Workshop track - ICLR 2018

ADAPTIVE REPRESENTATION SELECTION IN
CONTEXTUAL BANDIT WITH UNLABELED HISTORY

Baihan Lin
Department of Neuroscience and Statistics, Columbia University
Baihan.Lin@columbia.edu

Guillermo A. Cecchi, Djallel Bouneffouf, & Irina Rish
IBM Thomas J. Watson Research Center
{gcecchi, dbouneffouf, rish}Qus.ibm.com

ABSTRACT

We consider an extension of the contextual bandit setting, motivated by several
practical applications, where an unlabeled history of contexts can become avail-
able for pre-training before the online decision-making begins. We propose an
approach for improving the performance of contextual bandit in such setting, via
adaptive, dynamic representation learning, which combines offline pre-training on
unlabeled history of contexts with online selection and modification of embedding
functions. Our experiments on a variety of datasets and in different nonstation-
ary environments demonstrate clear advantages of our approach over the standard
contextual bandit.

1 INTRODUCTION

In the contextual multi-armed bandit (CMAB), at each iteration, before choosing an arm, the agent
observes an [N-dimensional context, or feature vector. Over time, the goal is to learn the relationship
between the context vectors and the rewards, in order to make better prediction which action to
choose given the context (Agrawal & Goyal, |2013; Langford & Zhang| 2008a)). However, in certain
real-life applications, before the online decision-making starts, an agent may have an access to a
unlabeled context history (i.e., contexts without the associated rewards). For instance, in medical
decision-making settings (Villar et al [2015), the doctor may have an access to medical records of
different patients, which can be used to gain a better understanding of the patients population.

Having an access to unlabeled data makes it possible to pre-train some model of the input in an
offline mode, and use it later to improve the online decision making. For example, we can learn
an autoencoder to map the raw inputs into potentially better representations. Moreover, when the
inputs are non-homogeneous, we may want to cluster the unlabeled data and learn separate repre-
sentations for each cluster. Then, in the online mode, we can decide which representation to use
for a given context; such context-driven representation selection has a potential to further improve
the subsequent decision-making. These representation models can continue to be updated online
as more contexts become available, especially in nonstationary environments abundant in practical
applications, where both the context distribution and the reward distribution can change.

Motivated by the above scenarios, we consider here a contextual bandit setting, called Contextual
Bandit with Representation learning and unlabeled History (CBRH). In this setting, it is assumed
that (1) a set of unlabeled contexts is available for pre-training before the online decision-making
starts, (2) the bandit’s performance can be improved by learning a good context representation
(embedding) rather than using the raw input, the (3) embedding functions are pre-trained on the
unlabeled history and adaptively selected (and updated) based on the context during the online
decision-making. Next, we propose an algorithm for the above CBRH setting, called Adaptive
Bandit with Context-Driven Embeddings (ABaCoDE), which implements online, clustering-based
embedding selection and learning coupled with Thompson-Sampling contextual bandit approach.

Workshop track - ICLR 2018

2 ADAPTIVE BANDIT WITH CONTEXT-DEPENDENT EMBEDDINGS
(ABACODE)

We now describe an adaptive, context-driven embedding selection approach to solving the CBRU
problem. It has two variants, based on online- and offline clustering, respectively; the choice is
controlled by a Boolean input parameter isOnline in Algorithm[I] Two more inputs include: an
unlabeled pre-training dataset D, as well as the number of embeddings k. The algorithm processes
the input contexts sequentially, one by one, but at the end of each mini-batch of data it updates the
embeddings to reflect possible changes in the data distribution. The initialization step (line 2) con-

Algorithm 1 Adaptive Bandit with Context-Dependent Embeddings (ABaCoDE)

1: Input: unlabeled dataset D, a set of unlabeled contexts for pre-training; k, the number of clus-
ters (and corresponding embeddings); a Boolean variable isOnline.
2: Initialization: Cluster D into k clusters: C = {cy,...,c;}, For each cluster, train an au-
toencoder to construct a set of encoding functions (embeddings): E=ey, ...,ex, Initialize the
contextual Thompson Sampling parameters of bandit B (line 1 in Alg. 1).
while there is a next data mini-batch M, do
foreach x; from M do
¢; = assignCluster(z;)
if isOnline then updateCluster(C, x, c;)
e = selectEmbedding(c;)
z = e(x¢) (encoded context/representation)
contextual Bandit(B, z)
end
10: if not(isOnline) then recomputeClusters(C,B)
11: updateEmbedding(M, C)
end

R A

sists of clustering the pre-training dataset D into k clusters, training an autoencoder for each cluster,
which results into £ encoding (embedding) functions, and initializing parameters of the contextual
Thompson Sampling bandit, used later to make classification decisions based on embedded context.

Next, the algorithm switches to the online mode, processing an online stream of incoming samples
(contexts). As mentioned above, we assume that at the end of each fixed-length time window, i.e. a
fixed-size mini-batch of data, we update our embeddings.

Within each data mini-batch M (line 4), once the next input sample x; arrives, it is first assigned
to one of the existing clusters ¢; (line 5), associated with the corresponding embedding function
e;j. Next, an online clustering is performed if isOnline is true, i.e. the centroid of the cluster c; is
recomputed, but no changes are made to other clusters (line 6). Otherwise, there are no changes to
clusters, until the end of the batch, as we will see shortly. Based on the cluster assignment c;, the
corresponding embedding function e; is used to compute the representation vector z for given input
x; (line 7); given the context z, the contextual bandit B makes a decision (line 8), obtains the reward
r; (line 9), and updates its parameters (line 10) using the contextual Thompson Sampling described
in the previous section. After the end of the mini-batch M is reached (line 11), if isOnline was
false, the clusters will be recomputed from scratch using all data points received so far (however, no
such re-clustering is performed if the online clustering was selected). Finally, the embeddings are
updated respectively using the updated set of clusters C.

3 EMPIRICAL EVALUATION

We present empirical results comparing both online and offline clustering methods outlined above
with two baseline approaches: Contextual Bandit (CB): as the baseline, we use the standard con-
textual multi-armed bandit with Thompson Sampling, based on the raw input (i.e., no embeddings).
universal embedding (uE): a universal embedding denotes a single embedding computed based on
all data, and always recomputed to include the data from the most recent mini-batch; no clustering
is performed. mini-batch embedding (mE): this is our offline clustering approach presented in Algo-

Workshop track - ICLR 2018

8000 1600 v 1500
7000 |~~~ UE ,
6000
5000

4000

reward

3000

2000

1000

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

t x10*

Figure 1: MNIST unshuffled, k = 2 Figure 2: STL-10 unshuffled, k = 2 Figure 3: CIFAR-10 unshuffled, k = 2

7000 1800 1500
6000 e mE mE
5000

4000

reward

3000

2000

1000

o
10000 0 2000

0
[2000 4000 6000 8000 4000 6000 8000 10000

t <10*

Figure 4: MNIST shuffled, k = 2 Figure 5: STL-10 shuffled, k = 2 Figure 6: CIFAR-10 shuffled, k =2

rithm[I] when isOnline is false. online embedding (oE): this is the online version of our algorithm
described above, i.e. isOnline is true.

We studied several types of nonstationarity by varying cluster distribution, or by introducing negative
images as inputs with same semantics but different textures. Another type of nonstationarity was
assuming that input samples may come from different tasks, and thus can be associated with different
subsets of arms. we have also explored the multi-task setting by introducing a different type of
nonstationary reward, where the class labels were shuffled, i.e. randomly permuted, in each batch.

For example, for MNIST dataset (Figure |I[) we observe that initially, the baseline CB (solid line)
is considerably worse than embedding-based approaches, and requires a large number of iteration
to finally catch up with them. Figures [2] and [3] show the history of reward accumulation for the
STL-10 and CIFAR-10, demonstrating that the baseline is consistently outperformed by embedding
selection methods.

Nonstationary due to varying cluster distribution, and for multi-task settings: Our embedding-based
approaches always outperformed the baseline, suggesting that in a setting where reward functions
are nonstationary, in addition to the nonstationary input environment, the advantage of representa-
tion learning is quite significant, as compared to standard CB. Note that, with nonstationary (shuf-
fled) labels, the reward accumulated by the baseline CB remains significantly below the reward of
embedding-based approaches, at all iterations (Figures [}j6). Thus, in a more challenging setting
with both context and reward nonstationarities, the embedding-based approaches clearly outperform
the standard contextual bandit.

Nonstationary setting with negative environments and unshuffled reward: Again, the embedding-
based approaches are always superior to the baseline CB; online embedding achieved the best per-
formance among all methods on MNIST, while universal and batch embeddings were taking their
turns outperforming the baseline on other datasets and settings.

Nonstationary setting with negative environments and shuffled reward function: the difference of
textures under the same semantics introduced in this experiments demonstrated that embedding
selection outperforms single universal embedding in most nonstationary cases.

Workshop track - ICLR 2018

REFERENCES

Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs.
In ICML (3), pp. 127-135, 2013.

Adam Coates and Andrew Y Ng. The importance of encoding versus training with sparse coding and
vector quantization. In Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pp. 921-928, 2011.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelli-
gence and statistics, pp. 215-223, 2011.

International Warfarin Pharmacogenetics Consortium et al. Estimation of the warfarin dose with
clinical and pharmacogenetic data. N Engl J Med, 2009(360):753-764, 2009.

Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007.

John Langford and Tong Zhang. The Epoch-Greedy Algorithm for Contextual Multi-armed Bandits.
In Proc. 21st NIPS, 2008a.

John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits with side
information. In Advances in neural information processing systems, pp. 817-824, 2008b.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Sofia S Villar, Jack Bowden, and James Wason. Multi-armed bandit models for the optimal design
of clinical trials: benefits and challenges. Statistical science: a review journal of the Institute of
Mathematical Statistics, 30(2):199, 2015.

Workshop track - ICLR 2018

A PROBLEM FORMULATION

Using the notation introduced in the previous section, we now define our novel bandit setting: Con-
textual Bandit with Representation learning and unlabeled History (CBRH) (outlined in Alg. [2)),
based on the following key assumptions.

First, we assume that a context x; € R is mapped into its representation z; € R¢ using an
embedding function e;(c;), selected from a set E = {ey, ..., e } of currently available embedding
functions. Second, we assume that the set of embedding functions E can be modified online. And
third, an access to a set D of unlabeled contexts, i.e. contexts without the associated rewards, is
assumed. This dataset can be used, for example, for pre-training embedding functions e(x). We
then define a set I1 = U, cp{m : RN — A, 7(c) = #(e;(c))} of compound-function policies,
where the function 7 : RV — A maps z; = e;(ct) to an action in A. The objective is to learn a
hypothesis 7 over T iterations maximizing the cumulative reward.

Algorithm 2 The CBRH Problem Setting

1: Obtain unlabeled set of contexts D
2: Learn a context representation model
3: Repeat
: (x4, r) is drawn according to distribution D, ,

4
5 A context representation z; is obtained
6: The player chooses an arm k; = 7(z;)
7: The reward r} is revealed
8: The player updates its policy 7
9. t=t+1

10: Until t=T

B BACKGROUND

This section introduces some background concepts our approach builds upon, such as contextual
bandit and Thompson Sampling.

The contextual bandit problem

Following (Langford & Zhang, 2008b), this problem is defined as follows. At each time point
(iteration) t € {1,...,T}, an agent is presented with a context (feature vector) x; € R before
choosing an arm k € A = {1,..., K}. We will denote by X = {Xj,..., Xx} the set of features
(variables) defining the context. Let r; = (r}, ..., 7/) denote a reward vector, where 7F € [0, 1] is a
reward at time ¢ associated with the arm £ € A. Herein, we will primarily focus on the Bernoulli
bandit with binary reward, i.e. 7¥ € {0,1}. Let 7 : X — A denote a policy. Also, D.. . denotes a
joint distribution over (x,r). We will assume that the expected reward is a linear function of the
context, i.e. E[rf|x¢] = pfx;, where 1, is an unknown weight vector (to be learned from the data)
associated with the arm k.

Contextual Thompson Sampling

In this setting, we consider the general Thompson Sampling, where the reward r? for choosing arm
1 at time ¢ follows a parametric likelihood function Pr(r|f;). Following (Agrawal & Goyal,2013),
the posterior distribution at time ¢ + 1, Pr(f;|r¢) o< Pr(r¢f;)Pr(f;) is given by a multivariate
Gaussian distribution N'(1;(t+1), v2B;(t+1)~1), where B;(t) = I+ Zt;:ll x,x!, and where d is

the size of the context vectors x;, v = IR, /%dln(%) with R > 0, € €]0, 1], v €]0, 1] constants, and
fi(t) = Bi(t)_l(zt;:ll x.77). At every step t, the algorithm generates a d-dimensional sample /i;
from N (fi;(t), v2B;(t) 1), for each arm, selects the arm 7 that maximizes z, /i;,and obtains reward
Tt.

Workshop track - ICLR 2018

Algorithm 3 The Contextual Thompson Sampling Algorithm
1: Initialize: for i =1,....k, B; = Iy, i; = 04, f; = 04.
2: for t=1,2,...,T do
3: Receive context x;

for i = 1,..., k, sample /i; from the N (j1;,v>B; ")

Choose arm iy = arg mazr ()" g

Receive reward r},
T i - —1
B; = B + xyxy, fi = fi +xyry, i = By fs
end

S AN A

C EMPIRICAL EVALUATION

C.1 DATASETS

We evaluated our approach on four imaging datasets: MNIST (LeCun, [1998)), STL-10 (Coates &
Ng, [2011), CIFAR-10 (Coates et al. 2011), Caltech-101 Silhouettes-28 (Griffin et al., 2007) and
Warfarin (Consortium et al.l [2009) (for details of each dataset, see Table E]) To simulate an online
data stream, we draw samples from each dataset sequentially, starting from the beginning each time
we draw the last sample. At each round, the algorithm receives reward 1 if the instance is classified
correctly, and 0 otherwise. We compute the total number of classification errors as a performance
metric.

It is important to keep in mind that the bandit feedback (correct/incorrect classification) makes
the classification problem significantly more challenging, as compared to the standard supervised
learning, since the true label is never revealed in bandit setting unless the classification is correct.
Thus, the classification accuracy in a bandit setting is expected to be lower than in the supervised
learning setting.

Table 1: Datasets
Datasets History | Instances | Features | Classes
MNIST 10 000 20 000 784 10
STL-10 20 000 10 000 1000 10
CIFAR-10 2 000 10 000 3072 10
Caltech-101 S 671 8 000 784 101
Warfarin 528 5 000 93 3
mix: MNIST/Warfarin | 10 528 10 000 93 13

We now describe some details of the experiments. For MNIST, we took 10,000 samples from the
original test dataset (clearly, not using them later for testing) to pre-train the encodings, and 60,000
samples from the training dataset to simulate the online bandit with 10 arms corresponding to differ-
ent digits. For STL-10, 100,000 samples of unlabeled data are used to pre-train the encodings; then
the 5,000 test samples together with 8,000 training samples are combined to simulate the online ban-
dit, again with 10 different arms corresponding to image classes{ﬂ For Caltech-101 Silhouettes-28
dataset, out of the original 8671 samples, 671 are used for pre-training and 8000 for online learning
with 101 different arms (class labels). For CIFAR-10 dataset, 10,000 test set samples are used for
pre-training, and 50,000 training samples are left for the online bandit with 10 arms (classes). For
Warfarin dataset, 528 test set samples are used for pre-training, and 5,000 training samples are left
for the online bandit with 3 arms (classes).

C.2 NONSTATIONARY ENVIRONMENTS

We simulated several types of nonstationarity using the above datasets. As mentioned before, we
assume that the input data arrive in batches, and the data distribution (i.e., the joint distribution of

!"To speed up the computation, we squeezed input 27648-dimensional vectors into 1000-dimensional ones
via linear stretching.

Workshop track - ICLR 2018

the context and reward) may change across those batches, while remaining stationary within each
batch. We used the batch size of 1,000, and varied the number of embeddings k, using k& = 2, 4, or
8, presenting average results over all .

C.2.1 NONSTATIONARY CONTEXT: VARYING CLUSTER DISTRIBUTION

To simulate changes in the context (input) distribution, we first clustered all samples in the corre-
sponding pre-training data subset into k clusters. Next, we generate a sequence of batches, where
each batch contained a certain fraction of samples from different clusters, and these fractions were
changing across the batches, i.e. the probability distribution of cluster membership was changing,
simulating nonstationary input.

C.2.2 NONSTATIONARY CONTEXT: NEGATIVE IMAGES

Another type of input nonstationarity involved introducing negative images as inputs with same
semantics but different textures. Namely, with probability p, the negative image of the original
image was presented as an input. Experiments were performed in two settings: half (p = 0.5) and
rand (0 < p < 1 randomly assigned for each mini-batch), in both stationary and nonstationary
context conditions, with both shuffled and unshuffled rewards (described later).

C.2.3 NONSTATIONARY REWARD: MULTI-TASK ENVIRONMENT

Another type of nonstationarity was assuming that input samples may come from different domains
(tasks), and thus can be associated with different subsets of labels (arms). For example, we com-
bined 5,000 randomly selected training samples from each of the two selected domains, MNIST and
Warfarin datasets, and extended the set of possible labels (arms) to include 10 labels from MNIST
and 3 labels from Warfarin. We used linear stretching to make the input dimensions equal across
the two domains. The algorithm had to assign a label to each input without any information about
which domain the input came from.

C.2.4 NONSTATIONARY REWARD: SHUFFLED CLASS LABELS

We further explored the multi-task setting by introducing a different type of nonstationary reward,
where the class labels were shuffled, i.e. randomly permuted, in each batch.

C.3 RESULTS

We explored different combination of the above nonstationarities. Table [2] summarizes our results
for the nonstationary context due to varying cluster distribution, and for mixed-domain (multi-task)
settings, with unshuffled reward function. As we can see, on three out of six datasets, baseline was
still outperforming our embeddings. However, if we consider the mean accuracy in the entire set of
experiments, the top three algorithms were: universal embedding (mean accuracy 28.83%), baseline
(mean accuracy 27.78%), mini-batch embedding (mean accuracy 27.58%), respectively, suggesting
the advantage of representation learning (embedding computation). Moreover, if we take a look at
the whole iteration history, for example, for MNIST dataset (Figure [I)), we observe that initially,
the baseline CB (solid line) is considerably worse than embedding-based approaches, and requires
a large number of iteration to finally catch up with them. Figures [2| and [3| show the history of
reward accumulation for the STL-10 and CIFAR-10, demonstrating that the baseline is consistently
outperformed by embedding selection methods.

Table 2: Nonstationary Environment with Unshuffled Labels

Datasets baseline | uE mE oE
MNIST 37.24 34.44 | 29.00 | 22.32
STL-10 10.29 15.81 | 14.77 | 13.43
CIFAR-10 9.62 14.30 | 13.30 | 11.73
Caltech-101 S 1.18 1.14 1.09 1.06
Warfarin 62.58 56.70 | 56.10 | 56.92
mix: MNIST/Warfarin | 45.76 50.58 | 51.21 | 47.74

Workshop track - ICLR 2018

Table 3: Nonstationary Environment with Shuffled Labels

Datasets baseline | uE mE oE
MNIST 12.19 33.75 | 29.04 | 23.83
STL-10 10.05 16.64 | 15.10 | 12.77
CIFAR-10 10.23 14.83 | 13.13 | 11.60
Caltech-101 S 1.00 1.09 1.23 1.30
Warfarin 40.66 55.10 | 50.56 | 54.44
mix: MNIST/Warfarin | 23.54 49.33 | 50.67 | 49.15

Table 4: Negative Environment with Unshuffled Labels

Datasets baseline | uE mE oE
MNIST half-stat 13.50 14.70 | 14.02 | 16.18
MNIST rand-stat 13.72 17.14 | 15.53 | 17.70
MNIST half-nonStat 14.45 25.09 | 23.82 | 26.90
MNIST rand-nonStat 14.05 24.38 | 25.90 | 28.43
STL-10 half-stat 10.06 10.42 | 10.33 | 10.04
STL-10 rand-stat 9.77 12.34 | 12.33 | 10.41
STL-10 half-nonStat 9.88 10.99 | 12.29 | 11.56
STL-10 rand-nonStat 9.85 12.99 | 13.67 | 11.55
Caltech-101 S half-stat 0.98 10.04 | 7.98 6.94
Caltech-101 S rand-stat 0.94 1093 | 8.40 11.68
Caltech-101 S half-nonStat | 1.04 1.20 1.23 0.96
Caltech-101 S rand-nonStat | 0.96 1.09 1.20 0.99

Next, Table E] summarizes our results with shuffled reward function, for the nonstationary context
due to varying cluster distribution, and for mixed-domain (multi-task) settings. Based on the mean
accuracy in the entire experiment, the top three algorithms were: universal embedding (mean accu-
racy 28.46%), mini-batch embedding (mean accuracy 26.62%), online embedding (mean accuracy
25.52%), respectively. Furthermore, in this experiment, our embedding-based approaches always
outperformed the baseline, suggesting that in a setting where reward functions are nonstationary, in
addition to the nonstationary input environment, the advantage of representation learning is quite
significant, as compared to standard CB (mean accuracy 16.28%). Note that, with nonstationary
(shuffled) labels, the reward accumulated by the baseline CB remains significantly below the reward
of embedding-based approaches, at all iterations (Figures [d}{6). Thus, in a more challenging setting
with both context and reward nonstationarities, the embedding-based approaches clearly outperform
the standard contextual bandit.

Table 4] summarizes our results for the nonstationary online learning setting with negative environ-
ments and unshuffled reward. Based on the mean accuracy in the entire experiment, the top three

Table 5: Negative Environment with Shuffled Labels

Datasets baseline | uE mE oE
MNIST half-stat 10.22 14.59 | 13.86 | 14.79
MNIST rand-stat 9.87 17.84 | 1435 | 17.32
MNIST half-nonStat 10.78 23.02 | 22.33 | 26.84
MNIST rand-nonStat 11.27 27.34 | 24.87 | 28.36
STL-10 half-stat 9.66 11.51 | 10.73 | 10.60
STL-10 rand-stat 9.95 11.44 | 12.37 | 11.17
STL-10 half-nonStat 10.31 11.86 | 13.17 | 11.19
STL-10 rand-nonStat 9.2 12.62 | 1249 | 11.59
Caltech-101 S half-stat 1.11 8.71 6.21 7.93
Caltech-101 S rand-stat 0.94 10.36 | 9.11 3.38
Caltech-101 S half-nonStat | 1.06 1.03 1.00 1.29
Caltech-101 S rand-nonStat | 1.08 1.05 1.13 1.16

Workshop track - ICLR 2018

6000 6000 3500 4000
se base |
3000/ | TUE 3500

2500 7 e

c / ~

S 20 S

Figure 7: MNIST un- Figure 8: MNIST un- Figure 9: MNIST un- Figure 10: MNIST un-
shuffled half-nonStat shuffled rand-nonStat shuffled half-stat shuffled rand-stat

Figure 11: MNIST Figure 12: MNIST Figure 13: MNIST Figure 14: MNIST
shuffled half-nonStat shuffled rand-nonStat shuffled half-stat shuffled rand-stat

algorithms were: online embedding (mean accuracy 12.78%), universal embedding (mean accuracy
12.61%), mini-batch embedding (mean accuracy 12.23%), respectively. Again, the embedding-
based approaches are always superior to the baseline CB; online embedding achieved the best per-
formance among all methods on MNIST, while universal and batch embeddings were taking their
turns outperforming the baseline on other datasets and settings.

Finally, Table [5] summarizes our results for the nonstationary online learning setting with negative
environments and shuffled reward function. Based on the mean accuracy in the entire experiment, the
top three algorithms were: universal embedding (mean accuracy 12.61%), online embedding (mean
accuracy 12.14%), mini-batch embedding (mean accuracy 11.80%), respectively, further confirming
the advantage of adaptive encoding over standard CB (mean accuracy 7.12%). In addition, the
difference of textures under the same semantics introduced in this experiments demonstrated that
embedding selection outperforms single universal embedding in most nonstationary cases.

Figures|/H14|visualize the details of reward accumulation over time by different methods, on MNIST
data and all the settings from the Tables 4] and [5] The performance gap between the embedding-
based approaches and the baseline is especially large in those settings. Furthermore, we can see that
both adaptive, context-dependent embedding approaches (oE and mE) consistently ourperform the
single-embedding approach (uE), with the online embedding emerging as the best one, especially
with increasing number of iterations.

	Introduction
	Adaptive Bandit with Context-Dependent Embeddings (ABaCoDE)
	Empirical Evaluation
	Problem Formulation
	Background
	Empirical Evaluation
	Datasets
	Nonstationary Environments
	Nonstationary context: varying cluster distribution
	Nonstationary context: negative images
	Nonstationary reward: multi-task environment
	Nonstationary reward: shuffled class labels

	Results

