092

using a large-scale unsupervised corpus to trans-093

fer knowledge of solving a group of similar tasks094

from larger models to smaller models, which can095

be exploited later by prompt-based fine-tuning on096

downstream tasks.097

As the intermediate task depends on the input098

format of downstream tasks, it’s not feasible to ex-099

periment with SMASH on all NLP tasks at once.100

In this paper, we only take sentence-pair tasks and101

single-sentence classification tasks, two groups of102

tasks that are popular in NLP as an example, and103

design two intermediate tasks respectively. Note104

that practitioners can also use SMASH on other105

groups of downstream tasks by designing their106

own intermediate tasks. Experiments on the GLUE107

benchmark (Wang et al., 2019) and several other108

single-sentence classification tasks show that using109

SMASH can make a 6-layer DistilRoBERTa-base110

achieve comparable performance with a 12-layer111

RoBERTa-base on few-shot datasets at a low cost.112

We find that SMASH provides more improvements 113

on more complicated tasks like natural language 114

inference and sentence similarity than easier tasks 115

like sentiment classification, and is robust over dif- 116

ferent templates, verbalizers, and model structures. 117

In summary, our key contributions are: 118

• Conducting systematic experiments to verify 119

the effectiveness of existing few-shot learning 120

methods on small language models; 121

• Proposing SMASH, a general method to im- 122

prove few-shot prompt-based fine-tuning per- 123

formance for small language models on a 124

group of downstream tasks; 125

• Designing intermediate tasks for sentence-pair 126

tasks and single-sentence classification tasks, 127

and showing their effectiveness on several 128

downstream tasks. 129

2 Related Work 130

Prompt-based learning. Prompt-based learning 131

has become a new paradigm in NLP fueled by 132

the serious work of GPT (Radford et al., 2018, 133

2019; Brown et al., 2020). There are a large body 134

of works on mining sequences of tokens as dis- 135

crete prompts (Jiang et al., 2020; Shin et al., 2020) 136

or training continuous prompts (Li and Liang, 137

2021; Liu et al., 2021; Lester et al., 2021; Ham- 138

bardzumyan et al., 2021). Prompt-based learning 139

has been seen as a promising method for few-shot 140

learning. PET (Schick and Schütze, 2021a,b) fo- 141

cuses on finding prompts under a semi-supervised 142

setting using a small annotated dataset and a large 143

set of unlabeled examples. (Gao et al., 2020) pro- 144

posed methods to generate prompts and find demon- 145

strations from few-shot datasets. The work most 146

related to us is (Gu et al., 2021), which leveraged 147

unsupervised data to pre-train representations of 148

prompt tokens. Our work differs from previous 149

works in two aspects: (1) we use extremely small 150

models, compared to large models ranging from 151

BERT-base to GPT-3 in previous works; (2) we 152

study methods of training the language model in- 153

stead of finding better prompts. 154

General distillation of Pre-trained Language 155

Models (PLMs). General Distillation aims at 156

distilling student models at the pre-training stage 157

using unsupervised data to foster its ability on 158

solving various types of tasks. DistilBERT (Sanh 159

et al., 2019) performs general distillation using soft 160
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cross-entropy loss over logits and cosine embed-161

ding loss. MiniLM (Wang et al., 2020) proposed162

self-attention distillation at the pre-training stage,163

and MiniLmv2 (Wang et al., 2021) proposed multi-164

head self-attention relation distillation that has no165

restrictions in terms of the number of teacher’s and166

student’s attention heads. TinyBERT (Jiao et al.,167

2020) proposed transformer distillation method that168

aligns embedding layer, hidden states, attention169

matrices, and output logits between teacher model170

and student model. Though the effects of different171

training objectives have been studied extensively,172

most previous works conducted general distillation173

on the masked language modeling task using raw174

text input. To the best of our knowledge, our work175

is the first work that performs prompt-based gen-176

eral distillation using input sequences assembled177

by prompt templates.178

3 Method179

3.1 Preliminaries180

Fine-tuning. When fine-tuning on downstream181

tasks, we tokenize input x to a token sequence182

x̃, the language model L then maps x̃ to a se-183

quence of hidden vectors {hk ∈ Rd}. For single-184

sentence classification tasks, we take x̃single =185

<s>x</s> and for sentence-pair tasks, we take186

x̃pair = <s>x1</s>x2</s>. For a downstream187

task with label space Y , we train a task-specific188

classification head softmax(Woh<s>) by max-189

imizing the log-likelihood of the correct label,190

where Wo ∈ R|Y|×d is a set of randomly initial-191

ized parameters and h<s> is the hidden vector of192

<s>. However, it is challenging to train this new193

set of parameters from a small amount of annotated194

data.195

Prompt-based Fine-tuning. An alternative ap-196

proach is prompt-based fine-tuning, where input197

is formulated as a “blank-filling task" with natural198

language prompts. Take single-sentence classifica-199

tion task as an example, given an input sentence200

x ∈ V∗ (where V is the vocabulary of L, and V∗201

denotes a sequence of tokens from V) and its la-202

bel y ∈ Y , a template f : V∗ → V∗ maps x into203

a new token sequence f(x) containing the input204

sentence, several prompt tokens, and at least one205

<mask> token for L to predict. Then a verbalizer206

v : R|V| → Y is used to map p, the output distribu-207

tion of L to a label v(p) = y ∈ Y . For example,208

we can formulate a sentiment classification task209

t = (f, v) as: 210

f(x) = <s> x. It was <mask>.</s> 211

and let L decide whether it is more appropri- 212

ate to fill in “terrible" (negative) or “great" (pos- 213

itive) for <mask>. Then the verbalizer v = 214

[great, terrible] maps the output distribution of 215

L to a label: 216

v(p) =

{
positive p(”great”) > p(”terrible”)
negative otherwise

217

Same as (Gao et al., 2020), we treat regression 218

tasks in a bounded interval [l, u] as interpolation 219

between two opposing words in verbalizer v = 220

[yl, yu]. In this way, we calculate ŷ as: 221

ŷ = l × p(yl|x) + u× p(yu|x) 222

where p is the output probability of model L and 223

p(yl|x) + p(yu|x) = 1. We train the model L to 224

minimize the following objective function using 225

KL divergence: 226

Lkl = KL(ppred|pgold), 227

where 228

ppred = [p(yl|x), p(yu|x)]

pgold = [
u− y

u− l
,
y − l

u− l
]

229

Knowledge Distillation. Knowledge distillation 230

(KD) was first proposed by (Hinton et al., 2015), 231

which aims at transferring knowledge from the 232

teacher model to the student model. In the sim- 233

plest form of KD, we train the student model using 234

soft target distributions produced by the teacher 235

model instead of hard labels on a transfer set. For- 236

mally, soft target distributions can be expressed as: 237

238

qi =
exp(zi/T )∑
j∈Y exp(zj/T )

239

where Y is the label space, z is the teacher logits 240

and T is the temperature hyper-parameter that con- 241

trols the softness of probability distribution and is 242

normally set to 1. The objective function is the 243

cross-entropy loss of the student model’s output 244

distribution s and the soft target distribution q: 245

Lce = −
∑
i∈Y

qi × log(si) (1) 246
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Figure 1: Overview of SMASH on sentence-pair tasks.

3.2 SMASH247

(Gu et al., 2021) showed that the performance of248

downstream tasks can be improved by pre-training249

the representation of prompt tokens on an unsuper-250

vised corpus. Inspired by their work, we propose251

SMASH to leverage unsupervised corpus to trans-252

fer the ability to solve a group of downstream tasks253

from a pre-trained teacher model Ltea to a pre-254

trained student model Lstu to further narrow down255

the gap between pre-training and prompt-based256

fine-tuning.257

Formally, suppose a group of downstream task T258

containing n downstream tasks {t1, ..., tn}, where259

ti = (fi, vi). We design an intermediate task260

tdis = (fdis[, vdis]) for group T . 2 After distilling261

Lstu from Ltea with tdis, we continue to train Lstu262

for each task t in T with prompt-based fine-tuning263

on task-specific data.264

In this work, we focus on two groups of down-265

stream tasks: sentence-pair and single-sentence266

classification, and provide the design of their in-267

termediate tasks respectively. We emphasize that268

SMASH can be applied to any downstream tasks,269

and practitioners can design their own correspond-270

ing intermediate tasks by themselves.271

Sentence-Pair Tasks. Sentence-pair tasks such272

as natural language inference take two sentences273

(x1, x2) as input. Following (Gu et al., 2021),274

we construct a dataset from unlabeled raw text275

2The verbalizer of intermediate tasks is optional as Lstu

can learn from the output distribution of the whole vocabulary
from Ltea directly.

documents, and set the two sentences from dif- 276

ferent documents as label 0, those from the same 277

document but not adjacent as label 1, and those 278

next to each other as label 2. We sampled the 279

same amount of training examples for each la- 280

bel to avoid distribution bias. We use template 281

fdis = <s>x1? <mask>, x2</s>. Figure 1 is 282

an overview of SMASH on sentence-pair tasks. 283

Single-Sentence Classification Tasks. Single 284

sentence classification tasks such as sentiment clas- 285

sification take one sentence x as input. In or- 286

der to comply with the setting where annotated 287

data is difficult to obtain, we filter sentences with 288

low-classification probability with a pre-trained 289

RoBERTa-large model instead of a model fine- 290

tuned on another sentiment analysis task (Gu et al., 291

2021). To filter the low-classification probability 292

sentences, we use template 293

ffilter = <s>x1 It was <mask>. </s> 294

and verbalizer 295

vfilter = [terrible, bad, okay, good, great] 296

After filtering we distill Lstu using template fdis = 297

ffilter. 298

We experimented on three transformer distil- 299

lation objectives: prediction distillation, hidden 300

states distillation, and multi-head attention distil- 301

lation. For prediction distillation, we train Lstu 302

using the output distribution of Ltea by minimizing 303
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the following objective function:304

Lce = −
∑
i∈V

ti × log(si) (2)305

where ti and si are probabilities of token i esti-306

mated by Ltea and Lstu respectively.307

For hidden states distillation, the objective is308

defined as:309

Lhidn =

Mstu∑
m=0

MSE(Hstu
m , Htea

g(m)) (3)310

where MSE denotes mean squared error loss,311

M stu is the number of layers of the student model,312

Hm refers to the hidden states of mth layer, and313

H0 denotes the representations after embedding314

layer. g(m) denotes the layer mapping function315

from student to teacher, which means mth layer of316

student model learns from g(m)th layer of teacher317

model. We use uniform strategy described in (Jiao318

et al., 2020), where g(m) = m× (M tea/M stu).319

For multi-head attention distillation, the objec-320

tive is defined as:321

Lattn =

Mstu∑
m=1

H∑
h=1

MSE(Astu
mh, A

tea
g(m)h) (4)322

where H is the number of attention heads, Amh323

refers to the hth attention head of mth layer. We324

use the same layer mapping function as hidden325

states distillation, i.e. g(m) = m ∗ (M tea/M stu).326

Note that hidden states distillation and multi-head327

attention distillation requires Lstu and Ltea to be328

the same type of transformer language model with329

the same number of attention heads and hidden size,330

while prediction distillation has no requirements331

for the model structure of Lstu and Ltea.332

After conducting experiments on all above-333

mentioned distillation objectives described in detail334

in Section 4.3, we only use prediction distillation in335

other experiments due to its superior performance336

and simplicity.337

4 Experiment338

4.1 Setup339

Datasets. We evaluate our methods on GLUE340

benchmark (Wang et al., 2019) and three more341

sentiment analysis datasets: SST-5 (Socher et al.,342

2013), MR (Pang and Lee, 2005) and CR (Hu and343

Liu, 2004). Our few-shot dataset is same as (Gao344

et al., 2020), with K = 16 examples per label sam-345

pled from the original training set as our training346

set and validation set, and use the original valida- 347

tion set as our test set. For each task, we sampled 5 348

different few-shot datasets and report the average 349

(standard deviation) metric of 5 trials. We sample 350

datasets for intermediate tasks from Wikipedia 3. 351

We sampled 1300k sentence pairs for sentence-pair 352

task and 2560k sentences for single-sentence task. 353

Training for 200k steps takes roughly 2 epochs for 354

sentence-pair task and 1 epoch for single-sentence 355

task. 356

Implementation Details. During the intermedi- 357

ate task, we use RoBERTa-large as the teacher 358

model and DistilRoBERTa-base 4 as the student 359

model. We set batch size as 128 and learning rate 360

as 1e-4. During prompt-based fine-tuning, we use 361

DistilRoBERTa-base as our small language model 362

to study. We perform grid search and take learning 363

rates from {1e-5, 2e-5, 5e-5} and batch sizes from 364

{2, 4}. We set the max length of input sequences as 365

64 for single-sentence tasks and 128 for sentence- 366

pair tasks. We use templates and verbalizers same 367

as (Gao et al., 2020). For more implementation 368

details please refer to Appendix A. 369

Baselines. We compare to a number of base- 370

lines, namely (1) majority in full training set (ma- 371

jority); (2) fine-tuning DistilRoBERTa-base (dR- 372

b finetune); (3) prompt-based zero-shot perfor- 373

mance of DistilRoBERTa-base (dR-b zero-shot) 374

and RoBERTa-base (R-b zero-shot); (4) prompt- 375

based fine-tuning DistilRoBERTa-base (dR-b), 376

RoBERTa-base and RoBERTa-large; (5) knowl- 377

edge distillation by adding the soft label loss 378

(Eq. 1) between logits from RoBERTa-large 379

and DistilRoBERTa-base when prompt-based fine- 380

tuning DistilRoBERTa-base (dR-b distill); and (6) 381

same as (5) but use back-translation (Sennrich et al., 382

2015) to augment the training set 10 times larger 383

for KD (dR-b distill bt10). 384

4.2 Main Results 385

Table 2 shows our main results. On most tasks 386

SMASH outperforms DistilRoBERTa-base and is 387

comparable with the 2× larger RoBERTa-base 388

model on both prompt-based fine-tuning and zero- 389

shot performance, which shows the effectiveness 390

of SMASH. As the input of CoLA may be a non- 391

grammatical sentence that is out of the language 392

3https://huggingface.co/datasets/wikipedia
4We use model checkpoint from

https://huggingface.co/distilroberta-base, with 6 layers,
768 dimension, 12 heads, and 82M parameters.
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MNLI-m MRPC QQP CoLA SNLI QNLI RTE
(acc) (f1) (f1) (matt.) (acc) (acc) (acc)

majority† 32.7 81.2 0.0 0.0 33.8 49.5 52.7
dR-b 46.8 (1.5) 70.0 (6.5) 53.0 (1.5) 3.6 (4.5) 50.1 (5.0) 54.1 (2.2) 54.5 (3.9)

dR-b zero-shot 44.8 73.0 50.1 -1.2 37.5 50.6 51.3
dR-b finetune 38.5 (1.5) 65.4 (15.1) 53.1 (5.5) 5.5 (3.0) 39.8 (2.0) 54.6 (2.5) 50.5 (1.4)
dR-b distill 46.6 (1.5) 67.1 (9.9) 53.3 (1.9) 0.9 (4.4) 49.9 (3.7) 53.7 (2.1) 54.9 (2.5)

dR-b distill bt10 44.2 (3.4) 72.3 (2.8) 53.0 (2.5) 1.4 (3.5) 48.4 (2.9) 52.8 (2.8) 54.9 (1.8)
SMASH 55.9 (1.6) 73.9 (6.4) 61.3 (3.0) 4.1 (3.1) 62.0 (3.6) 66.7 (2.9) 61.7 (2.9)

SMASH zero-shot 46.6 76.2 52.5 -0.7 49.8 51.3 53.8
RoBERTa-base 58.4 (1.7) 72.1 (10.9) 63.9 (4.0) 7.2 (6.0) 61.6 (4.2) 61.3 (5.0) 59.6 (6.6)
R-b zero-shot 48.1 53.0 51.6 -3.6 48.6 50.8 53.1

RoBERTa-large† 68.3 (2.3) 74.5 (5.3) 65.5 (5.3) 9.3 (7.3) 77.2 (3.7) 64.5 (4.2) 69.1 (3.6)
MNLI-mm STS-B SST-2 SST-5 MR CR

(acc) (pear.) (acc) (acc) (acc) (acc)
majority† 33.0 - 50.9 23.1 50.0 50.0

dR-b 48.2 (3.3) 42.3 (15.4) 85.7 (1.4) 42.7 (1.5) 80.4 (1.4) 85.8 (1.8)
dR-b zero-shot 45.7 -5.7 81.8 28.4 78.0 84.0
dR-b finetune 39.3 (1.5) 56.7 (10.1) 75.5 (4.0) 35.5 (0.9) 67.9 (3.8) 74.5 (4.2)
dR-b distill 48.7 (1.8) 42.2 (15.6) 86.3 (1.0) 41.2 (1.1) 80.4 (1.6) 86.7 (1.6)

dR-b distill bt10 46.6 (3.2) 33.6 (13.3) 82.9 (2.2) 40.2 (1.5) 78.9 (1.6) 84.1 (1.9)
SMASH 58.2 (1.6) 64.2 (8.0) 88.3 (0.4) 42.4 (2.6) 81.9 (2.2) 88.0 (0.8)

SMASH zero-shot 47.9 19.7 75.7 31.1 74.0 77.6
RoBERTa-base 60.6 (1.4) 69.1 (3.0) 89.0 (1.2) 44.5 (1.6) 84.3 (1.3) 89.2 (1.4)
R-b zero-shot 49.2 14.5 77.8 32.8 72.3 79.7

RoBERTa-large† 70.5 (1.9) 71.0 (7.0) 92.7 (0.9) 47.4 (2.5) 87.0 (1.2) 90.3 (1.0)

Table 2: Main results. †: results from (Gao et al., 2020). Bold results indicates the best result achieved using
DistilRoBERTa-base.

model’s distribution, discussions in the rest of this393

paper are based on tasks other than CoLA unless394

otherwise specified.395

First, for sentence-pair tasks, prompt-based zero-396

shot performance of DistilRoBERTa-base is worse397

than or only slightly better than majority baseline,398

but it can be improved by SMASH; For single-399

sentence classification tasks, prompt-based zero-400

shot performance of DistilRoBERTa-base is much401

better than majority baseline, and SMASH cannot402

provide further improvements. This indicates that403

without next sentence prediction (NSP) objective404

in the pre-training stage, DistilRoBERTa-base does405

not encode enough knowledge to understand the re-406

lationship between two sentences, and SMASH can407

remedy this problem by training the model with an408

intermediate task that resembles NSP. As for single-409

sentence classification tasks, DistilRoBERTa-base410

encodes its ability to understand a single sentence411

during pre-training, so SMASH cannot improve its412

zero-shot performance.413

Second, distilling directly from RoBERTa-large414

using prompt-based method perform worse than415

prompt-based fine-tuning on a few-shot dataset, 416

as it’s hard to train a strong task-specific teacher 417

model and transfer knowledge from teacher model 418

to student model due to lack of training data. It is 419

counter-intuitive that the student model performs 420

even worse with the use of back-translation, we 421

suppose that’s because the teacher model is not 422

powerful enough to resolve the noise introduced by 423

the augmented examples. 424

Finally, we observed that on most tasks, prompt- 425

based fine-tuning improvements are significantly 426

greater than zero-shot improvements (e.g., for 427

RTE, prompt-based fine-tuning improvement is 428

61.7 − 54.5 = 7.2, and zero-shot improvement 429

is 53.8−51.3 = 2.5). This verifies our assumption 430

that instead of making the student model learn to 431

solve one certain downstream task, SMASH works 432

like general distillation that transfers the potential 433

ability to solve a group of similar tasks to student 434

model, which can be exploited later by prompt- 435

based fine-tuning on downstream tasks. 436
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Figure 2: Few-shot Performance with different distil-
lation settings. Shaded area indicates standard devia-
tion. We omit standard deviation of RoBERTa-base and
DistilRoBERTa-base for simplicity.

4.3 Comparisons of Different Distillation437

Settings438

To verify the effectiveness of different distillation439

settings, we compare the following settings for440

sentence-pair tasks: (1) SMASH with objective441

Lce (Eq.2) and RoBERTa-large teacher (Rl ce);442

(2) SMASH with objective Lce and RoBERTa-443

base teacher (Rb ce); (3) SMASH with objective444

Lce+0.01Lhidn (Eq.3) and RoBERTa-base teacher445

(Rb ce+hidn); (4) SMASH with objective Lce +446

0.01Lattn (Eq.4) and RoBERTa-base teacher (Rb447

ce+attn); (5) perform further pre-training using raw448

text from Wikipedia on masked language modeling449

task and training objective same as (Sanh et al.,450

2019) and RoBERTa-base teacher (Rb distilbert);451

and (6) using rule-based label described in Section452

3.2 as objective and minimize cross-entropy loss us-453

ing prompt-based fine-tuning with template same454

as (1) and verbalizer vdis = [No,Maybe, Y es]455

(Rl rule). We trained all these models for up to456

200k steps and prompt-based fine-tune on MNLI.457

Figure 2(a) shows the results of the comparison.458

Performance of all settings stabilizes at around459

100k steps, and fluctuations after 100k steps are460

probably due to high variance caused by small train-461

ing and validation sets of downstream tasks. For 462

settings (2)-(4) with RoBERTa-base teacher, dis- 463

tilling only with Lce achieves better performance 464

than using other transformer distillation objectives 465

such as Lhidn or Lattn consistently. We suppose 466

that’s because during the pre-training stage of 467

DistilRoBERTa-base, its self-attention heads and 468

hidden states are not trained to imitate RoBERTa- 469

base, so its self-attention heads (and hidden states) 470

may capture different information (and lie in dif- 471

ferent spaces) from RoBERTa-base. Hence adding 472

these objectives actually introduces noise to the dis- 473

tillation process. Setting (5) shows that further pre- 474

training using (Sanh et al., 2019) objective does not 475

make further improvements, as this setting still uses 476

the masked language modeling task and can not nar- 477

row down the gap between the pre-training task and 478

downstream tasks. This observation makes sense 479

as DistilRoBERTa-base has been trained with set- 480

ting (5) for millions of steps during the pre-training 481

stage and already converges. Based on previous 482

observations we find that using Lce as training ob- 483

jective gets the best results despite its simplicity 484

and compatibility, as it has no requirements of the 485

structure of the teacher model. So in setting (1), 486

we use RoBERTa-large as a stronger teacher with 487

Lce objective, and it outperforms all other settings. 488

Setting (6) shows that training using rule-based 489

labels results in inferior performance, indicating 490

that without knowledge distillation, these rule- 491

based labels are not appropriate optimization tar- 492

gets for natural language inference downstream 493

tasks. In summary, choosing an intermediate task 494

similar to downstream tasks and using knowledge 495

distillation are both essential. 496

Figure 2(b) shows comparisons of setting (1) 497

and (5) on SST-2, and its results is consistent with 498

Figure 2(a). 499

4.4 Robustness Under Different Templates 500

and Verbalizers 501

Previous works (Gao et al., 2020; Gu et al., 2021; 502

Liu et al., 2021) mentioned that the choice of 503

template and verbalizer leads to substantial dif- 504

ferences in performance. Note that the superior 505

results in Table 2 are achieved using manual down- 506

stream task templates and verbalizers, in this sub- 507

section we validate the robustness of SMASH when 508

changing templates or verbalizers, especially when 509

using templates that are different from the inter- 510

mediate task. Figure 3 presented results using 511
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Figure 3: Prompt-based fine-tuning using different tem-
plates and verbalizers. Shaded area indicates standard
deviation. We omit standard deviation of SMASH and
DistilRoBERTa-base for simplicity.
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Figure 4: Comparisons of different downstream dataset
sizes. Shaded area indicates standard deviation.

5 best templates/verbalizers from the generated512

prompts provided by (Gao et al., 2020). Note that513

these templates/verbalizers are generated based on514

RoBERTa-large and may not be the best ones for515

DistilRoBERTa-base. Results show that SMASH516

provides consistent improvements even the tem-517

plate of the downstream task is different from the518

intermediate task.519

4.5 Impact on Downstream Datasets of520

Different Sizes521

Figure 4 illustrates comparisons of prompt-522

based fine-tuning DistilRoBERTa-base (dR-b523

PT), RoBERTa-base (R-b PT) and SMASH on524

DistilRoBERTa-base when K increases. SMASH525

still provides improvements when using training526

set and validation set up to K = 256 samples per527

label, but the improvements reduces as K increases.528

4.6 SMASH on Different Language Models529

To explore the impact of SMASH on language mod-530

els other than RoBERTa, We use T5-large (Raffel531

et al., 2019) as the teacher model and T5-small532

MNLI-m QQP MRPC
(acc) (f1) (f1)

T5-small 42.5 (2.0) 54.0 (3.5) 65.2 (5.8)
SMASH 48.4 (1.9) 58.0 (4.7) 70.0 (5.2)
T5-base 52.9 (2.1) 63.8 (0.6) 71.3 (4.3)

Table 3: Few-shot performance of T5 models. Bold
results indicates the best result achieved using T5-small.

as the student model. We distill for 200k steps 533

and prompt-based fine-tune on downstream tasks. 534

We compare with two prompt-based fine-tuning 535

baselines: T5-small and T5-base. Table 3 shows 536

that SMASH improves the few-shot performance 537

of T5-small on several sentence-pair tasks. 538

5 Conclusion 539

In this paper, we present SMASH, an approach of 540

using knowledge distillation on an unsupervised 541

corpus to improve small language model’s few-shot 542

performance. The principle of this approach is dis- 543

tilling the model using input similar to downstream 544

tasks sampled from unsupervised corpus as an inter- 545

mediate task to transfer knowledge of solving these 546

tasks and further narrow down the gap between 547

pre-training and prompt-based fine-tuning. We de- 548

sign intermediate tasks for sentence-pair tasks and 549

single-sentence classification tasks. We show that 550

our approach results in significant improvements on 551

few-shot datasets, especially for harder tasks like 552

natural language inference. We analyze SMASH 553

on different distillation objectives, and verify its ro- 554

bustness over different templates, verbalizers, and 555

model structures. 556

Possible future directions of this work include: 557

apply SMASH on more types of downstream tasks, 558

especially those that can not be easily formulated 559

using prompts or are difficult to simulate using 560

unsupervised corpus (e.g., text-to-SQL); or explore 561

intermediate tasks that are more data-efficient. 562
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A Experimental Details692

A.1 Hyper-Parameters693

Experiments in Section 4.2. During distillation694

stage, we use batch size = 128, learning rate = 1e-4,695

max input length = 128 for sentence-pair task and696

64 for single-sentence task. We distill for 200k697

steps, which takes about 4 days for sentence-pair698

task and 2 days for single-sentence task on 2 GTX699

1080 Ti GPUs. We sampled 1300k sentence pairs700

from Wikipedia for sentence-pair task, training for701

200k steps takes roughly 2 epochs; and 2560k sen-702

tences from Wikipedia for single sentence task,703

training for 200k steps takes 1 epoch. During704

prompt-based fine-tuning stage, we perform grid705

search and take learning rates from {1e-5, 2e-5,706

5e-5} and batch sizes from {2, 4}. We prompt-707

based fine-tune the model for up to 1000 steps and708

save checkpoints every 100 steps. We take the best-709

performing checkpoint on validation set to get test710

set results. 5711

Experiments in Section 4.3 For settings (1)-(4),712

we use the same hyper-parameters as Section 4.2.713

For setting (5), we use learning rate = 1e-5, max714

input length = 512, weight of Lce = 5, weight of715

Lmlm = 2 and weight of Lcos = 1. We use batch716

size = 4 and gradient accumulation steps = 32, and717

consider each gradient update as a training step to718

compare with other settings. For setting (6), we719

use learning rate = 1e-5.720

Experiments in Section 4.5 We prompt-based721

fine-tune for up to {1000, 1000, 2000, 2000, 4000}722

steps for K = {16, 32, 64, 128, 256} respectively.723

Other hpyer-parameters are same as Section 4.2.724

Experiments in Section 4.6 When distilling725

and prompt-based fine-tuning T5, we format726

5When the validation set is small, the best checkpoint tends
to over-fit to the validation set. We observed in some cases the
test set performance of the best grid-searched hyper-parameter
is even worse than an arbitrary hyper-parameter.

sentence-pair tasks as replace corrupted spans 727

task same as the pre-training stage by using 728

template x1? <extra_id_0>, x2</s>. We 729

use the output probability of the second gener- 730

ated token, as the first generated token is always 731

<extra_id_0>. Other hyper-parameters are 732

same as Section 4.2. 733

A.2 Templates and Verbalizers 734

Table 4 shows our templates and verbalizers used 735

on RoBERTa models, which is the same as (Gao 736

et al., 2020). For T5 models, we use the same 737

verbalizers and similar templates by removing <s> 738

and replacing <mask> with <extra_id_0>. 739

10

https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2021.findings-acl.188
http://arxiv.org/abs/2002.10957
http://arxiv.org/abs/2002.10957
http://arxiv.org/abs/2002.10957
http://arxiv.org/abs/2002.10957
http://arxiv.org/abs/2002.10957


Task Template Verbalizer
MNLI <s>x0?<mask>, x1.</s> {contradiction:No, entailment:Yes, neutral:Maybe}
MRPC <s>x0<mask>, x1.</s> {0:No, 1:Yes}
QQP <s>x0<mask>, x1.</s> {0:No, 1:Yes}
SNLI <s>x0?<mask>, x1.</s> {contradiction:No, entailment:Yes, neutral:Maybe}
QNLI <s>x0?<mask>, x1.</s> {not entailment:No, entailment:Yes}
RTE <s>x0?<mask>, x1.</s> {not entailment:No, entailment:Yes}

STS-B <s>x0<mask>, x1.</s> {0:No, 1:Yes}
CoLA <s>x0 This is <mask>.</s> {0:incorrect, 1:correct}
SST-2 <s>x0 It was <mask>.</s> {0:terrible, 1:great}
SST-5 <s>x0 It was <mask>.</s> {0:terrible, 1:bad, 2:okay, 3:good, 4:great}
MR <s>x0 It was <mask>.</s> {0:terrible, 1:great}
CR <s>x0 It was <mask>.</s> {0:terrible, 1:great}

Table 4: Manual templates and verbalizers used.
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