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ABSTRACT

Estimating covariances between financial assets plays an important role in risk
management. In practice, when the sample size is small compared to the number
of variables, the empirical estimate is known to be very unstable. Here, we pro-
pose a novel covariance estimator based on the Gaussian Process Latent Variable
Model (GP-LVM). Our estimator can be considered as a non-linear extension of
standard factor models with readily interpretable parameters reminiscent of mar-
ket betas. Furthermore, our Bayesian treatment naturally shrinks the sample co-
variance matrix towards a more structured matrix given by the prior and thereby
systematically reduces estimation errors. Finally, we discuss some financial ap-
plications of the GP-LVM model.

1 INTRODUCTION

Many financial problems require the estimation of covariance matrices between given assets. This
may be useful to optimize one’s portfolio, i.e.: maximize the portfolio returns wTr and/or min-
imize the volatility

√
wTKw. Indeed, Markowitz received a Noble Price in economics for his

treatment of modern portfolio theory (Markowitz, 1952). In practice, estimating historical returns
and high-dimensional covariance matrices is challenging and often times equally weighted portfolio
outperforms the portfolio constructed from sample estimates (Jobson & Korkie, 1981). The esti-
mation of covariance matrices is especially hard, when the number of assets is large compared to
the number of observations. Sample estimations in those cases are very unstable or can even be-
come singular. To cope with this problem, a wide range of estimators, e.g. factor models such as
the single-index model (Sharpe, 1991) or shrinkage estimators (Ledoit & Wolf, 2004), have been
developed and employed in portfolio optimization.

With todays machine learning techniques we can even further improve those estimates. Machine
learning has already arrived in finance. Nevmyvaka et al. (2006) trained an agent via reinforcement
learning to optimally execute trades. Gately (1995) forecast asset prices with neural networks and
Chapados & Bengio (2008) with Gaussian Processes. Recently, Heaton et al. (2016) made an ansatz
to optimally allocate portfolios using deep autoencoders. Wu et al. (2014) used Gaussian Processes
to build volatility models and Wilson & Ghahramani (2011) to estimate time varying covariance
matrices. Bayesian machine learning methods are used more and more in this domain. The fact, that
in Bayesian framework parameters are not treated as true values, but as random variables, accounts
for estimation uncertainties and can even alleviate the unwanted impacts of outliers. Furthermore,
one can easily incorporate additional information and/or personal views by selecting suitable priors.

In this paper, we propose a Bayesian covariance estimator based on the Gaussian Process Latent
Variable Model (GP-LVM) (Lawrence, 2005), which can be considered as a non-linear extension
of standard factor models with readily interpretable parameters reminiscent of market betas. Our
Bayesian treatment naturally shrinks the sample covariance matrix (which maximizes the likelihood
function) towards a more structured matrix given by the prior and thereby systematically reduces
estimation errors. We evaluated our model on the stocks of S&P500 and found significant improve-
ments in terms of model fit compared to classical linear models. Furthermore we suggest some
financial applications, where Gaussian Processes can be used as well. That includes portfolio al-
location, price prediction for less frequently traded stocks and non-linear clustering of stocks into
their sub-sectors.

In section 2 we begin with an introduction to the Bayesian non-parametric Gaussian Processes and
discuss the associated requirements for learning. Section 3 introduces the financial background
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needed for portfolio optimization and how to relate it to Gaussian Processes. In section 4 we conduct
experiments on covariance matrix estimations and discuss the results. We conclude in section 5.

2 BACKGROUND

In this paper, we utilize a Bayesian non-parametric machine learning approach based on Gaussian
Processes (GPs). Combining those with latent variable models leads to Gaussian Process Latent
Variable Models (GP-LVMs), that we use to estimate the covariance between different assets. These
approaches have been described in detail in (Lawrence, 2005; Rasmussen, 2006). We provide a brief
review here. Subsequently, we show, how to relate those machine learning approaches to the known
models in finance, e.g. the single-index model (Sharpe, 1991).

2.1 GAUSSIAN PROCESSES

A Gaussian Process (GP) is a generalization of the Gaussian distribution. Using a GP, we can define
a distribution over functions f(x), where x ∈ RQ and f ∈ R. Like a Gaussian distribution, the
GP is specified by a mean and a covariance. In the GP case, however, the mean is a function of
the input variable m(x) and the covariance is a function of two variables k(x,x′), which contains
information about how the GP evaluated at x and x′ covary

m(x) = E[f(x)], (1)

k(x,x′) = cov(f(x), f(x′)). (2)

We write f ∼ GP(m(·), k(·, ·)). Any finite collection of function values, at x1, . . . ,xN , is jointly
Gaussian distributed

p(f(x1), f(x2), ..., f(xN )) = N (µ,K), (3)

where µ = (m(x1), ...,m(xN ))T is the mean vector and K ∈ RN×N is the Gram matrix with
entries Kij = k(xi,xj). We refer to the covariance function as kernel function. The properties of
the function f (i.e. smoothness, periodicity) are determined by the choice of this kernel function.
For example, sampled functions from a GP with an exponentiated quadratic covariance function
kSE(x,x′) = σ2 exp(−0.5||x − x′||22/l2) smoothly vary with lengthscale l and are infinitely often
differentiable.

Given a dataset D of N input points X = (x1, ...,xN )T and N corresponding targets y =
(y1, ..., yN )T , the predictive distribution for a zero mean GP at N∗ new locations X∗ reads (Ras-
mussen, 2006)

y∗|X∗,y,X ∼ N (f∗,K∗), (4)

where

f∗ = KX∗XK
−1
XXy, (5)

K∗ = KX∗X∗ −KX∗XK
−1
XXKXX∗ . (6)

KX∗X ∈ RN∗×N is the covariance matrix between the GP evaluated atX∗ andX ,KXX ∈ RN×N

is the covariance matrix of the GP evaluated atX . As we can see in equations (5) and (6), the kernel
function plays a very important role in the GP framework and will be important for our financial
model as well.

2.2 GAUSSIAN PROCESS LATENT VARIABLE MODEL

Often times we are just given a data matrix Y ∈ RN×D and the goal is to find a lower dimensional
representation X ∈ RN×Q, without losing too much information. Principal component analysis
(PCA) is one of the most used techniques for reducing the dimensions of the data, which has also
been motivated as the maximum likelihood solution to a particular form of Gaussian Latent Variable
Model (Tipping & Bishop, 1999). PCA embeds Y via a linear mapping into the latent space X .
Lawrence (2005) introduced the Gaussian Process Latent Variable Model (GP-LVM) as a non-linear
extension of probabilistic PCA. The generative procedure takes the form

Yn,: = f(Xn,:) + εn, (7)
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where f = (f1, ..., fD)T is a group of D independent samples from a GP, i.e. fd ∼ GP(0, k(·, ·)).
By this, we assume the rows of Y to be jointly Gaussian distributed and the columns to be inde-
pendent, i.e. each sample Y:,d ∼ N (Y:,d|0,K) where K = k(X,X) + σ2I and σ2 denotes the
variance of the random noise ε. The marginal likelihood of Y becomes (Lawrence, 2005)

p(Y |X) =

D∏
d=1

N (Y:,d|0,K) =
1

(2π)ND/2|K|D/2
exp

(
−1

2
tr(K−1Y Y T )

)
. (8)

The dependency on the latent positions X and the kernel hyperparameters is given through the
kernel matrix K. As suggested by Lawrence (2005), we can optimize the log marginal likelihood
log p(Y |X) with respect to the latent positions and the hyperparameters.

2.3 VARIATIONAL INFERENCE

Optimization can easily lead to overfitting. Therefore, a fully Bayesian treatment of the model would
be preferable but is intractable. Titsias & D. Lawrence (2010) introduced a variational inference
framework, which not only handles the problem of overfitting but also allows to automatically select
the dimensionality of the latent space. Instead of optimizing equation (8), we want to calculate
the posterior using Bayes rule p(X|Y ) = p(Y |X)p(X)/p(Y ), which is intractable. The idea
behind variational Bayes is to approximate the true posterior p(X|Y ) by another distribution q(X),
selected from a tractable family. The goal is to select the one distribution q(X), that is closest to
the true posterior p(X|Y ) in some sense. A natural choice to quantify the closeness is given by the
Kullback-Leibler divergence (Cover & Thomas, 1991)

KL[q(X)||p(X|Y )] =

∫
q(X) log

q(X)

p(X|Y )
dX. (9)

By defining p̃(X|Y ) = p(Y |X)p(X) as the unnormalized posterior, equation (9) becomes

KL[q(X)||p(X|Y )] =

∫
q(X) log

q(X)

p̃(X|Y )
dX+log p(Y ) = −Eq(X)

[
log

p̃(X|Y )

q(X)

]
︸ ︷︷ ︸

ELBO

+ log p(Y )

(10)
with the first term on the right hand side being known as the evidence lower bound (ELBO). Equation
(10) is the objective function we want to minimize with respect to q(X) to get a good approximation
to the true posterior. Note that on the left hand side only the ELBO is q dependent. So, in order to
minimize (10), we can just as well maximize the ELBO. Because the Kullback-Leibler divergence
is non-negative, the ELBO is a lower bound on the evidence log p(Y )1. Therefore, this procedure
not only gives the best approximation to the posterior, but it also bounds the evidence, which serves
as a measure of the goodness of our fit. The number of latent dimensions Q can be chosen to be the
one, which maximizes the ELBO.

So, GP-LVM is an algorithm, which reduces the dimensions of our data-matrix Y ∈ RN×D from
D to Q in a non-linear way and at the same time estimates the covariance matrix between the N
points. The estimated covariance matrix can then be used for further analysis.

3 FINANCE

Now we have a procedure to estimate the covariance matrix between different datapoints. This
section discusses how we can relate this to financial models.

3.1 CAPM

The Capital Asset Pricing Model (CAPM) describes the relationship between the expected returns
of an asset rn ∈ RD for D days and its risk βn

E[rn] = rf + βnE[rm − rf ], (11)

1The evidence log p(Y ) is also referred to as log marginal likelihood in the literature. The term marginal
likelihood is already used for p(Y |X) in this paper. Therefore, we will refer to log p(Y ) as the evidence.
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where rf ∈ RD is the risk free return on D different days and rm is the market return on D different
days. The main idea behind CAPM is, that an investor needs to be compensated for the risk of his
holdings. For a risk free asset with βn = 0, the expected return E[rn] is just the risk free rate rf . If
an asset is risky with a risk βn 6= 0, the expected return E[rn] is increased by βnE[r̃m], where r̃m is
the excess return of the market r̃m = rm − rf .

We can write down equation (11) in terms of the excess return r̃ = r − rf and get

E[r̃n] = βnE[r̃m], (12)

where r̃n is the excess return of a given asset and r̃m is the excess return of the market (also called a
risk factor). Arbitrage pricing theory (Roll & Ross, 1995) generalizes the above model by allowing
multiple risk factors F beside the market r̃m. In particular, it assumes that asset returns follow a
factor structure

rn = αn + Fβn + εn, (13)
with εn denoting some independent zero mean noise with variance σ2

n. Here, F ∈ RD×Q is the
matrix of Q factor returns on D days and βn ∈ RQ is the loading of stock n to the Q factors.
Arbitrage pricing theory (Ross, 1976) then shows that the expected excess returns adhere to

E[r̃n] = E[F̃ ]βn, (14)

i.e. the CAPM is derived as special case when assuming a single risk factor (single-index model).

To match the form of the GP-LVM (see equation (7)), we rewrite equation (13) as

rn,: = f(Bn,:) + εn, (15)

where r ∈ RN×D is the return matrix2. Note that assuming latent factors distributed asF ∼ N (0, 1)
and marginalizing over them, equation (13) is a special case of equation (15) with f drawn from a
GP mapping βn to rn with a linear kernel. Interestingly, this provides an exact correspondence with
factor models by considering the matrix of couplings B = (β1, ...,βN )T as the latent space posi-
tions3. In this perspective the factor model can be seen as a linear dimensionality reduction, where
we reduce theN×D matrix r to a low rank matrixB of sizeN×Q. By chosing a non-linear kernel
k(·, ·) the GP-LVM formulation readily allows for non-linear dimensionality reductions. Since, it is
generally known, that different assets have different volatilities, we further generalize the model. In
particular, we assume the noise ε to be a zero mean Gaussian, but allow for different variances σ2

n
for different stocks. For this reason, we also have to parameterize the kernel (covariance) matrix in a
different way than usual. Section 4.1 explains how to deal with that. The model is then approximated
using variational inference as described in section 2.3. After inferring B and the hyperparameters
of the kernel, we can calculate the covariance matrixK and use it for further analysis.

3.2 MODERN PORTFOLIO THEORY

Markowitz (1952) provided the foundation for modern portfolio theory, for which he received a
Nobel Price in economics. The method analyses how good a given portfolio is, based on the mean
and the variance of the returns of the assets contained in the portfolio. This can also be formulated as
an optimization problem for selecting an optimal portfolio, given the covariance between the assets
and the risk tolerance q of the investor.

Given the covariance matrixK ∈ RN×N , we can calculate the optimal portfolio weights w by

wopt = min
w

(wTKw − qr̄Tw), (16)

where r̄ is the mean return vector. Risk friendly investors have a higher q than risk averse investors.
The model is constrained by

∑
w = 1. Since r̄ is very hard to estimate in general and we are

primarily interested in the estimation of the covariance matrixK, we set q to zero and get

wopt = min
w

(wTKw). (17)

This portfolio is called the minimal risk portfolio, i.e. the solution to equation (17) provides the
weights for the portfolio, which minimizes the overall risk, assuming the estimated K is the true
covariance matrix.

2To stay consistent with the financial literature, we denote the return matrix with lower case r.
3Because of the context, from now on we will use β for the latent space instead of x.
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4 EXPERIMENTS

In this section, we discuss the performance of the GP-LVM on financial data. After describing the
data collection and modeling procedure, we evaluate the model on the daily return series of the
S&P500 stocks. Subsequently, we discuss further financial applications. In particular, we show how
to build a minimal risk portfolio (this can easily be extended to maximizing returns as well), how to
fill-in prices for assets which are not traded frequently and how to visualize sector relations between
different stocks (latent space embedding).

4.1 DATA COLLECTION AND MODELING

For a given time period, we take all the stocks from the S&P500, whose daily close prices were
available for the whole period4. The data were downloaded from Yahoo Finance. After having
the close prices in a matrix p ∈ RN×(D+1), we calculate the return matrix r ∈ RN×D, where
rnd = (pn,d − pn,d−1)/pn,d−1. r builds the basis of our analysis.

We can feed r into the GP-LVM. The GP-LVM procedure, as described in section 2, assumes the
likelihood to be Gaussian with the covariance given by the kernel function for each day and assumes
independency over different days. We use the following kernel functions

knoise(βi,βj) = σ2
noise,iδi,j ,

klinear(βi,βj) = σ2βT
i βj , (18)

and the stationary kernels

kse(βi,βj) = kse(dij) = exp

(
− 1

2l2
d2ij

)
,

kexp(βi,βj) = kexp(dij) = exp

(
− 1

2l
dij

)
,

km32(βi,βj) = km32(dij) =

(
1 +

√
3dij
l

)
exp

(
−
√

3

2l
dij

)
, (19)

where dij = ||βi − βj ||2 is the Euclidean distance between βi and βj . σ2 is the kernel variance
and l kernel lengthscale. Note that since the diagonal elements of stationary kernels are the same,
they are not well suited for an estimation of a covariance matrix between different financial assets.
Therefore, in the case of stationary kernel we decompose our covariance matrix Kcov into a vector
of coefficient scales σ and a correlation matrix Kcorr, such that Kcov = ΣKcorrΣ, where Σ is a
diagonal matrix with σ on the diagonal. The full kernel function k(·, ·) at the end is the sum of the
noise kernel knoise and one of the other kernels. In matrix form we get

Klinear = klinear(B,B) + knoise(B,B),

Kse = Σ kse(B,B) Σ + knoise(B,B),

Kexp = Σ kexp(B,B) Σ + knoise(B,B),

Km32 = Σ km32(B,B) Σ + knoise(B,B), (20)

whereB = (β1, ...,βN )T . We chose the following priors

B ∼ N (0, 1) l, σ ∼ InvGamma(3, 1) σ, σnoise ∼ N (0, 0.5). (21)

The prior onB determines how much space is allocated to the points in the latent space. The volume
of this space expands with higher latent space dimension, which make the model prone to overfitting.
To cope with that, we assign an inverse gamma prior to the lengthscale l and σ (σ in the linear kernel
has a similar functionality as l in the stationary kernels). It allows larger values for higher latent
space dimension, thereby shrinking the effective latent space volume and exponentially suppresses
very small values, which deters overfitting as well. The parameters of the priors are chosen such
that they allow for enough volume in the latent space for roughly 100-150 datapoints, which we use

4We are aware that this introduces survivorship bias. Thus, in some applications our results might be overly
optimistic. Nevertheless, we expect relative comparisons between different models to be meaningful.
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Figure 1: Left: R2-score as a function of the latent dimension Q for different kernel functions.
Right: ELBO as a function of the latent dimension Q. We randomly chose 120 stocks from the
S&P500 and made the analysis on returns from Jan 2017 to Dec 2017.

in our analysis. If the number of points is drastically different, one should adjust the parameters
accordingly. The kernel standard deviations σnoise and σ are assigned a half Gaussian prior with
variance 0.5, which is essentially a flat prior, since the returns are rarely above 0.1 for a day.

Model inference under these specifications (GP-LVM likelihood for the data and prior for B and
all kernel hyperparameters σ, σnoise, l and σ, which we denote by θ) was carried out by variational
inference as described in section 2.3. To this end, we implemented all models in the probabilistic
programming language Stan (Carpenter et al., 2017), which supports variational inference out of
the box. The source code is available on Github (link anonymized for review). We tested different
initializations for the parameter (random, PCA solution and Isomap solution), but there were no
significant differences in the ELBO. So, we started the inference 50 times with random initializations
and took the result with highest ELBO for each kernel function and Q.

4.2 MODEL COMPARISON

The GP-LVM can be evaluated in many different ways. Since, it projects the data from a D-
dimensional space to a Q-dimensional latent space, we can look at the reconstruction error. A
suitable measure of the reconstruction error is the R-squared (R2) score, which is equal to one if
there is no reconstruction error and decreases if the reconstruction error increases. It is defined by

R2 = 1−
∑

i(yi − fi)2∑
i(yi − ȳ)2

, (22)

where y = (y1, ..., yN )T are the true values, f = (f1, ...fN )T are the predicted values and ȳ is the
mean of y. In the following, we look at the R2 as a function of the latent dimension Q for different
kernels. Figure 1 (left plot) shows the results for three non-linear kernels and the linear kernel. Only
a single dimension in the non-linear case can already capture almost 50% of the structure, whereas
the linear kernel is at 15%. As one would expect, the higher Q, the more structure can be learned.
But at some point the model will also start learning the noise and overfit.

As introduced in section 2.3, the ELBO is a good measure to evaluate different models and already
incorporates models complexity (overfitting). Figure 1 (right plot) shows the ELBO as a function of
the latent dimension Q. Here we see, that the model selects just a few latent dimensions. Depending
on the used kernel, latent dimensions from three to five are already enough to capture the structure.
If we increase the dimensions further, the ELBO starts dropping, which is a sign of overfitting. As
can be seen from Figure 1, we do not need to go to higher dimensions. Q between two and five is
already good enough and captures the structure that can be captured by the model.

4.3 APPLICATIONS

The GP-LVM provides us the covariance matrix K and the latent space representation B of the
data. We can build a lot of nice applications upon that, some of which are discussed in this section.

4.3.1 PORTFOLIO ALLOCATION

After inferring B and θ, we can reconstruct the covariance matrix K using equation (20). There-
after, we only need to minimize equation (17), which provides the weightsw for our portfolio in the
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future. Minimization of (17) is done under the constraints:
∑

nwn = 1 and 0 < wn < 0.1,∀n.
These constraints are commonly employed in practice and ensure that we are fully invested, take on
long positions only and prohibit too much weight for a single asset.

For our tests, we proceed as follows: First, we get data for 60 randomly selected stocks from the
S&P500 from Jan 2008 to Jan 2018. Then, we learnw from the past year and buy accordingly for the
next six months. Starting from Jan 2008, this procedure is repeated every six months. We calculate
the average return, standard deviation and the Sharpe ratio. Sharpe (1966) suggested the Sharpe ratio
as a measure for a portfolio‘s performance, which is the average return earned per unit of volatility
and can be calculated by dividing the mean return of a series by its standard deviation. Table 1
shows the performance of the portfolio for different kernels for Q = 3. For the GP-LVM we chose
the linear, SE, EXP and M32 kernels and included the performance given by the sample covariance
matrix, i.e. K = 1

D (r−µ̂)(r−µ̂)T , where µ̂n = 1
D

∑D
d=1 rnd, the shrunk Ledoit-Wolf covariance

matrix5 (Ledoit & Wolf, 2004) and the equally weighted portfolio, where w = (1, 1, ..., 1)/N .

Table 1: Mean returns, standard deviation and the Sharpe ratio of different models on a yearly basis.

Model Linear SE EXP M32 Sample Cov Ledoit Wolf Eq. Weighted

Mean 0.142 0.151 0.155 0.158 0.149 0.148 0.182
Std 0.158 0.156 0.154 0.153 0.159 0.159 0.232
Sharpe ratio 0.901 0.969 1.008 1.029 0.934 0.931 0.786

Non-linear kernels have the minimal variance and at the same time the best Sharpe ratio values. Note
that we are building a minimal variance portfolio and therefore not maximizing the mean returns as
explained in section 3.2. For finite q in equation (16) one can also build portfolios, which not only
minimize risk but also maximize the returns. Another requirement for that would be to have a good
estimator for the expected return as well.

4.3.2 FILL IN MISSING VALUES

Regulation requires fair value assessment of all assets (Financial Accounting Standards Board,
2006), including illiquid and infrequently traded ones. Here, we demonstrate how the GP-LVM
could be used to fill-in missing prices, e.g. if no trading took place. For illustration purposes, we
continue working with our daily close prices of stocks from the S&P500, but the procedure can be
applied to any other asset class and time resolution.

First, we split our data r into training and test set. The test set contains days where the returns of
assets are missing and our goal is to accurately predict the return. In our case, we use stock data
from Jan 2017 to Oct 2017 for training and Nov 2017 to Dez 2017 to test. The latent space B and
the hyperparameters θ are learned from the training set. Given B and θ, we can use the standard
GP equations (eq. (5) and (6)) to get the posterior return distribution. A suggestion for the value
of the return at a particular day can be made by the mean of this distribution. Given N stocks for
a particular day d, we fit a GP to N − 1 stocks and predict the value of the remaining stock. We
repeat the processN times, each time leaving out a different stock (Leave-one-out cross-validation).
Figure 2 shows the R2-score and the average absolute deviation of the suggested return to the real
return. The average is build over all stocks and all days in the test set.

The predictions with just the historical mean have a negative R2-score. The linear model is better
than that. But if we switch to non-linear kernels, we can even further increase the prediction score.
For Q between 2 and 4 we obtain the best results. Note that to make a decent suggestion for the
return of an asset, there must be some correlated assets in the data as well. Otherwise, the model has
no information at all about the asset, we want to predict the returns for.

4.3.3 INTERPRETATION OF THE LATENT SPACE

The 2-dimensional latent space can be visualized as a scatter plot. For a stationary kernel function
like the SE, the distance between the stocks is directly related to their correlation. In this case, the

5Here, we have used the implementation in the Python toolbox scikit-learn (Pedregosa et al., 2011).
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Figure 2: Left: R2-score of the predicted values as a function of the latent dimension Q. Right:
The average absolute deviation of suggested return to the real return evaluated by Leaving-one-out
cross-validation. Historical mean is indicated by “mean” and is Q-independent.
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Figure 3: Stocks visualised in the 2-D latent space for the exponential kernel.

latent positions are even easier to interpret than market betas. As an example, Figure 3 shows the
2-D latent space from 60 randomly selected stocks from the S&P500 from Jan 2017 to Dec 2017.
Visually stocks from the same sector tend to cluster together and we consider our method as an
alternative to other methods for detecting structure in financial data (Tumminello et al., 2010).

5 CONCLUSION

We applied the Gaussian Process Latent Variable Model (GP-LVM) to estimate the covariance ma-
trix between different assets, given their time series. We then showed how the GP-LVM can be seen
as a non-linear extension to the CAPM with latent factors. Based on the R2-score and the ELBO,
we concluded, that for fixed latent space dimension Q, every non-linear kernel can capture more
structure than the linear one.

The estimated covariance matrix helps us to build a minimal risk portfolio according to Markowitz
Portfolio theory. We evaluated the performance of different models on the S&P500 from year 2008
to 2018. Again, non-linear kernels had lower risk in the suggested portfolio and higher Sharpe
ratios than the linear kernel and the baseline measures. Furthermore, we showed how to use the GP-
LVM to fill in missing prices of less frequently traded assets and we discussed the role of the latent
positions of the assets. In the future, one could also put a Gaussian Process on the latent positions
and allow them to vary in time, which would lead to a time-dependent covariance matrix.
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