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ABSTRACT

The resemblance between the methods used in studying quantum-many body
physics and in machine learning has drawn considerable attention. In particu-
lar, tensor networks (TNs) and deep learning architectures bear striking similar-
ities to the extent that TNs can be used for machine learning. Previous results
used one-dimensional TNs in image recognition, showing limited scalability and
a request of high bond dimension. In this work, we train two-dimensional hi-
erarchical TNs to solve image recognition problems, using a training algorithm
derived from the multipartite entanglement renormalization ansatz (MERA). This
approach overcomes scalability issues and implies novel mathematical connec-
tions among quantum many-body physics, quantum information theory, and ma-
chine learning. While keeping the TN unitary in the training phase, TN states
can be defined, which optimally encodes each class of the images into a quantum
many-body state. We study the quantum features of the TN states, including quan-
tum entanglement and fidelity. We suggest these quantities could be novel prop-
erties that characterize the image classes, as well as the machine learning tasks.
Our work could be further applied to identifying possible quantum properties of
certain artificial intelligence methods.

1 INTRODUCTION

Over the past years, we have witnessed a booming progress in applying quantum theories and tech-
nologies to realistic problems. Paradigmatic examples include quantum simulators (Trabesinger
et al., 2012) and quantum computers (Steane, 1998; Knill, 2010; Buluta et al., 2011) aimed at tack-
ling challenging problems that are beyond the capability of classical digital computations. The
power of these methods stems from the properties quantum many-body systems.

Tensor networks (TNs) belong to the most powerful numerical tools for studying quantum many-
body systems (Verstraete et al., 2008; Orús, 2014a;b; Ran et al., 2017b). The main challenge lies in
the exponential growth of the Hilbert space with the system size, making exact descriptions of such
quantum states impossible even for systems as small asO(102) electrons. To break the “exponential
wall”, TNs were suggested as an efficient ansatz that lowers the computational cost to a polynomial
dependence on the system size. Astonishing achievements have been made in studying, e.g. spins,
bosons, fermions, anyons, gauge fields, and so on (Verstraete et al., 2008; Cirac & Verstraete, 2009;
Orús, 2014b; Ran et al., 2017b) (Ran et al., 2017b). TNs are also exploited to predict interactions
that are used to design quantum simulators (Ran et al., 2017a).

As TNs allowed the numerical treatment of difficult physical systems by providing layers of ab-
straction, deep learning achieved similar striking advances in automated feature extraction and pat-
tern recognition (LeCun et al., 2015). The resemblance between the two approaches is beyond
superficial. At theoretical level, there is a mapping between deep learning and the renormalization
group (Bény, 2013), which in turn connects holography and deep learning (You et al., 2017; Gan
& Shu, 2017), and also allows studying network design from the perspective of quantum entangle-
ment (Levine et al., 2017). In turn, neural networks can represent quantum states (Carleo & Troyer,
2017; Chen et al., 2017; Huang & Moore, 2017; Glasser et al., 2017).
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Most recently, TNs have been applied to solve machine learning problems such as dimensionality re-
duction (Cichocki et al., 2016; 2017), handwriting recognition (Stoudenmire & Schwab, 2016; Han
et al., 2017). Through a feature mapping, an image described as classical information is transferred
into a product state defined in a Hilbert space. Then these states are acted onto a TN, giving an output
vector that determines the classification of the images into a predefined number of classes. Going
further with this clue, it can be seen that when using a vector space for solving image recognition
problems, one faces a similar “exponential wall” as in quantum many-body systems. For recogniz-
ing an object in the real world, there exist infinite possibilities since the shapes and colors change, in
principle, continuously. An image or a gray-scale photo provides an approximation, where the total
number of possibilities is lowered to 256N per channel, withN describing the number of pixels, and
it is assumed to be fixed for simplicity. Similar to the applications in quantum physics, TNs show a
promising way to lower such an exponentially large space to a polynomial one.

This work contributes in two aspects. Firstly, we derive an efficient quantum-inspired learning
algorithm based on a hierarchical representation that is known as tree TN (TTN) (see, e.g., (Murg
et al., 2015)). Compared with Refs. (Stoudenmire & Schwab, 2016; Han et al., 2017) where a one-
dimensional (1D) TN (called matrix product state (MPS) (Östlund & Rommer, 1995)) is used, TTN
suits more the two-dimensional (2D) nature of images. The algorithm is inspired by the multipartite
entanglement renormalization ansatz (MERA) approach (Vidal, 2007; 2008; Cincio et al., 2008;
Evenbly & Vidal, 2009), where the tensors in the TN are kept to be unitary during the training. We
test the algorithm on both the MNIST (handwriting recognition with binary images) and CIFAR
(recognition of color images) databases and obtain accuracies comparable to the performance of
convolutional neural networks. More importantly, the TN states can then be defined that optimally
encodes each class of images as a quantum many-body state, which is akin to the study of a duality
between probabilistic graphical models and TNs (Robeva & Seigal, 2017). We contrast the bond
dimension and model complexity, with results indicating that a growing bond dimension overfits the
data. we study the representation in the different layers in the hierarchical TN with t-SNE (Van der
Maaten & Hinton, 2008), and find that the level of abstraction changes the same way as in a deep
convolutional neural network (Krizhevsky et al., 2012) or a deep belief network (Hinton et al., 2006),
and the highest level of the hierarchy allows for a clear separation of the classes. Finally, we show
that the fidelities between each two TN states from the two different image classes are low, and we
calculate the entanglement entropy of each TN state, which gives an indication of the difficulty of
each class.

(b)

(c)

(d)

Figure 1: (Color online) The left figure (a) shows the configuration of TTN. The squares at the
bottom represent the vectors obtained from the pixels of one image through the feature map. The
sphere at the top represents the label. The right figures are (b) the illustrations of the environment
tensor, (c) the schematic diagram of fidelity and (d) entanglement entropy calculation.

2 PRELIMINARIES OF TENSOR NETWORK AND MACHINE LEARNING

A TN is defined as a group of tensors whose indexes are shared and contracted in a specific way.
TN can represent the partition function of a classical system, and also of a quantum many-body
state which is mathematically a higher-dimensional vector. For the latter, one famous example is the
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MPS that is written as Ψs1s2···sN−1sN =
∑
α1···αN−1

A
[1]
s1α1A

[2]
s2α1α2 · · ·A

[N−1]
sN−1αN−2αN−1A

[N ]
sNαN−1 .

An MPS can simply be understood as a dN -dimensional vector, with d the dimension of si. Though
the space increases exponentially withN , the cost of an MPS increases only polynomially asNdD2

(with D dimension of αn). When using it to describe an N − site physical state, the un-contracted
open indexes {sn} are called physical bonds that represent the physical Hilbert space1, and con-
tracted dummy indexes {αm} are called virtual bonds that carry the quantum entanglement. MPS is
essentially a 1D state representation. When applied to 2D systems, MPS suffers severe restrictions
since one has to choose a snake-like 1D path that covers the 2D manifold. This issue is known in
physics as the area law of entanglement entropy (Verstraete & Cirac, 2006; Hastings, 2007; Schuch
et al., 2008).

A TTN (Fig. 1 (a)) provides a natural expression for 2D states, which we can write as a hierarchical
structure of K layers:

Ψα1,1···αN1,4
=
∑
{α}

K∏
k=1

Nk∏
n=1

T [k,n]
αk+1,n′αk,n,1αk,n,2αk,n,3αk,n,4

, (1)

where Nk is the number of tensors in the k-th layer.

To avoid the disaster brought by an extremely large number of indexes in a TN, we use the follow-
ing symbolic and graphic conventions. A tensor is denoted by a bold letter without indexes, e.g., T,
whose elements are denoted by Tα1α2···. Note a vector and a matrix are first- and second-order ten-
sors with one and two indexes, respectively. When two tensors are multiplied together, the common
indexes are to be contracted. One example is the inner product of two vectors, where

∑
α v
∗
αuα is

simplified to v†u. We take the transpose of v because we always assume the vectors to be column
vectors. Another example is the matrix product, where Xb1b2 =

∑
αM

[1]
b1α

M
[2]
αb2

is simplified to
X = M[1]M[2]. α is an dummy index, and b1 and b2 are two open indexes. In the graphic repre-
sentation, a tensor is a block connecting to several bonds. Each bond represents an index belonging
to this tensor. The dummy indexes are represented by the shared bonds that connect to two different
blocks. Following this convention, Eq. (1) can be simplified to Ψ =

∏K
k=1

∏Nk

n=1 T[k,n].

Similar to the MPS, a TTN also provides a representation of a dN -dimensional vector. The cost
is also polynomial to N . One advantage is that the TTN bears a hierarchical structure and can be
naturally built for 2D systems. In a TTN, each local tensor is chosen to have one upward index and
four downward indexes. For representing a pure state, the tensor on the top only has four downward
indexes. All the indexes except the downward ones of the tensors in the first layer are dummy and
will be contracted. In our work, the TTN is slightly different from the pure state representation, by
adding an upward index to the top tensor (Fig. 1 (a)). This added index corresponds to the labels in
the supervised machine learning.

Before training, we need to prepare the data with a feature function that maps N scalars (N is the
dimension of the images) to the tensor product of N normalized vectors. The choice of the feature
function is diversified: we chose the one used in Ref. (Stoudenmire & Schwab, 2016), where the
dimension of each vector (d) can be controlled. Then, the space is transformed from that of N
scalars to a dN -dimensional vector (Hilbert) space.

After “vectorizing” the j-th image in the dataset, the output for classification is a d̃-dimensional
vector obtained by contracting this huge vector with the TTN, which reads as

L̃[j] = Ψ

N∏
n=1

v[j,n], (2)

where {v[j,n]} denotes the n-th vector given by the j-th sample. One can see that d̃ is the dimension
of the upward index of the top tensor, and should equal to the number of the classes. We use the
convention that the position of the maximum value gives the classification of the image predicted by
the TTN, akin to a softmax layer in a deep learning network.

1Hilbert space is defined as the vector space spanned by the basis of quantum states. Each quantum state is
described by a vector living in this space.
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One choice of the cost function to be minimized is the square error, which is defined as

f =

J∑
j=1

|L̃[j] − L[j]|2, (3)

where J is the number of training samples. L[j] is a d̃-dimensional vector corresponding to the j-th
label. For example, if the j-th sample belongs to the p-th class, L[j] is defined as

L[j]
α =

{
1, if α = p
0, otherwise (4)

3 MERA-INSPIRED TRAINING ALGORITHM

Inspired by MERA (Vidal, 2007), we derive a highly efficient training algorithm. To proceed, let us
rewrite the cost function in the following form

f =

J∑
j=1

(
∏
nn′

v[j,n′]†Ψ†Ψv[j,n] − 2
∏
n

L[j]†Ψv[j,n] + 1). (5)

The third term comes from the normalization of L[j], and we assume the second term is always real.

The dominant cost comes from the first term. We borrow the idea from the MERA approach to
reduce this cost. Mathematically speaking, the central idea is to impose that Ψ is orthogonal, i.e.,
ΨΨ† = I. Then Ψ is optimized with Ψ†Ψ = I satisfied in the valid subspace that optimizes the
classification. By satisfying in the subspace, we do not require an identity from Ψ†Ψ, but mean∑J
j=1

∏
nn′ v

[j,n′]†Ψ†Ψv[j,n] '
∑J
j=1

∏
nn′ v

[j,n′]†v[j,n] = J under the training samples.

In MERA, a stronger constraint is used. With the TTN, each tensor has one upward and four down-
ward indexes, which gives a non-square orthogonal matrix by grouping the downward indexes into
a large one. Such tensors are called isometries and satisfy TT† = I after contracting all downwards
indexes with its conjugate. When all the tensors are isometries, the TTN gives a unitary transforma-
tion that satisfies ΨΨ† = I; it compresses a dN -dimensional space to a d̃-dimensional one.

In this way, the first terms becomes a constant, and we only need to deal with the second term. The
cost function becomes

f = −
J∑
j=1

∏
n

L[j]†Ψv[j,n]. (6)

Each term in f is simply the contraction of one TN, which can be efficiently computed. We stress
that independent of Eq. (3), Eq. (6) can be directly used as the cost function. This will lead to a more
interesting picture connected to the condensed matter physics and quantum information theory.

From the physical point of view, the central idea of MERA is the renormalization group (RG) of the
entanglement (Vidal, 2007). The RG flows are implemented by the isometries that satisfy TT† = I.
On one hand, the orthogonality makes the state remain normalized, a basic requirement of quantum
states. On the other hand, the renormalization group flows can be considered as the compressions of
the Hilbert space (from the downward to upward indexes). The orthogonality ensure that such com-
pressions are unbiased with T†T ' I in the subspace. The difference from the identity characterizes
the errors caused by the compressions. More discussions are given in Sec. 5.

The tensors in the TTN are updated alternatively to minimize Eq. (6). To update T[k,n] for instance,
we assume other tensors are fixed and define the environment tensor E[k,n], which is calculated by
contracting everything in Eq. (6) after taking out T[k,n] (Fig. 1 (b)) (Evenbly & Vidal, 2009). Then
the cost function becomes f = −Tr(T[k,n]E[k,n]). Under the constraint that T[k,n] is an isometry,
the solution of the optimal point is given by T[k,n] = VU† where V and U are calculated from the
singular value decomposition E[k,n] = UΛV†. At this point, we have f = −

∑
a Λa.

Then, the update of one tensor becomes the calculation of the environment tensor and its singular
value decomposition. In the alternating process for updating all the tensors, some tricks are used
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to accelerate the computations. The idea is to save some intermediate results to avoid repetitive
calculations by taking advantage of the tree structure. Another important detail is to normalize the
vector obtained each time by contracting four vectors with a tensor.

The strategy for building a multi-class classifier is the one-against-all classification scheme in ma-
chine learning. For each class, we train one TTN so that it recognizes whether an image belongs
to this class. The output of Eq. (2) is a two-dimensional vector. We fix the label for a yes answer
as Lyes = [1, 0]. For P classes, we will accordingly have P TTNs, denoted by {Ψ(p)}. Then for
recognizing an image (vectorized to {v[n]}), we define a P -dimensional vector F as

Fp = Lyes†Ψ(p)
∏
n

v[n]. (7)

The position of its maximal element gives which class the image belongs to.

Algorithm 1 One-against-All
Require: data : data points,

n : the number of data points
1: for i = 0→ 9 do
2: Train binary classifier classifierk corresponding to each handwritten digit
3: end for
4: for j = 1→ n do
5: for k = 0→ 9 do
6: outputk ← classifierk(dataj);
7: end for
8: labelj ← argmax(output(k));
9: return labelj

10: end for

The scaling of both time complexity and space complexity is O((bv
5 + b4i bv)MNT ), where M is

the dimension of input vector; bv the dimension of virtual bond; bi the dimension of input bond; NT
the number of training inputs.
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Figure 2: (a) Binary classification accuracy on CIFAR-10 with number of training samples=200; (b)
Binary classification accuracy on CIFAR-10 with number of training samples=600; (c) Training and
test accuracy as the function of the dimension of indexes on the MNIST dataset. The number of
training samples is 1000 for each pair of classes.

4 EXPERIMENTS ON IMAGE RECOGNITION

Our approach to classify image data begins by mapping each pixel xj to a d-component vector
φsj (xj). This feature map was introduced by (Stoudenmire & Schwab, 2016)) and defined as

φsj (xj) =
√(

d−1
sj−1

)
(cos(π2xj))

d−sj (sin(π2xj))
sj−1, where sj runs from 1 to d. By using a larger

d, the TTN has the potential to approximate a richer class of functions.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Embedding of data instances of CIFAR-10 by t-SNE corresponding to each layer in the
TTN: (a) original data distribution and (b) the 1st, (c) 2nd, (d) 3rd, (e) 4th, and (f) 5th layer.

4.1 BENCHMARK ON CIFAR-10

To verify the representation power of TTNs, we used the CIFAR-10 dataset (Krizhevsky & Hinton,
2009). The dataset consists of 60,000 32 × 32 RGB images in 10 classes, with 6,000 instances per
class. There are 50,000 training images and 10,000 test images. Each RGB image was originally
32 × 32 pixels: we transformed them to grayscale. Working with gray-scale images reduced the
complexity of training, with the trade-off being that less information was available for learning.

We built a TTN with five layers and used the MERA-like algorithm (Section 3) to train the model.
Specifically, we built a binary classification model to investigate key machine learning and quan-
tum features, instead of constructing a complex multiclass model. We found both the input bond
(physical indexes) and the virtual bond (geometrical indexes) had a great impact on the representa-
tion power of TTNs, as showed in Fig. 2. This indicates that the limitation of representation power
(learnability) of the TTNs is related to the input bond. The same way, the virtual bond determine
how accurately the TTNs approximate this limitation.

From the perspective of tensor algebra, the representation power of TTNs depends on the tensor
contracted from the entire TTN. Thus the limitation of this relies on the input bond. Furthermore,
the TTNs could be considered as a decomposition of this complete contraction, and the virtual bond
determine how well the TTNs approximate this. Moreover, this phenomenon could be interpreted
from the perspective of quantum many-body theory: the higher entanglement in a quantum many-
body system, the more representation power this quantum system has.

The sequence of convolutional and pooling layers in the feature extraction part of a deep learn-
ing network is known to arrive at higher and higher levels of abstractions that helps separating the
classes in a discriminative learner (LeCun et al., 2015). This is often visualized by embedding the
representation in two dimensions by t-SNE (Van der Maaten & Hinton, 2008), and by coloring the
instances according to their classes. If the classes clearly separate in this embedding, the subsequent
classifier will have an easy task performing classification at a high accuracy. We plotted this embed-
ding for each layer in the TN in Fig. 3. We observe the same pattern as in deep learning, having a
clear separation in the highest level of abstraction.

4.2 BENCHMARK ON MNIST

To test the generalization of TTNs on a benchmark dataset, we used the MNIST collection, which is
widely used in handwritten digit recognition. The training set consists of 60,000 examples, and the
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Table 1: 10-class classification on MNIST
model 0 1 2 3 4 5 6 7 8 9 10-class

Training accuracy (%) 96 97 96 94 96 94 97 94 93 94 95
Testing accuracy (%) 97 97 95 93 95 95 96 94 93 93 92
Input bond 3 3 3 4 2 6 2 6 6 4 /
Virtual bond 3 3 4 4 3 6 3 6 6 6 /

test set of 10,000 examples. Each gray-scale image of MNIST was originally 28×28 pixels, and we
rescaled them to 16 × 16 pixels for building TTNs with four layers on this scale. The MERA-like
algorithm was used to train the model.

Similar to the last experiment, we built a binary model to show the performance of generalization.
With the increase of bond dimension (both of the input bond and virtual bond), we found an apparent
rise of training accuracy, which is consistent with the results in Fig. 2. At the same time, we observed
the decline of testing accuracy. The increase of bond dimension leads to a sharp increase of the
number of parameters and, as a result, it will give rise to overfitting and lower the performance of
generalization. Therefore, one must pay attention to finding the optimal bond dimension – we can
think of this as a hyperparameter controlling model complexity.

We choose the one-against-all strategy to build a 10-class model, which classify an input image by
choosing the label for which the output is largest. Considering the efficiency and avoiding overfit-
ting, we use the minimal values of d (Table 1) to reach the training accuracy around 95%.

5 ENCODING IMAGES IN QUANTUM STATES: FIDELITY AND ENTANGLEMENT

Taking one trained TTN Ψ where the index for the labels is assumed to be P -dimensional, we can
define P normalized TTN vector (state) as

Φ[p] = L[p]†Ψ. (8)

In Φ[p], the upward index of the top tensor is contracted with the label (L[p]), giving a TN state that
represents a normalized dN -dimensional vector (pure quantum state).

The quantum state representations allow us to use quantum theories to study images and the related
issues. Let us begin with the cost function. In Section 3, we started from a frequently used cost
function in Eq. (3), and derived a cost function in Eq. (6). In the following, we show that Eq. (6) can
be understood by the notion of fidelity. With Eq. (8), the cost function in Eq. (6) can be rewritten as
f = −

∑
j Φ[p]T

∏
n v[j,n].

The fidelity between two states (normalized vectors) is defined as their inner product, thus each
term in the summation is simply the fidelity (Steane, 1998; Bennett & DiVincenzo, 2000) between a
vectorized image and the corresponding TTN state Φ[p]. Considering that the fidelity measures the
distance between two states, {Φ[p]} are the P states that minimize the distance between each Φ[p]

and the p-th vectorized images. In other words, the cost function is in fact the total fidelity, and Φ[p]

is the quantum state (normalized vector) that optimally encodes the p-th class of images.

Note that due to the orthogonality, such P states are orthogonal to each other, i.e., Φ[p′]†Φ[p] = Ip′p.
This might trap us to a bad local minimum. For this reason, we propose the one-against-all strategy
(see Algorithm 3). For each class, we have two TN states labeled yes and no, respectively, and in
total 2P TN states. {Φ[p]} are then defined by taking the P yes-labeled TN states. The elements of
F in Eq. (7) are defined by the summation of the fidelity between Φ[p] and the class of vectorized
images. In this scenario, the classification is decided by finding the Φ[p] that gives the maximal
fidelity with the input image, while the orthogonal conditions among {Φ[p]} no longer exist.

Besides the algorithmic interpretation, fidelity may imply more intrinsic information. Without the
orthogonality of {Φ[p]}, the fidelityFp′p = Φ[p′]†Φ[p] (Fig. 1 (c)) describes the differences between
the quantum states that encode different classes of images. As shown in Fig. 4(a),Fp′p remains quite
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small in most cases, indicating that the orthogonality still approximately holds. Still, some results
are still relatively large, e.g., F4,9 = 0.1353. We speculate this is closely related to the ways how
the data are fed and processed in the TN. In our case, two image classes that have similar shapes
will result in a larger fidelity, because the TTN essentially provides a real-space renormalization
flow. In other words, the input vectors are still initially arranged and renormalized layer by layer
according to their spatial locations in the image; each tensor renormalizes four nearest-neighboring
vectors into one vector. Fidelity can be potentially applied to building a network, where the nodes
are classes of images and the weights of the connections are given by the Fp′p. This might provide a
mathematical model on how different classes of images are associated to each other. We leave these
questions for future investigations.

Another important concept of quantum mechanics is (bipartite) entanglement, a quantum version
of correlations (Bennett & DiVincenzo, 2000). It is one of the key characters that distinguishes
the quantum states from classical ones. Entanglement is usually given by a normalized positive-
defined vector called entanglement spectrum (denoted as Λ), and is measured by the entanglement
entropy S = −

∑
a Λ2

a ln Λ2
a. Having two subsystems, entanglement entropy measures the amount

of information of one subsystem that can be gained by measuring the other subsystem. In the
framework of TN, entanglement entropy determines the minimal dimensions of the dummy indexes
needed for reaching a certain precision.

In our image recognition, entanglement entropy characterizes how much information of one part
of the image we can gain by knowing the rest part of the image. In other words, if we only know
a part of an image and want to predict the rest according to the trained TTN (the quantum state
that encodes the corresponding class), the entanglement entropy measures how accurately this can
be done. Here, an important analog is between knowing a part of the image and measuring the
corresponding subsystem of the quantum state. Thus, the trained TTN might be used on image
processing, e.g., to recover an image from a damaged or compressed lower-resolution version.

Fig. 4(b) shows the entanglement entropy for each class in the MNIST dataset. We computed two
kinds of entanglement entropy marked by up-down and left-right. The first one denotes the en-
tanglement between Upper part of the images with the lower part one. The later one denotes the
entanglement between left part with the right part. With the TTN, the entanglement spectrum is
simply the singular values of the matrix M = L†T[K,1] with L the label and T[K,1] the top tensor
(Fig. 1 (d)). This is because the all the tensors in the TTN are orthogonal. Note that M has four in-
dexes, of which each represents the effective space renormalized from one quarter of the vectorized
image. Thus, the bipartition of the entanglement determines how the four indexes of M are grouped
into two bigger indexes before calculating the SVD. We compute two kinds of entanglement entropy
by cutting the system in the middle along the x or y direction. Our results suggest that the images
of “0” and “4” are the easiest and hardest, respectively, to predict one part of the image by knowing
the other part.
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Figure 4: (a) Fidelity Fp′p between each two handwritten digits, which ranges from −0.0032 to 1.
The diagonal terms Fpp = 1 because the quantum states are normalized; (b) Entanglement entropy
corresponding to each handwritten digit entropy.
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6 CONCLUSION AND OUTLOOK

We continued the forays into using tensor networks for machine learning, focusing on hierarchical,
two-dimensional tree tensor networks that we found a natural fit for image recognition problems.
This proved a scalable approach that had a high precision, and we can conclude the following ob-
servations:

• The limitation of representation power (learnability) of the TTNs model strongly depends
on the input bond (physical indexes). And, the virtual bond (geometrical indexes) deter-
mine how well the TTNs approximate this limitation.

• A hierarchical tensor network exhibits the same increase level of abstraction as a deep
convolutional neural network or a deep belief network.

• Fidelity can give us an insight how difficult it is to tell two classes apart.
• Entanglement entropy has potential to characterize the difficulty of representing a class of

problems.

In future work, we plan to use fidelity-based training in an unsupervised setting and applying the
trained TTN to recover damaged or compressed images and using entanglement entropy to charac-
terize the accuracy.
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Cédric Bény. Deep learning and the renormalization group. January 2013.

Iulia Buluta, Sahel Ashhab, and Franco Nori. Natural and artificial atoms for quantum computation.
Reports on Progress in Physics, 74(10):104401, 2011.

Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem with artificial
neural networks. Science, 355(6325):602–606, February 2017.

Jing Chen, Song Cheng, Haidong Xie, Lei Wang, and Tao Xiang. On the equivalence of restricted
Boltzmann machines and tensor network states. 2017.

Andrzej Cichocki, Namgil Lee, Ivan Oseledets, Anh-Huy Phan, Qibin Zhao, Danilo P. Mandic, and
Others. Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-
rank tensor decompositions. Foundations and Trends R© in Machine Learning, 9(4-5):249–429,
2016.

Andrzej Cichocki, Anh-Huy Phan, Qibin Zhao, Namgil Lee, Ivan Oseledets, Masashi Sugiyama,
Danilo P. Mandic, and Others. Tensor networks for dimensionality reduction and large-scale
optimization: Part 2 applications and future perspectives. Foundations and Trends R© in Machine
Learning, 9(6):431–673, 2017.

Lukasz Cincio, Jacek Dziarmaga, and Marek M. Rams. Multiscale entanglement renormalization
ansatz in two dimensions: quantum Ising model. Physical Review Letters, 100:240603, 2008.

J. Ignacio. Cirac and Frank Verstraete. Renormalization and tensor product states in spin chains and
lattices. Journal of Physics A: Mathematical and Theoretical, 42:504004, 2009.

Glen Evenbly and Guifre Vidal. Algorithms for entanglement renormalization. Physical Review B,
79:144108, April 2009. doi: 10.1103/PhysRevB.79.144108.

Wen-Cong Gan and Fu-Wen Shu. Holography as deep learning. 2017.

Ivan Glasser, Nicola Pancotti, Moritz August, Ivan D. Rodriguez, and J. Ignacio Cirac. Neural
networks quantum states, string-bond states and chiral topological states. October 2017.

Zhao-Yu Han, Jun Wang, Heng Fan, Lei Wang, and Pan Zhang. Unsupervised generative modeling
using matrix product states. September 2017.

9



Under review as a conference paper at ICLR 2018

Matthew B. Hastings. An area law for one-dimensional quantum systems. Journal of Statistical
Mechanics: Theory and Experiment, 2007(08), 2007.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18(7):1527–1554, July 2006. ISSN 1530-888X.

Yichen Huang and Joel E. Moore. Neural network representation of tensor network and chiral states.
2017.

Emanuel Knill. Physics: quantum computing. Nature, 463(7280):441–443, 2010.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems 25, volume 25,
pp. 1097–1105. 2012.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
May 2015. ISSN 1476-4687.

Yoav Levine, David Yakira, Nadav Cohen, and Amnon Shashua. Deep Learning and Quantum
Entanglement: Fundamental Connections with Implications to Network Design. 2017.

Valentin Murg, Frank Verstraete, Reinhold Schneider, Péter R. Nagy, and Örs Legeza. Tree tensor
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