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ABSTRACT

Adversarial training has been successfully applied to build robust models at a cer-
tain cost. While the robustness of a model increases, the standard classification
accuracy declines. This phenomenon is suggested to be an inherent trade-off.
We propose a model that employs feature prioritization by a nonlinear attention
module and L2 feature regularization to improve the adversarial robustness and
the standard accuracy relative to adversarial training. The attention module en-
courages the model to rely heavily on robust features by assigning larger weights
to them while suppressing non-robust features. The regularizer encourages the
model to extracts similar features for the natural and adversarial images, effec-
tively ignoring the added perturbation. In addition to evaluating the robustness of
our model, we provide justification for the attention module and propose a novel
experimental strategy that quantitatively demonstrates that our model is almost
ideally aligned with salient data characteristics. Additional experimental results
illustrate the power of our model relative to the state of the art methods.

1 INTRODUCTION

Deep learning models have demonstrated impressive performance in a wide variety of applica-
tions (Goodfellow et al., 2016; Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; Mnih et al.,
2015). However, recent works have shown that these models are susceptible to adversarial attacks:
imperceptible but carefully chosen perturbation added to the input can cause the model to make
highly confident but incorrect predictions (Szegedy et al., 2013; Goodfellow et al., 2015; Kurakin
et al., 2016).

Exploring the adversarial robustness of neural networks has recently gained significant attention
and there is a rapidly growing body of work related to this topic (Kurakin et al., 2016; Tramèr
et al., 2017; Fawzi et al., 2018; Athalye & Sutskever, 2017; Carlini & Wagner, 2017; Kolter &
Wong, 2017; Wong & Kolter, 2018; Madry et al., 2017). A wide variety of methods are proposed
to defend a model against adversarial attacks (Prakash et al., 2018; Liao et al., 2018; Song et al.,
2017; Samangouei et al., 2018). Despite these advances, many techniques are subsequently shown
to be ineffective (Athalye et al., 2018; Athalye & Carlini, 2018), and adversarial training which uses
adversarial samples in addition to clean images during the training process has been shown to be able
to build relatively robust neural networks (Madry et al., 2017; Athalye et al., 2018; Dvijotham et al.,
2018). With strong adversaries such as the Projected Gradient Descent (PGD) (Madry et al., 2017)
or the Iterative Fast Gradient Sign Method (I-FGSM) (Kurakin et al., 2016) adversarially trained
models are able to achieve state-of-the-art performance against a wide range of attacks.

Recent advances in the understanding of adversarial training provide insights of its effectiveness. It
is shown that standard and robust models depend on very different sets of features (Tsipras et al.,
2018; Tanay et al., 2018). While standard models utilize features including non-robust ones that
are weakly correlated with class labels and easily manipulated by small input perturbations, robust
models only use robust features that are highly correlated with class labels and invariant to those
perturbations. Although adversarial training learns robust features, there are no explicit design com-
ponents to encourage a model to depend solely on robust features. Therefore, to further improve the
robustness of a model, we propose feature regularization and prioritization schemes.
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We first propose to use attention mechanism to bias a model towards robust features that are highly
correlated with the class labels. We call the learned features at the final layer of a network the global
features, and the ones at lower level layers the local features. In our attention module, we use the
global features as a way to assign weights to the local features by a non-linear compatibility function.
Since global features are directly used to produce class label prediction, we are effectively assigning
weights to local features depending on their correlation to the label. Robust features have higher
correlation and therefore will be assigned larger weights which in turn contribute to the model’s
robustness.

Next, we propose to use feature regularization to learn robust features that are invariant to input per-
turbations. We add a L2 regularization term that penalizes the distance between the learned features
of a clean sample x and that of its perturbed adversarial counterpart x′ to the training objective. By
optimizing this regularizer, we are pushing the model to extract very similar features from the orig-
inal image and the adversarial image, thus only features that are invariant to the perturbations are
learned and we effectively ignore the added noise. From another point of view, a model with small
L2 feature distance maps the two nearby points in the image space to nearby points in the learned
high dimensional manifold which is a desirable behavior.

In this paper, we propose an approach that enhances adversarial training with feature prioritization
and regularization to improve the robustness of a model. We use extensive experiments to demon-
strate that the attention module focuses on the area of an image which contains the actual object
and helps the classifier to only rely on features extracted from those areas. The background clutter
and irrelevant features which could be misleading are suppressed. The feature regularization further
encourages the model to extract robust features that are not manipulated by the adversarial perturba-
tions. The resulting model has a highly interpretable gradient map that aligns perfectly with salient
data characteristics.

The main contributions of this paper include:

• A method based on feature prioritization and regularization, which significantly outper-
forms adversarial training. Our model is evaluated on the MNIST, CIFAR-10, and CIFAR-
100 datasets, and demonstrates superior performance relative to both standard classification
accuracy and adversarial robustness.

• We provide justification to show that the attention module helps the model to rely on robust
features by assigning larger weights to them. Through qualitative inspection, we show that
the attention maps generated by our non-linear attention estimator focus sharply on the
regions of interest while suppressing irrelevant background clutter.

• In addition to qualitative evaluation of the gradient maps, we propose a novel experimental
strategy that quantitatively demonstrates the better alignment of the gradient maps gener-
ated by our model with salient data characteristics.

2 RELATED WORK

Due to the extensive amount of literature in this area and the limited length of this paper, we only
review some of the most related works in this section. For a more comprehensive survey please refer
to Akhtar & Mian (2018).

Adversarial training. Kurakin et al. (2016) use adversarial training as a form of data augmentation
where it injects adversarial examples during training. In every training mini batch, a mixture of clean
images and adversarial images generated by one step Fast Gradient Sign Method (FGSM) are used
to update the network’s parameters. It is then improved by Na et al. (2017) by adding adversarial
examples generated by iterative methods. In Madry et al. (2017), it is proposed to replace all clean
images with adversarial images which is a direct result of optimizing a saddle point (min-max)
formulation. By studying the loss landscape of the problem, they suggest that PGD is a universal
first-order adversary which is then used in their adversary generating process.

L2 regularization. A similar idea with feature regularization is proposed in Kannan et al. (2018)
which they call logit pairing, to prevent a model from being over-confident when making predictions.
Compared with logit pairing, feature regularization is more intuitive as it motivates a model to learn
very robust features that are invariant to input perturbations, which leads to a robust model. In
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Figure 1: Overview of the proposed model. The top and bottom networks are the same copy that
share all network parameters. Both the clean and adversarial images are forwarded through the
network to produce the corresponding attention features. The L2 regularization loss is defined as the
Euclidean distance between the two sets of attention features. The final model loss is a combination
of the L2 regularization loss and the cross-entropy loss for only the adversarial input.

addition, we propose to also use attention module to further encourage the model to favor robust
features which will improve the robustness.

Attention Models. Attention in CNN is most commonly deployed for query-based tasks (Seo et al.,
2016; Xu et al., 2015; Jetley et al., 2018). In Jetley et al. (2018) a method is presented to use a learned
representation of the global image as a query to leverage multiple attention maps at different scales,
which allows the expression of a complementary focus on different parts of the image. However,
the application of attention to the adversarial robustness aspects has not been seriously explored. To
the best of our knowledge, we are the first to employ an attention mechanism in training a robust
deep neural network. In our application, we use a ReLU activated neural network instead of the
linear-based method as the attention estimator. It allows highly non-linear compatibility between
the learned global features and the lower-level local features.

3 APPROACH

We now present our model that combines the attention module and L2 feature regularization, and
show how it can be applied to enhance the adversarial training to improve the adversarial robustness
of a model and its accuracy. Figure 1 provides an overview of our method. We adopt the terminology
in Jetley et al. (2018), in particular that local features and global features refer to features extracted
at certain layers of a network whose effective receptive fields are subsets of the image and the entire
image. We start by forwarding each of the clean and adversarial images and computing the attention
weights by a non-linear estimator. Then the individual attention feature is defined to be the weighted
combination of the corresponding local features. Next, we define an L2 regularization loss to be the
Euclidean distance between the two sets of learned attention features. The attention features of the
adversarial image are then used to produce the logits, which is followed by softmax layer to produce
the cross-entropy loss. The final loss function of our model is a combination of cross-entropy loss
and the regularization loss.

3.1 ADVERSARIAL TRAINING

We adopt the adversarial training described in Madry et al. (2017) as the basic training approach.
It replaces natural training examples by PGD examples, which is suggested to represent a universal
first-order adversary. So far PGD has been shown to represent the strongest attack method (Atha-
lye et al., 2018; Athalye & Carlini, 2018). A model that is trained with PGD adversaries is also
robust against a wide range of other attacks and not yet outperformed by any other approach. The
adversarial training has a saddle point formulation:
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min
θ

E(x,y)∼D[max
δ∈S

L(θ,x+ δ, y)] (1)

where D is the distribution of data x and class labels y, L is the cross-entropy loss function for a
model with parameters θ, δ is the additive adversarial perturbation with bound S. In this paper we
consider l∞ bound as in Madry et al. (2017). Our adversarial samples x′ = x + δ are created by
PGD:

xt+1 = Πx+S
(
xt + α sgn(∇xL(θ,x, y))

)
(2)

PGD adversaries are computed at each iteration as an approximated optimum of the inner maximiza-
tion in equation (1) and an update of the parameters θ is made according to the outer minimization
formulation.

3.2 ATTENTION MODEL

As we discussed in Section 1, our goal of attention model is to favor robust features in making
predictions. We propose a non-linear attention model that acts as a feature prioritizing scheme,
which is able to put more weight on robust features and less weight on non-robust features to increase
the robustness of a classifier.

Let lin be the learned feature vector at layer i ∈ {1, 2, ..., I} of a neural network at spatial location
n ∈ {1, 2, ..., N}, and let g be the feature vector of the layer just before the final fully connected
layer which produces the class label prediction scores (logits). We use a small ReLU activated neural
network to generate compatibility scores between the global feature g and local features lin:

cin = f(lin, g) (3)

where f is the neural network and the concatenation of g and lin is fed to the network to produce the
compatibility scores cin. We then normalize the scores with a softmax operation to get the attention
weights:

win =
exp cin∑
m exp cim

(4)

Next, we compute the weighted sum of local feature vectors which is the attention feature vector at
layer i:

hi =
∑
n

winl
i
n (5)

We use the outputs of the last residual block as the local feature for computing attention, and replace
the global feature g with the corresponding attention descriptor hi for final classification.

By using a small neural network instead of the linear alignment models as in Jetley et al. (2018), we
are able to capture non-linear compatibility between the local and global features when producing
the attention weights, which is beneficial considering the multiple non-linear function activated
layers between the local and global features.

3.3 FEATURE REGULARIZATION

In addition to the attention mechanism, we also propose to use an L2 regularization term to en-
courage the model to extract similar features for the clean image and the corresponding adversarial
image. Denote by Gθ the deep neural network, x and x′ the natural image and adversarial image.
Denote by Gθ(x), Gθ(x′) the learned features of the layer just before the final fully connected layer
(in our case this is the attention weighted global descriptor) which produces the class label prediction
scores. The L2 regularizer has the following form:

Lr(x,x
′) = ‖Gθ(x)− Gθ(x′)‖2 (6)

By minimizing the regularization function, the model effectively learns very similar features for the
clean sample and the adversarial sample, which are robust features since they are invariant to the
adversarial perturbation. From another perspective, the learned features of a neural network lie on a
high dimensional manifold that is linearly separable for different classes because the classification
layer is a linear classifier followed by a softmax function. With adversarial training alone, a model
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only tries to map x and x′ to the same side of the decision boundary, while with the additional
regularization, they are not only on the same side but also mapped to nearby points in the space.
This mapping is a desired behavior considering that, in the original image space, they are very close
points representing essentially the same image.

3.4 MODEL LOSS

Equipped with the presented methods, the total loss of our model is:

Loss = E(x,y)∼D[L(θ,x′, y) + λ‖Gθ(x)− Gθ(x′)‖2] (7)

where λ is a hyperparameter that controls the relative weight of the L2 regularization loss.

4 EXPERIMENTS AND RESULTS

In this section, we evaluate our model on the MNIST, CIFAR-10 and CIFAR-100 datasets, and
present justification to attention module and some quantitative and qualitative results.

4.1 ROBUSTNESS ON MNIST

First we present the results on the MNIST dataset. We use a CNN with two convolutional layers with
32 and 64 filters respectively, each followed by 2×2 max-pooling, and a fully connected layer of size
1024. For the PGD adversary, we run 40 iterations with a step size of 0.01 and l∞ bound of ε = 0.3.
The settings are the same as in Madry et al. (2017). Since MNIST is a very small scale dataset and
the model is very robust with just adversarial training, we do not employ the attention mechanism
on MNIST. We only study the effectiveness of the proposed feature regularization method.

Table 1: Performance comparison of the adversarial training method (Madry et al., 2017) and our
proposed adversarial training with feature regularization (AT-reg) method on MNIST. Black box
accuracies are evaluated against adversaries generated from an independently trained copy of the
same method with identical configurations.

Method Natural White box Black box
Madry et al. (2017) 98.72% 92.86% 95.97%
AT-reg 98.66% 95.69% 96.90%

The evaluation results on MNIST are presented in Table 1. Regarding the value of weight λ of the
L2 regularizer, we find that roughly any λ ∈ [0.001, 0.05] works well. The reported results are
obtained with λ = 0.01. From Table 1, we can see that a model trained with the proposed feature
regularization method is significantly more robust against PGD adversary than the baseline model
that uses adversarial training alone. The improvement is nearly 3% for white box attack and 1% for
black box attack.

4.2 ROBUSTNESS ON CIFAR-10

Here we present our results on the CIFAR-10 dataset. For the base network, we use the original
ResNet model that has four residual blocks with [16, 16, 32, 64] filters and its 3-times wider vari-
ant with [16, 48, 96, 192] filters respectively. For our attention model, we modify the ResNet by
replacing the spatial global average pooling layer after the residual block 4 with a convolutional
layer sandwiched between two max-pooling layers to obtain the global feature g. We use a one-
hidden-layer neural network with 64 hidden units and ReLU activation function as the non-linear
attention weight estimator. For the PGD adversary, we run 5 iterations with a step size of 2 and
l∞ bound of ε = 8/255. In order to isolate and analyze the effectiveness of attention module and
implicit denoising independently, we train three models with the following configurations: AT-reg is
an adversarial trained model with feature regularization, AT-att is an adversarial trained model with
attention module, and AT-att-reg is the model with both attention and feature regularization.
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Table 2: Performance comparison of the adversarial training (Madry et al., 2017), adversarial train-
ing with feature regularization (AT-reg), adversarial training with attention model (AT-att), and ad-
versarial training with both (AT-att-reg) on CIFAR-10. Black box accuracies are evaluated against
adversaries generated from an independently trained copy of the same method with identical config-
urations.

Method Madry et al. (2017) AT-reg AT-att AT-att-reg
Natural 80.79% 79.52% 82.75% 81.21%

White box, PGD 5 steps 49.89% 52.35% 51.20% 52.81%
White box, PGD 20 steps 39.72% 44.25% 41.39% 44.58%
White box, PGD 100 steps 38.76% 43.73% 40.47% 44.04%
White box, PGD 200 steps 38.64% 43.70% 40.36% 44.02%
White box, CW 30 steps 40.27% 42.96% 40.60% 43.09%
White box, CW 100 steps 39.98% 42.87% 40.31% 42.75%

Black box, PGD 5 steps 60.13% 61.82% 63.26% 62.32%
Black box, PGD 20 steps 56.60% 56.40% 58.26% 57.52%
Black box, PGD 100 steps 56.44% 56.28% 58.08% 57.53%
Black box, PGD 200 steps 56.49% 56.25% 58.04% 57.53%
Black box, CW 30 steps 57.11% 56.86% 58.07% 57.57%
Black box, CW 100 steps 57.10% 56.79% 58.13% 57.41%

Table 3: Performance comparison of the adversarial training (Madry et al., 2017), adversarial train-
ing with feature regularization (AT-reg), adversarial training with attention model (AT-att), and ad-
versarial training with both (AT-att-reg) on CIFAR-10 using the 3-times wide ResNet network. Black
box accuracies are evaluated against adversaries generated from an independently trained copy of
the same method with identical configurations.

Method Madry et al. (2017) AT-reg AT-att AT-att-reg
Natural 85.41% 84.65% 86.48% 85.98%

White box, PGD 5 steps 49.15% 52.21% 50.91% 53.23%
White box, PGD 20 steps 38.19% 41.00% 39.52% 41.55%
White box, PGD 100 steps 37.39% 40.28% 38.98% 40.78%
White box, PGD 200 steps 37.20% 40.24% 38.89% 40.67%
White box, CW 30 steps 38.92% 42.20% 40.75% 42.12%
White box, CW 100 steps 38.71% 41.88% 40.32% 42.06%
Black box, PGD 5 steps 68.03% 68.00% 69.78% 69.00%
Black box, PGD 20 steps 62.77% 63.14% 64.70% 64.01%
Black box, PGD 100 steps 62.65% 63.12% 64.78% 64.15%
Black box, PGD 200 steps 62.73% 63.12% 64.69% 64.11%
Black box, CW 30 steps 63.89% 64.23% 65.65% 64.50%
Black box, CW 100 steps 63.77% 64.04% 65.43% 64.35%

The evaluation results of aforementioned four models on CIFAR10 are presented in Table 2. Similar
with MNIST, we find that roughly any λ ∈ [0.01, 0.1] works well for feature regularization. The
reported results are obtained with λ = 0.1 for AT-reg and λ = 0.01 for AT-att-reg. From the table,
we see that all of the three proposed models have better adversarial robustness over the baseline
model that only uses adversarial training, and both models with attention show improvement on the
classification accuracy on natural examples as well.

By comparing AT-reg with adversarial training (Madry et al., 2017), we note that the feature reg-
ularization method provides a significant improvement on white box robustness over the baseline
method, with a cost of standard accuracy and a slight decline of black box accuracy. Same trade-off
appears in the comparison of AT-att-reg and AT-att.
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Figure 2: The relationship between attention weights and feature robustness. The horizontal axis is
the robustness rank, with 0 being the most robust and 63 the least robust, and the vertical axis is the
corresponding attention weights. Left plot shows the results for training set and right plot is for test
set of CIFAR-10.

Next, by comparing the results of models with and without the attention module, we can see that
attention contributes to both standard and adversarial accuracy. The attention structure not only
favors robust features, it also relies heavily on features extracted from the spatial area that contains
the actual object of concern. By suppressing the features extracted from the background clutter and
misleading perturbations in irrelevant areas, the model with attention module more precisely learns
the underlying distribution of the data therefore the better accuracy. In the next section, we will
demonstrate that the attention module assigns larger weights to more robust features, and attention
maps sharply focus on the object in the image and ignore the irrelevant background clutter.

4.3 JUSTIFICATION FOR ATTENTION

Now we investigate the attention module and demonstrate how it actually helps to train a more robust
model. As we discussed in Section 1, the intuition for using attention is to assign larger weights on
more robust features and smaller weights on less robust features. We now show that this is in fact
true by examining the attention weights relative to the feature robustness.

Figure 2 shows the relationship between the robustness of a feature and the magnitude of its assigned
attention weight. The robustness measure we use is the L2 distance between the learned features
of a clean and an adversarial image, i.e. the smaller the distance between the features, the more
invariant the feature is against input perturbations, therefore the feature is more robust. For each
plot in Figure 2, the horizontal axis is the rank of feature robustness, with 0 being the most robust
and 63 the least robust, and the vertical axis is the corresponding attention weights. The plot on
the left shows the average attention weights for all training images and the plot on the right is for
all test images in CIFAR-10. We can see that our proposed attention mechanism indeed assigns
larger weights to more robust features and less weights to non-robust features, so the model is more
invariant to adversarial perturbation.

Next we show the attention maps of our model in Figure 3 to visualize the attention weights. The
attention maps focus sharply on the objects in the images, and the most relevant features like the
head and legs of an animal and the wings of an airplane contribute more to the model’s prediction.

4.4 GRADIENT MAP

In this section we study the gradient maps, which are the gradients of the cross-entropy loss with
respect to the input image pixels, for both the baseline and our model on CIFAR-10. The gradient
maps are a direct indicator on how the input features are utilized by a model to produce a final
prediction. A large magnitude of the gradient on an input feature signifies a heavy dependence
the model has. Human vision is robust against small input perturbations and the perception of an
image reflects which input features contribute to the human vision robustness. At the same time, the
gradient maps of a robust model also highlight the input features which affect the loss most strongly,
therefore more robust models depend on robust features and will be better aligned with human
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Figure 3: The learned attention maps of our model. The first row are the input images and the second
are the attention maps learned at residual block 4.
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Figure 4: Gradient maps generated by compute gradient of model’s cross-entropy loss with respect
to the input images. Top row are the original CIFAR-10 images, midrow are the gradient maps of
Madry et al. (2017), and bottom row are the gradient maps of our model. The raw gradients are
clipped to within ±3 standard deviation and rescaled to lie in the [0, 1] range for visualization. No
other preprocessing is applied.

vision. So the alignment of gradient maps with the image can be used to evaluate the robustness a
model. Next, we show that the gradient maps generated from our model align better with the salient
data characteristics by evaluating the gradient maps both qualitatively and quantitatively.

First we present the qualitative result. Figure 4 contains the gradient maps from Madry et al. (2017)
and our model. These are raw gradients with only being clipped and rescaled for visualization.
Overall, we note that both models generate highly interpretable gradient maps that align very well
with the image features. However, upon carefully inspecting the images, it is evident that the gra-
dient maps generated from our model are better than the baseline model. To point out a few: in
columns 2, 3, 6 and 9, our gradient maps have cleaner backgrounds and the gradients only focus on
the objects; especially in column 6, the baseline model has large gradients on the text field in the
background which is irrelevant to the class label (automobile), while in our model gradients in that
area are much more suppressed. In columns 1, 5, and 10 the edges of the faces and heads of the
animals are depicted clearer in our model.

Next, we introduce a quantitative evaluation method for gradient maps. The problem we consider
here is to decide how well the gradient maps align with the original images. The better they align,
the more recognizable the gradient images are. Therefore, in addition to human inspection which
could be very subjective, we propose to use a pretrained neural network to classify the gradient maps
for all images in the dataset, both the training set and the test set. A standard neural network extracts
relevant features from the inputs and make predictions based on the features. When a gradient map
is highly aligned with the original image, the neural net is able to identify more relevant features
and thus the classification accuracy will be higher. Therefore, with the classification accuracy of
gradient maps from both models of all images we are able to quantitatively compare the alignment.

The pretrained model we use is the same ResNet model as in Section 4.2 trained with only natural
training data of CIFAR-10. It achieves an accuracy of 88.79% on the test set. The classification
results are presented in Table 4. To avoid the possible influence of gradient clipping we also run the
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evaluation on raw gradients. As demonstrated by the classification accuracy, the gradient maps from
our model express significantly better alignment with the original images.

Table 4: Classification accuracy on the gradient maps from baseline and our methods on both the
training dataset and test dataset of CIFAR-10. We run the experiment on gradient maps both with
and without clipping to avoid the influence of gradient clipping.

With clipping Without clipping
Method Train data Test data Train data Test data
Madry et al. (2017) 27.10% 26.78% 28.60% 28.72%
Ours 30.11% 30.32% 31.46% 31.59%

To summarize, both the qualitative and quantitative results show that the gradient maps from our
model have better interpretability and alignment with the original images. It suggests that our model
depends on features that are very closely correlated with the robust features of the input images
which explains the improved performance on both standard accuracy and adversarial robustness.

4.5 RESULTS ON CIFAR-100

Here we present our results on the CIFAR-100 dataset. The experiment setup is the same as CIFAR-
10 in Section 4.2.

Table 5: Performance comparison of the adversarial training (Madry et al., 2017), adversarial train-
ing with feature regularization (AT-reg), adversarial training with attention model (AT-att), and ad-
versarial training with both (AT-att-reg) on CIFAR-100. Black box accuracies are evaluated against
adversaries generated from an independently trained copy of the same method with identical config-
urations.

Method Madry et al. (2017) AT-reg AT-att AT-att-reg
Natural 52.70% 49.53% 53.67% 50.66%

White box, PGD 5 steps 25.14% 26.99% 26.33% 27.76%
White box, PGD 20 steps 19.65% 23.16% 20.82% 23.80%
White box, PGD 100 steps 19.47% 23.07% 20.59% 23.62%
White box, PGD 200 steps 19.41% 22.96% 20.53% 23.62%
White box, CW 30 steps 18.64% 20.78% 19.39% 20.88%
White box, CW 100 steps 18.61% 20.63% 19.26% 20.76%
Black box, PGD 5 steps 35.37% 35.10% 35.95% 35.17%
Black box, PGD 20 steps 31.99% 31.88% 32.48% 32.04%
Black box, PGD 100 steps 32.03% 31.84% 32.38% 32.00%
Black box, PGD 200 steps 32.00% 31.80% 32.37% 32.06%
Black box, CW 30 steps 32.50% 31.96% 32.75% 29.81%
Black box, CW 100 steps 32.46% 31.86% 32.74% 29.71%

5 CONCLUSION

In this paper we propose feature prioritization and regularization to enhance the adversarial robust-
ness. With the non-linear attention module and L2 feature regularization, a model is improved on
both the standard classification accuracy and the adversarial robustness over the baseline adversarial
training approach. We provide additional justifications for the attention module to show that it ef-
fectively favors robust features, and study the attention maps to demonstrate that the attention maps
focus sharply on the region of interest. We then conduct quantitative and qualitative evaluation on
gradient maps and show that they align perfectly with salient data characteristics, and therefore our
model heavily relies on the robust features.
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