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ABSTRACT

Strong improvements in neural network performance in vision tasks have resulted
from the search of alternative network architectures. Prior work has shown that
this search process can be automated and guided by evaluating candidate net-
work performance following limited training (Performance Guided Architecture
Search or PGAS). However, because of the large architecture search spaces and
the high computational cost associated with evaluating each candidate network,
further gains in computational efficiency are needed. Here we present a method
termed Teacher Guided Search for Architectures by Generation and Evaluation
(TG-SAGE) that produces up to an order of magnitude in search efficiency over
PGAS methods. Specifically, TG-SAGE guides each step of the architecture
search by evaluating the similarity of internal representations of the candidate
networks with those of the (fixed) teacher network. We show that this procedure
leads to significant reduction in required per-sample training and that, this advan-
tage holds for two different search spaces of architectures, and two different search
algorithms. We further show that in the space of convolutional cells for visual
categorization, TG-SAGE finds a cell structure with similar performance as was
previously found using other methods but at a total computational cost that is two
orders of magnitude lower than Neural Architecture Search (NAS) and more than
four times lower than progressive neural architecture search (PNAS). These re-
sults suggest that TG-SAGE can be used to accelerate network architecture search
in cases where one has access to some or all of the internal representations of a
teacher network of interest, such as the brain.

1 INTRODUCTION

The accuracy of deep convolutional neural networks (CNNs) for visual categorization has advanced
substantially from 2012 levels (AlexNet (Krizhevsky et al., 2012)) to current state-of-the-art CNNs
like ResNet (He et al., 2015), Inception (Szegedy et al., 2014), DenseNet (Huang et al., 2016). This
progress is mostly due to discovery of new network architectures. Yet, even the space of feedforward
neural network architectures is essentially infinite and given this complexity, the design of better
architectures remains a challenging and time consuming task.

Several approaches have been proposed to automate the discovery of neural network architectures,
including random search (Pinto et al., 2009), reinforcement learning (Zoph & Le, 2017), evolution
(Real et al., 2016), and sequential model based optimization (SMBO) (Liu et al., 2017; Bergstra
et al., 2012a). These methods operate by iteratively sampling from the hyperparameter space, train-
ing the corresponding architecture, evaluating it on a validation set, and using the search history of
those scores to guide further architecture sampling. But even with recent improvements in search
efficiency, the total cost of architecture search is still outside the reach of many groups and thus
impedes the research in this area (e.g. some of the recent work in this area has spent 40-557k
GPU-hours for each search experiment (Real et al., 2018; Zoph & Le, 2017)).

What drives the total computational cost of running a search? For current architectural search pro-
cedures (above), the parameters of each sampled architecture must be trained before its performance
can be evaluated and the amount of such training turns out to be a key driver in the total computa-
tional cost. Thus, to reduce that total cost, each architecture is typically only partially trained to a
premature state and its premature performance is used as a proxy of its mature performance (i.e. the
performance it would have achieved if was actually fully trained).
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Because the search goal is high mature performance in a task of interest, the most natural choice
of an architecture evaluation score is its premature performance. However, this may not be the best
choice of evaluation score. For example, it has been observed that, as a network is trained, multiple
sets of internal features begin to emerge over network layers, and the quality of these internal features
determines the ultimate behavioral performance of the neural network as a whole. Based on these
observations, we reasoned that, if we could evaluate the quality of a network’s internal features even
in a very premature state, we might be able to more quickly determine if a given architecture is
likely to obtain high levels of mature performance.

But without a reference set of high quality internal features, how can we determine the quality of
a network’s internal features? The main idea proposed here is to use features of a high performing
“teacher” network as a reference to identify promising sample architectures at a much earlier prema-
ture state. Our proposed method is inspired by prior work showing that the internal representations
of a high-performing teacher network can be used to optimize the parameters of smaller, shallower,
or thinner student networks (Ba & Caruana, 2014; Hinton et al., 2015; Romero et al., 2014). It is
also inspired by the fact that such internal representation measures can potentially be obtained from
primate brain and thus could be used as an ultimate teacher. While our ability to simultaneously
record from large populations of neurons is fast growing (Stevenson & Kording, 2011), these mea-
surements have already been shown to have remarkable similarities to internal features of CNNs
(Yamins et al., 2014; Schrimpf et al., 2018).

We refer to this method as Teacher Guided Search for Architectures by Generation and Evaluation
(TG-SAGE). Specifically, TG-SAGE guides each step of an architecture search by evaluating the
similarity of several internal feature representations of each sampled architecture with those of a
fixed, high-performing teacher network with unknown architectural parameters but observable in-
ternal states. We found that when this evaluation is combined with the usual performance evaluation
(above), we can predict the mature performance of sampled architectures with an order of magnitude
less premature training and thus an order of magnitude less total computational cost. We then use
this observation to execute multiple runs of TG-SAGE for different architecture search spaces to con-
firm that TG-SAGE can indeed discover network architectures of comparable mature performance
to those discovered with performance-only search methods, but with far less total computational
cost.

2 PREVIOUS WORK

There have been several studies on automatic design of neural network architectures in the past few
years. Real et al. (Real et al., 2016; 2018) used an evolutionary approach in which samples taken
from a pool of networks were engaged in a pairwise competition game. This method searched for
optimal architectures and weights jointly by reusing all or part of weights from the parent network
in an effort to reduce the computation cost associated with training the candidate networks as well as
the final retraining of the best found networks. However, it is not clear to what degree this procedure
has cut down on the computational cost compared to alternative search method that depend on
(some) training for each candidate network starting from an initial point. There have also been
several studies on using reinforcement learning in agents that learn to design high performing neural
network architectures (Baker et al., 2016; Zoph & Le, 2017). Of special relevance to this work is
Neural Architecture Search (NAS) (Zoph & Le, 2017) in which a long short-term memory network
(LSTM) trained using REINFORCE was used to learn to design neural network architectures for
object recognition and natural language processing tasks. A variation of this approach was later
used to design convolutional cell structures similar to those used in Inception network that could be
transferred to larger datasets like Imagenet (Zoph et al., 2017).

While most of these works have focused on discovering higher performing architectures, there has
been a number of efforts emphasizing the computational efficiency in hyperparameter search. In
order to reduce the computational cost of architecture search, Brock et al. (Brock et al., 2017)
proposed to use a hypernetwork (Ha et al., 2016) to predict the layer weights for any arbitrary
candidate architecture instead of retraining from random initial values. Hyperband Li et al. (2017)
formulated hyperparameter search as a resource allocation problem and improved the efficiency by
controlling the amount of resources (e.g. training) allocated to each sample. Similarly, several other
methods proposed to increase the search efficiency by introducing early-stopping criteria during
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Figure 1: Overview of TG-SAGE method. left – Demonstration of an exemplar RDM matrix for
a dataset with 8 object categories and 8 object instances per category. right – overview of TG-
SAGE method. Correlation between RDMs of candidate and teacher networks, are combined with
candidate network premature performance to form P+TG score for guiding the architecture search.

training Baker et al. (2017) or by extrapolating the learning curve Domhan et al. (2015). These
approaches are closely related to our proposed method in that, their main focus is to reduce the
per-sample training cost.

Some recent work attempted to jointly optimize for the network hyperparameters as well as the
trainable weights themselves. While this is a very interesting idea that significantly reduces the
computational cost of architecture search, in its current form it can only be applied to the spaces
of network architectures in which the number of trainable weights do not change as a result of
hyperparameter choices (e.g. when the number of filters in a CNN is fixed). Efficient NAS (Pham
et al., 2018) and DARTS (Liu et al., 2018) methods proposed to share the trainable parameters across
all candidate networks and to jointly optimize for the hyperparameters and the network weights
during the search. While these approaches led to significant reduction in total search cost, they
did so by constraining the search space due to considerations regarding the shared trainable weights.
More recently progressive neural architecture search (PNAS) (Liu et al., 2017) proposed a sequential
model based optimization (SMBO) approach that learned a predictive model of performance given
the hyperparameters through a procedure which gradually increased the complexity of the space.
This approach led to an impressive 20× improvement in the computational cost of search compared
to NAS.

3 METHODS

3.1 REPRESENTATIONAL DISSIMILARITY MATRIX:

Representational Dissimilarity Matrix (RDM) Kriegeskorte et al. (2008) is a statistic computed for
a representation space that quantifies the dissimilarity between activity patterns in that space in
response to pairs of inputs or input categories. For a given feature matrix F ∈ Rni×nf which
contains nf features measured in response to ni images, we derive RDM (MF ) by computing the
pairwise distances between each pair of feature vectors (rows in F ) using a distance measure like
correlation residual.

MF ∈ Rnc×nc ,Mi,j = 1− corr(F c
i , F

c
j ) (1)

When calculating RDM for object categories (instead of individual images) we substitute the matrix
F with F c in which each row c contains the average activity pattern across all images of category
c. Once RDM is calculated for two representation spaces, we can evaluate the similarity of those
spaces by calculating the correlation coefficient (e.g. Pearson’s r) between the two RDM matrices.
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3.2 REPRESENTATIONAL SIMILARITY WITH A TEACHER NETWORK AS SURROGATE

The largest portion of cost associated with neural network architecture search comes from training
the sampled networks, which is proportional to the number of training steps (SGD updates) per-
formed on the network. Due to the high cost of fully training each sampled network, in most cases
a surrogate score is used as a proxy for the mature performance. Correlation between the surrogate
and mature score may affect the architecture search performance as poor proxy values could guide
the search algorithm towards suboptimal regions of the space. Previous work on architecture search
in the space of Convolutional Neural Networks (CNN) have concurred with the empirical surrogate
measure of premature performance after about 20 epochs of training. While 20 epochs is much
lower than the usual number of epochs used to fully train a CNN network (300-900 epochs), it still
forces a large cost on conducing architecture searches. We propose that evaluating the internal rep-
resentations of a network would be a more reliable measure of architecture quality during the early
phase of training (e.g. after several hundreds of SGD iterations), when the features are starting to be
formed but the network is not yet performing reliably on the task.

An overview of the procedure is illustrated in Figure-1. We evaluate each sampled model by mea-
suring the similarity between its RDMs at different layers (e.g. RDMC1−C3) to those extracted from
the teacher network (e.g. RDMT1−T3). To this end, we compute RDM for all or a subset of layers
in the network and then compute the correlation between all pairs of student and teacher RDMs.
To score a candidate network against a given layer of the teacher network, we consider the highest
RDM similarity to teacher layer calculated over all layers of the student network (e.g. RDMS1−S3).
Finally, we construct an overall score by taking the mean of the RDM scores which we call TG
(Teacher Guidance). We also define a combined Performance + TG (P+TG) score which is formu-
lated as weighted sum of premature performance and TG score in the form of P + αTG. In this
fashion, the combined validation score guides the architecture search to maximize performance as
well as representational similarity with the teacher architecture. We consider the teacher architecture
as any high-performing network with unknown architecture but observable activations. We can have
one or several measured endpoints from the teacher network that each could potentially be used to
generate a similarity score.

4 EXPERIMENTS AND RESULTS

4.1 TEACHER GUIDANCE FOR ARCHITECTURE SEARCH

We first investigated if a teacher similarity evaluation measure (P+TG) of premature networks im-
proves the prediction of mature performance (compared to evaluation of only premature perfor-
mance, P). To do this, we made a pool of CNN architectures for which we computed the premature
and mature performances as well as the premature RDMs (a measure of the internal feature rep-
resentation, see 3.2) at every model layer. We populated the pool by selecting the top 5 network
architectures found at a range of checkpoints (every 100 samples) of the performance guided archi-
tecture searches. We included architectures (n=116) from two RL searches for 10-layer and another
two for 20-layer CNNs with 20 epoch/sample training (see description of search spaces in the supp.
material). In this way we included sample networks with a wide range of performance that also
included the best network architectures found during each search.

In experiments throughout this paper, we used a variant of ResNet (He et al., 2015) with 54 convo-
lutional layers (n = 9) as the teacher network. This architecture was selected as the teacher because
it is high performing (top-1 accuracy of 94.75% and 75.89% on CIFAR10 and CIFAR100 datasets
respectively). Notably, the teacher architecture is not in our search spaces (see supp. material). The
features (after each of the three stacks of residual blocks, here named L1-L3) were chosen as the
teacher’s internal features, and a RDM was created from each using random subsample of features
in that layer. We did not attempt to optimize this choice these were chosen simply because they
sampled approximately evenly over the full depth of the teacher.

We found that the earlier teacher layers (L1) are better predictors of the mature performance com-
pared to other layers early on during the training (<2epochs) but as the training progresses, the later
layers (L2 and L3) become better predictors (∼3epochs) and with more training (>3epochs) the pre-
mature performance becomes the best single predictor of the mature (i.e. fully trained) performance.
However the combined “P+TG” score (see 3.2) composes the best predictor of mature performance
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during most of the training period (Figure 2-right). This observation was consistent with previous
findings that learning in deep networks predominantly happen “bottom-up” (Raghu et al., 2017).

In order to find the optimum TG weight factor, we varied the α parameter (section 3.2) and measured
the change in correlation between the P+TG score and the mature performance (see Figure 3 in
supplementary material). We found that for networks trained for∼2 epochs, a value ofα = 1 is close
to optimum. In addition to ResNet, we also analyzed a second teacher network, namely NASNet
(see section 2 in supp. material) and confirmed our findings using the alternative teacher network.
We also found that NASNet features (which performs higher than ResNet; 82.12% compared to
75.9%) form a better predictor of mature performance in almost all training regimes (Figure 4 in
supp. material).

4.2 TEACHER GUIDED SEARCH IN THE SPACE OF CONVOLUTIONAL NETWORKS

As outlined in the Introduction, we expected that the (P+TG) evaluation score’s improved predic-
tivity (Figure 2) should enable it to support a more efficient architecture search than performance
evaluation alone (P). To test this directly, we used the (P+TG) evaluation score in full architectural
search experiments using a range of configurations. For these experiments, we searched two spaces
of convolutional neural networks similar to previous search experiments (Zoph & Le, 2017) (maxi-
mum network depth of either 10 or 20 layers). These architectural search spaces are important and
interesting because they are large. In addition, because networks in these search spaces are relatively
inexpensive to train to maturity, we could evaluate the true underlying search progress at a range of
checkpoints (below). We ran searches in each space using four different search methods: using the
(P+TG) evaluation score at 2 or 20 epochs of premature training, and using the (P) evaluation score
at either 2 or 20 epochs of premature training. For these experiments, we used Random, RL, as
well as TPE architecture selection algorithm (see Methods), and we halted the search after 1000 or
2000 sampled architectures (for the 10- and 20-layer search spaces, respectively). We conducted our
search experiments on CIFAR100 instead of CIFAR10 because of larger number of classes in the
dataset that provided a higher dimensional RDM.

Table 1 summarizes results of our search experiments. We found that, for all search configurations,
the (P+TG) driven search algorithm (i.e. TG-SAGE) consistently outperformed the performance-
only driven algorithm (P) in that, using equal computational cost it always discovered higher per-
forming networks. This gain was substantial in that TG-SAGE found network architectures with
approximately the same performance as (P) search but at ∼ 10× less computational cost (2 vs. 20
epochs; Table 1).

To assess and track the efficiency of these searches, we measured the maximum validation set per-
formance of the fully trained network architectures returned by each search as its current choice of
the top-5 architectures. We repeated each search experiment three times to estimate variance in these
measures resulting from both search sampling and network initial filter weight sampling. Figure 3

Figure 2: Comparison of performance and P+TG measures at premature state (epochs=2) as predic-
tors of mature performance. (left) scatter plot of premature and mature performance values. (middle)
scatter plot of premature P+TG measure and mature performance. (right) Correlation between per-
formance, single layer RDMs, and combined P+TG measures with mature performance at varying
number of premature training epochs.
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Figure 3: Effect of different surrogate measures on architecture search performance. (left) shows
the average C100 performance of the best network architectures found during different stages of
three runs of RL search in each case (see text). (right) same as the plot on left but displayed with
respect to the total computational cost invested (number of training images × number of epochs ×
number of samples).

shows that the teacher guided search (P+TG) leads to finding network architectures that were on par
with performance guided search (P) throughout the search runs while being 10× more efficient.

4.3 TEACHER GUIDED SEARCH IN THE SPACE OF CONVOLUTIONAL CELLS

In order to find architectures that are transferable across datasets we applied TPE search algorithm
with P+TG score to the space of convolutional cells similar to the one used in (Liu et al., 2017). After
a cell structure is sampled, the full architecture is constructed by stacking the same cell multiple
times with a predefined structure (see supplementary material). While both RL and TPE search
methods led to similar outcomes in our experiments in section 4.1, average TPE results were slightly
higher for both experiments. Hence, we chose to conduct the search experiment in this section using
TPE algorithm with the same setup as in section 4.1 using CIFAR100 with 1000 samples.

For each sample architecture, we computed RDMs for each cell’s output. Considering that we had
N = 2 cell repetitions in each block during search, we ended up with 8 RDMs in each sampled
cell that were compared with 3 precomputed RDMs from the teacher network (24 comparisons over
validation set of 5000 images). Due to the imperfect correlation between the premature and mature
performances, doing a small post-search reranking step increases the chance of finding slightly better
cell structures. We chose the top 10 discovered cells and trained them for 300 epochs on the training
set and evaluated on the validation set (5k samples). Cell structure with the highest validation

Table 1: Comparison of premature performance and representational similarity measure in architec-
ture search using RL and TPE algorithms. P: premature performance as validation score; P+TG:
combined premature performance and RDMs as the validation score. Values are µ ± σ across 3
search runs.

Search Algorithm RL TPE
Search Space 10 layer 20 layer 10 layer 20 layer
# Epoch/Sample 2 20 2 20 2 2

Random - Best C100 Error (%) 45.4± 2.5 41.3± 1.5 41.2± 1.8 38.3± 4.8 45.4± 2.5 41.2± 1.8

P - Best C100 Error (%) 41.0± 0.5 40.5± 0.4 37.5± 0.2 32.7± 0.9 42.5± 5.7 37.0± 3.0
P+TG - Best C100 Error (%) 38.3± 1.1 39.2± 0.9 33.2± 1.4 32.2± 0.8 37.6± 1.2 33.0± 2.4
Performance Improvement (%) 2.7 1.3 4.3 0.5 4.9 4
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performance was then fully trained on the complete training set (50k samples) for 600 epochs using
the procedure described in (Zoph et al., 2017) and evaluated on the test set1.

Table 2: Performance of discovered cells on CIFAR10 and CIFAR100 datasets. *indicates error rates
from locally training the network using the same training pipeline on 2-GPUs. †we did not further
explore these hyperparameters because of compute limitations and adopted the values reported in
(Zoph et al., 2017).

Network B N F # Params C10 Error C100 Error M1 E1 M2 E2 Cost
AmoebaNet-A 5 6 36 3.2M 3.34 - 20000 1.13M 100 27M 25.2B

NASNet-A 5 6 32 3.3M 3.41 (3.72∗) 17.88∗ 20000 0.9M 250 13.5M 21.4-29.3B
PNASNet-5 5 3 48 3.2M 3.41 (4.06∗) 19.26∗ 1160 0.9M 0 0 1.0B

ENAS 5 6 - 4.6M 3.54 - 310 50k 0 0 15.5M
SAGENet 5 6† 32† 6.0M 3.66 17.42 1000 90K 10 13.5M 225MSAGENet-sep 2.7M 3.88 17.51

We compared our best found cell structure with those found using NAS (Zoph et al., 2017) and
PNAS (Liu et al., 2017) methods on CIFAR-10, CIFAR-100, and Imagenet datasets (Tables 2 and
3). To rule out any differences in performance that might have originated from slight differences in
training procedure, we used the same training pipeline to train our proposed network (SAGENet)
as well as the as well as the two baselines (NASNet and PNASNet). We found that on all datasets,
SAGENet performed on par with the other two baseline networks we had considered.

With regard to compactness, SAGENet had more parameters and FLOPS compared to NASNet and
PNASNet due mostly to symmetric 7 × 1 and 1 × 7 convolutions. But we had not considered any
costs associated with the number of parameters or the number of FLOPS when conducting the search
experiments. For this reason, we also considered another version of SAGENet in which we replaced
the symmetric convolutions with “7×7 separable” convolutions (SAGENet-sep). SAGENet-sep had
half the number of parameters and FLOPS compared to SAGENet and slightly higher error rates.

To compare the cost and efficiency of different search procedures we adopt the same measures as
in (Liu et al., 2017). Total cost of search is computed as the total number of examples that were
processed with SGD throughout the search procedure. This includes M1 sampled cell structures
that were trained withE1 examples during the search andM2 top cells trained onE2 examples post-
search to find the top performing cell structure. The total cost is then calculated as M1E1 +M2E2.
While SAGENet performed on par to both NASNet and PNASNet top networks on all C10, C100,
and Imagenet, the cost of search was about 100 and 4.5 times less than NASNet and PNASNet
respectively (Table 2). A unique features of this cell is the large number of skip connections (both
within blocks and across cells) (see Figure 5 in supp. material). Interestingly, at mature state our top
architecture performed better than the teacher network (ResNet) on C10 and C100 datasets (96.34%
and 82.58% on C10 and C100 for TG-SAGE as compared to 94.75% and 75.89% for our teacher-
ResNet).

Table 3: Performance of discovered cells on Imagenet dataset in mobile settings.*indicates error
rates from training all networks using the same training pipeline on 2-GPUs.

Network B N F Top-1 Err∗ Top-5 Err∗ # Params (M) FLOPS (B)
NASNet-A 5 4 44 31.07 11.41 5.3 1.16
PNASNet-5 5 3 56 29.92 10.63 5.4 1.30
SAGENet 5 4 48 31.81 11.79 9.7 2.15

SAGENet-sep 31.9 11.99 4.9 1.03
SAGENet-neuro 5 4 40 31.77 11.72 6.1 1.59

4.4 USING CORTICAL MEASUREMENTS AS THE TEACHER NETWORK

As discussed earlier, the teacher network could be any network that is high-performing and its
internal activations are partially observable. One such network is the primate brain that is both high

1our best network was ranked 3rd and with a score difference of 0.004 with the top network.
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performing in object categorization task and is partially observable through electrophysiological
recording tools. As a proof of concept, we conducted an additional experiment in which we used
neural measurements from macaque brain to guide the architecture search. In this setting, we used
neural measurements from 296 neural sites from two macaque monkeys in response to 5760 images.
Neural responses were collected from three anatomical regions along the ventral visual pathway (V4,
posterior-inferior temporal (p-IT), and anterior inferior temporal (a-IT) cortex) in each monkey – a
series of cortical regions in the primate brain that facilitate object recognition. The presented images
contained 3D rendered objects placed on uncorrelated natural backgrounds and were designed to
include large variations in position, size, and pose of the objects (see supplementary material). To
allow the candidate networks to be more comparable to the brain measurements, we conducted the
experiment on Imagenet dataset and trained each candidate network for one epoch using images of
size 64 × 64. We used the same setup as in section 4.3 but this time with three RDMs generated
from our neural measurements in each area (i.e. V4, p-IT, a-IT). We held out 50,000 of the images
from the original Imagenet training set as the validation set that was used to evaluate the premature
performance for the candidate networks. To further speed up the search, we removed the first 2
reduction cells in the architecture during the search.

After running the architecture search for 1000 samples, we picked the top 10 networks and fully
trained them on imagenet for 40 epochs and picked the network with highest validation accuracy. We
then trained this network on Cifar10, Cifar100, and Imagenet datasets and evaluated its performance
on the test set. The best discovered network found this way (SAGENet-neuro) reached comparable
performance levels to those we found in section 4.3. The best discovered network reached a valida-
tion error of 18.28%, 3.87%, and 31.77% on Cifar10, Cifar100, and Imagenet datasets respectively.

Although the number of neural sites that were included in this experiment was on the order of only
few hundred, the representational description that these measurements provided were still infor-
mative enough to produce a meaningful guidance for the architecture search. However, we also
acknowledge that there are many unexplored questions left regarding the effectiveness of neural
measurements as constraints to inform and guide the search for higher performing artificial neural
networks.

5 DISCUSSION AND FUTURE DIRECTIONS

We here demonstrate that, when the internal neural representations of a powerful teacher neural net-
work are partially observable (such as the brain’s neural network), that knowledge can substantially
accelerate the discovery of high performing machine networks. We propose a new method to ac-
complish that acceleration (TG-SAGE) and demonstrate its ability using a previous state-of-the-art
network as the teacher. Essentially, TG-SAGE jointly maximizes a model’s premature performance
and its representational similarity to those of a partially observable teacher network. With the archi-
tecture space and search settings tested here, we report a computational efficiency gain of ∼ 10×
in discovering CNNs for visual categorization. This gain in efficiency of the search (with main-
tained performance) was achieved without any additional constraints on the search space as in more
efficient search methods like ENAS (Pham et al., 2018) or DARTS (Liu et al., 2018). We empir-
ically demonstrated this by performing searches in several CNN architectural spaces. In addition,
as a proof of concept, we here showed how limited measurements from the brain (neural popula-
tion patterns of responses to many images) could be formulated as teacher constraints to accelerate
the search for higher performing networks. However, it remains to be seen if larger scale neural
measurements – which are obtainable in the near future – could achieve even better acceleration.

An important aspect of teacher guided architecture search relates to the metrics used for evaluating
similarity of representational spaces. Here we used representational dissimilarity matrix to achieve
this goal. However, we acknowledge that RDM might not be the most accurate or fastest metric
for this purpose. Exploring other representational analysis metrics like Singular Vector Canonical
Correlation Analysis (SVCCA) are an important direction we would like to pursue in the future.

Another interesting future direction would be to conduct the architecture search by iteratively sub-
stituting the teacher network with the best network discovered so far. This approach would make the
procedure independent of the choice of the teacher network and make it possible to perform efficient
search when good teacher architectures have not been deployed yet.
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SUPPLEMENTARY MATERIAL

HYPERPARAMETER SEARCH WITH REINFORCEMENT LEARNING (RL)

We follow the method proposed by (Zoph & Le, 2017) to learn the probability of hyperparam-
eter choices (X = x1, x2, ..., xn) that maximize the unknown but observable reward function
f : X → R. A 2-layer long short-term memory (LSTM) is used as the controller that chooses
each hyperparameter in the network at every unrolling step. The LSTM network, models the condi-
tional probability distribution of optimal hyperparameter choices as a function of all previous choices
P (xj |x1, x2, ..., xj−1, θ) in which θ is the set of all tunable parameters in the LSTM network. Since
a differentiable loss function is not known for this problem, usual maximum likelihood methods
could not be used in this setting. Instead parameters are optimized through reinforcement learning
based approaches (e.g. REINFORCE (Williams, 1992)) by increasing the likelihood of each hyper-
parameter choice according to the reward (score) computed for each sampled network (or a batch
of sampled networks). Relative to (Zoph & Le, 2017), we made two modifications. First, since the
order of dependencies between different hyperparameters in each layer/block is arbitrary, we ran the
LSTM controller for one step per layer (instead of once per hyper-parameter). This results in shorter
choice sequences generated by the LSTM controller and therefore shorter sequence dependencies.
Second, we chose a Boltzman policy method for action selection to allow the search to continue
the exploration throughout the search experiment. Hyperparameter values were selected according
to the probability distribution over all action choices. Compared to ε-greedy method, following the
softmax policy reduces the likelihood of sub-optimal actions throughout the training.

For each hyperparameter, choice probability is computed using a linear transformation (e.g.
WKh

,WNfilters
) from LSTM output at the last layer (h2l ) followed by a softmax. To reduce the

number of tunable parameters and more generalization across layers, we used shared parameters
between layers.

P̂l,x = softmax(WT
t h

2
l ) (2)

l ∈ {1, 2, ..., Nl}
t ∈ {Kh,Kw, Nfilters, stride, normalization, activation}

Probability distribution over possible number of layers is formulated as a function of the first output
value of the LSTM (P̂Nl

= softmax(WT
Nl
h20)). In addition to layers’ hyperparameters we also search

over layers’ connections. Similar to the approach taken in (Zoph & Le, 2017) we formulated the
probability of a connection between layer i and j as a function of the state of the LSTM at each of
these layers (h2i , h

2
j ).

P̂ c
i,j = sigmoid(WT

srch
2
i +WT

dsth
2
j ) (3)

where P̂ c
i,j represents the probability of a connection between layer i output to j’s input. Wsrc

and Wdst are tunable parameters that link the hidden state of LSTM to probability of a connection
existing between the two layers.

HYPERPARAMETER SEARCH WITH TREE OF PARZEN ESTIMATORS (TPE)

Sequential Model-Based Optimization (SMBO) (Hutter et al., 2011) approaches are numerical meth-
ods used to optimize a given function f : X → R. They are usually applied in settings where eval-
uating the function at each point is costly and it’s important to minimize the number of evaluations
to reach the optimal value. Various SMBO approaches were previously proposed (Bergstra et al.,
2012b; Bardenet & Kegl, 2010) and some have been used for hyperparameter optimization in neural
networks (Bergstra et al., 2011; 2012a; Liu et al., 2017). Bayesian SMBO approaches model the
posterior or conditional probability distribution of values (scores) and use a criteria to iteratively
suggest new samples while the probability distribution is updated to incorporate the history of pre-
vious sample tuples (x, y) where x = (x(1), ..., x(n)) is a sample hyperparameter vector and y is
the received score (or loss). Here we adopted Tree of Parzen Estimators (TPE) because of its intu-
itiveness and successful application in various domains with high dimensional spaces. Unlike most
other Bayesian SMBO methods that directly model the posterior distribution of values P (y|x), TPE
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models the conditional distribution P (x|y) with two non-parametric densities.

P (x|y) =
{
l(x) ∀ y ≤ y∗
g(x) ∀ y > y∗

(4)

We consider y to be the loss value which we are trying to minimize (e.g. error rate of a network on a
given task). For simplicity, value of y∗ could be taken as some quantile of values observed so far (γ).
At every iteration, TPE fits a kernel density estimator with Gaussian kernels to subset of observed
samples with lowest loss value (l(x)) and another to those with highest loss (g(x)). Ideally we want
to find x that minimizes y. Expected Improvement (EI) is the expected reduction in f(x) compared
to threshold y∗ under current model of f . Maximizing EI, encourages the model to further explore
parts of the space which lead to lower loss values and can be used to suggest new hyperparameter
samples.

EI(x) =

∫ y∗

−∞
(y∗ − y)P (y|x)dy =

∫ y∗

−∞ (y∗ − y)P (x|y)P (y)dy
P (x)

(5)

Given that P (y < y∗) = γ and P (x|y) = l(x) for y < y∗, it has been shown (Bergstra et al., 2011)

that EI would be proportional to
(
γ+ g(x)

l(x) (1−γ)
)−1

. Therefore the EI criterion can be maximized
by taking samples with minimum probability under g(x) and maximum probability under l(x). For
simplicity, at every iteration nd samples are drawn from l(x) and the hyperparameter choice with
lowest g(x)/l(x) ratio is suggested as the next sample.

EFFECT OF WEIGHTING TEACHER GUIDANCE ON PREDICTING MATURE PERFORMANCE

For each candidate model, we computed an overall “Teacher Guidance (TG)” score by averaging the
best RDM scores for all teacher layers. The combined “P+TG” score was formulated as weighted
sum of premature performance and TG score in the form of P + αTG. We varied the α parameter
and measured the change in correlation between the P+TG score and the mature performance (Figure
4). We observed that higher α led to larger gains in predicting the mature performance when models
were trained only for few epochs (≤2.5 epochs). However, with more training, larger α values
reduced the predictability.

Figure 4: Effect of TG weight α on predicting the mature performance.

ALTERNATIVE TEACHER NETWORK - NASNET

We examined the effect of choosing an alternative teacher network, namely NASNet and performed
a set of analyses similar to those done on ResNet. We observed that similar to ResNet, early layers
are better predictors of the mature performance during early stages of the training. With additional
training, the premature performance becomes a better single-predictor of the mature performance
but during most of the training the combined P+TG score best predicts the mature performance
(Figure 5-left). We also varied the “TG” weight factor and found that compared to ResNet, higher
α values led to increased gains in predicting the mature performance. α = 5 was used to compute
the P+TG scores shown in Figure 5.
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Overall, we found that NASNet representations were significantly better predictors of mature per-
formance for all evaluated time points during training when compared to ResNet (Figure 5-right).

Figure 5: (left) Comparison of single layer and combined RDMs with premature performance as
predictors of mature performance on NASNet. P+TG was computed using α = 5. (middle) Gain in
predicting the mature performance with varying TG weight. (right) Comparison of combined RDM
scores using two alternative teacher models at various stages of training. α values of 1 and 5 were
used for ResNet and NASNet respectively.

DATASETS AND PREPROCESSING

CIFAR: We followed the standard image preprocessing for CIFAR labeled dataset, a 100-way object
classification task (He et al., 2015). Images were zero-padded to size 40 × 40. A random crop of
size 32×32 was selected, randomly flipped along the horizontal axis, and standardized over all pixel
values in each image to have zero mean and standard deviation of 1. We split the training set into
training set (45,000 images) and a validation set (5,000 images) by random selection.

Imagenet: We used standard VGG preprocessing (Simonyan & Zisserman, 2014) on images from
Imagenet training set. During training, images were resized to have their smaller side match a
random number between 256 and 512 while preserving the aspect ratio. A random crop of size 224
was then cut out from the image and randomly flipped along the central vertical axis. The central
crop of size 224 was used for evaluation.

DETAILS OF SEARCH ALGORITHMS

RL Search Algorithm: We used a two-layer LSTM with 32 hidden units in each layer as the
controller. Parameters were trained using Adam optimizer (Kingma & Ba, 2014) with a batch size
of 5. For all searches, the learning rate was 0.001, and the Adam first momentum coefficient was
zero β1 = 0. Gradients were clipped according to global gradient norm with a clipping value of 1
(Pascanu et al., 2012).

TPE Search Algorithm: We used the python implementation of TPE hyperparameter search from
HyperOpt package (Bergstra et al., 2013). We employed the linear sample forgetting as suggested in
(Bergstra et al., 2012a) and set the threshold y∗ =

√
N/4 for the set of N observed samples. Each

search run started with 20 random samples and continued with TPE suggestion algorithm. At every
iteration, nd = 24 draws were taken from l(x) and choice of hyperparameter argminig(xi)/l(xi)
was used as the next sample (see section 3.3 in the main text).

EXPERIMENTAL DETAILS FOR SEARCH IN SPACE OF CONVOLUTIONAL NETWORKS

Search Space: Similar to (Zoph & Le, 2017) we defined the hyperparameter space as the
following independent choices for each layer: Nfilters ∈ [32, 64, 128], (Kwidth,Kheight) ∈
[1, 3, 5, 7],Kstride ∈ [1, 2], activation ∈ [Identity,ReLU ], normalization ∈ [none,BN ]. In ad-
dition we searched over number of layers (Nlayers ∈ [1, NL]) and possible connections between the
layers. In this space of CNNs, the input to every layer could have originated from the input image
or the output of any of the previous layers. We considered two particular spaces in our experiments
that differed in the value of NL (=10 or 20).
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CIFAR Training: Selected networks were trained on CIFAR training set (45k samples) from ran-
dom initial weights using SGD with Nesterov momentum of 0.9 for 300 epochs on the training set.
The initial learning rate was 0.1 and was divided by 10 after every 100 epochs. Mature performance
was then evaluated on the validation set (above).

EXPERIMENTAL DETAILS FOR SEARCH IN SPACE OF CONVOLUTIONAL CELLS

Search Space: We used the same search space and network generation procedure as in (Zoph et al.,
2017; Liu et al., 2017) with the exception that we added two extra hyperparameters which could
force each of the cell inputs (from previous cell or the one prior to that) to be directly concatenated
in the output of the cell even if they were already connected to some of the blocks in the cell. This
extra hyperparameter choice was motivated by the open-source implementation of NASNet at the
time of conducting the search experiments that contained similar connections2.

Each cell receives two inputs which are the outputs of the previous two cells. In early layers, the
missing inputs are substituted by the input image. Each cell consists of B blocks with a prespecified
structure. Each block receives two inputs, an operation is applied on each input independently and
the results are added together to form the output of the block. The search algorithm picks each of the
operations and inputs for every block in the cell. Operations are selected from a pool of 8 possible
choices: {identity, 3 × 3 average pooling, 3 × 3 max pooling, 3 × 3 dilated convolution, 1 × 7
followed by 7 × 1 convolution, 3 × 3 depthwise-separable convolution, 5 × 5 depthwise-separable
convolution, 7× 7 depthwise-separable convolution}.
Imagenet Training: For our Imagenet training experiments, we used a batch size of 128 images
of size 224 × 224 pixels. Each batch was divided between two GPUs and the gradients computed
on each half were averaged before updating the weights. We used an initial learning rate of 0.1
with a decay of 0.1 after every 15 epochs. Each network was trained for 40 epochs on the Imagenet
training set and validated on the central crop for all images from Imagenet validation. No dropout
or drop-path was used when training the networks. RMSProp optimizer with a decay rate of 0.9 and
momentum rate of 0.9 was used during training and gradients were normalized by their global norm
when the norm value exceeded a threshold of 10. L2-norm regularizer was applied on all trainable
weights with a weight decay rate of 4× 10−5.

CIFAR Training: The networks were trained on CIFAR10/CIFAR100 training set including all
50,000 samples for 600 epochs with an initial learning rate of 0.025 and a single period cosine
decay (Zoph et al., 2017). We used SGD with Nesterov momentum rate of 0.9. We used L2 weight
decay on all trainable weights with a rate of 5 × 10−4. Gradient clipping similar to that used for
Imagenet and a threshold of 5 was used.

Best Discovered Convolutional Cell: Figure 6 shows the structure of the best discovered cell. Only
four (out of ten) operations contain trainable weights and there are several bypass connections in the
cell.

NEURAL MEASUREMENTS FROM MACAQUE MONKEYS

We used a dataset of neural spiking activity for a population of 296 neural sites in two awake behav-
ing macaque monkeys in response to 5760 images (Yamins et al., 2014). Neural data were collected
using parallel microelectrode arrays that were implanted chronically on the cortical surface in area
V4 and IT. Fixating animals were presented with images for 100ms, and the neural response patterns
were obtained by averaging the spike counts in the time window of 70-170ms post stimulus onset.
To enhance the signal-to-noise ratio, each image was presented to each monkey between 21-50 times
and the average response pattern across all presentation were considered for each image. The 296
recorded sites were partitioned into three cortical regions (V4, posterior-IT, and anterior-IT) and a
RDM was calculated for each region.

The image set consisted of a total of 5760 images. Each image contained a 3D rendered object
placed on an uncorrelated natural background. The rendered objects were selected from a battery

2available at https://github.com/tensorflow/models/blob/
376dc8dd0999e6333514bcb8a6beef2b5b1bb8da/research/slim/nets/nasnet/
nasnet_utils.py
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Figure 6: SAGENet - Structure of the best cell discovered during the search with TG-SAGE.

of 64 objects from 8 categories (animals, boats, cars, chairs, faces, fruits, planes, and tables) with
8 objects per category. The images were generated to include large variations in position, size, and
pose of the objects and were shown within the central 8◦ of monkeys’ visual field. Some example
images are illustrated in Figure-7.

Planes Boats Cars Chairs

FruitsAnimalsTablesFaces

Figure 7: Example images from each of the eight object categories that were used to record neural
responses.

IMPLEMENTATION DETAILS

Because of heavy computational load associated with training neural networks and in particular
in large-scale model training, we needed a scalable and efficient framework to facilitate the search
procedure. We implemented our proposed framework in four main modules: (i) explorer, (ii) trainer,
(iii) evaluator, and (iv) tracker. The explorer module contained the search algorithm. The trainer
module optimized the parameters of the proposed architecture on an object recognition task using
a large-scale image dataset. Once the training job was complete the evaluator module extracted the
network activations in response to a set of predetermined image-set and assessed the similarity of
representations to the bank of neural and behavioral benchmarks (derived from human and non-
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human primates). The tracker module consisted of a database which tracked the details and status
of every proposed architectures and acted as a bridge between all three modules. During the search
experiments, the explorer module proposes new candidate architectures and records the details in the
database (tracker module). It also continuously monitors the database for newly evaluated networks.
Upon receiving adequate number of samples (i.e. when a new batch is complete), it updates its
parameters. Active workers periodically monitor the database for newly added untrained models,
and train the architecture on the prespecified dataset. After the training phase is completed, the
evaluator module extracts the features from all layers in response to the validation set and computes
the premature-performance and RDM consistencies and writes back the results in the database. The
trainer and evaluator modules are then freed up to process new candidate networks. This framework
enabled us to run many worker programs on several clusters speeding up the search procedure. An
overview of the implemented framework is illustrated in Figure 8. Experiments reported in this
paper were run on three server clusters with up to 40 GPUs in total.

Figure 8: Implementation of a distributed framework for conducting architecture search.
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