
Under review as a conference paper at ICLR 2017

SUBMODULAR SUM-PRODUCT NETWORKS
FOR SCENE UNDERSTANDING

Abram L. Friesen & Pedro Domingos
Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195, USA
{afriesen,pedrod}@cs.washington.edu

ABSTRACT

Sum-product networks (SPNs) are an expressive class of deep probabilistic
models in which inference takes time linear in their size, enabling them to
be learned effectively. However, for certain challenging problems, such as
scene understanding, the corresponding SPN has exponential size and is thus
intractable. In this work, we introduce submodular sum-product networks
(SSPNs), an extension of SPNs in which sum-node weights are defined by a
submodular energy function. SSPNs combine the expressivity and depth of SPNs
with the ability to efficiently compute the MAP state of a combinatorial number
of labelings afforded by submodular energies. SSPNs for scene understanding
can be understood as representing all possible parses of an image over arbitrary
region shapes with respect to an image grammar. Despite this complexity, we
develop an efficient and convergent algorithm based on graph cuts for computing
the (approximate) MAP state of an SSPN, greatly increasing the expressivity of
the SPN model class. Empirically, we show exponential improvements in parsing
time compared to traditional inference algorithms such as α-expansion and belief
propagation, while returning comparable minima.

1 INTRODUCTION

Sum-product networks (SPNs) (Poon & Domingos, 2011; Gens & Domingos, 2012) are a class of
deep probabilistic models that consist of many layers of hidden variables and can have unbounded
treewidth. Despite this depth and corresponding expressivity, exact inference in SPNs is guaranteed
to take time linear in their size, allowing their structure and parameters to be learned effectively
from data. However, there are still many models for which the corresponding SPN has size expo-
nential in the number of variables and is thus intractable. For example, in scene understanding (or
semantic segmentation), the goal is to label each pixel of an image with its semantic class, which
requires simultaneously detecting, segmenting, and recognizing each object in the scene. Even the
simplest SPN for scene understanding is intractable, as it must represent the exponentially large set
of segmentations of the image into its constituent objects.

Scene understanding is commonly formulated as a flat Markov (or conditional) random field (MRF)
over the pixels or superpixels of an image (e.g., Shotton et al. (2006); Gould et al. (2009)). Inference
in MRFs is intractable in general; however, there exist restrictions of the MRF that enable tractable
inference. For pairwise binary MRFs, if the energy of each pairwise term is submodular (alterna-
tively, attractive or regular) (Kolmogorov & Zabih, 2004), meaning that each pair of neighboring
pixels prefers to have the same label, then the exact MAP labeling of the MRF can be recovered in
low-order polynomial time through the use of a graph cut algorithm1 (Greig et al., 1989; Boykov &
Kolmogorov, 2004). This result from the binary case has been used to develop a number of power-
ful approximate algorithms for the multi-label case (e.g., Komodakis et al. (2007); Lempitsky et al.
(2010)), the most well-known of which is α-expansion (Boykov et al., 2001), which efficiently re-
turns an approximate labeling that is within a constant factor of the true optimum by solving a series
of binary graph cut problems. Unfortunately, pairwise MRFs are insufficiently expressive for com-

1Formally, a min-cut/max-flow algorithm(Ahuja et al., 1993) on a graph constructed from the MRF.
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plex tasks such as scene understanding, as they are unable to model high-level relationships, such as
constituency (part-subpart) or subcategorization (superclass-subclass), between arbitrary regions of
the image, unless these can be encoded in the labels of the MRF and enforced between pairs of (su-
per)pixels. However, this encoding requires a combinatorial number of labels, which is intractable.
Instead, higher-level structure is needed to efficiently represent these relationships.

In this paper, we present submodular sum-product networks (SSPNs), a novel model that combines
the expressive power of sum-product networks with the tractable segmentation properties of sub-
modular energies. An SSPN is a sum-product network in which the weight of each child of a sum
node corresponds to the energy of a particular labeling of a submodular energy function. Equiva-
lently, an SSPN over an image corresponds to an instantiation of all possible parse trees of that image
with respect to a given image grammar, where the probability distribution over the segmentations of
a production on a particular region is defined by a submodular random field over the pixels in that
region. Importantly, SSPNs permit objects and regions to take arbitrary shapes, instead of restrict-
ing the set of possible shapes as has previously been necessary for tractable inference. By exploiting
submodularity, we develop a highly-efficient approximate inference algorithm, INFERSSPN, for
computing the MAP state of the SSPN (equivalently, the optimal parse of the image). INFERSSPN
is an iterative move-making-style algorithm that provably converges to a local minimum of the en-
ergy, reduces to α-expansion in the case of a trivial grammar, and has complexity O(|G|c(n)) for
each iteration, where c(n) is the complexity of a single graph cut and |G| is the size of the grammar.
As with other move-making algorithms, INFERSSPN converges to a local minimum with respect
to an exponentially-large set of neighbors, overcoming many of the main issues of local minima
(Boykov et al., 2001). Empirically, we compare INFERSSPN to belief propagation (BP) on a multi-
level MRF and to α-expansion on an equivalent flat MRF. We show that INFERSSPN parses images
in exponentially less time than both of these while returning energies comparable to α-expansion,
which is guaranteed to return energies within a constant factor of the true optimum.

The literature on using higher-level information for scene understanding is vast. We briefly dis-
cuss the most relevant work on hierarchical random fields over multiple labels, image grammars for
segmentation, and neural parsing methods. Hierarchical random field models (e.g., Russell et al.
(2010); Lempitsky et al. (2011)) define MRFs with multiple layers of hidden variables and then
perform inference, often using graph cuts to efficiently extract the MAP solution. However, these
models are typically restricted to just a few layers and to pre-computed segmentations of the image,
and thus do not allow arbitrary region shapes. In addition, they require a combinatorial number of
labels to encode complex grammar structures. Previous grammar-based methods for scene under-
standing, such as Zhu & Mumford (2006) and Zhao & Zhu (2011), have used MRFs with AND-OR
graphs (Dechter & Mateescu, 2007), but needed to restrict their grammars to a very limited set of
productions and region shapes in order to perform inference in reasonable time, and are thus much
less expressive than SSPNs. Finally, neural parsing methods such as those in Socher et al. (2011)
and Sharma et al. (2014) use recursive neural network architectures over superpixel-based features
to segment an image; thus, these methods also do not allow arbitrary region shapes. Further, Socher
et al. (2011) greedily combine regions to form parse trees, while (Sharma et al., 2014) use randomly
generated parse trees, whereas inference in SSPNs finds the (approximately) optimal parse tree.

2 SUBMODULAR SUM-PRODUCT NETWORKS

In the following, we define submodular sum-product networks (SSPNs) in terms of an image gram-
mar because this simplifies the exposition with respect to the structure of the sum-product network
(SPN) and because scene understanding is the domain we use to evaluate SSPNs. However, it is not
necessary to define SSPNs in this way, and our results extend to any SPN with sum-node weights
defined by a random field with submodular potentials. Due to lack of space we refer readers to Gens
& Domingos (2012), Poon & Domingos (2011) and Gens & Domingos (2013) for SPN details.

With respect to scene understanding, an SSPN defines a generative model of an image and a hierar-
chy of regions within that image where each region is labeled with a production (and implicitly by
the head symbol of that production), can have arbitrary shape, and is a subset of the region of each
of its ancestors. An example of an SSPN for parsing a farm scene is shown in Figure 1. Given a
starting symbol and the region containing the entire image, the generative process is to first choose a
production of that symbol into its constituent symbols and then choose a segmentation of the region
into a set of mutually exclusive and exhaustive subregions, with one subregion per constituent sym-
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Figure 1: A partial (submodular) sum-product network for parsing an image with respect to the grammar
shown. There is a sum node for each nonterminal symbol with a child sum node for each production of that
symbol. Each sum node for a production has a child product nodefor each possible segmentation of its region.

bol. The process then recurses, choosing a production and a segmentation for each subregion given
its symbol. The recursion terminates when one of the constituents is a terminal symbol, at which
point the pixels corresponding to that region of the image are generated. This produces a parse tree
in which each internal node is a pair containing a region and a production of the region, and the
leaves are regions of pixels. For each node in a parse tree, the regions of its children are mutually
exclusive and exhaustive with respect to the parent node’s region. As in a probabilistic context-free
grammar (PCFG) (Jurafsky & Martin, 2000), productions are chosen from a categorical distribution
over the productions of the current symbol. Segmentations of a given region, however, are sampled
from a (submodular) Markov random field (MRF) over the pixels in the region.

Formally, let G = (N,Σ, R, S,w) be a non-recursive stochastic grammar, where N is a finite
set of nonterminal symbols; Σ is a finite set of terminal symbols; R is a finite set of productions
R = {v : X → Y1Y2 . . . Yk} with head symbol X ∈ N and constituent symbols Yi ∈ N ∪ Σ
for i = 1 . . . k and k > 0; S ∈ N is a distinguished start symbol, meaning that it does not appear
on the right-hand side of any production; and w are the weights that parameterize the probability
distribution defined by G. For a production v ∈ t in a parse tree t ∈ TG, we denote its region
as Pv and its parent and children as pa(v) and ch(v), respectively, where TG is the set of possible
parse trees under the grammar G. The labeling corresponding to the segmentation of the pixels
in Pv for production v : X → Y1 . . . Yk is yv ∈ Y |Pv|

v , where Yv = {Y1, . . . , Yk}. The region
of any production v ∈ t is the set of pixels in Ppa(v) whose assigned label is the head of v, i.e.,
Pv = {p ∈ Ppa(v) : y

pa(v)
p = head(v)}, except for the production of the start symbol, which has

the entire image as its region. The probability of an image x is pw(x) =
∑

t∈TG pw(t,x), where
the joint probability of parse tree t and the image is the product over all productions in t of the
probability of choosing that production v and then segmenting its region Pv according to yv:

pw(t,x) =
1

Z
exp(−Ew(t,x)) =

1

Z
exp(−

∑
v∈t

Ev
w(v,yv, head(v),Pv,x)).

Here, Z =
∑

t∈TG exp(−Ew(t,x)) is the partition function, w are the model parameters, and E is
the energy function. In the following, we will simplify notation by omitting head(v), Pv , x, w, and
superscript v from the energy function when they are clear from context. The energy of a production
and its segmentation on the region Pv are given by a pairwise Markov random field (MRF) as
E(v,yv) =

∑
p∈Pv

θvp(yvp ;w) +
∑

(p,q)∈Ev θ
v
pq(yvp , y

v
q ;w), where θvp and θvpq are the unary and

pairwise costs of the segmentation MRF, {yvp : p ∈ Pv} is the labeling defining the segmentation of
the pixels in the current region, and Ev are the edges in Pv . Without loss of generality we assume
that Ev contains only one of (p, q) or (q, p), since the two terms can always be combined. Here, θvp
is the per-pixel data cost and θvpq is the boundary term, which penalizes adjacent pixels within the
same region that have different labels. We describe these terms in more detail below. In general,
even computing the segmentation for a single production is intractable. In order to permit efficient
inference, we require that θvpq satisfies the submodularity condition θvpq(Y1, Y1) + θvpq(Y2, Y2) ≤
θvpq(Y1, Y2) + θvpq(Y2, Y1) for all productions v : X → Y1Y2 once the grammar has been converted
to a grammar in which each production has only two constituents, which is always possible and
in the worst case increases the grammar size quadratically (Jurafsky & Martin, 2000; Chomsky,
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1959). We also require for every production v ∈ R and for every production c that is a descendant
of v in the grammar that θvpq(yvp , y

v
q ) ≥ θcpq(ycp, y

c
q) for all possible labelings (yvp , y

v
q , y

c
p, y

c
q), where

yvp , y
v
q ∈ Yv and ycp, y

c
q ∈ Yc. This condition ensures that segmentations for higher-level productions

are submodular, no matter what occurs below them. It also encodes the reasonable assumption that
higher-level abstractions are separated by stronger, shorter boundaries (relative to their size), while
lower-level objects are more likely to be composed of smaller, more intricately-shaped regions.

The above model defines a sum-product network containing a sum node for each possible region of
each nonterminal, a product node for each segmentation of each production of each possible region
of each nonterminal, and a leaf function on the pixels of the image for each possible region of the
image for each terminal symbol. The children of the sum node s for nonterminal Xs with region
Ps are all product nodes r with a production vr : Xs → Y1 . . . Yk and region Pvr = Ps. Each
product node corresponds to a labeling yvr of Pvr and the edge to its parent sum node has weight
exp(−E(v,yvr ,Pvr )). The children of product node r are the sum or leaf nodes with matching
regions that correspond to the constituent nonterminals or terminals of vr, respectively. Since the
weights of the edges from a sum node to its children correspond to submodular energy functions,
we call this a submodular sum-product network (SSPN).

A key benefit of SSPNs in comparison to previous grammar-based approaches is that regions can
have arbitrary shapes and are not restricted to a small class of shapes such as rectangles (Poon &
Domingos, 2011; Zhao & Zhu, 2011). This flexibility is important when parsing images, as real-
world objects and abstractions can take any shape, but it comes with a combinatorial explosion of
possible parses. However, by exploiting submodularity, we are able to develop an efficient inference
algorithm for SSPNs, allowing us to efficiently parse images into a hierarchy of arbitrarily-shaped
regions and objects, yielding a very expressive model class. This efficiency is despite the size of the
underlying SSPN, which is in general far too large to explicitly instantiate.

2.1 MRF SEGMENTATION DETAILS

As discussed above, the energy of each segmentation of a region for a given production is defined by
a submodular MRF E(v,yv) =

∑
p∈Pv

θvp(yvp ;w) +
∑

(p,q)∈Ev θ
v
pq(yvp , y

v
q ;w). The unary terms in

E(v,yv) differ depending on whether the label yvp corresponds to a terminal or nonterminal symbol.
For a terminal T ∈ Σ, the unary terms are a linear function of the image features θvp(yvp = T ;w) =

wPC
v +w>T φ

U
p , wherewPC

v is an element of w that specifies the cost of v relative to other productions
and φUp is a feature vector representing the local appearance of pixel p. In our experiments, φUp is the
output of a deep neural network. For labels corresponding to a nonterminal X ∈ N , the unary terms
are θvp(yvp = X;w) = wPC

v + θcp(ycp), where c is the child production of v in the current parse tree
that contains p, such that p ∈ Pc. This dependence makes inference challenging, because the choice
of children in the parse tree itself depends on the region that is being parsed as X , which depends
on the segmentation this unary is being used to compute.

The pairwise terms in E(v,yv) are a recursive version of the standard contrast-dependent pairwise
boundary potential (e.g., Shotton et al. (2006)) defined for each production v and each pair of adja-
cent pixels p, q as θvpq(yvp , y

v
q ;w) = wBF

v exp(−β−1||φBp −φBq ||2)·[yvp 6= yvq ]+θcpq(ycp, y
c
q;w), where

β is half the average image contrast between all adjacent pixels in an image, wBF
v is the boundary

factor that controls the relative cost of this term for each production, φBp is the pairwise per-pixel
feature vector, c is the same as in the unary term above, and [·] is the indicator function, which has
value 1 when its argument is true and is 0 otherwise. For each pair of pixels (p, q), only one such
term will ever be non-zero, because once two pixels are labeled differently at a node in the parse
tree, they are placed in separate subtrees and thus never co-occur in any region below the current
node. In our experiments, φBp are the intensity values for each pixel.

3 INFERENCE

Scene understanding (or semantic segmentation) requires labeling each pixel of an image with its
semantic class. By constructing a grammar containing a set of nonterminals in one-to-one corre-
spondence with the semantic labels and only allowing these symbols to produce terminals, we can
recover the semantic segmentation of an image from a parse tree for this grammar. In the simplest
case, a grammar need contain only one additional production from the start symbol to all other
nonterminals. More generally, however, the grammar encodes rich structure about the relationships
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Figure 2: The two main components of INFERSSPN: (a) Parsing a region P as X → Y Z by fusing two
parses of P as Y → AB and as Z → CD, and (b) Improving the parse of P as X → Y Z by (re)parsing each
of its subregions, taking the union of the new Y and Z parses of P , and then fusing these new parses.

between image regions at various levels of abstraction, including concepts such as composition and
subcategorization. Identifying the relevant structure and relationships for a particular image entails
finding the best parse of an image x given a grammarG (or, equivalently, performing MAP inference
in the corresponding SSPN), i.e., t∗ = arg maxt∈TG p(t|x) = arg mint∈TG

∑
v∈tE(v,yv,x).

In PCFGs over sentences (Jurafsky & Martin, 2000), the optimal parse can be recovered exactly in
timeO(n3|G|) with the CYK algorithm (Hopcroft & Ullman, 1979), where n is the length of the sen-
tence and |G| is the number of productions in the grammar, by iterating over all possible split points
of the sentence and using dynamic programming to avoid recomputing sub-parses. Unfortunately,
for images and other 2-D data types, there are 2n possible segmentations of the data for each binary
production, rendering this approach infeasible in general. With an SSPN, however, it is possible to
efficiently compute the approximate optimal parse of an image. In our algorithm, INFERSSPN, this
is done by iteratively constructing parses of different regions in a bottom-up fashion.

3.1 PARSE TREE CONSTRUCTION

Given a production v : X → Y1Y2 and two parse trees t1, t2 over the same region P and with head
symbols Y1, Y2, respectively, then for any labeling yv ∈ {Y1, Y2}|P| of P we can construct a third
parse tree tX over region P with root production v, labeling yv , and subtrees t′1, t

′
2 over regions

P1,P2, respectively, such that Pi = {p ∈ P : yvp = Yi} and t′i = ti ∩ Pi for each i, where the
intersection of a parse tree and a region t ∩ P is the new parse tree resulting from intersecting P
with the region at each node in t. Of course, the quality of the resulting parse tree, tX , depends
on the particular labeling (segmentation) yv used. Recall that a parse tree t on region P has energy
E(t,P) =

∑
v∈tE(v,yv,Pv), which can be written asE(t,P) =

∑
p∈P θ

t
p+

∑
(p,q)∈E θ

t
pq , where

θtp =
∑

v∈t θ
v
p(yvp) · [p ∈ Pv] and θtpq =

∑
v∈t θ

v
pq(yvp , y

v
q ) · [(p, q) ∈ Ev]. This allows us to define

the fusion operation, which is a key subroutine in INFERSSPN. Note that δij is the Kronecker delta.

Definition 1. For a production v : X → Y1, Y2 and two parse trees t1, t2 over region P with head
symbols Y1, Y2 then tX is the fusion of t1 and t2 constructed from the minimum energy labeling
yv = arg min

y∈Y|P|
v

E(v, t1, t2,y), where

E(v, t1, t2,y) =
∑
p∈P

θt1p · δypY1
+ θt2p · δypY2

+
∑

(p,q)∈E

θt1pq · δypY1
· δyqY1

+ θt2pq · δypY2
· δyqY2

+ θvpq(Y1, Y2) · δypY1
· δyqY2

.

Figure 2a shows an example of fusing two parse trees to create a new parse tree. Although fusion
requires finding the optimal labeling from an exponentially large set, the energy is submodular and
can be efficiently optimized with a single graph cut. All proofs are presented in the appendix.
Proposition 1. The energy E(v, t1, t2,y

v) of the fusion of parse trees t1, t2 over region P with head
symbols Y1, Y2 for a production v : X → Y1Y2 is submodular.

Once a parse tree has been constructed, INFERSSPN then improves that parse tree on subsequent
iterations. The following result shows how INFERSSPN can improve a parse tree while ensuring
that the energy of that parse tree never gets worse.
Lemma 1. Given a labeling yv which fuses parse trees t1, t2 into t with root production v, energy
E(t,P) = E(v, t1, t2,y

v), and subtree regions P1 ∩ P2 = ∅ defined by yv , then any improvement
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∆ in E(t1,P1) also improves E(t,P) by at least ∆, regardless of any change in E(t1,P\P1).

Finally, it will be useful to define the union t = t1 ∪ t2 of two parse trees t1, t2 that have the same
production at their root but are over disjoint regions P1 ∩ P2 = ∅, as the parse tree t with region
P = P1∪P2 and in which all nodes that co-occur in both t1 and t2 (i.e., have the same path to them
from the root and have the same production) are merged to form a single node in t. In general, t
may be an inconsistent parse tree, as the same symbol may be parsed as two separate productions, in
which case we define the energy of the boundary terms between the pixels parsed as these separate
productions to be infinite.

3.2 INFERSSPN

Pseudocode for our algorithm, INFERSSPN, is presented in Algorithm 1. INFERSSPN is an iterative
bottom-up algorithm based on graph cuts (Kolmogorov & Zabih, 2004) that provably converges to a
local minimum of the energy function. In its first iteration, INFERSSPN constructs a parse tree over
the full image for each production in the grammar. The parse of each terminal production is trivial to
construct and simply labels each pixel as the terminal symbol. The parse for every other production
v : X → Y1Y2 is constructed by choosing productions for Y1 and Y2 and fusing their corresponding
parse trees to get a parse of the image as X . Since the grammar is non-recursive, we can construct
a directed acyclic graph (DAG) containing a node for each symbol and an edge from each symbol
to each constituent of each production of that symbol and then traverse this graph from the leaves
(terminals) to the root (start symbol), fusing the children of each production of each symbol when
we visit that symbol’s node. Of course, to fuse parses of Y1 and Y2 into a parse of X , we need to
choose which production of Y1 (and Y2) to fuse; this is done by simply choosing the production of
Y1 (and Y2) that has the lowest energy over the current region. The best parse of the image, t̂, now
corresponds to the lowest-energy parse of all productions of the start symbol.

Further iterations of INFERSSPN improve t̂ in a flexible manner that allows any of its productions
or labelings to change, while also ensuring that its energy never increases. INFERSSPN does this by
again computing parses of the full image for each production in the grammar. This time, however,
when parsing a symbol X , INFERSSPN independently parses each region of the image that was
parsed as any production of X in t̂ (none of these regions will overlap because the grammar is non-
recursive) and then parses the remainder of the image given these parses of subregions of the image,
meaning that the pixels in these other subregions are instantiated in the MRF but fixed to the labels
that the subregion parses specify. The parse of the image as X is then constructed as the union of
these subregion parses. This procedure ensures that the energy will never increase (see Theorem 1
and Lemma 1), but also that any subtree of t̂ can be replaced with another subtree if it results in
lower energy. Figure 2b shows a simple example of updating a parse of a region as X → Y Z.
Further, this (re)parsing of subregions can again be achieved in a single bottom-up pass through the
grammar DAG, resulting in a very efficient algorithm for SSPN inference. This is because each pixel
only appears in at most one subregion for any symbol, and thus only ever needs to be parsed once
per production. See Algorithm 1 for more details.

3.3 ANALYSIS

As shown in Theorem 1, INFERSSPN always converges to a local minimum of the energy func-
tion. Similar to other graph-cut-based algorithms, such as α-expansion (Boykov et al., 2001), IN-
FERSSPN explores an exponentially large set of moves at each step, so the returned local minimum
is much better than those returned by more local procedures, such as max-product belief propaga-
tion. Further, we observe convergence within a few iterations in all experiments, with the majority
of the energy improvement occurring in the first iteration.
Theorem 1. Given a parse (tree) t̂ of S over the entire image with energy E(t̂), each iteration of
INFERSSPN constructs a parse (tree) t of S over the entire image with energy E(t) ≤ E(t̂) and
since the minimum energy of an image parse is finite, INFERSSPN will always converge.

As shown in Proposition 2, each iteration of INFERSSPN takes time O(|G|c(n)), where n is the
number of pixels in the image and c(n) is the complexity of the underlying graph cut algorithm
used, which is low-order polynomial in the worst-case but nearly linear-time in practice (Boykov &
Kolmogorov, 2004; Boykov et al., 2001).
Proposition 2. Let c(n) be the time complexity of computing a graph cut on n pixels and |G| be the
size of the grammar defining the SSPN, then each iteration of INFERSSPN takes time O(|G|c(n)).
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Algorithm 1 Compute the (approximate) MAP assignment of the SSPN variables (i.e., the produc-
tions and labelings) defined by an image and a grammar. This is equivalent to parsing the image.

Input: The image x, a non-recursive grammar G = (N,Σ, R, S,w), and (optional) input parse t̂.
Output: A parse of the image, t∗, with energy E(t∗,x) ≤ E(t̂,x).

1: function INFERSSPN(x, G, t̂)
2: T,E ← empty lists of parse trees and energies, respectively, both of length |R|+ |Σ|
3: for each terminal Y ∈ Σ do
4: T [Y ]← the trivial parse with all pixels parsed as Y
5: E[Y ]←

∑
p∈x w

>
Y φ

U
p

6: while the energy of any production of the start symbol S has not converged do
7: for each symbol X ∈ N , in reverse topological order do // as defined by the DAG of G
8: for each subtree t̂i of t̂ rooted at a production ui with head X do
9: Pi,yi ← the region that t̂i is over and its labeling in t̂i // {Pi} are all disjoint

10: for each production vj : X → Y1Y2 do // iterate over all productions of X
11: tij , eij ←FUSE(Pi,yi, vj , T ) // parse Pi as vj by fusing parses of Y1 and Y2

12: PX ← all pixels that are not in any region Pi

13: for each production vj : X → Y1Y2 do // iterate over all productions of X
14: yrand ← a random labeling of PX // use random for initialization
15: tX , eX ← FUSE(PX ,yrand, vj , T, (∪itij)) // parse PX as vj given (∪itij)

16: update lists: T [vj ]← (∪itij) ∪ tX and E[vj ]←
∑

i eij + eX for all vj with head X
17: t̂, ê← the production of S with the lowest energy in E and its energy
18: return t̂, ê

Input: A region P , a labeling y of P , a production v : X → Y1Y2, a list of parses T , and an
optional parse tP of pixels not in P , used to set pairwise terms of edges that are leaving P .

Output: A parse tree rooted at v over region P and the energy of that parse tree.
1: function FUSE(P,y, v, T, tP )
2: for each Yi with i ∈ 1, 2 do
3: ui ← production of Yi in T with lowest energy over {p : yp = Yi} given tP
4: create submodular energy function E(v,y,P,x) on P from T [u1], T [u2], and tP
5: yv, ev ← (arg) miny E(v,y,P,x) // label each pixel in P as Y1 or Y2 using graph cuts
6: tv ← combine T [u1] and T [u2] according to yv and append v as the root
7: return tv, ev

Note that a straightforward application of α-expansion to image parsing that uses one label for every
possible parse in the grammar requires an exponential number of labels in general.

INFERSSPN can be extended to productions with more than two constituents by simply replac-
ing the internal graph cut used to fuse subtrees with a multi-label algorithm such as α-expansion.
INFERSSPN would still converge because each subtree would still never decrease in energy. An
algorithm such as QPBO (Kolmogorov & Rother, 2007) could also be used, which would allow the
submodularity restriction to be relaxed. Finally, running INFERSSPN on the grammar containing
k − 1 binary productions that results from converting a grammar with a single production on k > 2
constituents is equivalent to running α-expansion on the k constituents.

4 EXPERIMENTS

We evaluated INFERSSPN by parsing images from the Stanford background dataset (SBD) using
grammars with generated structure and weights inferred from the pixel labels of the images we
parsed. SBD is a standard semantic segmentation dataset containing images with an average size of
320 × 240 pixels and a total of 8 labels. The input features we used were from the Deeplab sys-
tem (Chen et al., 2015; 2016) trained on the same images used for evaluation (note that we are not
evaluating learning and thus use the same features for each algorithm and evaluate on the training
data in order to separate inference performance from generalization performance). We compared IN-
FERSSPN to α-expansion on a flat pairwise MRF and to max-product belief propagation (BP) on a
multi-level (3-D) pairwise grid MRF. Details of these models are provided in the appendix. We note
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that the flat encoding for α-expansion results in a label for each path in the grammar, where there
are an exponential number of such paths in the height of the grammar. However, once α-expansion
converges, its energy is within a constant factor of the global minimum energy (Boykov et al., 2001)
and thus serves as a good surrogate for the true global minimum, which is intractable to compute.

We compared these algorithms by varying three different parameters: boundary strength (strength of
pairwise terms), grammar height, and number of productions per nonterminal. Each grammar used
for testing contained a start symbol, multiple layers of nonterminals, and a final layer of nonterminals
in one-to-one correspondence with the eight terminal symbols, each of which had a single production
that produces a region of pixels. The start symbol had one production for each pair of symbols in
the layer below it, and the last nonterminal layer (ignoring the nonterminals for the labels) had
productions for each pair of labels, distributed uniformly over this last nonterminal layer.

Boundary strength. Increasing the boundary strength of an MRF makes inference more challeng-
ing, as individual pixel labels cannot be easily flipped without large side effects. To test this, we
constructed a grammar as above with 2 layers of nonterminals (not including the start symbol), each
containing 3 nonterminal symbols with 4 binary productions to the next layer. We vary wBF

v for all
v and plot the mean average pixel accuracy returned by each algorithm (the x-axis is log-scale) in
Figure 3a. INFERSSPN returns parses with almost identical accuracy (and energy) to α-expansion.
BP also returns comparable accuracies, but almost always returns invalid parses with infinite energy
(if it converges at all) that contain multiple productions of the same object or a production of some
symbol Y even though a pixel is labeled as symbol X.
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Figure 3: The mean average pixel accuracy of the returned solution and total running time for each of belief
propagation, α-expansion, and INFERSSPN when varying (a) boundary strength, (b) grammar height, and (c)
number of productions. Each data point is the average value over (the same) 10 images. Missing data points
indicate out of memory errors. Figures 4, 5, and 6 in the appendix show all results for each experiment.

Grammar height. In general, the number of paths in the grammar is exponential in its height, so
the height of the grammar controls the complexity of inference and thus the difficulty of parsing
images. For this experiment, we set the boundary scale factor to 10 and constructed a grammar with
four nonterminals per layer, each with three binary productions to the next layer. Figure 3b shows
the effect of grammar height on total inference time (to convergence or a maximum number of iter-
ations, whichever first occurred). As expected from Proposition 2, the time taken for INFERSSPN
scales linearly with the height of the grammar, which is within a constant factor of the size of the
grammar when all other parameters are fixed. Similarly, inference time for both α-expansion and BP
scaled exponentially with the height of the grammar because the number of labels for both increases
combinatorially. Again, the energies and corresponding accuracies achieved by INFERSSPN were
nearly identical to those of α-expansion (see Figure 5 in the appendix).
Productions per nonterminal. The number of paths in the grammar is also directly affected by the
number of productions per symbol. For this experiment, we increased each pairwise term by a factor
of 10 and constructed a grammar with 2 layers of nonterminals, each with 4 nonterminal symbols.
Figure 3c shows the effect of increasing the number of productions per nonterminal, which again
demonstrates that INFERSSPN is far more efficient than either α-expansion or BP as the complexity
of the grammar increases, while still finding comparable solutions (see Figure 6 in the appendix).

5 CONCLUSION

This paper proposed submodular sum-product networks (SSPNs), a novel extension of sum-product
networks that can be understood as an instantiation of an image grammar in which all possible
parses of an image over arbitrary shapes are represented. Despite this complexity, we presented
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INFERSSPN, a move-making algorithm that exploits submodularity in order to find the (approxi-
mate) MAP state of an SSPN, which is equivalent to finding the (approximate) optimal parse of an
image. Analytically, we showed that INFERSSPN is both very efficient – each iteration takes time
linear in the size of the grammar and the complexity of one graph cut – and convergent. Empiri-
cally, we showed that INFERSSPN achieves accuracies and energies comparable to α-expansion,
which is guaranteed to return optima within a constant factor of the global optimum, while taking
exponentially less time to do so.

We have begun work on learning the structure and parameters of SSPNs from data. This is a particu-
larly promising avenue of research because many recent works have demonstrated that learning both
the structure and parameters of sum-product networks from data is feasible and effective, despite the
well-known difficulty of grammar induction. We also plan to apply SSPNs to additional domains,
such as activity recognition, social network modeling, and probabilistic knowledge bases.
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A PROOFS

Proposition 1. The energy E(v, t1, t2,y
v) of the fusion of parse trees t1, t2 over region P with head

symbols Y1, Y2 for a production v : X → Y1Y2 is submodular.

Proof. E(v, t1, t2) is submodular as long as 2 · θvpq(Y1, Y2) ≥ θt1pq + θt2pq , which is true by construc-
tion, since θvpq(yvp , y

v
q ) ≥ θcpq(ycp, y

c
q) for c any possible descendant of v and for all labelings.

Lemma 2. Given a labeling yv which fuses parse trees t1, t2 into t with root production v, energy
E(t,P) = E(v, t1, t2,y

v), and subtree regions P1 ∩ P2 = ∅ defined by yv , then any improvement
∆ in E(t1,P1) also improves E(t,P) by at least ∆, regardless of any change in E(t1,P\P1).

Proof. Since the optimal fusion can be found exactly, and the energy of the current labeling yv has
improved by ∆, the optimal fusion will have improved by at least ∆.

Proposition 2. Let c(n) be the time complexity of computing a graph cut on n pixels and |G| be the
size of the grammar defining the SSPN, then each iteration of INFERSSPN takes time O(|G|c(n)).

Proof. Let k be the number of productions per nonterminal symbol and N be the nonterminals. For
each nonterminal, FUSE is called k times for each region and once for the remainder of the pixels.
FUSE itself has complexity O(|P| + c(|P|) = O(c(|P|)) when called with region P . However, in
INFERSSPN each pixel is processed only once for each symbol because no regions overlap, so the
worst-case complexity occurs when each symbol has only one region, and thus the total complexity
of each iteration of INFERSSPN is O(|N |k · c(n)) = O(|G|c(n)).

Theorem 2. Given a parse (tree) t̂ of S over the entire image with energy E(t̂), each iteration of
INFERSSPN constructs a parse (tree) t of S over the entire image with energy E(t) ≤ E(t̂), and
since the minimum energy of an image parse is finite, INFERSSPN will always converge.

Proof. We will prove by induction that for all nodes ni ∈ t̂ with corresponding subtree t̂i, region
Pi, production vi : X → Y1Y2 and child subtrees t̂1, t̂2, that E(ti) ≤ E(t̂i) after one iteration for
all ti = T [vi]∩Pi. Since this holds for every production of S over the image, this proves the claim.
Base case. When t̂i is the subtree with region Pi and production vi : X → Y containing only a
single terminal child, then by definition ti = T [vi]∩Pi = t̂i because terminal parses do not change
given the same region. Thus, E(ti) = E(t̂i) and the claim holds.
Induction step. Let vi : X → Y1Y2 be the production for a node in t̂i with subtrees t̂1, t̂2 over
regions P1,P2, respectively, such that P1 ∪ P2 = Pi and P1 ∩ P2 = ∅, and suppose that for all
productions u1j with head Y1 and all productions u2k with head Y2 and corresponding parse trees
t1j = T [u1j ]∩P1 and t2k = T [u2k]∩P2, respectively, thatE(t1j) ≤ E(t̂1j) andE(t2k) ≤ E(t̂2k).
Now, when FUSE is called on region P1 it will choose the subtrees t∗1j : j = arg minj E(t1j ,P1),
and t∗2k : k = arg mink E(t2k,P2) and fuse these into t′i over P . However, from Lemma 1, we
know that ti could at the very least simply reuse the labeling yv that partitions P into P1,P2 and
in doing so return a tree t′i with energy E(t′i) ≤ E(t̂i), because each of its subtrees over their same
regions has lower (or equal) energy to those in t̂. Finally, since t′i is computed independently of any
other trees for region P and then placed into T [vi] as a union of other trees, then ti = T [vi]∩P = t′i,
and the claim follows.

B ADDITIONAL EXPERIMENTAL RESULTS AND DETAILS

We compared INFERSSPN to running α-expansion on a flat pairwise MRF and to max-product be-
lief propagation over a multi-level (3-D) pairwise grid MRF. Each label of the flat MRF corresponds
to a possible path in the grammar from the start symbol to a production to one of its constituent
symbols, etc, until reaching a terminal. In general, the number of such paths is exponential in the
height of the grammar. The unary terms are the sum of unary terms along the path and the pairwise
term for a pair of labels is the pairwise term of the first production at which their constituents differ.
For any two labels with paths that choose a different production of the same symbol (and have the
same path from the start symbol) we assign infinite cost to enforce the restriction that an object can
only have a single production of it into constituents. Note that after convergence α-expansion is
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guaranteed to be within a constant factor of the global minimum energy (Boykov et al., 2001) and
thus serves as a good surrogate for the true global minimum, which is intractable to compute. The
multi-layer MRF is constructed similarly. The number of levels in the MRF is equal to the height
of the DAG corresponding to the grammar used. The labels at a particular level of the MRF are
all (production, constituent) pairs that can occur at this height in the grammar. The pairwise term
between the same pixel in two levels is 0 when the parent label’s constituent equals the child label’s
production head, and∞ otherwise. Pairwise terms within a layer are defined as in the flat MRF with
infinite cost for incompatible labels (i.e., two neighboring productions of the same symbol), unless
two copies of that nonterminal could be produced at that level by the grammar.

All experiments were run on the same computer running an Intel Core i7-5960X with 8 cores and
128MB of RAM. Each algorithm was limited to a single thread.
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Figure 4: The (a) best energy, (b) total running time, and (c) resulting semantic segmentation accuracy (mean
average pixel accuracy) for belief propagation, α-expansion, and INFERSSPN when varying boundary strength.
Each data point is the average value over (the same) 10 images. Missing data points indicate that an algorithm
ran out of memory (middle and right) or returned infinite energy (left).
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Figure 5: The (a) best energy, (b) total running time, and (c) resulting semantic segmentation accuracy (mean
average pixel accuracy) for belief propagation, α-expansion, and INFERSSPN when varying grammar height.
Each data point is the average value over (the same) 10 images. Missing data points indicate that an algorithm
ran out of memory (middle and right) or returned infinite energy (left). Low accuracies for grammar height 0
are a result of the grammar being insufficiently expressive.
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Figure 6: The (a) best energy, (b) total running time, and (c) resulting semantic segmentation accuracy (mean
average pixel accuracy) for belief propagation, α-expansion, and INFERSSPN when varying grammar height.
Each data point is the average value over (the same) 10 images. Missing data points indicate that an algorithm
ran out of memory (middle and right) or returned infinite energy (left).
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